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Summary

We investigate the convergence properties of Λ-acceleration methods for non-LTE ra-

diative transfer problems in planar and spherical geometry. Matrix elements of the “exact”

Λ-operator are used to accelerate convergence to a solution in which both the radiative

transfer and atomic rate equations are simultaneously satisfied. Convergence properties of

2-level and multilevel atomic systems are investigated for methods using: (i) the complete

Λ-operator, and (ii) the diagonal of the Λ-operator. We find that the convergence properties

for the method utilizing the complete Λ-operator are significantly better than those of the

diagonal Λ-operator method, often reducing the number of iterations needed for conver-

gence by a factor of between 2 and 7. However, the overall computational time required

for large scale calculations — that is, those with many atomic levels and spatial zones — is

typically a factor of a few larger for the complete Λ-operator method, suggesting that the

approach should be restricted to problems in which convergence is especially difficult. In

addition, we show that for problems with spherical symmetry the convergence properties

found when using a Λ-operator based on contributions from only one hemisphere (thereby

neglecting contributions from symmetry points) are only marginally worse than those when

using the exact diagonal.



1. Introduction

Over the past decade, considerable progress has been made in developing numerical

techniques for solving multilevel non-LTE (LTE ≡ local thermodynamic equilibrium) radia-

tive transfer problems in astrophysics. Such problems are characterized by the requirement

that multilevel atomic rate equations must be solved self-consistently with the radiation

field. The fact that the radiation field can significantly affect the atomic level populations

through photoexcitation and photoionization severely complicates the problem of modelling

non-LTE plasmas. The methods of solution to this class of problems have relied on iterative

techniques in which the level populations are “updated” until the equations of statistical

equilibrium and radiative transfer are simultaneously satisfied. The manner in which the

populations are updated has a significant effect on the rate of convergence and computa-

tional requirements of a problem.

Scharmer (1981, 1984) introduced a new approach to non-LTE radiative transfer based

on Cannon’s operator perturbation technique (1973), in which he obtained approximate

Λ-operators based on Rybicki’s core saturation assumption (1972) and the Eddington-

Barbier relation. This method was later generalized to multilevel atomic systems and

applied to stellar atmospheres by Scharmer and Carlsson (1985). Since that time a number

of methods have been proposed to improve upon Scharmer’s technique.

Werner and Husfield (1985) proposed a method in which the contribution from the

diagonal of the Λ-operator was used implicitly in the atomic rate equations. Approximate

values of the diagonal Λ elements were obtained using the core saturation method with an

adjustable parameter to specify the core-wing boundary of a line. Hamann (1986) applied

this technique to spherically symmetric expanding stellar atmospheres. Olson, Auer, and

Buchler (1986) also proposed a method utilizing the diagonal of the Λ-operator, but showed

that using an accurate value for the diagonal was superior to using approximate diagonal

elements. A similar conclusion was reached by Puls and Herraro (1988).
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Olson and Kunasz (1987) showed that further improvements to the convergence rate in

non-LTE radiative transfer problems can be obtained by using tridiagonal or pentadiagonal

elements of the Λ-operator implicitly in the atomic rate equations. Unfortunately, the rate

of convergence for banded Λ-operator methods (diagonal, tridiagonal, and pentadiagonal)

deteriorates as the number of spatial grid zones increases (Olson and Kunasz 1987). This

deterioration results from the fact that the plasma at each point along the computational

grid can “communicate” a greater distance when the computational grid is relatively coarse.

In an attempt to get around this problem Steiner (1991) proposed a multiple grid scheme

in which coarse and fine spatial grids are alternatively used.

In this paper, we investigate the convergence properties of accelerated Λ-iteration tech-

niques which utilize “exact” elements of either the complete or diagonal Λ-operator. Cal-

culations are performed for both 2-level and multilevel atomic systems with planar and

spherically symmetry. Accurate values for the elements of the Λ-matrix are computed us-

ing a computationally efficient technique recently proposed by Rybicki and Hummer (1991).

We investigate the convergence rate and computational speed for both the complete and

diagonal Λ-operator approaches. Results are presented showing the dependence of these

properties on the number of spatial zones and atomic levels, and on whether Ng accel-

eration (1974; Auer 1987) is employed. In addition, for spherical systems we investigate

whether convergence properties are significantly better when the exact diagonal elements

of the Λ-operator are used; i.e., those which include contributions from points in opposite

hemispheres.

