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Abstract

With the primary aim of generating large scale, high quality atomic data
for ICF/MCF research applications, a basic atomic data calculation package
has been created. Atomic structure and radiative data (energy levels, oscilla-
tor strengths and photoionization cross sections) are calculated based on the
Hartree-Fock method. General accuracy of the data is expected to be better
than 15% for the single configuration HF calculation and a few percent for
the multiconfiguration HF calculation. Atomic collisional data calculations
are based on the distorted wave approximation, the Born approximation and
the semiclassical impact parameter method.

The atomic data generated from this package has been applied to analyze
the Ka x-ray spectrum produced from an Al plasma heated by an intense pro-
ton beam. Such plasmas are currently generated by the PBFA II pulse power
accelerator at Sandia National Laboratories. Our calculated wavelengths of
Ka transitions agree well with the experimental data. The properties of the
emission of Ko satellite line radiation produced by proton-impact ionization
and its potential as a temperature diagnostic for light-ion-heated plasmas
have also been studied.

A non-LTE collisional-radiative-equilibrium model which self-consistently
accounts for pressure ionization effects has been formed. Based on this CRE

model and our atomic data, an equation of state and opacity computation
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code, EOSOPC, has been developed. In EOSOPC, important nonideal ef-
fects such as pressure ionization, electron degeneracy effects and Debye-Hiikel
corrections for charged particle interactions have been included in the calcu-
lations of equations of state. In the opacity calculations, the group structure
for computing group mean opacities can be setup automatically in a prudent
manner. Our calculation results show that the group mean opacities are

sensitive to the group structure and the accuracy of the atomic data.
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Chapter 1

Introduction

1.1 Introductory Remarks

Two distinct approaches have been utilized toward the goal of achieving a
fusion reactor — magnetic confinement and inertial confinement. Typical
densities and temperatures of fusion plasmas are shown in Figure 1.1. Gen-
erally speaking, atomic phenomena in hot dense plasmas found in inertial
confinement fusion (ICF) devices are different from those in hot tenuous
plasmas found in magnetic confinement fusion (MCF) devices. However, the
atomic physics data needed in both ICF and MCF research are basically the
same. This basic atomic data includes atomic structure data (energy levels,
wavelengths), radiative transition data (oscillator strengths, photoionization

cross sections, free-free transition cross sections, damping constants) and col-



lisional data (cross sections for electron-ion impact, ion-ion impact, charge
exchange, etc.).

In ICF research, atomic physics processes play a significant role in the
modeling of target implosions using the indirect drive approach, the model-
ing of magnetized plasma channels for ion beam transport, the modeling of
blast waves in reactor target chamber plasmas, and the diagnostics of the
target experiments. Examples are z-pinch plasma channels [1, 2], spherical
blast waves generated by ICF target explosions [3, 4] and recent ion beam
experiment at Sandia National Laboratories [5].

Z-pinch plasma channels are important to the design of light ion beam
(LIB) inertial confinement fusion reactors and near term experiments. In
these applications, such as the Laboratory Microfusion Facility (LMF)[8] and
Light Ion Beam Reactor (LIBRA), high intensity ion beams are used to abla-
tively implode a target to achieve extremely high densities and to shock heat
deuterium-tritium (D-T) fuel to temperatures sufficiently high to have a ther-
monuclear burn. A typical schematic diagram of a z-pinch plasma is shown in
Figure 1.2. In the modeling of z-pinch plasma channels[2], one must solve a
set of time-dependent radiation magnetohydrodynamics (RMHD) equations
[6]. The physical properties of the channel plasma, i.e., equations of state
and opacities ( the resistance of the plasma to the transport of radiative
energy, a very important physical parameter that enters any solution of ra-

diation the transfer equation) are very important to the modeling of z-pinch
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Figure 1.1: Density and temperature conditons of some fusion plasmas.



plasma channels and may directly affect the behavior of plasma channels.
Huge amounts of atomic data are required for the computations of equations
of state and opacities.

A major concern in designing ICF power reactors, such as LIBRA and
SIRIUS-T[7], and near term experiments, such as the Laboratory Microfu-
sion Facility (LMF), is the protection of the target chamber first wall from
the target x-rays and debris ions. In order to predict the propagation of the
target explosion generated microfireball through the target chamber plasma
to the first wall (see Figure 1.5), we need to solve the radiation hydrody-
namics equations (RHD) [9]. Two sets of coupled equations are included in
RHD. These are moment equations for the radiation field and fluid equations
for the radiating fluid. The equations for the radiation field couple to the
radiating fluid via emissivity and opacity. Also, we must have the equations
of state of the plasma. Target chamber plasmas created after a high-gain ICF
target explosion are very far from local thermodynamic equilibrium (LTE).
The atomic level populations are not well described by the Saha-Boltzmann
distributions. The internal energy and opacity at each point in the plasma
depend not only on the local temperature and density, but also the radia-
tion field. Also, the radiation flux escaping the plasma is nothing close to
that of a blackbody. Target chamber plasmas can be optically thick at some
frequencies (e.g., at line centers), while being optically thin in other parts

of the spectrum. Very detailed atomic physics and radiation transfer theory
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are involved to better understand these effects (10, 11].

Ka x-ray satellites from a target heated by an intense ion beam were
recently observed in the Particle Beam Fusion Accelerator II (PBFA-II) ex-
periments at Sandia National Laboratories [5]. These spectra contain abun-
dant information of properties of the target plasmas, such as charge state
distribution, peak electron temperature and the plasma density. To analyze
Ka x-ray satellites, very accurate atomic structure data are required. For
example, the identification of the individual term-dependent Ko lines from
an aluminum plasma demands that the atomic energy levels be calculated to
better than one part in 3000. Our preliminary studies [12, 13] have indicated
that these plasmas are not in LTE, and appropriate radiative effects must be
considered. This requires reliable atomic collisional data.

It is necessary to indicate that, although the need for accurate atomic
data is immense, with applications in such diverse fields as spectroscopy, as-
tronomy, and fusion energy research, few of the ions of interest are attainable
in the laboratory. We still depend primarily on theoretical data. In recent
years there have been many advances in computational atomic physics and
an international collaborative research group led by M.J. Seaton is currently
generating a high quality atomic data base [14, 15]. However, from the point
of view of local usage, this kind of data base is not yet available. The need
for the capability to generate high quality atomic data for the applications
of local ICF (and/or MCF) research is obvious. This is one of the goals of



this work.

The other motivation for this work comes from the fact that the plasma
model and the atomic model for equations of state and opacity in our code,
IONMIX [16], need to be improved to give more reliable results. Very simple
physical models are currently used in IONMIX. The plasma is treated as
an ideal gas and the ions are treated as hydrogenic. For a high density,
partially ionized plasma, we can not expect that such simple physical models
will provide high quality results. In this thesis work, much better atomic
data are employed and non-ideal effects, such as the Debye-Hiickel correction
(17, 18], partially degenerate electron effect [19] and pressure ionization effect
[20] etc., are included in the computations of equations of state and opacities.
We expect that these improvements can give us better understanding of z-

pinch plasma channels and target chamber plasmas.



1.3: LIBRA reactor design

Figure
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1.2 Atomic Physics Model Considerations

In this work we consider a hot, partially ionized, collisional plasma and re-
lated atomic processes. By this we mean that the plasma is sufficiently hot
that all molecules are dissociated, and the components of the plasma are
atoms, ions and electrons.

All model plasmas with two or more components can essentially be clas-
sified in terms of either the chemical picture [21] or the physical picture
[22]. In the chemical picture, bound configurations such as atoms are in-
troduced and treated as independent species. In the physical picture, only
fundamental particles (electrons and nuclei) enter explicitly. Bound states
appear implicitly through the negative energy solutions of the Hamiltonian.
In principle the physical picture is very attractive. However this formalism
is not yet sufficiently well developed for spectroscopy analyses and opac-
ity calculations. The chemical picture works well for plasmas with densities
bounded by n < 1022 em™3. At very high densities, e.g., in ICF target plas-
mas, the chemical picture breaks down and one must use a cruder atomic
model based on a statistical potential, such as the hot Thomas-Fermi model
[23]. This approach yields atomic eigenvalues and eigenfunctions that in
some rough sense are consistent with the state of the plasma, but it obliter-
ates even the coarsest features (configuration) of the internal structure of the

atom and forces one to deal with average orbitals. This method is inferior
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at low density. Currently, the best way to determine the thermodynamic
and optical properties of plasmas in a wide range of temperature and density
is a combination of the chemical picture and statistic methods: in the low
density regime ( 7 < 1022 ¢m™3) using the chemical picture along with the
best available atomic data, in the very high density regime (~ ICF target
plasma), using statistical models. Between these two limiting regimes lies
a “ no-man’s land” where neither theory works well, and an interpolation
scheme [24] is used. In this work we deal only with relatively low density
plasmas ( n < 1022 ¢m™3), and ‘consider all the plasma physics problems in
the framework of the chemical picture.

In attacking plasma physics problem under the framework of the chemi-
cal picture, the first problem faced is the determination of internal structures
of the bound configurations (atomic structure) in the plasma. The starting
point is Schrddinger’s equation for a many-electron system, HU = EV. In
this equation, F is the total energy of the system, ¥ is the total wavefunc-
tion, and H is the Hamiltonian. The exact form of the Hamiltonian depends
on the properties and the environment of the system. It is obvious that the
Hamiltonian of an isolated ion is different from that of a plasma ion because
of the environmental effects. In principle the atomic calculations for plasma
ions should be based on the Hamiltonian with a modified internal poten-
tial which takes account of the influence of surrounding particles. However,

how to determine this “modified internal potential” correctly is still an open
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problem. Even for a very simple system such as hydrogenic atoms, there is
no satisfactory answer [20]. Fortunately these environmental perturbations
are very small in low density plasmas, and accurate atomic data for isolated
atoms are still feasible. Now, the basic question is what is the upper bound of
the density domain that the atomic data for isolated atoms can be applied?
On the basis of previous work [20, 25], we believe that n <1022 em™3 is a
reasonable limit. This is just the region of our interest. Hence in this work
we do detailed atomic calculations for isolated atoms, and consider the envi-
ronmental effects through an “occupation probability formalism” [20] in the
computations of the thermodynamic properties and the optical properties of

the plasma. This sets a basic limitation on our work.

1.3 Specific Atomic Models

Schrédinger’s equation for the steady state of a many-electron system,

HY = EV (1.1)

is a fundamental equation of quantum mechanics and the starting point of
all atomic calculations. In this equation F is the total energy, ¥ is the total
wavefunction, and H is the Hamiltonian of the system. All the interaction
information of the system is included in H. In atomic calculations, it is the

different choices of H that give different approximate atomic models.
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One of the most successful and useful approaches to describing an atom is
the Hartree-Fock model [26], which is based on the Schrédinger Hamiltonian

of an atom:

N 2 2 2

P: Le e
H = E =t + E — 1.2)
i:l[2 € i ] i>] Tij ( )

where the summations are over all bound electrons, p; is the momentum of
the ith electron, e is the electronic charge, m, is the electron rest mass, r; is
the distance between the nucleus and the ith electron, and r;; is the distance
between the ¢th and jth electrons.

It should be noted that Eq.(1.1) is unsolvable with the Hamiltonian in .
Eq.(1.2) because of the existence of 1/r;; = 1/ | r; —r; |. An approxima-
tion must be made. From the point of view of perturbation theory, we can
introduce a zero order approximation of H in Eq.(1.2)

o=y T L vy (13)

i=1 i
where the effect on interactions with other electrons have been replaced by a
single-particle potential V(r). Let ¥(9) be the zero order approximation of

¥, we have

H,0(0) = goylo) (1.4)

Eq.(1.4) is separable, let
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VO = p()p(2) - () - Y(N) (15)

where 1(2) is a one-electron wavefunction for electron . Substituting Eq.(1.5)

into Eq.(1.4), we have

S

=5 = =+ VIl = E(i) (16)

which is the wave equation for a particle in a central field. Like the hydrogenic
equations, in spherical coordinates the above equation separates further into

a radial, angular, and spin part. In fact one get,

$(1,6,8,0) = (2)P(r)¥im, (0, 8)0ms (17)

where YImI (6, ¢) is a spherical harmonic and x4 a spin function. The radial

function P(r) is now a solution of the radial Schrodinger’s equation

2
[i- + 22 _ 2V(r) — l(l;; b _ elP(r) =0 (1.8)

with boundary conditions P(0) = P(oo) = 0. This is a Sturm-Liouville
boundary value problem with possibly an infinite number of eigenvalues and
eigenfunctions. Let us denote these by ¢,; and P(nl | r) respectively, where
the integer n now orders the solutions so that n = [ 4 1 corresponds to the
lowest eigenvalue, n = [+2 to the next, and so forth, and the eigenfunction for

n = [+ 1 has no node, n = [ 4 2 has one node, and so on. The integer then
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assumes the same role as the principal quantum number for the hydrogen
equation. As a result the one electron functions can be specified entirely
in terms of four quantum numbers (n, [, m;,ms). Such functions are called
“spin-orbitals”.

In order to satisfy the Pauli exclusion principle, the total wavefunction
for a N-electron system must be an antisymmetric function. Hence, a zero

order total wavefunction is expressed as a “ Slater determinate”

P1(l)  $1(2) - ¥1(N)

Pa(l)  $2(2) -+ Pa(N)

0 _ L
v = o= s o e (1.9)

en(1) ¥n(2) - Pn(N)
where ¢;(2) is a spin-orbital for the jth set of quantum numbers (n;, l;, ", msj)
in terms of the space and spin coordinates of the :th electron (r;, 0;, ¢;, 7).
For a given electron configuration, there are ‘g’ corresponding quantum
states (e.g., there are 15 quantum states corresponding to the configuration
1522522p?) . Each quantum state is described by a ¥(°). By solving Eq.(1.4),

we can have ‘g’ orthonormal zero order atomic wavefunctions
(0) (o) (0) (0)
oy e

for a specific configuration. The whole eigenfunctions of H, form a complete

orthonormal set. Now, the accurate wavefunction ¥ can be expanded in
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terms of this complete orthonormal set
S~ 00
U= Cp¥;”. (1.10)
k=1
However, if H — H, is small, to the first order approximation, we can

expand ¥ only in a subspace of a specific configuration.
- o, gl
¥~ o) = 3 o (1.11)
k=1

This is called the single-configuration approximation. It is obvious that
the single-configuration approximation can not be always satisfied because
of the incomplete expansion of ¥. To have better results, we can expand ¥
in a larger subspace of “M” selected configurations

M gs

v~ Y Y cpulds (1.12)

s=1k=1
This is called the multiconfiguration approximation.

Now, the problem left is how to construct the H,? In the Hartree-Fock
model, the potential for electron-electron interactions e2 /7ij is approximated
by a non-local central potential. The HF potential consists of two parts, the
direct Coulomb potential and the exchange potential. The exchange poten-
tial comes from the requirement of the Pauli principle. A HF wavefunction
represents a specific orbital angular momentum L and spin angular momen-

tum S. Much of the numerical effort in calculating HF wavefunctions is spent

in the exchange part. To reduce numerical effort, several approximate models
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which are based on the simplified treatments of HF exchange potential have

been proposed. These approximated models include:

e Hartree (H) approximation [28] — neglecting the exchange term.

e Hartree-Fock-Slater (HFS) approximation {29] — introducing a self-
interaction term and replacing the exchange term by a statistical free-
electron expression similar to that used in the Thomas-Fermi-Dirac [30]

theory of the atom.

e Hartree-Plus-Statistical-Exchange (HX) approximation [31] — Using
exactly the same direct terms as those in the HF equations,making

statistical approximation for only the non-self-exchange term.

These approximations allow the radial differential equation to become a ho-
mogeneous equation which is free of all the complexities present in the general
HF equations. The price of making these simplified approximation is the loss
of accuracy. Since dramatic development in computer techniques have been
achieved these years, the advantages of these simplified treatments become
less and less significant. The Hartree-Fock model has been widely applied in
large scale atomic calculations.

In regards to the accuracy, the total atomic energy predicted by a single-
configuration HF wavefunction is generally accurate within a percent or two,
however the predictions for the transition parameters, i.e., transition ener-

gies and oscillator strengths, are somewhat crude (a few to 15% ) to be of
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practical value for detailed spectroscopy analysis. The multiconfiguration
HF calculations are required in such cases.

In our current work, we choose the Hartree-Fock method to do atomic cal-
culations. The single-configuration approximation is used to generate large
scale atomic data for the computations of equations of state and opacities.
Whenever necessary (e.g., in analyzing Ka x-ray spectra) the multiconfigu-

ration approximation is employed.

1.4 Plasma Model

From the point of view of the spectroscopy diagnostics and the computations
of equation of state and opacity, a proper plasma model means the best
specification of the particle distributions in the plasma. In another word,
to specify a partially ionized plasma, we need to indicate the components of
it, the energy distribution of the particles, the ionization stage distributions
and the atomic level occupation numbers. In this sense, an exact plasma
model should include all atomic processes that result in an atom/ion being
transferred from one quantum state and charge to another.

