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SENSITIVITY OF NEUTRON HEATING IN FUSION REACTOR BLANKETS TO NUCLEAR DATA

by

M. A. Abdou and C. W. Maynard

University of Wisconsin

A study of the sensitivity of neutron heating in CTR blankets to
basic nuclear data has been carried out.(l)

Table 1 shows the percentage contribution‘to neutron heating by
reaction type for the most important CTR materials for two reference
spectra. These calculations were carried out with kerma factors pro-
cessed by MACK(Z’S) from ENDF/B3(4) data. The general conclusion from
these results is that reactions such as {n,0) and (n,p) while relatively
unimportant for determining the neutron flux are extremely important
mechanisms for local energy deposition as they contribute more than 50%
in most materials. A rglative change in o for charged particle pro-
ducing reactions (for which o is usually small) results in a greater
change in neutron heating than that produced by the same relative change
in a large o such as that of elastic scattering.

The Li7 (n,n'a)t is the most important neutron producing reaction
in most blankets. Rosen and Stewart's(s) data for the secondary neutron
energy distribution of Li7 (n,n'a)t was used as the basis for the ENDF/B3

(MAT 1116) representation. Table 2 shows that the ENDF/B3 representation



consistently overestimates the average secondary neutron energy, E%, 1’
b

|

compared with the original data. The effects of such changes in on

n',1
kerma factors are shown in table 2. The pointwise kerma factor for the
(n,n'o)t reaction changes by about 15 to 25% when the Rosen and Stewart
data is replaced by the ENDE/B3 representation. The resulting change in
the neutron heating in Li7 is about -8%. The relative change in neutron
heating in Li7 was found to be roughly one-third of that in Eh‘,l for the
(n,n'a)t reaction. A 90% change in the nuclear temperature for all neutron
producing reactions in L;7 results in 30 to 40% change in the neutron heat-
ing in Li7.

The sensitivity of neutron heating to changes in the angular distri-
pution of elastic scattering in Li7 was also studied. Ignoring the center
of mass anisotropy of elastic scattering increases the neutron heat-

ing in Li7 by about 80% in lithium regions close to the first wall and by

40% in regions close to the shield.
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TABLE 1 PERCENTAGE CONTRIBUTION OF REACTION TYPES TO NEUTRON

HEATING IN SOME CTR MATERIALS FOR -
a - Typical First Wall Spectrum

Re?;;ion Elast?c Inelast%c n.2n n,y n;n' charged n,charged
Scattering Scattering g ? particles particles
Material
Li~6 5.6 10.5 0.0 0.0 1.8 82.1
Li-7 42.2 7.8 0.09 0.04 47.3 1.8
Be-9 37.7 — 55.1* 0.004 — 7.2
Al-27 13.9 25.7 0.35 .25 59.7
Cr .8 9.9 2.3 .03 5.53 72.5
Fe .8 8.2 3.3 .01 79.7
Ni .3 2.8 0.14 .01 16.9 75.7
Nb 17.6 16.4 15.5 .09 50.5
v - 24.8 12.7 12.6 3.8 46.4
Cu , 12,1 11.8 4.9 30.5 40.7

b - C/E Spectrum (C = 1.0 above 0.11MeV, C = 0.25 below .11MeV)

Li-6 0.2 .001 0.0 0.0 .24 99.6
Li-7 57.7 10.9 0.3 1.8/ 29.0 0.4
Be-9 50.0 — 36.6* ~.003 — 13.4
A1-27 28.6 21.3 0.1 3.1 47.0
Cr 31.0 17.5 0.6 0.1 2.04 49.8
Fe 19.7 19.4 1.0 0.03 59.8
Ni 8.0 4.6 .03 0.03 4,5 82.9
Nb 30.6 33.3 5.8 0.2 30.1
v 18.7 13.4 1.3 56.1 10.5
Cu 9.2 8.3 22.9 4.0 ' 55.6

*Includes the (n;n', charged particles) contribution for some materials.,

*(n,2n)a plus (n,n')a plus inelastic.
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