When using the complete Λ-operator our approach is in some respects similar to those

of Avrett and Loesser (1984, 1968) and Apruzese et al. (1980). The primary distinction

between our study and previous work is that we use exact values of the Λ-operator which

are obtained while using the differential form of the radiative transfer equation. That is,

the Λ-matrix elements are calculated with the same coefficients of the tridiagonal matrix
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operator used to solve the transfer equation. In addition, we examine the dependence of the

convergence rate on the spatial grid, and make detailed comparisons with results using the

diagonal Λ-operator approach in both planar and spherical coordinates. We emphasize the

goal of this paper is not to argue that one Λ-acceleration approach is better than another for

all problems. Rather, it is to compare Λ-acceleration approaches based on recent advances

in numerical radiative transfer techniques, and to suggest that the complete Λ-operator

method, because of its particularly good convergence properties, can be applied to non-

LTE problems which exhibit convergence difficulties.

2. Calculation of Radiation Intensity and Λ-Matrix Elements

To calculate the radiation intensity we use the second-order form of the transfer equa-

tion. In planar geometry this can be written as (Mihalas 1978):

(
1 − µ2 ∂2

∂τ 2
ν

)
uµν = Sν , (1)

where τν is the optical depth at frequency ν measured along a ray normal to the slab

boundary, µ is the direction cosine, and Sν is the source function, which is assumed to be

isotropic. The Feautrier variable uµν is defined as the average of the specific intensity Iµν

in the µ > 0 and µ < 0 directions:

uµν(τν) =
1

2
(Iν(µ, τν) + Iν(−µ, τν)) . (2)

The quantity u is readily evaluated along an optical depth grid at each angle and frequency

point by solving a tridiagonal system of equations. In the calculations described below,

second-order accurate boundary conditions are used at the “top” of the atmosphere where

we assume no incident radiation:

Iν(τν = 0,−µ) = 0 .
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The matrix elements of the Λ-operator are calculated using the method recently pro-

posed by Rybicki and Hummer (1991). The Λ-operator can be expressed by the relation:

uµν = Λµν [Sν ] , (3)

where Λµν is a matrix of size ND ×ND, where ND is defined as the number of optical depth

points. Let T be a differential operator defined by Eq. (1), so that:

Tµνuµν = Sν . (4)

The quantity T is an ND × ND tridiagonal matrix. Combining Eqs. (3) and (4) gives

TµνΛµν = 1 . (5)

Rybicki and Hummer (1991) showed that all diagonal elements of the “true” (or exact)

Λ-operator can be quickly found in ∼ ND operations. Little extra computational effort is

required beyond that expended to evaluate the radiation intensity. In addition, the off-

diagonal elements are obtained from simple recursion relations.

In spherical geometry the form of the transfer equation is similar to that for the pla-

nar case (Eq. (1)). However, in this case the angle-dependent information is obtained by

evaluating the transfer equation along a grid of rays with impact parameters defined by the

radial mesh (see e.g., Mihalas, Kunasz, and Hummer 1975), as illustrated in Fig. 1. A sig-

nificant difference between planar and spherical geometries is that in spherical coordinates

a single ray can intersect the same spatial zone of the computational grid more than once.

For instance, two points from the same zone, points A and B in Fig. 1, are intersected by

the ray defined by impact parameter P. Because of this, the diagonal elements — as well

as off-diagonal elements — of the Λ-operator depend not only on the photons emitted on

the observer side of the sphere (point A), but also on the photons emitted from the sym-

metry point in the opposite hemisphere (point B). A reflective boundary condition at the

plane of symmetry cannot be used to obtain the photoexcitation rate at point A caused by
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Figure 1. Illustration of spatial grid used to solve the radiative transfer equation in spherical
coordinates. The ray defined by impact parameter P intersects the same zone at

points A and B.
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photons emitted at point B because one must consider the effects of attenuation between

points A and B. Below, we also investigate whether using the contribution from only one

of the hemispheres to the lambda operator leads to any significant degradation in the rate

of convergence in spherical radiative transfer problems.