The starting point to describe nonequilibrium situations in plasmas is
the Boltzmann equation for the set of interacting particle types comprising

the plasma. For a particular class of particle, the time rate of change of its



o
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distribution function f is given by [32, 33]

da _ of,
E - (E{)mt

(1.13)
The right-hand-side of this equation symbolizes the rate of change of f due
to interaction with other classes of particles (including photons). The left-
hand-side is the rate of change of f in phase space under the influence of
external fields. Important classes of particles which must be identified here
include free electrons and ions of different species in distinct internal quantum
states. In regard to photons, there are two different cases. In optically thin
plasmas, the radiation transport effect is not important. In optically thick
plasmas, however, the distribution function for photons must also be studied.
Since the electron impact processes are the most important processes for the
changes in the internal ion state distributions, the first problem we need to
solve is the specification of the electron kinetic-energy distribution.
The interaction terms for the electron distribution include electron-electron

(e — e) collisions, electron-ion (e — i) collisions and electron-photon (e — v/)
interactions. As is well known, owing to the long range of the Coulomb in-
teraction, distant encounters are most effective in changing the distribution
function. For an isotropic distribution of electron kinetic energies, the kinetic

energy redistribution time scales Te—e and 7._; are significant parameters. It

is easy to show that, because of the mass factors,

1 18464

Te—e Te—1

(1.14)
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where A is mass number of the ion. Time scales of processes leading to the
emission of radiation are much longer. Therefore the interaction term for the
electron distribution fe(u), where u is the electron velocity, is determined

primarily by e-e collisions, and takes the form

(afe(u)
ot

Yint =~ ——/fe(u)fe(v)|u—v|a(u,v——> u', v)du'dv'dv (1.15)
+/fe(u')fe(v')|u' —V|e(u,v' = u,v)du'dv'dv

with the constraints that total energy and momentum are conserved in each
binary collision; o describes the collisional transition for collisions between
pairs of electrons of initial velocities u and v and final velocities u’ ,v/. The

invariance of the dynamical equations under time reversal implies that
oc(u,v—-u,v)=0o@ v - u,v) (1.16)

and so the usual form for the electron collision term is obtained, namely,

Py o~ [l ) - el —v]

x a(u,v—=u',v)du'dv'dv (1.17)

The isotropic distribution for which the above integral vanishes identically is

that for which
fe()fe(v) = fe(u') fe(v") (1.18)

when u, v, u’ and V' satisfy the conservation constraints. This is the

Maxwellian distribution, namely,

Me meu2

kT, ) 2ean(~ kT, (1.19)

fe(u) = ne(
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This distribution is independent of particular form of ¢ and is usually deduced
from general thermodynamic considerations. It is almost a rule to assume a
Maxwellian distribution for free electrons in studying the internal ion state
distributions. This is because the self-collision time 7e— for electrons is
usually short compared with the time scales for changes in the internal ion
state distributions. The main factor in the justification of this assumption is
the rate at which energy is imparted to the ions in question.

Now, we come to consider the distributions of the ionization stages and
the level occupation numbers. The contributions to the interaction term for
the ions in state ¢ are the various encounters of such ions with electrons,
other ions and the radiation field. By.integrating the interaction term over

velocities, we have

/(af(Z,z,z’U))intdu = - Z nen(Zazai)Xe(i - k)
ot k#i
+ D nen(Z,2, k)X (k — i)+ (1.20)
k#i

where f(Z,z,t,u) is the distribution function for ions with charge z of ele-

ment Z in quantum state i,

n(Z,2,4) = /f(z, 2,i,u)du (1.21)
is the population density, and

* foe)voi_p(e)de (1.22)

Xt — k) = AE
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is the electron collisional transition rate coefficient. The Boltzmann equation
for the distribution function of ions in a particular state is then simplified to

a statistical balance rate equation

dN;
dtl = Y [CriNp — Cy.Ni] (1.23)
ki

where C}; are the rate coefficients for the processes which populate 7; and

Cir the corresponding rate coefficients for depopulation. In principle any
atomic process that results in an ion being transferred from one quantum
state to another should be included. In practice, however, a selection must
be made of those processes considered to be sufficiently significant for the
level of approximation in mind. For a partially ionized plasma, the most

common collisional and radiative processes considered are:

o A(z,i)+e = A(z,k) + e (excitation and deexcitation by e™)

A(z,1) + e = A(z+1,k) + 2e (ionization and recombination by ™)

A(z+1,i) + e - A(z, k) + hv (radiative recombination)

A(z+1,%) + e — A(z,5)* — A(z, k) + hv (dielectronic recom.)

A(z,%)+ hv — A(z + 1,k) + e (photoionization)

A(z,i) — A(z,k) + hv (spontaneous decay)

A(z,7) + hv — A(z, k) (photoexcitation and stimulated decay)
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Here, the collisional processes between ions are neglected. This approxima-
tion is based on the following arguments. In the condition of approximate
equipartition of kinetic energy between electrons and ions, the electrons have
much greater velocities and since the rate coefficients are the product of cross
section with velocity, electrons are usually much more effective than ions in
causing collisional transitions among the states of the ions. In Figure 1.8
we compare a typical electron collisional excitation cross section and pro-
ton collisional cross section, along with the corresponding particle velocity
distribution functions. It is obvious that the rate coefficient of ion impact
is negligible compared with that of electron impact in such a case. There
are, however, special circumstances where the ion impact cross sections are
sufficiently large to overcome the disadvantage of low velocity and make this
process important. Of particular importance in this connection are collisions
which redistribute populations between fine-structure levels and high excited
Rydberg levels. Fortunately, in such a circumstance the total collisional rate
is sufficiently large to dominate that of the radiative processes, and a Boltz-
mann distribution is achieved among these levels.

Eq.(1.23) is a very general form of statistical balance equation. To obtain
a solution of Eq.(1.23), a detailed description of any charge state is needed,
and a very large number of transitions and energy levels have to be taken
into account. This makes the calculations quite complicated. In two extreme

limits (high density limit and low density limit), however, Eq.(1.23) can be



reduced to very simple formulas.
In the high density limit, the collisional processes dominate the radiative

processes. In such a case, the plasma is in local-thermodynamic-equilibrium

(LTE), and we have

2 (Z)

N'l g i —€o
— - - 2
Nz g(()z) exp( T ) (1.24)
and
Nz+1 mekT 3/2 _1GZ+1 I,
Nz - 2( 27r7i2 ) Ne Gz exp(—ﬁ) (1‘25)
where
€L — €&
Gt = Y g exn(- 22 (1.26)
k

is the partition function for ion X?. The generally used criteria for LTE
validity is deduced by requiring that the energy-dissipating radiative decay
of the ionic levels will be at least 10 times less frequent than that of energy-
conserving electron impact deexcitation [34, 35]. Generally speaking, higher
excitation states are expected to be in LTE at lower densities.

In another limit, the plasma density is so low that the collisional ionization
is balanced by only the radiative recombination. In such a case, the plasma
is in Coronal equilibrium (CE), and we have
So

_5_2 Sz-1

N = (22 (e (121
a1’ as Qg
Z
W=l LD I N (129
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and
€
Ne _ 2k
NJ? Ag;j

(1.29)

where S, denotes ionization rate coefficient of the zth ion, a, the recombina-
tion rate coefficient, XJ‘?k the electron collision excitation rate coefficient, and
Ap; the spontaneous decay rate. A commonly used criterion for the validity
of CE is [36, 37]

ne(em™3) < 1018(Ty(eV))7/2 (1.30)

For a specific problem, more strict criteria may be deduced by requiring that
the radiative decay rates of the i’onic levels are at least 10 times greater than
those of electron collision deexcitation [34, 35].

In our work, a Collisional-Radia,ti've-Equilibrium (CRE) model for the
plasma is employed. By combining the CRE model with “occupation proba-
bility formalism” [20], the pressure ionization effect can be taken into account

self-consistently. Detailed discussion on this model is given in Chapter 4.

1.5 Thesis Guide

In this section we give a synopsis of the problems considered and particular
points of interest in each of the chapters of the thesis.

In this first chapter we have given an introduction to the thesis problem.
In this regard we have discussed the goals of our work and the general aspects

of the atomic and plasma models which are related to this work. In the next
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chapter the atomic processes in ICF plasmas and related data calculations
are considered in detail. In doing so, first the atomic energy-level struc-
ture is specified. Next, important radiative transition parameters (oscillator
strengths, photoionization cross sections, etc.) are studied and computed.
Finally, atomic collisional processes are studied and several approximations
for computing related cross sections are discussed and compared. Detailed
calculation results are also given.

In chapter 3, we first discuss some general aspects of Ka spectroscopy
as a plasma temperature diagnostic. Then we make a detail analysis of the
Ka x-ray spectra which are produced from an aluminum target heated by an
intense proton beam. Particular attention is given to the line identifications.
The effects of radiation transport are also discussed.

In chapter 4, a CRE model which takes account of the pressure ionization
effect self-consistently is formed. The equations of state and opacities of non-
LTE plasmas are studied and computed. Detailed computational methods
and data management procedures are discussed.

In chapter 5, we give a general summary of the work and further consid-

erations.



Chapter 2

Atomic Data Calculations

With the.primary aim of generating large scale high quality atomic data
for our ICF/MCF research applications, we have setup a basic atomic data
calculation package. In this chapter, we discuss the important atomic pro-
cesses and the related theoretical computation methods which are included
in our atomic data calculation package. Generally speaking, the atomic pro-
cesses may be classified into two groups, radiative processes and collisional
processes. In the following, we first determine the atomic structure, then
we consider the atomic radiative processes. Finally, we discuss the atomic
collisional processes.

Throughout the rest of this chapter, Z is the nuclear charge, z is the ion
charge ( e.g., z = 0 for neutral atom, z = 1 for a single ionized atom, ete.),

and z* is the charge of the atomic core, i.e., the charge of the atom or ion

31
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without the optical electron. For a neutral atom z* = 1, for a single ionized
atom 2* = 2, and so on. Everywhere below, unless otherwise stated, we use
a system of atomic units base on the hartree as the unit for energy. In this
unit system, the first Bohr radius a, is the unit for length; the basic electric
charge e is the unit for electric charge; the reduced electron mass g, is the
unit for mass; the Planck constant % is the unit for angular momentum. For
convenient, some of the important energy conversion relations are listed be-

low:

1 hartree = 2 Ry = 27.2116529 (eV)
1 hartree = 4.3598282 x 107! (erg)
1 hartree = 6.5796846 x 101°» (Hz)

455.635
1 hartree = ———

X (A)
2.1 Atomic Structure Calculations

2.1.1 General Features of Atomic Structure

Theoretical treatment of an atom containing N electrons requires first of all
knowledge of a suitable Hamiltonian operator H. After H is specified, we

can solve the Schrodinger equation

ff\pk = Ek‘pk (2.1)
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to obtain the wavefunction ¥y and energy E} of the atom for every stationary
quantum state k of interest. Atomic structure is then determined. It is easy
to understand that for different approximate Hamiltonian operators, we may
have different atomic structure. An appropriate Hamiltonian operator for

describing the development of approximate atomic structure can be take as

A

H = Hkin + HeIec—nucI + Helec—elec + Hs—p

Vi 2 11
= Tl Xt oty nGr)lis)  (22)
1 it dgju i
Here r; = |r;| is the distance of the ith electron from the nucleus, r;; =

Ir;—r;| is the distance between the ith and jth electrons, and the summation
for ¢ < j is over all pairs of electrons. To discuss the development of the
atomic energy, we first omit the spin-orbit interaction term H s—o, and begin
with the central field model of the atom: we make the appréximation that
any given electron ¢ moves independently of the others in the electrostatic
field of the nucleus ( assumed stationary ) and the other N —1 electrons; this
field is assumed to be time-averaged over the motion of the N — 1 electron,
and therefore (neglecting correlation with the position of the ith electron )
to be spherically symmetric. In this central field, each orbital is a product of

a radial function, a spherical harmonic and a spin function:

1
Yj(ri, 0, 6i,05) = (;—_)P(”jljlri)yljm,j(ei, ¢i)Xmsj, (2.3)

1



34

the total wavefunction of the N-electron system is a “Slater determinate”[38]:

p1(l)  ¥1(2) -+ Y1(N)
(1| $2l) #2(2) oo (M)
VL s ]

Yn(l) ¥N(2) -+ ¥N(N)

and each atomic energy level is described by an “electron configuration av-

(o) = (2.4)

erage energy ” [27] — all the states belong to an electron configuration are
degenerate. Now, how we account for the omitted effects, i.e., the non-
spherically symmetric part of the electrostatic interaction between electrons
and the spin-orbit interaction effect, can lead to different coupling schemes
[27] and level structures. Two limiting coupling schemes are the LS-coupling

and jj-coupling.

LS-Coupling

If the electrostatic interaction has a much greater value than that of spin-orbit
interaction, we first consider to add the non-spherically symmetric electro-
static contribution. The non-spherically symmetric electrostatic contribution
leads to a splitting of the level corresponding to a given configuration into
quite a number of levels, characterized by different values of the total or-
bital angular momentum of the electrons L and the total spin S. From the
viewpoint of angular momentum coupling, after we add the non-spherically

symmetric contribution, one-electron orbital angular momentum | is not a
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constant of motion any more and hence the uncoupling representation can
not be used to describe the atomic states. We need to work under a coupling
representation. It is easy to prove that the total orbital angular momentum
L and the total spin angular momentum S are constants of motion, and
hence the atomic states are the eigenfunctions of L2 and §2. This is the LS-
coupling. We now add the omitted spin-orbit interaction. This effect splits
the atomic levels into “fine-structure”, and makes the atomic states become
the eigenfunctions of ﬁ2, $2 and J2. Here, J = L + S is the total angular
momentum of the atomic system. LS coupling is a good approximation for
low Z (Z << 137) elements. A schematic drawing of the developing of the
energy-level structure of a ‘pd’ configuration under LS-coupling conditions is

shown in Figure 2.1.

Jj-coupling

In the limit in which the spin-orbit interactions are much stronger than the
Coulomb terms (e.g., for high Z elements) we should first consider the spin-
orbit interaction effect. The spin-orbit interactions couple L and S together
and hence both L and S are not the constants of motion. In such a case,
the spin of each electron first couples to its own orbital angular momentum,
and then coupling together the various resultant j; in some arbitrary order
to obtain the total angular momentum J. This is the jj-coupling scheme. In

the jj-coupling scheme, the state of each electron is described by four quan-
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tum numbers (nljm;), and each atomic state is described by a determinate
constructed from one-electron wavefunctions 1/1n1jmj(x). A schematic illus-
tration of the development of the energy-level structure of a ‘pd’ configuration
under jj-coupling conditions is shown in Figure 2.2.

A number of other types of coupling [27, 40], such as intermediate cou-
pling, jK-coupling, LK-coupling, etc., are possible besides LS and jj cou-
plings. However, we are only interested in relative low Z (Z << 137) ele-
ments where the LS-coupling is a good approximation. Everywhere below,
we consider problems under the LS-coupling scheme.

It is necessary to indicate that although different coupling schemes may
lead to different atomic structures, in most situations (but not always), there
is a unique correspondence between the levels of one coupling approximation,
e.g., intermediate coupling, and the levels of the LS coupling approximation.
This enables us to use the LS coupling terminology in the cases when the LS
coupling approximation itself losses its meaning. In such cases, however, the
wavefunction of a “LSJM?” state is not the corresponding eigenfunction of

L2, S? and J2, but some sort of mixing of these eigenfunctions [40].

2.1.2 Atomic Energy Expressions

Atomic energy E is the expectation value of the Hamiltonian H, ie.,

E =< 9|H|V > (2.5)
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where ¥ is the total wavefunction of the atomic system, and is constructed
from one-electron wavefunctions of the N-electrons in the system. A one-
electron wavefunction can be separated into radial, angular and spin parts.
From the angular momentum theory [27, 41, 42], we can evaluate the angular
and spin parts of the atomic energy matrix elements and leave the atomic
energy E as some sort of linear combinations of the radial integrals. This
expression for F is called the atomic energy ezpression. By applying the
variational principle to the atomic energy expressions, we can obtain the
radial equations for the radial functions and hence determine the atomic
structure. A flow chart of the atomic structure calculation is shown in Figure
2.3.
For a non-relativistic Hamiltonian operator
il = Z—-——— > (2.6)
T i<j T4j
The corresponding energy matrix elements are

< \IIIZ -t - = |\1;’ =3 a(o, oM (nelosngl )8t (27)

o0

< \Ill Z _|\I’I >= Z Zy 0‘ PO 7,0 R (nolo’nplp,no.llo.lnp/lp) (28)
i<j i op,o’p

where z and y are the coefficients determined by the angular momentum
coupling of the system, and can be calculated by using the Racah algebra

techniques(27, 41, 42]. The evaluation of these coefficients has been well
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Figure 2.3 : Flow chart of atomic structure calculation
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described and programmed by Hibbert et al.[43, 44];

2 l(l.+1) 2Z
I(nolg,npl,) = 5 / P(nglolr)l— 2 + TZg— = ZZ1P(n il plr)dr
(2.9)

is the one-electron radial integral; and
Rk(na'lo'nplp, no,lla,lnpllp ) (2.10)
o0 0 r<
/0 /0 ST Polelr)P(aallr) Plagilp 1) Pn L Ira)drdry

is the two-electron radial integral.
In the single-configuration approximation, a general expression for atomic

energy, under the assumption that orbitals are orthonormal, has the form

[ed
+ 35 el FE(ngle,nply) + 30 S g Uolp)GE (nole, nplp)
o<p k o<lp k

here wyq is the electron number in oth subshell, f;(Isl,) and g},(lsl,) are the

angular-spin coefficients,

lo(lo +1)

d? 27
I(nols) =2/ Plnololr)=25 + 5~ — Z|P(ngly|r)dr  (212)

dr )
k oo roo rk 2 2
F (nglgnplp):/o /O E5TIP(nololr)) PIP(nplylra)Pdridry  (2.13)
>

and

Gk(nglgnplp) (2.14)

o.@)
/ / Z:IP (nolo|r1)P(nply|r1) P(nols|re) P(nplplre)dridry
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are the radial integrals.
For the multiconfiguration approximation, the atomic wavefunctions have

the form

W(ILS) = 3 e ¥(%LS) (2.15)

and the atomic energy expression becomes
E(TLS) =Y (2= &j)cic; E(I(i5)) + Y_(2 = 6ij)cic; E(R(35))  (2.16)
i<y i<y
where

E(I(zj)) = Z x(ai,aj)l(no-ilgi,ngjlaj) (2.17)
030}

and

E(RGi) = Y 2u(0ipi,05,p)) R (nolonplpiing lojnp;lp;)
CiPiTiPj k

(2.18)
The general Hartree-Fock equations are obtained by applying the vari-
ational principle to the atomic energy expressions as in Eq.(2.11), and the
equations for multiconfiguration Hartree-Fock approximation are determined
from the atomic energy expression in Eq.(2.16). In the Hartree-Fock SCF
approach, relativistic effects are usually not entered into the variation energy
expression directly. This is because the relativistic corrections to the radial

functions P(nl|r) are usually small for low Z and intermediate-Z atoms. In

many cases, it is sufficient to calculate the relativistic energy corrections by
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the perturbation method. In fact, we can write
E=Exyp+ AERE (2.19)

where Ey p is the nonrelativistic atomic energy and AEpp is the relativistic
correction. Like the nonrelativistic atomic energy expressions, the expres-
sions for AERE are also a linear combination of radial integrals. These ra-
dial integrals are evaluated by using nonrelativistic radial functions P(n!|r)
as bases [45, 46].

The most commonly used approximation for describing the relativistic

interactions between electrons is the Breit-Pauli Hamiltonian [47, 48, 49]:
Hpp = Hyp+ Hpp (2.20)
where

Hyp = Z———Z Ty L (2.21)

i Ty

is the nonrelativitic Hamiltonian, and
gRE = ﬁso + f{mass + IA{D1 + f{soo + I:Iss + f{oo + HDQ + Hssc (2.22)
is the relativistic correction.

Hso = I Z _3(12' “8;) (2.23)

represents the one-body spin-orbit interaction of each electron’s magnetic

moment with the magnetic field arising from the electron’s own motion in
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the Coulomb field of the nucleus;
a2 4
Hmass = Y >V (2.24)
?
is the relativistic mass correction;
Hpy = ——= Z v2 (2.25)

is the one-body Darwin term, i.e., the relativistic correction to the potential

energy;

r;
Hsoo = —— Z - X pz]) (s; + 25_;') (2.26) ,

#J ZJ
represents the spin-other-orbit interaction and is made up of two parts. The

first one containing the factor s; is the spin orbit coupling of electron ¢ in
the Coulomb field of electron j. The second, with the factor 2s; comes from
the interaction of the spin magnetic moment of electron j with the orbital

current of electron 1;

Hgs = a Z 3 [(si - s5) — 3(Si : rij)gsj : rij)] (2.27)

i<j " Tij

is the ordinary dipole interaction of the spin magnetic moments of two elec-

trons;

2 . A

a® Pi Pj  Tij(rij i) P
Hoo = —— 3| —7 4 i (i 3 J <] (2.28)
i<j i Tij

is the orbit-orbit interaction;

1
Hpo = T Z Vi — (= (2.29)
i<j U
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is the two-body Darwin term, i.e., the relativistic correction to the potential

energy;

S(si - 5)VH(—) (2.30)

i<j Tij

Hssc—':“ 3

is the electron-contact term. The operators in Eq.(2.23) — (2.30) have been
transformed to tensor forms and the corresponding matrix elements have
been evaluated by Hibbert et.al.[50, 51)

Terms being responsible for the fine structure splitting are Hso, Hsoo and
Hss. In most cases, however, the fine structure splitting is usually calculated
taking into account only the single-eleﬁtron spin-orbit interaction Hg,. This
is connected with the fact that for most elements except for those with very
low Z (e.g., He), the interaction Hso plays the principle role in determining

the fine structure splitting.

2.1.3 The Hartree-Fock Equations

From the previous discussions we can see that all the atomic structure cal-
culation problems sum up to the determination of the quantitative form of

the radial function P(nl|r). For a multiplet term
{[(n111)¥1L151£181, (nalg)“2L9S9]L9S, - - (nglq) "1 LgSg} LS (2.31)

there are ¢ different radial functions, one for each subshell of equivalent

electrons (n;l;)"1. These radial functions are determined by the criterion
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that they should be such as to minimize the calculated energy of the atom,

E(yLS), within the limitations set by the orthonormalization condition:

o0
/0 P(nili|r)P(njli|r)dr = 6p;n (2.32)

According to the variational principle, the condition for minimum E(yLS)

may be written as

g

§{E(vLS) 2 o / P(nils|r) P(nsls|r)dr (2.33)
T
Z Z IZIJElel/(; P(nﬂ”r)P(nﬂﬂr)dr} =0
=1 j#£i

where —¢;;w; is the Lagrangian multiplier for the orthogonality restriction
between P(n;l;|r) and P(n;l;|r), and —¢;;w; the normalization restriction
on P(n;l;|r). The variations §P(nl|r) employed in Eq.(2.33) may now be
completely arbitrary (except that boundary conditions on P(nl|r) require
8§P(nl|r) = 0 at r = 0 and r = 00); it is necessary only that the values of
€i; and €;; be so chosen that the functions P(nl|r) deduced from Eq.(2.33)
indeed satisfy the corresponding normalization and orthogonality conditions.

We already knew that the expressions for E(yLS) are linear combinations

of radial integrals, i.e.,

E(vLS) = Zw, n;l;) (2.34)

+ S5 ) FE il n) + 303 6k (1) GF (niliy njly)
ik

1<j k i<y
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The variations for the corresponding radial integrals are the following:

5 / P(nil;|r) P(nsls|r)dr = 2 /Ooo[éP(nili|r)]P(n,-li|r)dr (2.35)

6; / (nililr)P(njlj|r)dr = /000[6P(nili]r)]P(njljIr)dr (2.36)
00 2 (1.

(i) = [~ PNy - 2 + U pigar  (2a1)

§;F*(n; 1,,nJ1]) (2.38)

= / / Ic+1 [5P (nil;lr1)) P (nili|r1)P2(njlj|r2)dr1dr2

6-Fk(n-li,n‘l~) - (2.39)

= 4" / 1[6Pnlm>] P(nl;|r1) P2 (n;lilry)dridry

5'Gk(nili,njl-) (2.40)

- [ k+1[5Pn1|r1)]P(nl|r2) (njljlr1)P(njjlr2)
A 1[5Pnl|r2>]P(nzzm> (n31r1) P(njlslr2)
=27 [T 2 TPl IrDLP (sl 1) Platlra) Pty )

Since the form of the variation §P(n;l;|r1) is completely arbitrary ( except

for the requirement that it be zero at r{ = 0 and r; = 00 ), we may take it
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to zero everywhere except in the immediate vicinity of some point r; = r.

Then we have

/000[51’(7%'1:'|7"1)]P(nili|7“1) = P(nil|r) /Ooo 6P(n;lijr1)dry (2.41)

and all other integrals in Eq.(2.36) — (2.40) simplify similarly. Substituting

all these into Eq.(2.33) and dividing out a factor
o0
2 /0 §P(nil;|r1)dr, (2.42)

we have the general Hartree-Fock equations[26]:

2. L(;+1) 22

g = g+ T = 2Di()Pnililr)
= =24 P(nilir) — 22611 &5 P(n;l;|r) + 2X;(r) (2.43)
J#i
where
FLlidy) oo 1k
"= %:zk:(l +8ij) szi] /0 ki1P2(njlj|r1)dr1 (2.44)
] k
and
1
€41 = ———j[wif(nili) (2.46)

?

+ % AW FE (il nsl) + 3 gh (i) FE (nilsy nyl;)]
ik ik
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2
°0Z  L(l;+1)
eU=_/ P(n;l;|r) d2+r - L) P(njlifr)dr
I(n;l;
.

+ [T Pt i) Pitlr) + () + L8 g o)

The Hartree-Fock equations are the “q”

coupled equations — one for each
subshell n;l; — in the forms of Eq.(2.43) — (2.47). Because the radial func-
tion P(nl|r) oscillates more rapidly near the origin, it is convenient from the

point of view of numerical procedures, to introduce a logarithmic variable as

independent variable, namely

= In(Zr)
Let,
p(n”,.) = MT_)
r
Then Eq.(2.43) becomes
d? lo .9 -
[@§+%Z—Wh+§)—2TDNNPWMV)

= —2r26iip(nili|r) — 272 Z 61i1j5ijp(njljlr) + 2T2X,'(7') (2.48)
J

Here

_ X

X =——=
172

The radial mesh may be chosen as equal step size in p variable starting from

a finite value of p; = In(Zry). Numerous tests on the hydrogen equations

suggest that for computers with a word length of at least 48 bits, appropriate

value of p1 and step size h are p; = —4 and h = 1/16.
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We now study the physical significance of terms in the HF equations.
The first two terms in the left-hand-side of Eq.(2.43) are the electron kinetic
energy operators. The third term is the potential energy operator of the
electron due to the nucleus. The fourth term, D;(r), comes from the direct
portion F' k of the electron-electron electrostatistic interactions. The second
term in the right-hand-side of Eq.(2.43), X;(r), is the exchange potential
energy operator. The parameter ¢;; can be interpreted as the binding energy
of the electron in the sth subshell. Under the “frozen frame” approximation,
we have

I; = —¢y (2.49)

i.e., the negative of the eigenvalue ¢;; of the HF equation is equal to the
ionization ener‘gy for an electron in the ith subshell. This is called Koopman’s
theorem [52].

The equations for the multiconfiguration Hartree-Fock (MCHF) approx-
imation can be obtained by using basically the same procedures as we have
shown above. The only difference is that we need to add a new Lagrange
multiplier associated with the normalization of the configuration mixing co-
efficients.

Since the variational principle is applied to the energy expression of a
specific LS term, the HF equations are “term” dependent.

The numerical method for the solutions of the HF equations has been

well documented by C.F.Fischer [26, 53]. The basic idea is the following:
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1. assuming a set of trial functions P(n;l;|r) (e.g.,hydrogenic functions

witha Z.¢r) , (1 <5 <q);
2. for each ¢, computing D;(r), X;(r) and estimating the ¢;;;
3. solving the ith HF equation for a new P(n;l;|r), each i;

4. repeating (2) (3) until the output functions are identical with the input
functions, and all functions with the same [ are mutually orthogonal,

within the desired tolerances.

This procedure is called a self-consistent-field (SCF) method. A Flow chart
of a SCF procedure for the numerical solution of a MCHF problem is shown
in Figure 2.4. The single-configuration HF approximation may be seen as a
special case of the MCHF.

For the MCHF calculations, because of practical limitation, the basis set

employed for the expansion
U(TLS) = Z c; V(v LS) (2.50)

must be kept manageable small, and the set of configurations to be included
in the calculations must therefore be chosen judiciously. Some of the impor-

tant selection rules are listed below[26, 27]:

e Specify a principal configuration.
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Figure 2.4: Flow chart of a SCF procedure for the numerical solution of a

MCHEF problem.
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o All the selected configurations should have the same parity as the
principal configuration. This selection rule comes from the fact that
the Hamiltonian operator has even parity, and so the configuration-
interaction (CI) matrix elements are zero unless the bra and ket func-

tions have the common parity.

o All the selected configurations differ in at most two orbitals. This is

because the Hamiltonian involves only one- and two- electron operators.

e All those configurations differ only in principle quantum number n of
one electron from the principal configuration may usually be omitted.
This is because in most cases Brillouin’s theorem [54] holds for single-
configuration HF wavefunctions. However, in general CI calculations,

this is not necessary true if the basis set is not the HF wavefunctions.

o The largest configuration-interaction effects come from the configura-

tions within the same complez.

2.1.4 The Atomic Continuum Wavefunctions

There are two distinct states for an atomic system — discrete energy states
and continuum energy states. A discrete energy state corresponds to a con-
figuration in which all electrons of the atom are more or less tightly bound.

In a continuum energy state, however, there is at least one free electron in
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the atomic system. Atomic continuum wavefunctions are very important
to the studies of atomic continuous processes (e.g., photoionization, f-f and
electron-ion collision processes ).

For an atomic continuum state
{(n111)®1(nglg)*2 - - - (ncle) ¢ }ye LeSelel; LSM Mg (2.51)
the corresponding wavefunction can be constructed from one-electron spin-
orbitals, with
1
$lrlogmgl) =+ P(0l|r) Vi (0, 6)xme (2:52)

for bound. electrons, and
1
D(etmms|x) = ~P(ellr)Yim (0, 6)xm, (2.53)

for free electron. P(el|r) in Eq.(2.53) is a one-electron continuum radial
function.

The Hartree-Fock equation for the continuum radial function P(el|r) can
be obtained in the same way as that for the bound radial function by treating

el as a subshell, i.e.,

2
R - e (2.54)

= —2P(el|lr) -2 Z 511j€nj5P(njleT‘) + 2Xe(r)
J

where

c © rk
De(r) =% f,'c(uj)/o 5 P (njllry)dry (2.55)
j k >



c o rk
Xe(r) = ZZgL(llj)P(njljlr)/(; ;’Ei_lp(“:llrl)P(njljlrl)drl (2.56)
ik >

with the boundary conditions
P(eljo)y =0 (2.57)
and

P(ellr) =% (W%)U?sm[ﬁé T4 7%‘2’”(2‘@ ) — %’ + 6+ 1] (2.58)

P(e = 0lfr) "= (%)1/4sin[\/szr ~ I iry) (2.59)

The asymptotic behavour of P(el|r) in Eq.(2.58) and Eq.(2.59) correspond

to the normalization condition
o0 / /
/0 P(el|r)P(e'l|r)dr = §(c — ') (2.60)

It is important to note that the nonlocal potential in Eq.(2.54) caused by
the exchange interaction adds considerable complication to the calculation of
P(el|r). A general way to deal with this problem is to use the frozen frame
approximation[58]: keeping the bound electron wavefunctions unchanged, do
self-consistent calculations only for the continuum wavefunction. A further
approximation is to replace the exchange potential by a local potential[57],

and the equation for P(el|r) become

2
[;i_z - l(l:; ) + %jZ- — Vo (r)|P(ellr) = 2¢ P(el|r) (2.61)
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One of the good approximations for V;(r) is the HX potential [31]. For a
HX potential, the problem of solving Eq.(2.61) is very simple. We first solve
the HF equations for bound radial functions P(nl|r), a HX potential can
then be constructed from these bound radial functions.The HX potential is
independent of ¢, hence for each desired value of €, P(el|r) can be obtained
simply by integrating the differential equation Eq.(2.61) once; there is no
iteration on € and no self-consistent iteration on the core wavefunctions.
We now consider some numerical detail for the solutions of the continuum

radial function P(el|r). First, we deal with the problem of normalization for

P(el|r). Let
V2% -r+2In(2vV2% -1 -Z+6 £>0
$i(r) = vain I (2.62)
V8zr — F —Ir e=0
Then

r—00
dgy(r) _ V2e+ 5= "5 Ve 6> 0 (2.63)

dr \/g e=10

The asymptotic P(el|r) can then be expressed as

P(ellr) "= @@;—,@r”%mwmm +1) (2:64)

In practical calculations, an unnormalized P(el|r) from Eq.(2.61) can only
be evaluated to some large but finite radius r = rypqz. In order to properly
normalize P(el|r), it is necessary to extrapolate to find its amplitude on

infinity. For sufficiently large r ( » > r, ) where the potential is essentially
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the Coulomb potential, i.e.,

- v~ -2 (2.65)
Then we have
[+ ACNPED) =0 7>, (2.66)
where
Ar) ~ ZTZ +2 - l(’; D (2.67)

By comparing with Eq.(2.64), we can express the unnormalized radial func-

tion P(el|r) as

5 _ . ]2,d0(r) 172
P(eljr) = C\/;( —r )" 2sin(r) (2.68)
where C' is the normalization constant, i.e.,
1 -
P(elr) = EP(sl|r) (2.69)
Let
_do(r) -
X(r) o (2.70)
From Eq.(2.66) and Eq.(2.68), we have
d2
X3(r) = A(r) + XV3(r) 5[ X 72 (r) (2.71)

X(r) can then be obtained by solving Eq.(2.71) iteratively. Assuming

X2(r) = A(r) (2.72)
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then

2 dA
X¥(r) >~ X{(r)=A- 0.25A“1‘fl—§1- + 0.3125A“2(W)2 (2.73)
r

This one step iteration approximation is accurate to terms in r~2.

Now,
we pick any two points of ]3(61|r) in the asymptotic region: }5(51|r1) and

P(el|ry), then

a] = X1/2(r1)13(el|r1) = C’\/gsinG(rl)

ag = XV2(ry) P(ellrg) = c@sme(m) (2.74)
o= : X(r)dr = 0(rs) — 0(r1)

And hence

T a% + a% — Qalagcosa)]l/Q

C =[5 (2.75)

stna
This normalization procedure is referred as the Cooper[59] method.
Another numerical problem in calculating the continuum radial function
is radial mesh selection. Normal HF logarithmic radial mesh for bound radial
functions is no longer suitable for continuum functions because of the oscil-
lation asymptotic behavior of P(el|r). Acceptable accuracy of the numerical
integration of Eq.(2.60) requires that there be at least a half dozen mesh
points per half-cycle of P(el|r), and therefore from Eq.(2.57) that the mesh
size Ar satisfy

Ar <

N (2.76)



59
over the entire integration mesh. Two common ways to deal with this prob-
lem are:

¢ Applying the Herman-Skillman[60] linear mesh, doubling the step size
every 40 steps until Ar = 7/(6v/2¢) and keeping Ar constant after-

ward.

e Introducing variable [61]
p = ar + Binr (2.77)

where a and J are certain constants determined by the cut-off value

rmaz and the mesh size requirement in Eq.(2.76).

2.1.5 Numerical Computations And Discussions

Our atomic structure calculation code “HFBASE” is a semirelativistic mul-
ticonfiguration HF code which is based on the modifications of MCHF77 [55]
and WEIGHT[56]. The main features of this code are the following:

¢ multiconfiguration HF wavefunctions ( single-configuration as a special

case );
e relativistic correction for energy levels;

e allow any electron configuration with no more than two equivalent elec-
trons in any shell with { > 3 ( this limitation may be extended by

inclusion of further fractional parentage coefficient packages );
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e suitable for large scale computations, may compute up to 1000 levels
in one run ( this limitation may be extended by enlarging the corre-

sponding array parameters within the limit of computer memory ).

A simplified flow diagram of HFBASE is shown in Figure 2.5.

Our atomic calculations are carried out in two ways. We use the single-
configuration HF method to do large scale calculations to generate atomic
data tables for the computations of equation of state and opacity. We use the
multiconfiguration HF method to do accurate calculations for those levels of
particular interest for plasma dia,gnost/ics. In the following, we present some
of the calculation results. By comparing with the available experimental and
other theoretical calculation results, we can have a general judgment on the
accuracy of our calculations.

In Table 2.1, we present the calculation energies for the ground level
and several low excited levels of OIII. All effective quantum numbers v are
calculated relative to the ground state of the next higher ionization stage
( OIV 1s22522pl 2P ), iee.,

z*2

s=3 = Eo(OIV) — E(OIIL ) (2.78)

A sensitive indicator of the accuracy is the agreement between the experi-
mental and the calculated quantum defects ( g = n — v): it is generally of
the order of ten percent for the single-configuration HF calculations and one

percent for the multiconfiguration HF calculations. In the multiconfiguration
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Table 2.2: Interacting configurations for 1s22522p2 3 p
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1522522p?
1s22p*

1522523p2
1523523p2

1s23s23d2

[P]
[°P]
[°P]
[P]

1s22s22p! 3p! [3P]
1s22s522p! 4p! [3P]

[*P]

mixing coefficient

0.9900334
0.1340580
-0.0245318
-0.0190684
-0.0022525
0.0101796
-0.0280736

HF calculations, we include at least 5 important configurations to account

for the electronic correlation effect. As an example, the included interacting

configurations and the corresponding mixing coefficients for 1s22522p? 3P

are listed in Table 2.2.