3. Atomic Rate Equations

A good understanding of different Λ-acceleration techniques can best be attained by

examining the case of a 2-level atom. The steady-state rate equation for a system with 2

bound states can be written as (Mihalas 1978):

SL = (1 − ε)J̄ + εBν , (6)

where the mean intensity is

J̄ ≡
∫ ∞

0
dν φν Jν =

∫ ∞

0
dν φν

∫ 1

0
dµ uµν , (7)

SL is the line source function, ε is the thermalization parameter, Bν is the Planck function

at the transition frequency ν, and φν is the line profile. For convenience, we have neglected

in Eq. (6) the effects of a background continuum. We also assume complete frequency

redistribution. The monochromatic mean intensity at a point a along the computational

grid is related to the Λ-operator by

J̄(τa) =
ND∑
e=1

Λ̄eaSe
L , a = 1, · · · , ND , (8)

where

Λ̄ea =
∫ ∞

0
dν φν Λea

ν =
∫ ∞

0
dν φν

∫ 1

0
dµ Λµν ,

and the summation is over all optical depth points. The superscripts in Eq. (8) represent

points of emission (e) and absorption (a). Substituting Eq. (8) into Eq. (6) we obtain

Sa
L − (1 − ε)

ND∑
e=1

Λ̄eaSe
L = εBν . (9)
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The matrix elements of the Λ-operator are determined during the solution to the radiative

transfer equation. Since they are a nonlinear function of the source function (and atomic

level populations), the self-consistent solution of S and Λ is obtained by iteration.

The most straightforward way to calculate S at a new iteration cycle k is to use the

value of the radiation field computed using the source function from the previous iteration,

k − 1. Then

Sa
L(k) = εBν + (1 − ε)

ND∑
e=1

Λ̄eaSe
L(k − 1) . (10)

This approach is referred to as Λ-iteration, a method whose convergence problems are well

known (see e.g., Mihalas 1978).

A technique with significantly better convergence properties is the diagonal Λ-operator

method (Werner and Husfield 1985; Olson et al. 1986). In this approach, the source function

is evaluated using the term containing the diagonal of the Λ-operator implicitly in the rate

equation. This leads to

Sa
L(k) =

εBν + (1 − ε)
∑

e �=a Λ̄eaSe
L(k − 1)

1 − (1 − ε)Λ̄aa

=
εBν + (1 − ε)(J̄(k − 1) − Λ̄aaSL(k − 1))

1 − (1 − ε)Λ̄aa
. (11)

Note that in evaluating the summation in Eq. (11) only the diagonal of the Λ-operator needs

to be computed. The reason for the better convergence properties is that the “net” mean

intensity, J̄ − Λ̄SL, effectively discounts the effects of scattering in the optically thick cores

of lines. Formulation of the rate equation for using the tridiagonal and pentadiagonal parts

of the Λ-operator is straightforward. However, a degradation in the convergence properties

is observed as the number of optical depth points increases (Olson and Kunasz 1987).

A significant improvement in convergence properties can be realized by using the com-

plete Λ-operator (all elements of the matrix) implicitly in the rate equations. The rate
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equation can then be expressed as

Sa
L(k)(1 − (1 − ε)Λ̄aa) − (1 − ε)

∑
e �=a

Λ̄ea Se
L(k) = εBν , a = 1, · · · , ND . (12)

The source function distribution for a 2-level atom is then obtained by inverting an ND×ND

matrix. The improved rate of convergence stems from the fact that at each point in the

atmosphere the contribution to the radiation field from all of the other points is monitored.

The photoexcitation rate in a given spatial zone (a) due to photons emitted in a different

zone (e) is proportional to the source function of the emitting zone. By solving the rate

equations for all the zones simultaneously, the convergence number of iterations required

to get a self-consistent solution of the radiative transfer and atomic rate equations can be

significantly reduced.

The main drawback to using the complete Λ-operator for large scale calculations with

many atomic levels and optical depth points is that the size of the matrix is (NL · ND) ×
(NL · ND), where NL is the number of atomic levels. However, since in most calculations

atomic levels of a given ionization stage are allowed to undergo transitions only to levels

either within the same ion or adjacent ionization stages, the matrix is banded. The band

width is ∼ N∗
L ·ND, where N∗

L is the maximum number of levels in a given stage of ionization.

For banded matrices the number of operations scales as nm2 (n ≡ order of the matrix, m ≡
band width), whereas for full matrices the number of operations scales as n3 (Dongarra

et al. 1979). One can also take advantage of the banded structure to reduce core memory

requirements.