In regard to the relativistic effect, we can consider it in two aspects: first,

as Z increases, the relativistic effect becomes more important; second, the

tighter bound the electrons are, the more significant the relativistic effect will

be. In our current work, we are interest in the low- and intermediate-Z atoms.



64

It is important for us to determine whether the relativistic correction needs
to be considered for these atoms. In Figure 2.6, we plot the percent of the
relativistic corrections for the ground level of neutral atoms versus the atomic
number Z. In Figure 2.7, we show the percent of the relativistic correction for
the ground level of nitrogen isoelectronic sequence. In Figure 2.8, we show
the percent of the relativistic correction for the levels with different subshell
electrons involved. It is easy to see that the relativistic correction is generally
less than a few percent for low- and intermediate-Z atoms. This small percent
correction may not be important to the computations of equation of state and -
opacity, but it may have significant effect on the detailed plasma diagnostics.
So far, we have only talked about the atomic energy levels and their
corrections. In spectroscopy analysis, however, we are actually interested
in the difference of two levels, i.e., the transition energy. In Table 2.3, we
present the wavelengths of four different sets of calculations for the transition
1522522p83s1 25 — 3pl 2P in Na isoelectronic sequence. The results of
the nonrelativistic single-configuration HF calculation are labeled HF; the
results of the single-configuration HF calculation with relativistic correction
are labeled HF + re; the results of the nonrelativistic multiconfiguration HF
calculation are labeled HF + cr (i.e., HF plus electronic correlation ); the
results of the multiconfiguration HF calculation with relativistic correction
are labeled HF + cr + re. Also shown in the table are the experimental

data[62] and the corresponding differences of the calculations. It can be
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seen that the electronic correlation effect dominates the relativistic effect in
neutral and low ionized ions, while the relativistic effect becomes dominate
for highly ionized ions. If the transition involves the inner shell electrons,
the situation may be more complicated. For Ka transitions, the electronic
correlation effect causes a red shift, while the relativistic effect causes a blue
shift to the wavelength. Hence in doing detailed spectroscopy analysis, both
effects should be considered very carefully.

It is well known that the hydrogenic approximation is appropriate for
electronic states with high principal quantum number n and orbital quantum
number [. In order to determine a general “ boundary” for the validity of the
hydrogenic approximation, we compute the effective quantum number v as
functions of n and [ for NI and Arl. The results are presented in Figure 2.8
and Figure 2.9. It is obvious that for low- and moderate-Z atoms, n > 10
and [ > 3 is a reasonnable “boundary’ for the validity of the hydrogenic

approximation.
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2.2 Atomic Radiative Processes

When an atom is placed in a radiation field, because the atom interacts with
electromagnetic radiation, it may make a transition from a state 7 of energy
E; to another state j of energy E; by absorbing or emitting a photon of
energy

ep = |E; — Ej (2.79)
Depending on the propertities of the initial and the final state, the radiative

transition processes may be classified into

e bound - bound transition;
e bound - free transition;

o free - free transition.

These are what we are going to discuss in this section.

2.2.1 Bound-Bound Transitions

The probability per unit time that an atom makes a transition from bound

state ¢ to bound state j by absorbing a photon of energy ¢y, is given by [40):

4a3e3

np . .
W = —E=<jIDli>[*
408e3n ) )
+ = <M >
5.5
a“ e n -
+ — LB <jIQli> 2+ (2.80)

10
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and the corresponding expression for emission is

4a3ed(np +1)

Wem = 3 '<le|i>|2
403e3(np + 1 ) )
2D g p
5.5
a’e(np + 1) s
———%—| < 7|Qlz > |2 + - (2.81)

here, np is the number of photons with energy ep; a is the fine structure
constant;

D =Y r,c() (2.82)

is the electric dipole moment operator;
M=_Z 2 ) 45tV = —%(L(l) +s) (2.83)
is the magnetic dipole moment operator; and

3 =Y ric() (2.84)

is the electric quadrupole operator.
If there is no radiation field, i.e., np = 0, we have the spontaneous emission

probability,

4a3€3

Wep = —52|<jlDli> |
4a3¢3

+ 2l <M > |2
5 5

(87
+ P| <jlQli>* + (2.85)




74

The transition probability can be related to the oscillator strength by the

relation

Wsp(a — b) = 262a°| f(a — b)) (2.86)

In the following, we discuss the numerical calculations of oscillator strengths
for the electric dipole, magnetic dipole, electric quadrupole and intercombi-

nation transitions.

Electric Dipole (E£7) Oscillator Strength

In the electric dipole approximation, the oscillator strength for a transition
from an initial state, |yLSJ >, to a final state, |y'L'S’J’ > can be expressed
in three forms:

(1) the length form

2AF

fu= 3(27 + 1)

| <ALST|| S wl|y'L'S" T > |2 (2.87)
i
(2) the velocity form

fv | <ALSINEVAWL'S'T > 2 (2.88)
i

2
T 3AE(2J +1)
(3) the acceleration form

3 272
T 3AE3(2J +1)

.
fa | <yLSINY T—§||7’L’S’J' > |2 (2.89)
1

14
In each case, the operation is a spin-independent tensor of rank 1. For exact

total wavefunctions, the three forms are identical, but for approximate total
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wavefunctions the value may differ appreciably, indicating a luck of accuracy.
It has been customary to use this as an indicator of the accuracy of the
calculation.

Since the operation is a spin-independent tensor, the J dependence of the

oscillator strength can be found in explicit form:

2
Pylal 3y ! L J s Frlal
f(YLST—+'L'S" T = (2J+1)(2J' +1) JALS—'L'SNégq
J L1
(2.90)

Here f(yLS—+'L'S") is the multiplet oscillator strength for a transition from

an initial state |[yYLS > to a final state |[y'L'S >

2AFE

fr(vLS -+'I'S) = 3L+ 1)

| < LS| Zr,lh'L'S > |2 (2.91)

fr(LS —+'L'S) = | <ALSI Vil LS > 2 (2.92)
i

2
3AE(2L +1)
In the multiconfiguration calculations, the total wavefunction for a state,

U(I'LS) may be represented by a linear combination of the configuration

state functions, ®(;LS). Let the wavefunction for the initial state be
Y(TLS) Z c;®(v;LS) (2.93)

and that for the final state be

M
YI'LS) = 3 d(1LL'S) (2.94)

i=1
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where the sum is over configuration y; and v} respectively ( in the single
configuration case, M = M’ = 1). Then the matrix elements which appear
in the formulae for the oscillator strength can be expressed in terms of matrix
elements involving only the configuration state functions, i.e.,
M M
<TLS|ITDIIL'S >= 3 3 iy < mLSIITWD|SL's > (2.95)
i=1j=1
where T(1) denotes the tensor of rank 1 appearing in the formulas for the

oscillator strength. Since T(1) is a one-electron operator, Eq.(2.95) may be

reduced further to a one-electron integral,

<TLS|ITOI'L'S >= zk;cikcgk51/2(7,-kLs—7;kL'5) < nplp | TO| |t 2, >
(2.96)
where S is the reduced multiplet strength, < ni||T(D||n/l' > is the one-

electron integral. In the length form,

< anT(l)Hn'l' >= I> I\/l_;/ P(nl|r)rP(n'l'|r)dr (2.97)

and in the velocity form,

!
(1) ! Is—1+1 / d (,1) 1l
< nl|| PO >= (=1) Vis [ Pl 2P
(2.98)
In Eq.(2.97) and Eq.(2.98), Is = maz({,I') and (I,I') = {({ +1) = I'(I' + 1).
The reduced multiplet strength is a factor related to the types of tran-

sition. The evaluation of S involves the basic principles of Racah algebra,
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l.e., cfp expansions, recouplings and uncouplings[27]. A general formula for
evaluating S under the LS-coupling representation has been given by Cowan
et al.[27, 40].

In the single-configuration approximation, it is possible to define an array
oscillator strength ( for transition between configurations). This is usually of
interest only when AF is approximately the same for all lines of the transition

array. For a general transition array

. .1
(nil¥1 ... (nili)w’-j~(njlj)w7 ...(nqlq)Wq_,

(naly)Ph e ()Y h e (1) YT (nglg) ™8 (2.99)

By summing the multiplet oscillator strength over all states of the final con-

figuration and averaging over all states of the initial configuration, we have

@;+2)  3@h+1)

fy=+)= | < nililIrfinjl; > 1% (2.100)

In one-electron ions or highly excited levels of multi-electron atoms, en-
ergies depend only slightly on the quantum numbers /; and /; of the excited
electron, and AE therefore depends strongly on only n; and n j- In such a

case, we may define a complex oscillator strength, f(n; — ny),

(4 +2) 2, f(nili — njly)

e —
f(ni =nj) (4l +2)
196, 1 1 _
v (- )78 (2.101)
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The selection rules for electric dipole transitions can be summarized as

following

Al = *1

I

AL 0,+1,L+ L' >1
AS = 0 _ (2.102)

AJ = 0£1,J4+J' >1

Magnetic Dipole (M;) Oscillator Strength

In the magnetic dipole approximation, the oscillator strength for a transition

from an initial state, |[YLSJ >, to a final state, |y'L'S’J’ >, is expressed in

the form
/ _LAE__ Iy tpt o ¢t 2
fI=J) = Sars ) < ESTIMIR LS > I (2.103)
where
1 [8% (8]
M =——§(Zli+22si)=—§(J+S) (2.104)
) )

is the operator of magnetic moment.
Because the operator of magnetic moment does not involved radii, the
magnetic dipole matrix is diagonal in the configuration. By using the Racah

algebra techniques [27], we have

a’AE L S J

f(I=T) = 6(2J +1)

1 J S
(2.105)

8,154 115 (20 +1)(2J'+1) [S(S+1)(25+1))
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The selection rules are then expressed as

AL =0
AS =0 (2.106)
AJ = +1

In the single configuration approximation, the magnetic dipole transition
is impossible between two levels belonging to two different configurations.
However, in the multiconfiguration approximation, this transition become

possible as a consequence of configuration mixing [27].

Electric Quadrupole (F3) Oscillator Strength

The oscillator strength for the electric quadrupole transition can be expressed

as
2AE -
f(YLST —4'L'S'J") = 5(2J—+1)| <AL'S'TNQNLSI > |2 (2.107)
where
Q? =3 rC2) (2.108)
i

is the electric quadrupole operator.

Since Q2 1s an even parity operator, the initial state and the final state
of an electric quadrupole transition must have the same parity. This means
that the electric quadrupole transition is possible for both inter-configuration

and intra-configuration transitions.
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The calculation for the inter-configuration transitions is basically the
same as that for the electric dipole case. The basic formulae are the fol-

lowing

2
L J S
fOLST=AL'S'T) = 655 (2T +1)(27'+1) f(yLS—+'L'S")
J L2
(2.109)
2AE 179
3(2L +1) [Zk: cikcg'ks/ (WkLS_73'1‘:[’/5,)3(”"71’0’”21%)]2

(2.110)

f(YLS—A'L'S") =

: I 27
s(nele,nlh) = (=121 + 1)@ +1)

oo

/ P(nl!r)rQP(n'l'|r)dr
000 /"0
(2.111)

where S is an angular coefficient similar to the reduced multiplet strength
for electric dipole oscillator strength. The general formula for evaluating S
has been given by Cowan et al. [27, 40]

For the intra-configuration transitions, we have

<A IS TNQAYLST >= Sspins(~1) TS\ J2T + 1)(20" +1)
_ L S J
X 25;1/2(7[/ - ’7’[;’) s(njlj,njl;) (2.112)
i Jo2 r
Here the summation is over all the subshells, 5’ is an angular coefficient[27).

The selection rules for the electric quadrupole transition are

Al=0,2214+1>2
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AL=0,42,L+L' >2
AS =0 (2.113)

AJ=0,+1,42.J+J >2

Higher multipole transitions are a lot slower than electric dipole tran-
sitions. These “forbidden” transitions are often observable only when the
decaying state cannot emit E1 radiation. Such a state is termed metastable.
As Z goes up, one should note that there are many exceptions to this rule.

A characteristic feature is

I(E2) 9
I(E1) = A )

where a, is the Bohr radius and A the wavelength. For visible light, this ratio

is about 107, The ratio of transition probabilities for a given frequency is

A(E1): A(M1): A(E2) =1:(Za)?: (Za)?

Intercombination Transitions

The selection rule AS = 0 which prohibits any change in the spin multiplicity
S in single-photon electric dipole transitions is rigorously obeyed only in the
limit of pure LS coupling. In reality the spin-orbit interaction causes a mixing

of different spin multiplicity states of the same total angular momentum J =
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L + S, and the electric dipole intercombination transitions become allowed.
The intensities of intercombination lines increase rapidly with increasing Z.

In the calculation of intercombination oscillator strengths, we first need to
determine the “mixing” wavefunctions. This is a representation transforma-
tion procedure, i.e., a transformation from LS representation to intermediate
representation. Assuming that there are m states corresponding to specific
values JM for a configuration in LS representation, these states may mix

together in the intermediate representation for an intermediate state, namely,

: m
S(YLSIM) =" ;®(vL;S;JM) (2.114)

i
The mixing coefficients, ¢;, can be determined by the system of equations

m
Z(H,'j—&‘(S,‘j) ¢; =0 (2.115)
J

. =1,2,3,---m

Here H = H, + Hj, is the Hamiltonian including spin-orbit interaction, and

€, the correction to the energy, can be obtained by solving the scalar equation
|Hij —ebij| =0 (2.116)

Once the mixing coeflicients for the initial state, |yLSJM >, and the final
state, |y'L'S'J’M' >, are determined, the calculation of the intercombination

oscillator strength becomes straightward:

fQLST 4 U'S'J) = 5 2AF

1y 7t ot gt 2
— . L
(2J+1)|<7LSJ||;T10 Iy L'S"J" > |
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2AE 1 ,
T 3027 + 1)'.21261'6'/&: < 7LJ'SJ'J“;7'1'C 7' Ly S " > | (2.117)

b

As a descriptive example, we discuss the calculation of oscillator strength

for the intercombination transition
1s2[15g] — 1s2p[3Py]. (2.118)
For the initial level, there is only one basis function with J = 0, we have
1150 >true= 150 > . (2.119)
For the final level, assumiﬁg
11520° P >¢rue= c1|1s2p° P > +co|1s2p' P > (2.120)

and

(Ho + Hso)|152p° P >¢rye= €|1520° P >trye, (2.121)

we have

< 3Py|Ho + Hso| 3Py > 1+ < 3P| Ho| 1Py > ¢y = ¢

(2.122)
< 1P{|Hg|3P) > co+ < YP||Hy + Hso| 1Py > c1 = ¢
where € is determined by the scalar equation
< 3P1|H0+H30|3P1>—€ < 3P1|Hso|1P1 >
=0 (2.123)
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We may have two roots, £1 and e for Eq (2.123). They are the eigenener-
gies for |132p1P1 >i¢rue and |152p3P1 >¢rue respectively. Once the coefficient

co are determined from Eq.(2.122), we have the oscillator strength

2AF

f(18 =3P = 3

[ea | < Sollrl| Py > |17 (2.124)

Numerical Results And Discussions

We have developed a code, HFOS, for calculating the oscillator strengths.
This code can be easily adapted to HFBASE and hence suitable for generat-
ing large scale oscillator strength data. A simplified flow diagram of HFOS
is shown in Figure 2.11.

There are two ways to check the accuracy of the oscillator strength calcu-
lation. A direct way is to compare the calculation values to the experimental
data, while an indirect way is to compare the oscillator strengths calculated
from different formulations. We have checked our calculations both ways.
Figure 2.12 shows the results from a plot of a large number of oscillator
strengths of our calculation for Arl, Arll and ArlIl, plotted to show the level
of agreement between the length and the velocity formulations. Of more
than one thousand points in the plot, it is seen that the vast majority lie
on or close to the straight line that signifies the equality of the values in the
length and the velocity formulations. Thus the internal consistency and the
numerical accuracy of the computed data appears to be quite good.

In Table 2.4 a comparison is presented between the oscillator strengths
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obtained from HFOS by using the single configuration Hartree-Fock wave-
functions and the empirical data compiled by Smith and Weise [98] and the
theoretical data of Opacity Project calculations[14, 113]. For most transi-
tions, the discrepancies are within the twenty percent range. This is the
typical accuracy of oscillator strengths for the single configuration Hartree-
Fock calculations. Generally speaking, for transitions where only the outer
valence electron is involved, the single configuration Hartree-Fock calcula-
tions can give very good results; however for the transitions with inner shell
electrons involved, because of the strong electronic correlation effect, the sin-
gle configuration Hartree-Fock calculations are generally less accurate. For
this kind of transition, the multiconfiguration Hartree-Fock calculations are
necessary to obtain accurate results. In Table 2.5 we show a typical com-
parison of oscillator strengths for this kind of transition calculated using the
single configuration Hartree-Fock and the multiconfiguration Hartree-Fock
method. In this comparison, we only include the three important config-
urations for the multiconfiguration calculations, significant improvement is

achieved.
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Table 2.4: Oscillator strengths for CI and OIII

Atom

CI

OIlll

Transition

2s22p2 3P - 25%2p3s (°P)
3P - 2s22p3d[°D]
(1Dj - 25%2p3s('P]
t's] - 2s%2p3s(!P]

2522p3s [3P] - 2s%2p3p[°D]
(3P] - 2s%2p3p(3s]
(°P] - 2s%2p3p[°P]
(P] - 2522p3p(' D]
(2py - 2s22p3p(ls]

2] - 2s22p34(lP]
(Ipj - 2s22p3d(F]
D] - 2s%2p3d(°D]
3P - 2s%2p3d(3P)
(3P] - 25%2p3d(°D]

2522p2 °P] - 2s%2p° °D]}
13P] - 25%2p3 °P)
3p) - 2s22p3s[°P]

2522p3s(3P] - 25%2p3p(°D]
(3P] - 2s22p3p[3P]

2s22p3p[3P] - 2s22p3d[°D]
3P] - 2s22p3d[°P]

2s22p3p(!P) - 2s22p3d( D]

fHF

0.0886
0.0673
0.0923
0.0880

0.5445
0.1224
0.3101
0.5377
0.1247

0.7217
0.2535
0.8203
0.1428
0.2488
0.7191

0.1994
0.1434
0.0817

0.3935
0.2213

0.0957
0.1819

f OP

0.1476
0.1094
0.1202
0.0853

0.4933
0.1062

0.6937

0.107
0.137
0.0835

0.346
0.276

0.0890
0.104

0.096

0.53
0.11
0.37
0.56
0.13

0.70
0.31
0.74
0.15
0.26
0.63

0.108
0.14
0.0896

0.348
0.289

0.0899
0.105

88
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Table 2.5: Comparison of oscillator strengths of SCHF and MCHF calculations

Atom Transitions fHF MO fexp
Cl 252252 3p) - 252p° °p] | 0.2084 0.0837 0.094
3P - 252p° (3P} 0.1681 0.0694 0.072

ey - 25207 135 0.3057 0.1601
S OIl |932952 3p) . 26253 37 | 0-1994 0.1144 0.11
3p) - 252p3 °P) 0.1434 0.1396 0.14
2P] - 2s2p° 1357 0.2734 0.2010 0.18
2s22p2 (17 - 25203 ('p | 0-2766 0.3097 0.30
'p] - 2s2p (P 0.2025 | 0.2303 0.23
tls - 252p° ('p) 0.4077 0.2658 0.27
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2.2.2 Line Profile

The spectral lines are not strictly sharp, but have a finite width. The cross

section for bound-bound transitions should be given by

2r2e?
mece

o(i—j) = f—=3)¢(w) (2.125)

where ¢(w) is a normalized line profile factor. The three main causes of

spectral line broadening are:

1. The natural broadening of atomic energy levels, which arises from their

finite lifetime and consequent uncertainty in the energy values;

2. Doppler broadening, which arises from the Doppler effect that modi-
fies the apparent frequency of the radiation from atoms moving with

random thermal velocities;

3. Stark broadening, which is determined by two main processes: ion
micro-fields in the plasma that split the energy levels by Stark effects:

and line broadening by electron impact.

Natural Broadening

The phenomenon of natural broadening can be understood both from the
classical viewpoint and quantum mechanical viewpoint. Classically, the nat-
ural broadening can be understood in terms of the radiation damping of an

electron oscillator. Quantum mechanically, it is argued that if the lifetime
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of the excited state of the atom is 7, the energy of the state can not be
defined to better than AE ~ &/r. Thus the width of the spectral line is
Aw~AE[h ~1/7.

The line profile for the natural broadening is described by the Lorentz

distribution function, namely

I'n/2n
(w—wo)? + (In/2)2

¢n(w) = (2.126)

where w is the angular frequency of the radiation; I'y, is the full width of
half-maximum (FWHM) of the natural broadening, i.e., 'y = 2Aw with
¢n(Wo :t A(—L)) = ¢n(Wo)/2.

Classically, 'y is the damping constant

262wg

3mc3

Tn(rad/sec) =

~ 6.27 x 1072402 = 1.07 x 1010(AE)?2  (2.127)

where AFE is the transition energy in hartree.
Quantum mechanically, I’y is the sum of the reciprocal of the mean life-
time of both upper and lower levels

Tn(rad/sec) = Y A+ > Ayj (2.128)
i<l j<u

=. 3.213 x 1003 (AER) 2 ful + 32 (AEy;)? fuj]
i<l j<u



Doppler Broadening

The frequency of the radiation from a radiating atom whose velocity in the
direction of observation is v is displaced in accordance to the Doppler prin-
ciple by an amount

Aw = wo% (2.129)

Let the distribution of the radiating atoms with respect to v be defined by

function F'(v), then the spectral line profile for the Doppler broadening is

). — (2.130)

Assuming the plasma is characterized by a kinetic temperature T(K), the
velocity distribution is Maxwellian, namely

1 2 dv

Fur(v)dv = ﬁezp[—(v/vo) (2.131)

o]

where vy, = 1/2kT/m is the average thermal velocity. Then we have [15]

6p) = gz —earl(w/Awp)?]
Awp = wof’cﬁ (2.132)

¢p(w) is a normalized Gaussian distribution function with a full half-intensity

width given by
I'p(rad/sec) = 2Vin2Awp = 3.184 x 1012AE\/§. (2.133)

Where T is the plasma temperature in eV, A is the atom’s atomic weight,

and AF is the transition energy in hartree.
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Stark Broadening

There are two main approximations for dealing with the problems of Stark
broadening: (1)Quasi-static approzimation[65, 66),(2)impact approzimation[65,
66]. If particles are moving sufficiently slowly so that the frequencies char-
acterizing the actual time-dependence of the perturbing electric field F(t)
produced in the vicinity of the radiator during the interaction are much
smaller than the resulting Stark shifts Aw;¢(F) = w;f(F) — w;£(0), i.e.,

TR < 8wy (F) (2.134)

the line profile then consists of an average over perturber configurations of
profiles calculated for fixed perturber éonﬁgurations. This is called the quasi-
static approzimation. If the duration of collision is small as compared with
the mean time between collisions, then we can neglect radiation during colli-
sion and consider the collisions to be instantaneous. This is called the impact
approzimation. Generally speaking, the quasi-static approximation is appli-
cable for the far wing of the line and the broadening by ions, the impact
approximation is usually applicable to the broadening by electrons.
Although both electrons and ions have contributions to the Stark broad-
ening of lines of atomic spectra in a plasma, electrons play the principal
role in the broadening of a line of atomic spectra. The interaction with ions
only slightly increases the impact width and shift of a line of atomic spectra,

by approximately 15 — 20%[65]. In our calculations, we only consider the
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Stark broadening by electrons. There are several theoretical methods used
for computing the widths of Stark-broadening of spectrum lines. However,
as pointed out by Griem[67], many of the more complicated semi-classical
and quantum mechanical calculations are in several cases less reliable than a
simpler semi-empirical procedureS[67, 68, 69]. This method, which is based
on the use of effective Gaunt factors for the electron-radiator collisions, has
been tested for a number of ions in the past[68, 69]. Agreement between the-
ory and experiment was typically within a factor of 1.5, and in many cases
much better. Hence we choose this method for our calculations. The main
features of this method are discussed in the following.

Starting with the expression, due to Baranger{70], for the width (FWHM)

of an isolated ion line, in the unit of angular frequency:
T, = N, <U[Zai/i+20f/f+/|¢i—¢f|2dQ] >an (2.135)
4+ f’

Here N is the electron (perturber) density, v is the electron speed and the
average is to be performed over the Maxwellian electron velocity distribution.
The symbol o, and o s1 ¢ represent the inelastic cross sections for collisional
transitions to levels ¢/,f’ from the initial (i) and the final (f) levels, re-
spectively, of the optical transition. The ¢; and ¢; are elastic scattering
amplitudes for the two states of the perturbed system, the integral being

performed over the scattering angles (£2). The collisional excitation cross



section oy, may be calculated using the formula[69]:

o2 -/-a2
0‘.,. prowed fz 0

. = 2
T3 Ee(Ei/ ——E,')g(cm )

Where fy is the absorption oscillator strength, E; and E; the level energies,

(2.136)

g the effective Gaunt factor, and the kinetic energy e, > E; — E; is that of
the incident electron. In the absence of more reliable estimates for the elastic
terms, a reasonable way to deal with them is to omit them in Eq. (2.130)
but to allow for the effects of such collisions by extrapolating the effective

Gaunt factor in Eq. (2.131) below threshold[67, 69]. Then we have

4+/2 3/2 3
\\//_—;1/2 Afg’ < gjp; > a? (em3.sec™1) (2.137)
/

where < § > represents the Maxwellian average of the effective Gaunt factor,

‘< vai/i >=

<g>= /OOO gexp(—ep/T)d(e/T) (2.138)

Hence, the Stark width can be expressed as

4/2 73/2 fas fpg a
=T N3 i }: o (o,
T3 T1/2N( AE <giri >t AEflf <gpp>)n (2139)

where, N, is electron density in cm™3, and [y is in the unit of rad/s.

Now provided that the relevant levels ¢/(f') which combine with the ini-
tial(final) state of the line according to the electric dipole selection rules are
sufficiently separated from i(f) for the g-values to remain near threshold for

all terms, the summation may be carried out directly over the ¢'( '), using[70)

fors - 2 ) _ )
;! 1
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where the Gaunt factor on the right hand side has the value appropriate for
the nearest perturbing level, and r is the distance of the radiating electron

from the nucleus in Bohr radius a,. Finally we have

8v2

VT '3

0.74 x 1077 - _

- ——:/(T Ne(R} < gy; > +R} <gpj >) (rad/fs) (2.141)
0.3943 x 10~10 o o .

Where T is plasma temperature in 2Ry, A is the wavelength of the transition

B 3
Ty = YINL(R? < gy; > +B3 < gpr; >)2 (rad/s)

T

in cm. In the Coloumb approximation, R? can be calculated from[71]

_ 1 v
R? = 5(;-j;)?[suz-? +1=30(l; + 1)) (2.142)

in terms of the effective principal (v) and orbital (/) quantum numbers and
the core charge.

Detailed discussions on the systematic errors which could be incurred
through the use of the above semi-empirical procedure have been given by
Hey et al.[68, 69]. Generally speaking, within twenty percent accuracy is

expected.

Convolution of The Doppler and Lorentzian Distribution

If the plasma density is not very high, the mean free path L of the radiat-

ing atom is much larger than the wavelength of the observed line A\. Then



97

the Doppler and the Stark broadening may be treated as statistically inde-
pendent. The combined treatment of the natural, Doppler and the Stark
broadenings leads to the convolution of Doppler and Lorentzian distribu-
tions. The Lorentzian profile with width I';, = I'p + I, corresponding to the
atom with velocity v in the direction of observation, is given by

_ T L
T 27 (w —wov/c —wo)2 4 (T /2)2

Pv(w) (2.143)

Average Eq.(2.143) over the velocity distribution F'(v), we have

#w) = [ P(v)pu(w)dv (2.144)

For a Maxwellian distribution Fs(v), we have

_ Iy cap[=(v/vo)*ldv
plw) = 21 /7o / (w = wov/c—wp)? + (L /2)?

1 Tp [ exp[=(v/vo)*]d(v/vo)
QW\/EAW% / (%&Q _ %)2 N (;ALJ)Q (2.145)

Defining

z= = 2vIn2 (2.146)

we have

1 1 exp(—t2
$(w) /yz +p(($_,)5)2dt
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= 22y / ezp(— Pt (2.147)
FD T y? + ( :v——t '

This is called the Voight profile.

When Awp < T'[ /2 the term wev/c can be neglected in the denominator
in Eq.(2.145), after which the integration over v gives a Lorentzian profile
with width I';. Consequently, when Aw < I';/2 Doppler broadening can

be neglected.

2.2.3 Bound-Free Transitions
‘Photoionization

We consider ionization of a N-electron atom by a photon of energy w. A
general formula for the photoionization cross section is

47raa0

390

wY | < a|Dbe> |? (2.148)

O =

The initial atomic state is |a >, the final state for the system of ion plus
ejected electron is |b, & >. ¢ is the ejected electron kinetic energy. The energy
conservation condition is w = I 4¢ where [ is the threshold ionization energy.

The initial wavefunction is normalized to unity and the final wavefunction to
< byelb,e' >=6(e — &) (2.149)

The summation in Eq.(2.148) is over all initial and final states of fixed energy

and g, is the degeneracy of the initial energy level of the atom.
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In the LS-coupling scheme, we have

47r2aag / o
T 3RL+1)(2S ¥ 1)(I+5) / > /I <ALS||D[|(1L151)el’; SL' > |
U'=l+1,L
47r2aa3 _ , / /
= jer+nes+nit €)I,=&Zl ) SIWLS ~ (y1L1S1)el'; SL')s(nl ~ el')

Where S is the reduce multiplet strength which can be calculated by using
the same method for that of bound-bound transitions. Here, we list S for

two cases of greatest practical importance:

LA I (LSS — {1V (L1S))el'} L'

2
B 9 arl U1 1
o (HL+1)(25;1)(HL +1) (2.151)
L L' Iy
- (2L+1)(28 +1)
S =
%: 220 + 1)
2. {--(n)N(LSYLS — {---IN=L(L18))el'} 'S
2
2L +1)(2S+1)(2L +1) | I 1 1
S = N|GL151|2( ) 5 i ) (2.152)

L I' I

(2L + 1)(28 +1)
2(20 + 1)

& LS 2
2§ =NIGLg,|
Ll
s(nl—el’) is the one electron electric dipole line strength. In the length form

s(nl —el') = 20 ;/ P(nl|r)rP(el|r)dr|? (2.153)
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and in the velocity form
s(nl —el') = H 5 2;/ P(nl|r) j: Is - ]P(e,l:i: 1r)ydr|2  (2.154)

In the calculation of photoionization cross sections, we need the discrete
orbital, P(nl|r), in the initial state, and the continuum orbital, P(el|r),
which is obtained by solving the radial Schrédinger equation with a potential
determined by the residual ion. In principle, the discrete orbitals for the
electrons of the residual ion are different from those for the electrons of the
initial ion because of the relaxation effect, and the Hartree-Fock calculations
should be done separately. Such a scheme, however, adds computational
complexity due to the overlap integrals, and yields initial and final states in
different basis sets which would render further improvement based on the
HF orbitals. Thus, for our purposes, we use a “ frozen frame” scheme, i.e.,
we use the same HF discrete orbitals in both initial and final state. For the
continuum orbital, P(el|r), we use the HX method[27], namely, we solve the

radial equation

2 I(l1+1
+(+)

[—;lﬁ + 2V x(r) — 2¢]P(el|r) = 0 (2.155)

where Vi x (r) is the HX potential determined by the residual jon. A general

HX potential for the ith subshell electron is expressed as

. 24 /
vi(r) :_—+]z WS Pl [ L -k (21

(2.156)



101

where p'(r) is the modified electron number density
' L J 2 : 2 .
p(r)= — Z w; P2(njl;lr) — [min(2,w;)] P*(n;l;|r), (2.157)
J

 4nr =1
and kg is a correction factor and may be taken as 0.5. It is easy to find that,
under the frozen core approximation, the HX potential for the continuum
orbital is exactly the same as that for the discrete orbital of the ionized sub-
shell in the initial ion. This may be a good approximation for the ionization
of the outer shell electron, but it definitely is inadequate for the ionization
of the inner shell electrons. It may be more reasonable to take the HX po-
tential for the outer shell electron in the initial ion as the potential for the
continuum orbital in all cases. Our sample calculations confirm this analysis.
In Figure 2.13 we show the 3s-subshell photoionization cross section of Arl.
Where circles represent the measurement of Marr et al.[72].; curve 1 is our
calculational result with the HX potential for the outer shell electrons; curve
2 is our calculational result with the HX potential for the ionized subshell
electrons; curve 3 is the HS results of Cooper and Manson[73]. The important
feature here is the minimum in the cross section which is absent in curve 2
and curve 3. Curve 1 reproduces the experimental data nicely. The detailed
physical mechanism for the formation of this minimum is complicated[74, 75],
although our calculation of curve 1 didn’t include those complicated effects
directly, it at least indicates that the HX potential for the outer shell electrons

is a better potential for the continuum orbital.
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In Figure 2.14 - Figure 2.18 we show some of our calculational results
and compare them with the available experimental data[108, 109, 110] and
the other theoretical results[111]. It can be seen that in most cases our
calculations give good estimates for the photoionization cross sections.

For the hydrogenlike ions and the high excited states of complex ions, the
hydrogenic model can be used. In the hydrogenic approximation, the cross
section for photoionization from level n is

26a7rag n

7 -2-;(1+2n2z*e)-3g,,f(n,e) (2.158)

where gy ¢ is bound-free Gaunt factor. The detailed expression of gy has been

on —¢) =

given by Karzas and Latter[76]. The asymptotic expansion for gy is[76]
0.1728

gpf(n,€) W(u - 1)
0.0406 o 4 ;
PR 1)]4/3(u +gut )+ (2.159)
where u = n2cz*.

Radiative Recombination

The radiative recombination cross section is related to the corresponding

photoionization cross section by the Milne formula

QQ(InI +€)g_k l(nl w)

(e - nl) = o
( ) 2¢ g,‘:;

(2.160)

where ¢"(¢ — nl) is the cross section for an ion in &’ state recombining with

an electron with kinetic energy ¢ to the nl subshell and o(nl,w) is the cross
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section for a nl electron ionized from an atom in the & state by absorbing a
photon with energy w.
The radiative recombination rate coefficient can be obtained by averaging

the cross section over the electron velocity distribution, i.e,

QUT) = /OOOUF(v)aZ(v)dv |
= /Ooox/é'e?p(e)a;(e)ds (2.161)

where a,z is the total recombination cross section

of(e) = T 0" (e — nl) (2.162)
nl

Assuming a Maxwellian distribution for electrons, then

QUD) = [[7 (3 can(=e/Thaf(e)ds (2169)

substituting Eq.(2.157) into Eq.(2.160) we have

_0.93x107M g

QHD) = 257 ZI:/OOO(IM+5)263:p(—5/T)0i(nl,w)de (2.164)

955
where o?(nl,w) is in the unit of 10718 ¢m?2 and @ is in em3sec™L.
In the hydrogenic approximation, the coefficient for recombination on to

levels n is[77]

*
Qr(2*,T) = 5.197 x 10—14;—_{_-%—37171571@) (2.165)



110

where () is in the unit of em3sec™! and
_ 13.60552"
V=TT
Yy ;
_ [ gpp(n,e)e” Y
Snl) = [ T
By using the asymptotic expansion of gy s in Eq.(2.159), we have
Sn(y) = SO(zn) + 135D () + y~ 235D (z,) + - - (2.167)
where
SO (z) = e®Ey(z)
SW(z) = 0.172821/3 X1 (2) (2.168)
S (z) = —0.04962%/% Xo(x)
and
E ey
@)= [
X1(z) = /Ooc(u + 1) — 1)e %4y (2.169)

4
Xa(z) = /0°°(u #1774 Zu 1)

2.2.4 Free-Free Transitions in a Coulomb Field
Free-Free Absorption

The continuous radiation absorption process is generally termed “free-free

absorption”. The classical calculation of the radiation absorbed by an elec-
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tron being scattered in a Coloumb field was first carried out by Kramers,

with the resulting so-called Kramers cross section given by [78]

ff 1673 az? 5
¢}

og (ei,w) = 33 B

Here w is the energy of the emitted photon, ¢; is the energy of the incident

(2.170)

electron.