For multilevel atomic systems, the steady-state rate equation for level i is:

dni

dt
= −ni

NL∑
j �=i

Wij +
NL∑
j �=i

njWji = 0 , (13)

where Wij and Wji are the depopulating and populating rates between levels i and j. For

upward transitions (i < j):

Wij = BijJ̄ij + neCij + neγij + βij (14)
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while for downward transitions (i > j):

Wij = Aij + BijJ̄ij + neDij + neαij + n2
eδij , (15)

where ne is the electron density, Aij and Bij are the Einstein coefficients for spontaneous

emission and stimulated emission and absorption, Cij and Dij are the collisional excitation

and deexcitation rate coefficients, αij represents the sum of the radiative and dielectronic

recombination rate coefficients, βij is the photoionization rate, and γij and δij are the rate

coefficients for collisional ionization and recombination.

In the complete Λ-operator formalism, the stimulated absorption and emission rates

are written in terms of the Λ-matrix elements:

na
jBjiJ̄ij − na

i Bij J̄ij =




−Aji
∑ND

e=1 ne
j Λ̄ea

ji (Na
j Se

L/N e
j Sa

L) (i < j)

Aij
∑ND

e=1 ne
i Λ̄ea

ij (Na
i Se

L/N e
i S

a
L) (i > j) ,

(16)

where Na
j represents the total number of atoms in state j and optical depth zone a. Equa-

tions (13) and (16) represent a set of NL · ND coupled rate equations. As stated earlier,

the grand matrix becomes banded when transitions are restricted to take place between

adjacent ions.

The photoionization rate can be written as

niRiκ =
ND∑
e=1

∫ ∞

ν1

dν
4π

hν
αa

ν Λea
ν

B†
ν

b1

, (17)

where αa
ν is the photoionization cross section for the absorbing point a. Both B†

ν and b1 are

evaluated at the emission point e. They are defined as:

B†
ν =

(2hν3/c2)

ehν/kT − b−1
1

, (18)

and

b1 =
(

ni

nκ

)
/
(

ni

nκ

)∗
. (19)

The population densities of the lower level and upper continuum state are represented by

ni and nκ, respectively. The asterisk in Eq. (20) signifies the LTE ratio for the populations.
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4. Results for 2-level and Multilevel Atomic Systems

We have performed a series of 2-level and multilevel atom calculations in both planar

and spherical geometries to investigate the potential benefits of using the diagonal or com-

plete matrix of the exact Λ-operator to accelerate convergence. The purpose of calculations

is to study the trade-offs in the rate of convergence and computational speed using the

complete and diagonal Λ-operator methods. In addition, we examine for problems with

spherical symmetry the extent to which neglecting the contribution from symmetry points

to the diagonal Λ-operator affects the convergence rate. The motivation for this comes from

previous studies which showed that the convergence rate improves as more accurate values

of the Λ-operator are used in the atomic rate equations (Olson et al. 1976; Puls and Herraro

1988).

The method of solution is as follows. We start with LTE population distributions. The

radiation intensity is obtained from formal solutions to the transfer equation. We calculate

the Λ-matrix elements utilizing the same coefficients of the tridiagonal matrix operator from

which the intensity is computed. New populations are obtained by solving the atomic rate

equations using all, part, or none (Λ-iteration) of the Λ-operator. Iteration continues until

the maximum relative change in the population densities at iteration cycle k,

∆max(k) ≡ max

[
ni,d(k) − ni,d(k − 1)

ni,d(k − 1)

]
, i = 1, · · · , NL ; d = 1, · · · , ND (20)

falls below some specified criterion.

We performed calculations both with and without Ng acceleration (Auer 1987; Ng

1974). A modest effort was made to determine the optimum parameter for applying this

technique. We found for multilevel atom calculations using the diagonal Λ-operator ap-

proach that fourth-order Ng acceleration applied every 6th iteration generally works best,

while the second-order method applied every 4th iteration works best for the complete

Λ-operator approach. In the 2-level atom calculations, the second-order method was used.
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4.1. Two-level Atom Calculations

In the first series of calculations, we examine the dependence of the convergence rate

on: (i) the type of Λ-acceleration scheme used, and (ii) the number of optical depth points

in the spatial grid. We assumed a Doppler line profile with a total optical depth of T = 104,

and a thermalization parameter of ε = 10−4. Each calculation was performed for planar

geometry. The number of zones in the optical depth grid was varied between 24 (about 2

points per decade) and 72 (about 6 points per decade).