The quantum theory calculation was studied very early by Gaunt, and it
has since been customary to write the result in terms of the Kramers cross
section

ol (e,0) = o8l (ei,0)g 57 (eire p) (2.171)

where grr(e;,e5) is called the free-free Gaunt factor, and can be expressed

as[76]
2v3 .
915 = gy 8 H 2P o = 2minp (L n) 21 ) 20 (2172)
)
where
L Akiky g wlgg=ngl/2IT0+ 1+ ) D+ T+ éng)
1 Y 2.173
f 4[(ki—kf)2] ’ (20 +2) G (2.173)
with
kf — k; i(ni+ny) ) _ 4kikf
= Fr+1—ingl+1—in; 2042 ———d _y (2.174
Gy kf+ki]2 11+ gl iy 20+ 2; (ki~—/€f)2) ( )
d
an ) 22 , 22
" i E Qg_f (2.175)



Assuming a Maxwellian distribution for electrons, then

offw) = [7 Fue)e!! (ei,w)de

16\/_775/2 azfay [© —&;/T
33 3T3/2/o ¢ g pdei

16\/_7r5/2 az? ao

where the temperature averaged free-free Gaunt factor is defined as
2
o0 - _ uz
< grf >-——/0 dze™"grp(n; = vz 1/2,w = ?) (2.177)
with
w
U= =
T
2
2= 2 2.17
7= o (2.178)

This temperature-averaged Gaunt factor is plotted in Figure 2.19 as a func-

tion of 2 and w.

Free-Free Emission

The cross section for an electron of energy ¢,, normalized to unit density at
infinity, to emit a photon in the energy range w - w + dw, when passing an
ion with charge z, is given by[26, 76]

do®™ 81 adz2q?
dw = 3\/§ 0w 0 f(Eo — W, 50) (2179)
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The energy emitted per unit time can be found by multiplying by w and by
the electron flux, Nev/2¢0:

827 a?’z?ag

RO v v

Negffdw (2.180)

Assuming a Maxwellian distribution for electron energies, we have[76]

25./9 3/2.3 '
<Ww)>do = %fNecngl/ze_" < gff(U,’YQ) > du
= 1.53 x 10722 NvVTe™ < g > du 2.181
ff

where T is in eV in the second expression, N, is in em™5 and W is in
ergs.sec—l.
Finally, the energy emitted per unit volume per unit time is found by

multiplying by the density of positive ions which serve as targets for the

bremsstrahlung production and integrating over the photon spectrum

ergs

€ ) = 1.53 x 102522 N, N;T1/2 /0°° due™ < gpp > (2.182)

cm3s ec

2.2.5 Dielectronic Recombination Process

Dielectronic recombination is not a radiative process but relates to radiative
processes very closely. In the dielectronic recombination process, there are
two stages: first, the nonradiative attachment of an electron and excitation
of the ion takes place. Then there are two possibilities, nonradiative decay

(autoionization), or radiative transition into a ‘stable’ state below the ion-



115

ization limit. This latter process provides the net recombination. The basic
processes of dielectronic recombination are shown in Figure 2.20.
Since dielectronic recombination is a two stage process, the corresponding

rate coefficient can be calculated in two steps:
1. rate coeflicient for the nonradiative capture;
2. rate coeflicient for the radiative stabilization.

For a LTE plasma, the rate coefficient for the nonradiative capture can be

expressed as[87]

1)3/2Mexp(_AE- /T) (cm®.sec™1) (2.183)
2T am Jm

o (T) = 4a)
where Ag’” is the possibility per unit time that an ion (Z,N) in the level j
will autoionize, leave an ion (Z,N-1) in the level m.

Once the ion (Z,N) has been formed in the state j, there is a possibility
that it may be reionized at a rate Azm. Considering this effect, the proba-
bility that decay will be via a radiative transition to a specific lower level k

is given by the branching ratio ( or the fluorescence yield in x-ray emission

case ): N
BI* = A
jm/ jk!
Zm/ Ag” + Zk/ Ar

Where the summation over m’ extends over all possible levels of the ion (Z,N-

(2.184)

1) that lie below j, and the summation over k&’ extends over all levels of ion
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Figure 2.20: Schematic diagram of basic processes involved in the dielectronic

recombination
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(Z,N) that lie below j. The summation over m' represents reautoionization
transition, or (in another vocabulary) single-electron Auger transition.

The rate of dielectronic recombination to level k of ion (Z,N) is [87]
Ra(T, k) = LS nf_ieg” (T)] 57 (2.185)
j m

Where the summation is over the states of the ion (Z,N-1). Finally, the total

net dielectronic recombination rate is
Ry(T,k) = 3 Ru(T,k)
k

= Y[ nf_je (1) Y B (2.186)
g m k
Calculation of Autoionization Rate A,

As shown by Fano[88], autoionization transition probabilities may be calcu-

lated from the first-order perturbation theory expression

» 2m - _
Afl = S| <jlHli> 12 =2.5976 x 10173 2(01,05)1(fia;lo;, nojlo;)

Uz’aj

TiPiTPj k

where one of the “nl” orbitals is a continuum function P(cl|r) for a free
electron of kinetic energy ¢ = E(Z,N — 1,m) — E(Z,N,j), and m is the
state of the residual ion after autoionization.

The calculation for the angular coefficients z and y is the same as that
for atomic energy expressions. In the calculation of radial integrals I and

R, the continuum function P(el|r) is normalized in the energy scale.
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Burgess-Merts Semiempirical Formula

We present here a semiempirical formula for the total rate coeflicient of di-
electronic recombination proposed by Burgess[89] and modified by Merts et
al.[87]. This formula is written as
ag =169 x 1071T732B(z) 3 finA(z)e AEmilT (2.188)
m=i+1
The quantities appearing in this expression are:
Te = electron temperature in the unit of 2 Ry;
z = the charge number of the récombining ion;
¢ = the initial state of the recombining ion;
m = a state of the excited core configuration j, of the recombined ion
(before radiative stabilization );
fim = oscillator strength of the transition ¢ — m of the recombining ion;

AFE,,; 1s the energy of transition and may be calculated from

AFE,,;
T

(v~ v

i Vm

Ta

=50x 107 7(z+1)?

where v; and vy, are the effective principal quantum numbers;

3

z
21/2(2 + 1)5/2
B =
(=) (22 +13.4)1/2
1/2
A(z,An=0) = =

(1 +0.105z + 0.015z2)
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0.5z1/2
(1+0.21z + 0.03z2)

Az, An #0) =

where z = (z + l)(z/i—2 —v72).
In regard to the accuracy of this semiempirical formula, Mert et al.[87]
has made a very detailed discussion. It is expected that the accuracy is

within a factor of two or three.



2.3 Atomic Collisional Processes

In this section we consider the problems of atomic collisional data calcula-
tions. As we already mentioned in the last chapter, usually electrons play the
main role in collisional excitation and ionization processes in a plasma. In-
teraction with heavy particles (protons,ions) is important only for transitions
between levels with very small energy splitting (e.g., within fine structure).
However, in ICF research, especially in the ion beam - plasma interaction
experiments, because the ion beam couples with the plasma directly, the
collisionzﬂ effect of the beam ion may become important for the plasma di-

agnostics. Hence, the atomic collisional processes of our interest include:

o electron collisional excitation and deexcitation
Alz,i)+e= A(z,k) +e
¢ electron collisional ionization and recombination
A(z,))+e= A(z+ 1,k) + 2¢
e proton collisional excitation and deexcitation
A(z,))+p= A(z,k)+p
e proton collisional ionization

Alz,i)+p— A(z+ 1,k)+p



2.3.1 Electron Collisional Excitation And

Deexcitation

The Schrédinger equation for the electron-ion collisional problem may be
expressed in terms of the scattering electron moving in the potential of the
target ion. The radial part of the wavefunction of the scattering electron is

written as[79]:

2
[jw - l(l; D k*|P(Tlr) = 2§[Upr, + Vo | P(T|r) (2.189)

where P is the radial function in a givén channel ( represented by I' and I").
The summation on the right-hand-side of Eq. (2.189) is over all discrete and
continuum staj;es. Uppr and Vppr are direct and exchange potential operators,
respectively. Vi are integral operators and therefore Eq.(2.189) represents
an infinite set of coupled integro-differential equations. Truncating the sum
on the rhs of Eq.(2.189) to a finite number of excited states of the target
ion and solving the remaining coupled equations exactly yield the N-close-
coupling approximation, where N is the number of states included. The
close-coupling approximation is the most accurate method for solving the
electron-ion collision problem as it allows for full coupling between channels
which is often strong at low energies. However the computations of this kind
are very complicated. In our calculations, we only consider the first-order
approximation, i.e., we omit the coupling between scattering channels and

therefore the relevant matrix elements include only the initial and the final



channels.
In the first-order approximation, the general expression for the electron

impact excitation cross section is[79]

! 1
Opor = Or,[ TOT,T

2@k (Tol)ok(lo, 1) + Q(Tol) o (I, 1)] (2.190)

where ol.(lo,1) and oll(lo,1) are one-electron cross sections, depending on

quantum number nylp,nl only:

4

o (lo)l) = ——— RS, )r 2.191
K:( o ) (210 ].)k? IZ Z ao ( )
ol(lo, 1) = a? 2.192

wllo) ) = (210—%-1/6?“ %: o ( )

where R% and RE are direct and exchange radial integrals, given by

d H(lollzlf) K lo { K li lf

Ry = (2.193)

0 00 0 0 0

K
x 2//P(nz|r’)P(kflf|r”) L P(nololr') P(kililr" ) dr' dr"
>

RS, = (=1)F tRI(xlol;l)

k' 1o 1 P k'l
x 2 > ’ ° (2.194)

00 0 0 0 0 k 1 1

!

! in_T<
[ [ Putte' Pty e

1 = Crs6.40)P(nolo|r”YP(k;l; |7 ) dr' dr'
£'0
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with
1 1
C=5(=2a+ kP = 5 (20, + k%) (2.195)
H(j1je---) = (251 + VY225 + 1)I/2 .. (2.196)

In accordance with the properties of 3nj symbols, the values of x and &’
in Eq.(2.193) - (2.194) lie between the limits &,;5, &Kmaz and &’ K

min® “mazr

respectively, where

Kymin = ma:zr(ll - lo‘, ”z — lfl); Kmaz = mm(l + lo, li + lf) (f) 197)

/

Kmin = maz(|lg — lo|, [l =1|);  Kinag = min(l + ;1o + 1f)
Q) and Q' in Eq.(2.101) are the angular factors which depend only on the

angular momentum quantum numbers of the initial and final states (ao,a).

For transitions of type
LS — I LpS,)ILS

we have

kK Lo L
Q(LoSo, LS) = 1%(I,L) D pmlGEs [Bsss,  (2.198)

Ly 1 I,
25 +1 k Lo .
ues =T _n2 LS. 12 (91

For transitions between configurations I — [M—1]:

QU 1) = QL i) = 1 (2.200)
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Distorted Wave Calculations

In our distorted wave calculations, the radial wavefunctions for bound elec-
trons are the Hartree-Fock wavefunctions, the continuum wavefunctions,

P(kl|r), are obtained by solving the equation

d2  l(1+1
P(kllr) =20
Pkl "= o sinbr — T 2 k) — )
\/Esn -5 i inlkr) =7

The asymptotic behavour of P(kl|r) here corresponds to the normalization

condition
o0 ' T /
/0 P(ellr)P(e'llr)dr = Z8(c — ) (2.202)
The potential function in Eq.(2.201) is taken as the modified HX potential

which includes the screen and exchange effect of the bound electrons in target:
Vi) = -2 + Z wj/ = P2(n;1;|t)dt (2.203)
24
+ 73 —P2 silt)dt) = ko[ Zp(r)]7?

with

47rr Z: qw] )

For the exchange radial 1ntegral, we can write

,rli
// P(nljr1)P kf1f|r2)r§jl(1—cr>5K,O)P(nololr2)P(kili|r1)dr1dr2

™mazx ™mazx
= /0 fe1(7"2)d7‘2+/0 fea(ra)drs (2.204)



where f,1(r) and feo(r) are defined as

1-Cré r
fe1(r) = P(kflf|r)P(nolo|r)(——7'—e—_-{_—in—0)/o P(nl|t)P(kl;|t)t"dt  (2.205)
ma:z: (1-Cté
fea(r) = P(kflf"r‘) (nolo|r) / P(nljt)P (k;l; |t)——tﬂ—+1n—0)dt
(2.206)
and rmqz is determined by the condition
P(nllr > rmaz) =0 (2.207)

The direct radial integral is a slowly converging integral,so we write

T.K:
// P(nllry) P(kylglra) =57 P(nololr1) P(kililra)dr dry

/0 fa1(r2)dry +/0 faa(r2)dre (2.208)
where fy1(r) and fy9(r) are defined as
r K
far(r) = Pkglglr) P(kilir) = +1 /O P(nl[t)P(nolo|t)t®dt  (2.209)
K o0 1
fan(r) = P(kgls|r)P(kls|r)r / P(nl|t)P(rololt) sppdt  (2:210)
When r > rmaz, we have
/Or P(nl|t)P(nolo|t)tFdt = /Ormaz P(nl]t)P(nolo|t)tFdt

o 1 29
/r P(nl}t) Pnololt) s dt = 0 (2.211)

Hence ‘f* functions can be divided into two parts: For r < rmaz,

Far(r) = PUeslslr) Plhkil|r) —= n+1 /OTP(nl|t)P(nolo|t)tffdt



r 1
Fao(r) = P(kflf|r)P(kili|r)r“/r e P(nllt)P(nololt) mppdt  (2.212)

For r > rmaz,
1 rmaz
far(r) = Pkgllr)Plkitiin) —zp [ P(nl]t) P(mololt)t*at

faa(r) =0 (2.213)

In order to obtain accurate results for [§° f41(r)dr, the cut point for 7 must
be very large in the direct numerical integration. An asymptotic expansion
method for the fast, accurate evaluation of such integrals has been developed
by J.A. Belling[80].

A flow diagram of our distorted wave calculation code, EACOLL, is shown
in Figure 2.21.

Generally speaking, the DW calculation can provide excitation cross sec-
tions with accuracy sufficient for most applications. Typical accuracy is
within a factor of 1.5 - 2. For high charge of the ion, the DW method is
even comparable to the CC approximation. In Figure 2.22 we show a sample
result of our DW calculational result and compare with the available CC
calculational result[114, 115]. Curve 1 is our DW calculational result, curve
2 is Cristensen et al. multiconfiguration CC calculational result and curve 3
1s Van Wyngaarden et al. multiconfiguration CC calculational result. The

agreement is better than a factor of two.



input

1. atomic parameters: Z, N
2. angular momentum coupling procedure .
for initial and final states

3. kinetic energies of incident electron
4. number of partial wave accounted

HF calculations for both initial and final states: — ] outputs from
Ei, Es, P(nlir)'s HFBASE

generating an average local potential (HX) for determining
the distorted wavefunctions of incident and scattered electron

:

determining the summation limits of multipole index

Kmin, Kmax
1 4 do loops
) 1. K = Xain, Koax
3 2.1 =0, lnx

3.1t =0, lox

applying selection rules

l yes

_‘Q calculating P(¢elir), P(eldr) )j

exchange radial integral

direct radial integral

partiall cross sections

angular factors Qx«, Q'«

total cross section

Figure 2.21: Flow diagram of DW calculation code -- EACOLL



Electron impact excitation cross section of Lill
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Figure 2.22: Electron impact excitation cross section of Lill. Curve 1: this

work; Curve 2: Cristensen et al.; Curve 3: Wyngaarden et al..



Born Approximation

For very high electron energies, the scattering potential may be treated as

a small perturbation. The scattered electron then has a plane-wave form in

both the incident and the outgoing channels. Assuming
P(kl|r) = 2kry;(kr)

then the first Born cross section can be expressed as [79]

8 k;+k d
B __ ° TR f 249 2
700 = (31, + 1)k? XK:Q'“(G"’G)/Ici—kf s 3ma0

where

K

(2.215)

l, ! o0
Re(q) = H(xlol) /0 P(allr) P(nolo|r)jn(qr) — Sxoldr

0 0 0

q2 = kl2 + k}?‘c — 2k;kfcost

Ji(z) = \/%JIH/Q(HJ)

is a spherical Bessel function of the first kind,

and

SinT

Jo(z) = T

SINT  COSZ

Ji(z) = 22 7

Ji(z)

Jipr(z) = (214 1) —Ji-1(z)

(2.216)

(2.218)
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The general Born approximation is totally inadequate for the intercombi-
nation transitions (AS = 1) because of the omission of the exchange interac-
tion. The corresponding generalization of the Born approximation, taking ac-

count of exchange interaction, is the Born-Oppenheimer approximation:[81]

for AS =1,

Capa = Z Q”(ao, a)a'x(lo, l) (2.219)
K
4
an(lol) = 7ra0 > ( ZR (2.220)
(210 ) 1 IIf K/
RS, = (=1)"t*I(xlollily)
| Koo dp V[ L LY R o U (2.221)
0 0 0 0 00 kLo
/
x 2//Pnololr2 kl|r1) = P(kglylro) P(nilry)drydry

where P(kl|r) is a modified radial function of P(kl|r) to ensure the orthog-

onality,
P(k;lilr) = P(kililr)— < P(kily|r)|P(nl|r) > -P(nl|r)8,,

P(kflf|7‘) = P(kflf|7’)— < P(kflf]T‘)lP(nololT‘) > -P(?’LololT)5101f (2.222)

The Born method provides a sufficiently accurate qualitative description
of electron collisional excitation cross sections, and usually does not lead to
large quantative disagreements with experimental data. For many types of

transitions from the ground state, an over estimate of the maximum cross
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section by a factor of 2 is typical. A comparison of Born approximation
results and the CC calculation[79] for the transition 3s — 3p and 3s — 4p of

Na atom is shown in Figure 2.23.