Figure 2 shows the maximum relative change in population as a function of the iteration

cycle for calculations with 24 optical depth points. The 3 curves represent the results from

calculations using the complete Λ-matrix (solid curve), the diagonal of the Λ-matrix (dotted

curve), and Λ-iteration (dot-dashed curve). It is clear that the convergence rate using the

complete Λ-operator implicitly in the rate equations is significantly better than both the

diagonal Λ and Λ-iteration methods. It takes 28 iterations to reach a ∆max of 10−3 for

the diagonal operator approach while it takes only 4 iterations using the full Λ-operator

approach. It also takes approximately 7 times as many iterations for the diagonal method

when a lower criterion of 10−5 is used (40 iterations versus 6 iterations). Figure 2 also shows

that ∆max for the diagonal method exceeds that for Λ-iteration during the first 18 cycles.

This is simply an artifact of the populations moving faster toward the correct solution in

the diagonal method. In later cycles, ∆max is less because the source function distribution

is near the final solution.

A similar effect is seen in Fig. 3, where the results are shown for an identical set of

calculations, but with ND = 72 points. In this case it takes 50 cycles for the diagonal

operator method to reach a ∆max of 10−2. On the other hand, the method utilizing the

full Λ-operator shows approximately the same rate of convergence as in the ND = 24 zone

calculation, with ∆max ≈ 10−3 after 4 cycles and ∆max ≈ 10−5 after 7 cycles. The reason for

the observed independence of the number of grid points is that information regarding where

11



Figure 2. Maximum relative change in the population densities between successive itera-
tions for planar calculation with ND = 24 zones, T = 104, and ε = 10−4.
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Figure 3. Maximum relative change in the population densities between successive itera-
tions for planar calculation with ND = 72 zones, T = 104, and ε = 10−4.
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photons originate in the atmosphere is not lost as the space between grid points decreases

in the full Λ-operator approach. Each point in the atmosphere “sees” all other points in

the atmosphere regardless of the number of points. This is not the case for the diagonal

Λ-operator method. In this case each point sees only photons that originate locally (i.e., in

the same zone).

Figure 4 shows results for a series of calculations in which Ng acceleration was applied

every fourth cycle. With the exception of employing Ng acceleration, the calculations are

identical to those shown in Fig. 3. Note that the rate of convergence improves for all 3

methods. This is especially obvious for the Λ-iteration and diagonal operator methods

where Ng acceleration has been applied many times (compare with Fig. 3). In this case

∆max ≈ 10−3 and 10−5 after about 24 and 40 cycles, respectively, for the diagonal Λ-operator

method. This represents approximately 6 times as many cycles as the full Λ-operator case.

In previous investigations (Olson et al. (1986); Puls and Herraro (1988)) it was shown

that calculating “accurate” values for the diagonal Λ-operator results in better convergence

properties compared to when using “approximate” Λ-operators. In spherical geometry, how-

ever, exact values for the diagonal elements of the Λ-operator are somewhat more difficult

to obtain. This is because a ray can intersect the same spherical surface at 2 points. There

are thus 2 contributions to each element of the diagonal: the “self-coupling” or “local”

contribution (point A, Fig. 1) and a “non-local” contribution (point B) for which the atten-

uation effects between points A and B must be considered. It is straightforward to calculate

the non-local contribution using the recursion relations referred to in Section 2. However,

this calculation takes a non-trivial amount of computer time. If most of the off-diagonal

information is then being discarded, as it is for the diagonal Λ-operator method, it may

be advantageous to neglect the non-local contribution. The following question arises: to

what extent is the convergence improved by considering the non-local contribution to the

diagonal Λ-operator?

14



Figure 4. Same as Figure 3, but for calculations with Ng acceleration applied every fourth
iteration.
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Figure 5. Maximum relative change in the population densities between successive itera-

tions for spherical calculation with ND = 24 zones, T = 101, and ε = 10−4..
Results are compared for diagonal operator methods using the exact lambda-

operator (“local” + “non-local” case) and an approximation for the diagonal in
which only local contributions are considered.
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Figure 5 shows the convergence properties for full and diagonal Λ-operator calculations

with T = 101 and ε = 10−4. Note that for these conditions the photon thermalization depth

(Λ ∼ ε−1/2) exceeds the total optical depth, so that most photons can scatter throughout

the sphere before being destroyed. Thus, the non-local contribution to the Λ-operator will

be relatively large as compared to lines which are effectively thick. Results are shown

for two diagonal Λ-operator cases. In the case represented by the dotted curve, the non-

local contribution to the diagonal was included. In the other (dot-dashed curve) only the

local contribution was considered. The solid curve represents results using the complete

Λ-operator, where again we find extremely rapid convergence.