Semiclassical Impact Parameter Method (SCI)

The semiclassical impact parameter method for the calculation of electron
collisional excitation cross section was developed by Burgess et al. [82]. This
method expresses the excitation cross section for optically allowed transitions

as
o= _Ji
Y \/gk?AEi]’

where f;; is the electric dipole oscillator strength, and 7 is the effective Gaunt

(7a2) (2.223)

factor. A general expression for § is[82]

§(€,60) = —?Y(é, bo) (2.224)

V3

s

™| K (8 + ) Kie (6 + O)|(6+¢)

where

11 1 1
¢= Zl? - Et B Zl\/é—'f—z - v2(g; — AE,']‘)I
6o = |\/2¢; = \[2(e; — AE;)|Ro (2.225)

The quantity R,, the lowest allowed value for the impact parameter, can be

-

estimated from
5 [3an - l(l + 1)]

0 =
2z*

(2.226)
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and
Kig(€ +8) = /0 ™ exp[— (€ + 8o)cosh(t)]cos(Et)dt (2.227)
Kzl-g(.f +bo) = — /000 cosh(t)cos(ét)exp[—(& + 8o)cosh(t)]dt
are the modified Bessel function and its derivative.

The expression in Eq.(2.223) for excitation cross section is restricted to
dipole allowed excitations and could usually be accurate to about a factor of
two. A comparison of the calculation results of DW, Born and SCI methods
is shown in Figure 2.24. It can be seen that except in the threshold the
results of all three calculations are within a factor of two.

Of the three approximations discussed above, the distorted wave method
has the best accuracy. However it is very time consuming compared to the
Born and SCI methods. In practical applications for the collisional-radiative
equilibrium calculations, the enormous amount of relevant transitions needed
to determine the level populations does not enable a direct application of the
commonly used DW method due to computer time limitations. A general way
to cope with this problem is that we compute the excitation cross sections
with DW method only for the important resonant transitions from the ground
state to the higher levels, while the cross sections for the less important
transitions are approximated by the SCI model or the Born calculation.

The cross section o is related to the collision strength as
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Figure 2.24: A comparison of DW, Born and SCI calculations
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For practical applications the quantity of interest is the Maxwellian average

collision strength, given by

I(T) = /:; Quj(es)e=/Td(e;T) (2.229)
ij

Finally, the excitation rate coefficient is given by

2.733 x 10—11
()= 22
Qz]( ) gi\/T

with T in hartree.

I(T) (cm?’.sec_l) (2.230)

From detailed balance it follows that the deexcitation rate coefficient is

given as

Qji(T) = Q,-J-(T)gée”if” (2.231)
J

2.3.2 Electron Collisional Ionization And

Recombination

It is not difficult to generalize the calculation formulae for the collisional
excitation cross section discussed in the last section to transitions for which
the initial or the final state of the target ion belongs to the continuum,
Le., electron collisional ionization and recombination. Here, we discuss the
two most commonly used methods: Born approximation and an empirical

procedure suggested by Burgess et al.[83]
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Born Approximation
In this case the final state a belongs to the continuum: a = a;elLSJ, where
a; is the state of the ion, and ¢ is the energy of ejected electron. If the

continuum radial function P(el|r) is normalized to §(¢ — ¢’), the differential

ionization cross section is[79)]

dai(ao,aié‘l) kit+k s qu .
de (2[0+1 k2 ZQE/ _ f (R x(q ] ( aj) (2.232)

The radial integral Rx can be calculated according to Eq.(2.216) with the
function P(el|r) in place of P(nl|r). For applications, the total ionization
cross section is required:

} ;=17 d i ]
lama;) = Y /0 : z—%d@: (2.233)
LSJlk €

8Q; €;—1Iz i
e S e R e
where

= Z ch(am ‘1)

LSJ

does not depend on «, and I, is the ionization energy of the target ion.

The Empirical Procedure

In collisional-radiative equilibrium calculations, for plasma near to ionization
balance, ionization cross sections mainly near to threshold are required and

the formula due to Seaton[84] has been widely used. However, for rapidly



137

evolving non-equilibrium plasma, cross sections well above threshold may
be required and formulations such as that of Lotz[85] may then be more
appropriate. Based on more newly available cross-beam experimental data,
Burgess et al.[83] suggested a new empirical formula which takes account of
inner-shell excitation and autoionization. This empirical formula of simple
functional form similar to that of Lotz has been shown to be capable of rep-
resenting a wide range of cross-beam experimental data to a good accuracy.

For incident electron energy ¢;, the Burgess formula for the ionization

cross section 1is

IJ g; &;
=0T [ PmEIW

) (ra?) (2.234)

where the summation is over subshells j of the target ion, §; is the effective
number of electrons in j, I; is the effective ionization energy of j ( this may
differ from the real ionization energy because of autoionization effects), C is
a fitting parameter and may be taken as 2.3 in general. The function W(e/T)
represents approximately the deviation from linear behavior in the threshold

neighborhood, and is given by

0 ife; < Ij
W(ei/I;) = ore (2.235)
ln(ei/fj) T ey > ]j
with
-5
A —5)

W has a significant effect only for small z and ¢; very near threshold.
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To take into account the autoionization contributions, we need to follow
the following procedure for the assignment of £; and [;:
(1) for the outer-shells, £; is the actual number of electrons of the shell, and
I; is the real ionization energy;
(2) for the inner-shells, if the lowest configuration obtainable by excitation
of an electron of the subshell lies above the outer-shell ionization threshold,
{; is the actual number of electrons in the shell and I; is set equal to the
excitation energy of the lowest autoionization state reachable.
(3) if the lowest configuration obtainable by excitation of an electron of the
Jth subshell lies below the outer shell ionization threshold, I; is set equal to
the outer shell ionization energy.

A comparison of the total ionization cross sections from Burgess’s formula
and the experimental data is shown in Figure 2.25.

For the Maxwellian velocity distribution, to a good approximation, the
corresponding ionization rate coefficient can be written as

L

QIJ_)3/2(I YW2E(L;)T)w (em®.sec™!)

QI(T) = 2.1715 x 1073C Y ¢4(
! (2.236)

where E1(z) is the first exponential integral, and

w = [In(1 + Ly +T/T)

I;

From detail balance, it follows that the 3-body recombination rate coef-
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ficient is given by
Q*(T) = QI(T) L/ T (2.237)
Jo

2.3.3 Proton Collisional Excitation And Ionization

The most commonly used method of calculation for the total cross sectioﬁ
of excitation and ionization of ions by high energy heavy projectiles (P, He,
etc.) is based upon the plane-wave Born approximation (PWBA). In the
limit of high impact energies the Born collision cross sections are the same
for protons and electrons with the same incident velocity[86].

For excitation, we have

B _ 8 kitky 9dq 9
hou = e o Oelaond) [ IR el (2239)
where
kK lp 1 o0
Rolg) =T(slol) |~ ° | [7 P(nllr)P(ololr)ix(ar) — xoldr
0 00
=k + k% — 2k;kscosd (2.239)

k; and ks here are the momenta of the incident and outgoing proton, respec-

tively:
2e;
k2= L
' 1836
2AF '
2 2 adap
= k% — 2.24
kf =k 1836 (2.240)
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For ionization, we have exactly the same formulae as those for electron

impact:
. -1
lama) = 3 /E’ = do( ""’“”d (2.241)
LSJlk
8Q1 kitks 2dq, 4
Tt DR e € J iy PR (e

but with k; and ky defined by Eq.(1.240).

In our calculations, the Hartree-Fock wavefunctions are used for all the
initial and final bound states, together» with a distorted continuum wavefunc-
tion for the ejected electron in the ionization case. In Figure 2.26 - 2.27, we
show some of our calculational results and compare them with the available
experimental data[112]. From a systematic viewpoint, the PWBA calculation
can be accurate to a factor of 1.5 - 2 or better at high projectile velocities.

Finally, we conclude this chapter with a summary of our atomic data

calculation package in Figure 2.28.
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Mg ionization cross section by proton impact
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Figure 2.26: Subshell ionization cross section of Mgl by proton impact
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Al ionization cross section by proton impact
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Figure 2.27: Subshell ionization cross section of All by proton impact
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Figure 2.28: A summary of the atomic data calculation package




Chapter 3

Aluminum Plasma Ka Satellite

Spectra Analysis

3.1 Introduction

The process of intense particle beam-target interaction, which is essential in
inertial confinement fusion systems, has been studied by using an extensive
variety of diagnostics[90, 91, 92, 93]. With present-day beam-power densities
[5, 93], target temperature of about 30 eV can be reached. At such tem-
peratures thermal ionization of the L(n=2) shell of intermediate-Z elements
such as aluminum takes place. It has been suggested[95] that the spectrum
of Ka satellite lines which are emitted under such conditions can be used as

a temperature diagnostic.

145
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A basic property of the interaction of charged particles with matter is the
production of K-shell ionization, which is accompanied by the emission of K«
x-radiation. The transition energy for the Ka transition ( 1s-2p ) is sensitive
to the number of electrons populating the L shell, because of the differences
in shielding by different L-shell populations. In Table 3.1 we present the Ka
transition energies for carbon and aluminum, which are calculated by using
the single-configuration Hartree-Fock method. It has been shown by the
experiments[5, 95] these Ka satellite lines can be straightforwardly resolved
by plane-crystal spectrometry. Since Ka satellite lines are blue-shifted with
respect to the normal Ka 1s-2p transition with increasing L-shell vacancies(
or reducing the shielding effect ), the Ka satellite spectra can give information
on the distribﬁtion of ionization state in the plasma, and thus on the plasma
temperature. In such cases, a temperature measurement is possible through
the detailed analysis of the Ka satellite spectra.

Recently, a Ka satellite spectrum from an aluminum target heated by
an intense proton beam was observed in the PBFATII( Particle Beam Fusion
Accelerator II ) at Sandia National Laboratories[5]. The typical experimen-
tal conditions are presented in Figure 3.1, and the corresponding physical
processes involved are shown in Figure 3.2. The experimental spectrum is
given in Figure 3.3. In this chapter, we give detailed analysis for the Ko
satellite spectrum. First, we perform the multi-configuration Hartree-Fock

calculations with relativistic corrections to identify the term-dependent satel-
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Table 3.1: Ka Transition Energies For Carbon and Aluminum

Ions Transitions Transition energy Waveleneth
(V) (A)
Alll 1s'25%22%35%3p" . 1522520 355" 148+.993 8.347
AlllI 1s'2s%2p%3s%. 15725020 %560 485.351 8.345
AllY 1512521’.96351-ls:‘zs:‘.‘.p:SsZ 1485.885 8.342
AlV 1s'2s72p% . 15%25%2p° 1436.955 8.336
AlVI lsIZs:‘.'p"-ls:?.s:Zp: 1497.373 8.278
AlVII 1s'2572p% 157257200 1509.408 8§.212
AlVIII 1s'2572p% . 1s%25%2p° 1523.133 8§.138
AllIX ISIZS:‘.Z;):-15.225:2;)I 1538.254 §.058
AIX 1s'25°2p . 157257 1554.619 7.973
ClI 1s'25%2p% . 15°2s%2p" 286.9272 43.20
CIII 1s'25%2p" . 157252 291.6531 42.50
Clv 1s'2s'2pt . 15725 296.2537 41.84
cv lsli’.p:-ls2 304.1780 40.75
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lite lines accurately. Then a thin plasma collisional-radiative equilibrium
(CRE) model is used to generate a theoretical Ko satellite spectrum. This
calculated spectrum is compared with the experimental result and that of
non-LTE radiation transport model{96]. Finally, we discuss the importance
of line opacity in the interpretation of Ka spectra of light-ion beam heated

plasma.
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Typical Experimental Conditions

5 MeV Proton Beam Al Target Y ' L, T

T ceam pulse = 10'7 S

time

1. Plasma expand = 100 times by the end of the beam pulse.
2. Target is primarily heated by proton collisions with outer shell electrons

3. Proton impact ionization of K-shell electrons results in Ko satellite lines

Figure 3.1: Typical experimental conditions in PBFA II
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Proton Beam Heats up The Target

Vaporization & Hydrodynamic Expansion

Thermal Ionization

K-shell Ionization by Beam Ion Impact

[ Ka X-Ray form Fluorescence Yieldsj

Figure 3.2: Physical processes of Ko x-ray satellites produced from a
target heated by an intense proton beam.
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3.2 Satellite Line Identification

To be able to identify the individual lines in the Ka spectrum, the related
atomic energy levels must be calculated to high accuracy.

In Figure 3.4 we present the single-configuration Hartree-Fock calculation
Ka satellite line wavelengths and compare with the experimental spectrum.
It is easy to see that the single-configuration Hartree-Fock calculation is
sufficiently accurate to determine the main peaks of Ko transitions of ions
with different ionization degree. Our calculation shows that the Ko satellite
lines appearing in the experimental spectrum are from All to AlIX (ion stages
before the beam induced inner-shell ionization). The Kea lines of All to AIIV
are mixing together because of overlaps, while the Ka lines of AlV to AIX
are well resolved.

The experimental spectrum also shows a high degree of structure. Es-
pecially for F-like Al (AlV), three emission peaks are clearly seen. These
structures come from the term-dependent transitions caused by the electro-
static splitting within the configurations. The calculation of the wavelengths
of the individual term-dependent lines is difficult because this demands that
the energy levels be calculated to better than one part in 3000. The accu-
racy of the single-configuration Hartree-Fock calculation is not sufficient to
allow reliable term-dependent Ka line identifications. Since the transitions

with K-shell electrons are involved and both relativistic and electronic corre-
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Figure 3.4: Ka line Identification with Hartree-Fock calculation
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lation corrections are important, we have performed the multiconfiguration
Hartree-Fock calculations with relativistic correction to determine the accu-
rate atomic energy levels which are associated with the Ka transitions. We
included at least 7 configurations for each level. The calculation results are
presented in Table 3.2 and Table 3.3. Table 3.2 shows the energies of the
atomic levels, while Table 3.3 shows the calculated wavelengths and compares
with the peaks in Sandia experimental data[94]. Good agreement is achieved.
Figure 3.5 is detail from the aluminum Kea satellite spectrum showing the
A1V satellite. Our calculation shows that there are two lines contributing to
the center peak of A1V Ka emission.

Our calculational results represent a significant improvement in accuracy
over previous results presented in Bailey et al.[94], where wavelengths were
determined from Herman-Skillman calculations (based on the Hartree-Fock-
Slater model). The good agreement between our calculations and exper-
imental data gives us confidence that we can determine which transitions
are responsible for the peaks in the experimental emission spectra. This
in turn means that plasma temperature in ion beam-heated targets can be

determined more reliably.



Table 3.2: Energies of Ka atomic levels for Al
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Ion Configuration Term Echf AE;e Eiot(2Ry)
Alll 15(1)23(2)2p(6)33(2) 25 -183.80137 -0.15891 -183.96028
15(2)235(2)2p(5)35(2) 2 -238.38741 -0.20861 -238.59602

Alll 15(1)23(2)2p(6)3s(1) 15 -182.66834 -0.15789 -182.82623
3 -182.67897 -0.15800 -182.83697

15(2)2s(2)2p(5)3s(1) I -237.23792 -0.20932 -237.44724

3 -237.25841 -0.20937 -237.46778

AlIV 15(1)23(2)2p(6) 25 -181.03049 -0.15648 -181.18697
15(2)2s(2)2p(5) 2 -235.64703 .0.20806 -235.85509

AlV 15(1)25(2)2p(5) s -174.76074 .0.15601 -174.91675
% -175.02640 .0.15622 -175.18261

15(2)23(2)2p(8) Is -229.67681 -0.20769 -229.88450

) -229.86675 .0.20790 -230.07475

3 -230.05752 -0.20780 -230.26531

15(1)25(1)2p(6) Ig -173.42654 -0.14560 -173.57217

3 -173.52542 .0.14610 -173.67151

15(2)2s(1)2p(5) Ip -227.92166 -0.19759 -228.11926

3p -228.56012 .0.19835 -228.75847

AIVT 15(1)25(2)2p(4) 25 -167.03434 -0.15481 .167.18914
2p -167.24941 .0.15505 -167.40445

4p -167.60196 -0.15535 -167.75731

13(2)25(2)2p(3) 2p -222.61890 -0.20704 -222.82594

2p -222.81809 -0.20717 -223.02525

43 -223.12157 .0.20738 -223.32894

AlvI 1s(1)25(2)2p(3) lp -157.72217 .0.152813 -157.87497
Ip -157.94252 -0.15300 -158.09552

3p .158.01708 -0.15312 .158.17020

3p -158.24069 -0.15330 -158.39399

3s -158.12499 -0.15313 -158.27812

15(2)25(2)2p(2) lg -213.76244 -0.20538 -213.96781

Ip -214.01984 -0.20568 .214.22545

b -214.23553 -0.20577 -214.44130

Alvin 15(1)25(2)2p(2) 25 -146.79065 -0.14983 .146.94048
2p -147.14976 -0.15014 -147.3002

15(2)2s(2)2p( 1) 2p -203.77520 -0.20327 .203.97850

AlIX 13(1)25(2)2p(1) lp -134.35842 -0.14571 -134.50411
3p -134.71062 .0.14612 -134.85674

15(2)25(2) Is -191.80689 -0.19975 .192.00664




Table 3.3: Calculated wavelengths of Ka transitions for Al
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Ion Initial State Final State Wavelength  Exp. data
Al 13(1)23(2)2p(6)33(2) 13(2)2s(2)2p(5)35(2)
28 2P 8.3373
Al 13(1)25(2)2p(6)3s(1) 15(2)2s(2)2p(5)3s(1)
18 1P 8.3395 =8.340
s 3P 8.3380
AllV 13(1)23(2)2p(6) 15(2)23(2)2p(5)
28 2P 8.3324
AlV 15(1)2s(2)2p(5) 15(2)2s(2)2p(4)
1P 18 8.2869 =8.288
1P 1D 8.2583 =8.258
3p 3P 8.2696 =8.270
15(1)23(1)2p(6) 13(2)2s(1)2p(5)
18 1P 8.3508
3s 3p 8.2690
AlVI 15(1)25(2)2p(4) 15(2)25(2)2p(3)
28 2p 8.1873
2D 2P 8.2191
bio 2D 8.1896
4p 458 8.1970 =8.202
Alvn 15(1)25(2)2p(3) 15(2)2s(2)2p(2)
1P 18 8.1207
1P 1D 8.0836
1D 1D 8.1153
3p k) 8.0949
3s ip 8.1105
3D 3P 8.1273 28.126
Alvin 15(1)25(2)2p(2) 15(2)25(2)2p(1)
28 2p 7.9861
20 2p 8.0370 =8.044
AlIX 15(1)25(2)2p(1) 15(2)2s(2)
1P 18 7.9216
(intercombination line) 3P 18 7.9705 27.969
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3.3 The Theoretical Ko Spectra

The calculation of a theoretical Ka spectrum consists of two steps:

1. determining the ionization distribution of the plasma and atomic level

occupation numbers;

2. computing the individual Ka line intensity from fluorescence yield and

the continuum background.