It is seen in Fig. 5 that by neglecting the non-local contribution to the diagonal

Λ-operator, the number of iterations required increases by only about 15 to 20%. Calcula-

tions performed for an effectively thick line, with T = 104 and ε = 10−4, showed virtually

no difference in the convergence rate between the two calculations. Our results thus indi-

cate that there is only a modest improvement when using the exact diagonal Λ-operator in

spherical geometry, and that computing the diagonal using only the local contribution will

result in a net savings in computer time.

4.2. Multilevel Atom Calculations

We next present results from multilevel atom calculations in planar and spherical ge-

ometries using diagonal and complete Λ-operators. Our aim is to compare convergence

properties and computer time requirements for the diagonal and complete Λ-operator meth-

ods. Calculations were performed for He atoms with 12 levels distributed over 3 ionization

stages (NHeI = 1, NHeII = 10, and NHeIII = 1). In each calculation, the temperature was

30,000 K, and the electron and ion density were both 1010 cm−3. The slab width in the

planar calculations and the radius for spherical calculations were both 108 cm. For these

conditions the maximum line optical depth (Doppler profile assumed) was ∼ 104 and the

continuum optical depth was ∼ 101.
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Table 1. Timing Results from Planar Multilevel Calculations

Diagonal Λ-Operator Method

ND Iterations CPU Time (s)

20 12 1.1

40 17 2.8
80 21 6.7

Complete Λ-Operator Method

ND Iterations CPU Time (s)

20 9 1.9
40 9 8.3

80 10 47

In each case the radiation field was computed at 10 frequency points per transition.

The number of angle grid points was 2 for planar calculations and ND + 5 for spherical

calculations. The calculations were performed on the CRAY Y-MP at the San Diego Su-

percomputer Center using a moderately-vectorized version of our radiative transfer code.

To compute the level populations, we performed matrix inversions with vectorized versions

of the LINPACK linear algebra routines (Dongarra et al., 1979). Iteration continued until

∆max fell below 10−3. In all cases, Ng acceleration was applied.

Tables 1 and 2 show timing results from planar and spherical calculations, respectively.

For each geometry and Λ-operator method, we performed calculations using 20, 40, and 80

optical depth points. In all cases the CPU time required for the diagonal Λ-operator method

was less than that required for the corresponding complete Λ-operator calculation. In the

18



Table 2. Timing Results from Spherical Multilevel Calculations

Diagonal Λ-Operator Method

ND Iterations CPU Time (s)

20 19 3.0
40 25 13

80 37 68

Complete Λ-Operator Method

ND Iterations CPU Time (s)

20 9 4.0

40 9 21
80 7 103

spherical geometry calculations the CPU ratio for the two methods shows little dependence

on the number of points in the spatial grid, with t (complete-Λ)/t (diagonal-Λ) ranging

from 1.3 to 1.6. On the other hand, this ratio shows a fairly strong dependence on ND in

the planar calculations, ranging from 1.7 in the ND = 20 calculation to 7 in the ND = 80

calculation. The reason for the stronger dependence of ND in the planar case is that a larger

fraction of the CPU time is spent on inverting the grand matrix for the rate equations. Rel-

atively little time is required to compute the radiation intensity and the Λ-matrix elements

because the computer code is readily vectorized over both frequency and angle. In spherical

geometry, vectorization over angle is difficult because the number of optical depth points

varies for each angle point (which is defined by the impact parameter). In addition, more

angle points are generally used in spherical calculations. Because of this, calculation of the

intensity and Λ-operator consumes a substantial amount of CPU time. Thus, in spherical
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geometry there does not appear to be an enormous difference in the computational require-

ments between the complete and diagonal Λ-operator methods. Nonetheless, for radiative

transfer problems in which convergence is not particularly difficult, the diagonal Λ-operator

method appears to be the best approach.

It is also seen in Tables 1 and 2 that the number of iterations required for convergence

shows little dependence on the number of optical depth points. This was also observed to

be the case in the 2-level atom calculations. It is for this reason that the total CPU time

in spherical geometry calculations using the complete Λ-operator method can be less than

a factor of 2 greater than the diagonal case. By comparison, the CPU time per iteration is

about 8 times greater in the ND = 80 case.

It is clear from this investigation that both of the Λ-acceleration techniques we have

studied offer distinct advantages. In all cases we have examined, the diagonal Λ-operator

approach needed less CPU time (and memory) to converge to a solution. The advantage of

the complete Λ-operator technique is that it has very good convergence properties. In fact,

experience has shown that in several problems in which convergence is either not attained

or is particularly slow using the diagonal Λ-operator, convergence is quickly attained with

the complete Λ-operator method. We cite as one example the spherical multilevel calcu-

lation with 80 depth points. It was found that the number of iterations required to reach

∆max = 10−3 depended somewhat sensitively on the Ng acceleration parameters: 37 it-

erations for fourth-order acceleration every 6th cycle, but 84 iterations for second-order

acceleration every 4th cycle. In fact, in the latter case, the overall CPU time was greater

for the diagonal Λ-operator calculation than the complete Λ-operator calculation. As a rule

of thumb, we have found that in problems where the diagonal method fails, the complete

Λ-operator approach can often, though not always, succeed. We find that a particularly

troublesome class of problems for both methods is when the electron density distribution
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is significantly affected by photoionizations. This appears to be similar to the problem

described by Hummer and Voels (1988) for O stars with high helium abundance.

5. Summary and Discussion

We have studied the convergence properties of Λ-acceleration techniques which utilize

either part or all of the exact Λ-operator. Accurate values of the Λ-matrix elements were

obtained in a manner consistent with the differential form of the transfer equation. Re-

sults using the complete Λ-operator implicitly in the atomic rate equations were compared

with those for which only the diagonal elements of the Λ-operator were used. We have

presented results from 2-level and multilevel atom radiative transfer calculations in planar

and spherical geometries.

Our results indicate that the number of iterations required to obtain converged solutions

with the complete Λ-operator method is typically a factor of between 2 and 6 fewer than with

the diagonal Λ-operator method. We also find that the rate of convergence in the complete

Λ-operator method shows little dependence on the number of spatial grid points, whereas

the convergence properties worsen as the grid spacing decreases when only the diagonal

elements are used. On the other hand, the overall computational time required was found

to be less with the diagonal method by a factor of between 1.3 and 7. The benefits in

reduced computer times tended by be greater in the planar calculations where vectorization

over angle and frequency can be readily performed and the number of angle points can be

considerably less. Therefore, in radiative transfer problems in which convergence is easily

attained the diagonal Λ-operator appears to be the more computationally efficient approach.

Although the diagonal Λ-operator approach has some significant advantages, the com-

plete Λ-operator technique may be a useful tool for calculations in which convergence is a

problem. Our experience in using the complete Λ-operator method suggests that it should

be applied to radiative transfer problems in which convergence either occurs very slowly

or is unattainable. In our efforts to develop codes to study radiative transfer in both
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astrophysical and laboratory plasmas (see e.g., MacFarlane et al. (1990,1991)) there have

been several instances in which the diagonal approach failed, while the complete Λ-operator

method was successful in achieving a converged solution. It might also be interesting to

apply this approach to calculations with partial redistribution, which evidently can also

exhibit convergence difficulties.

The main drawback to the complete Λ-operator approach is that it puts greater de-

mands on computer time and memory. The simultaneous solution of the atomic rate equa-

tions for all levels at all optical depth points requires the inversion of a single matrix of size

as high as (NL · ND) × (NL · ND) (see e.g., Werner and Husfield 1985). However, one can

significantly reduce the computational requirements by taking advantage of the fact that

transitions occur only between adjacent ionization stages. By arranging the grand matrix

such that there are NL × NL submatrices of size ND × ND, the band width of the grand

matrix is ∼ ND times the maximum number of excitation states in an ion. This approach

can lead to a substantial reduction in both computer time and memory, and can make an

otherwise computationally prohibitive problem quite tractable.

We have also investigated for spherical systems the degree to which the rate of conver-

gence degrades when the “non-local” contribution (that arising from symmetry points in

the opposite hemisphere) to the diagonal Λ-operator is neglected. Here, it was found that

the convergence rate worsens only slightly, with the number of iterations being the same

in effectively thick calculations, and increasing by ∼ 20% in effectively thin calculations.

Thus, there appears to be little benefit in including non-local contributions when computing

the diagonal Λ-operator.
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