3.3.1 Ionization Distribution And Level Occupation

Numbers

We have assumed a simple physical model for this preliminary study. The
plasma is taken as a uniform isothermal slab. For the optically thin plasma
calculations, the geometry of the plasma is not important because the ra-
diation flux is proportional to the radiation intensity. A completely self-
consistent collisional-radiative equilibrium model is used for determining the
ionization distribution and level populations.

Consider a level ¢ in an ion z, and let the number density (level population)
be N, ;. The rate of change of N, ; is determined by the rates of all the

processes which populate and depopulate the level ::

dN, ;
= = 2 CiNej = 3 CiiNoi+ S R IN 1
Py J#i k
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~ Y REN i+ Y IGIN ~ S IEN. (3.1)
k k P

where C;; are the rate coefficients for the processes which populate level :
from level j of the ion, R}, are the recombination coefficients for ion z in level
i to recombine an electron to the level & of ion z-1, and I}, are the ionization
rate coefficients for ion z in level 7 with the residual ion in level k.

For a complete calculation, all the atomic processes contributing to the
population and depopulation of the levels should be included. These pro-
cesses are: (1) beam proton impact ionization; (2) beam proton impact ez-
citation and deezcitation; (3) electron impact ionization and recombination;
(4) electron impact ezcitation and deexcitation; (5) photoionization and ra-
diative recombination; (6) photon stimulated ezcitation and radiation; (7)
spontaneous decay; (8) dielectronic recombination and autoionization. In our
calculation, for an optically thin plasma, photoionization, photon stimulated
excitation and deexcitation are omitted. Also, since the incident beam power
is as high as § TW/ch, we expect that the plasma temperature should be
high enough that electron impact processes dominate the proton impact pro-
cesses except for the K-shell ionization. Hence, we include the following
processes in our CRE calculation: (1) beam proton impact ionization; (2)
electron impact ionization and recombination; (3) electron impact excitation
and deexcitation; (4) radiative recombination; (5) dielectronic recombination;

(6) spontaneous decay; (7) autoionization effect.
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The calculations of the related rate coefficients have been discussed in
the last chapter. The calculated proton impact ionization cross sections for
each subshell of neutral Al are given in Figure 2.28. Note that the outer shell
cross sections are substantially larger than the inner shell values. This tells us
that the primary heating (i.e., ion stopping) mechanism is the interaction of
the proton beam with the outer shell electrons. Although K-shell ionization
i1s not important to the heating of the plasma, it is the only mechanism of
creating a K-shell hole for the plasma condition we are discussing. Hence the
accuracy of the K-shell ionization cross section directly affects the accuracy of
the calculated Ka spectrum. In Figure 3.6 we present the K-shell ionization
cross sections by 5 MeV proton impact for aluminum ions. It can be seen
that as the ionization stage of Al increases the cross sections decrease in
an almost linear fashion. Our calculation indicates that the proton impact
ionization cross section for K-shell electrons of AIIl is about a factor of 2
higher than that of AIXIII.

With regard to the atomic level structure, all the ground states are in-
cluded in addition to several low excitation states. Also included are those
levels related to the Ka transitions. Totally there are 105 levels and 21 au-
toionization levels. Figure 3.7 shows the level structure for AIVI which is
typical in our CRE calculation.

The ionization distribution from our CRE calculation for plasma with

density Njpp = 1020 em=3 is shown in Figure 3.8. For such a plasma, the
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ionization stage +8 appears in the temperature range 40 eV — 60 eV.

3.3.2 Calculation of the Theoretical Ko Satellite

Spectra

The Ka x-ray emissivity can be expressed as

n(v) =330 NopAsz(k; D)o pa(v)w: (32)

z2 1 k>l

where 7 is the emissivity in the units of photon.cm™3.sec™1.Hz=! 1 and k
are the index of the levels related to the Ko transitions, N, ; is the number
density of level k, A,(k;!) is the spontaneous decay rate from level k to level
ofion z, @, ri(v) is the emission profile, and w is the fluorescence yields of ion
z. The oscillator strengths for all Ka transitions we are considering are given
in Table 3.4. Also given are the corresponding fluorescence yields[96]. Using
Eq.(3.2) and the values given in Table 3.4, we have calculated the emissivities
for aluminum plasma at three different densities and temperatures. Figure
3.9 shows the Ka spectrum for an Al plasma at T = 5 eV, Nipp, = 1020em =3,
In this case, the plasma temperature is so low that only those Ka lines from
low ionized ions (AlI-AlIV) are presented. For a plasma at T = 20 eV,
Nion = IOQOCm"?’, the most abundent ion is AlV, the Ka peaks of AlV in
the spectrum become the highest. In Figure 3.11 we showv the Ka spectrum

of an Al plasma at T =30 eV, Njop = 1020cm ™3, In this case, the thermal
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Al K-shell ionization cross section by SMeV proton impact
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All the ground states are included in addition to several low
excitaton states. Also included in the model are all those levels

related to the Ko transitons. Totally , there are 105 levels and 21
autoionization levels

Schematic of the level structure of AIVI
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Figure 3.7: Atomic level structure of AIVI in CRE calculations
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Table 3.4: Oscillator strengths and fluorescence vields for Al Ko transitions

Ion Traasition Oscillator Fluorescence
strength yield
Eg—%
AL [ 1s25%2p%3s%3p (s)-15'25%2p%35%3p 1 (%P) 0.0884 0.046
D- *p 0.0884 0.046
'D.- ‘P 0.0885 0.046
'P- ‘? 0.0885 0.046
P ' 0.0884 0.046
'S - ‘? 0.0884 0.046
AT | 1s™2s%2p"3s°  ¢py-1s'2s™2p®3s® ¢y 0.0885 0.045
ALV [ 1s%2s%2p%3s' (CPy-1s'2s72p%3st Sy 0.0889 0.0434
P- ‘S 0.0887 0.0434
AlV 1s°2s%2p° ¢P)-1s'2s%2p° ¢S 0.0894 0.0479
AIVI | 1s°2s%2p CP)-1s'2s%2p° CP) 0.1911 0.0522
D. ‘P 0.1890 0.0522
's - ‘P 0.1897 0.0522
AIVID | 1s%25%2p° ¢sy-1s'2s%2pt ¢P) 0.3062 0.0619
D- ‘D 0.1515 0.0619
p. D 0.0838 0.0619
P- ’s 0.0670 0.0619
AIVIID |1s*25%2p° Cp)-1s'2s%2p® ¢D) 0.1789 0.0700
AIX | 1s*25%2p! ¢py-1s'2si2p? ¢py|  0.1871 0.0623
AlX 15°2s* (s)-1s'2s%2p! ¢‘p) 0.6830 0.0650
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ionization of the L-shell takes place, and Ko emissions for AlIV - AlX have
almost the same intensity.

By comparing our results of thin calculations with the experimental data,
we can see that the calculated spectra of the thin plasma model qualitatively
explain the experimental data ( line positions, temperature dependence,
etc. ). Quantitatively, however, there is a significant discrepancy. This is
due to the fact that Ka radiation is optical thick in most cases, and the role
of line self-absorption for Ke lines is very important. Hence, the thin plasma

assumption made in our calculation is not correct.
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3.4 Line Opacity Effect of Ka X-Ray
Radiation

In this section, we study the physical process of line self-absorption for the
Ko x-ray radiation in a proton beam heated plasma.

A K-shell vacancy is created by proton impact ionization, which is ac-
companied by the emission of a Ka photon. This photon may have three
fates: (1) being absorbed in a bound-bound transition of an ion with L-shell
holes: (2) being absorbed in a photoionization process; (3) escaping from the
plasma. For All - AlIV, the only vacancies in L shell are due to the short-
lived multiple ionization events produced in the proton-ion collisions, and
the concentration of such multiply ionized ions is very small. Hence, for
the Ko photon from All - AlIV, the main self-absorption mechanism is the
photoionization effect. This may be described as in Figure 3.12(a), where
we take AlIIl and AlV as examples. When the plasma temperature is suf-
ficiently high that L-shell vacancies can be produced by thermal ionization.
the abundance of ions with L-shell holes in the plasma can be quite high. In
such a case, the bound-bound resonant self-absorption for Ka line of these
ions ( A1V - AIIX ) becomes the most important.

The Ka line opacity effect can be clearly seen in Figure 3.13, where the
Ka line fluxes from a T = 50eV, Nj,, = 102 solidy L = lmm Al plasma

are plotted for two cases. The dotted curve is from a calculation in which the



171

Al
152232296331 K-shell fonization by proton lmoact$ 1312522p5351
[ resonant line absorption
131?_,2‘,35‘,331_,,2?322‘,5:,"1 !
= Kaonoton <= \L photoienization
\

AlV

K-snell fonization by 0roton 1moact 156255
152252295 e ationov o 0 - 15'25°2p

/ escaping
15132255—15232234 / /
L Ka - photoionization
photon \
\
\_ resonant ”ne
absorption

Figure 3.12: Fates of Ka photon in a plasma



172

plasma was assumed to be optically thin. The solid curve was obtained from
a calculation for which opacity effects were fully accounted [97]. For such a
plasma, the Al ions with L-vacancies are quite abundant and the line opacity
effect is expected to be important. Note that the fluxes in the optically
thin case are typically 3 orders of magnitude higher than in the optically
thick case. Because of the line opacity effect, Ka photons with line center
frequencies can actually travel such a short distance within the plasma that
only those photons produced in the edge of the plasma are contributed to the
emerge fluzes (i.e., detected by the detector), while the Ko photons with line
wing frequencies can travel much longer within the plasma than those with
line center frequencies and hence the emerge fluxes of these photons come
from both edge and interior of the plasma. Optically thin model calculations
neglect this effect and hence over estimate the contributions of line center
photons. It is also seen that the relative fluxes of two lines can be significantly
influenced by the opacity effects. For instance, the AIVIII line at 8.04 A is
about a factor of 5 higher than the AlIX line at 7.98 A in the optically thin
case. However, when opacity effects are included, these two lines have peak
fluxes that are nearly equal. This clearly demonstrates the importance of
line opacity effects in this spectral region.

The importance of line opacity effect to the Ka spectrum analysis is obvi-
ous. In order to predicate the observability of Ka satellite lines under certain

experimental conditions and deduce plasma conditions from observed spec-
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tra, we must do detailed radiative transfer calculations for fully considering
the line opacity effects.

Ion beam - induced transitions offer many possibilities for deducing plasma
conditions in ICF target experiments. Experimental Ka spectra in conjunc-
tion with a judicious mix of hydrodynamics simulations and non-LTE radia-
tive transfer calculations can lead to an improved understanding of beam-
plasma interaction physics. This is what we are going to do in the near

future.
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Chapter 4

Equations of State And

Opacities for ICF Plasmas

4.1 Introduction; A Summary of Statistical
Mechanics of Partially Ionized Plasmas

The equations of state and opacities of partially ionized plasmas are often
required to study the physical properties of ICF plasmas. For a thermo-
dynamic equilibrium ideal gas, the Saha-Boltzmann equations can be used
to describe the ionization balance and the level occupation numbers, and
the equations of state and opacities are readily obtained. However, for the

physical conditions encountered in most laboratory plasmas, especially ICF

175
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plasmas, where plasma densities can vary from ~ 1014 to ~ 10%2 ions/cm3
and temperatures from ~ 1 eV to 1 keV, the calculations of equations of state
and opacities become quite difficult because the electrons and different ionic
and atomic species cannot be always regarded as simple ideal gases. A num-
ber of physical effects, including electron degeneracy, coulomb interactions
among free charges, bound-state level perturbation (destroy or/and shifts),
and neutral atomic interactions, etc., must be taken into account. On the
other hand, the approximation of thermodynamic equilibrium ( or even local
thermodynamic eqﬁilibrium ) may not be adequate for such plasmas. De-
tailed solutions of rate equations are required in determining the ionization
balance and level occupation numbers in such cases.

For a therfnodynamic equilibrium nonideal plasma, the free-energy min-
imization method pioneered by G. Harris and her associates[100, 101, 102]
has proven to be a powerful and flexible tool for producing equations of
state for plasma conditions of Nj,, < 1022 cm™3. The method is both sim-
ple and elegant: given a mathematical model for the Helmholtz free energy
F(T,V,{N}), where {N} is a set of particle numbers, one minimizes F' sub-
ject to the stoichiometric relations governing possible reactions among the
particle species in the plasma. This process determines F' and the equilibrium
values of the particle number {N} for a specified T and V. A good feature
of the free-energy minimization method is that because of the assumed fac-

torizability of the translational, configurational, and internal components of
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the total partition function Z, the free energy F' = kTInZ is modular, and
the nonideal terms can be directly introduced.
Consider a nonideal plasma composed of several chemical elements #,

each in several ionization stages j. Then the free energy is
3 v
F= — kTY Ns(zinT + In(—) + InGs + 1]
3 2 N
- szNkjanlgj + Fronideal (4.1)
ik

where the internal partition function is

Zij =3 eap(—erji/ KT) (4.2)
and
2 k s
Gy = (g 2)? (4.3)

In Eq.(4.1), the sum on s runs over all particle species but electrons, whereas
the sum on j runs only over species having bound states. The nonideal
term includes the partially degenerate electrons and other nonideal effects.
The equilibrium among molecule/atom/ion species can be determined from

stoichiometric relations of the form

oF oF oF

- — =0 4.4
for an ionization process j «— (7 + 1) + ¢, and
oF F
oF 0 0 (4.5)

ONsg ONg 0ONg
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for a molecular dissociation AB «— A+ B, along with constraints of number
and charge conservation. Once F' and the {/N} are determined, the equations
of state ( pressure, entropy, and internal energy ) can be computed from the

following thermodynamics relations

oF

P = —=lr v (4.6)
oF
S= —E—T‘lv,{N} (4.7)
J F
E= _—T2'87(7)|V,{N} (4.8)

In a partially ionized plasma, the major nonideal effect is known to be the
coulombic interactions between the charged components. The coulomb per-
turbation enters the equations of state in two ways: through the interparticle
interaction potential it modifies the configuration integral[99], and through
the internal potential it perturbs the bound states (destroy or/and shifts).
The latter effect partially contributes to the effects of ‘pressure ionization’
which will be discussed in detail in the next section. A modified Debye-
Hiickel model[102] may be used for describing the configurational coulomb
interaction. In this modified DH model, the electrons are treated as fermions,
but the ions are treated as classical particles, and the Helmholtz free energy
is given by

BTVt B VA VAT
FDH—_( 3\/1‘—; )\/V—T(;Ivszsgb‘) T(:E) (4'9)

where the sum on s runs over all charged species with zg = 0 for neutral,
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and zg = —1 for electron;
F..1/2(77)
O = —"—— 4.10
T 3Fy 5 10
05 =1 (4.11)
7(z) =3z 3[In(1+z) — 2 + 0.5z2) (4.12)

2\/%_63 1 F1/2(77) Zs#e NSZS
k3/2 v1/273/2 F3/2(77) Zs#e Ns

It is important to note that, when Fpy is included in the total free energy

z = J(Oo Ns2205)H2 (4.13)

for an isolated-atom model, a modified Saha equation describing the system
can be derived in which the only modification is that the ionization potential
I, 1s replaced by I — AI(T, N). This feature of the configurational coulomb
contribution is generally referred to as a lowering of the ionization potential,
and refers to the decrease of the interaction potential between electron and
nucleus due to shielding by the surrounding charged particles. However, it is
necessary to indicate that the effects of ‘pressure ionization’ do not physically
relate to a ‘lowing of fonization potential, though they may formally imply
this concept if the stoichiometric equations are rewritten in the form of Saha
equations. Rather, the ‘pressure ionization’ effects should either follow from,
or imply, an interaction term in the free energy, which partially substitutes
for effects contained in a realistic, but currently unobtainable, solution of the
full N-body problem for the plasma.

The free energy minimization method is feasible only for the thermody-

namic equilibrium plasmas. For non-LTE plasmas, the ionization balance
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and the level populations need to be determined by solving the rate equa-
tions. In the free energy minimization method, the free energy is modular
and hence all the first-order thermodynamic quantities are modular, i.e., a
sum of physically different contributions: translational contribution, config-
urational contribution and internal contribution. Are these expressions for
the thermodynamic quantities still the same in the non-LTE calculations?
From the view point of statistical mechanics, each thermodynamic quantity
has a corresponding microscopic quantity, the macroscopic thermodynamic

quantity is the statistical average of its corresponding microscopic term, ¢.e.,

E= / eb(e)de (4.14)

where 1 (¢) is the distribution function. In our applications, what is differ-
ent between LTE and non-LTE is just the occupation number. Hence, in
a non-LTE calculation, we can use the same expressions of the first-order
thermodynamic quantities as in LTE with the replacement of a new set of
occupation numbers. However, this is not necessarily true for the thermody-

namic relations and higher order thermodynamic quantities.



4.2 Pressure Ionization Effect And Level
Survival Probability

The great difference between atomic structure for isolated atoms and those
in the plasma is the finite number of bound states in the latter case. As the
plasma density rises and the number and intensity of interparticle interac-
tions increase, less tightly bound states are strongly perturbed, broadened
into distributions resembling conduction bands, and ultimately destroyed and
shifted into the continuum. These phenomena imply a ‘pressure ionization’
which leads at very high densities to a fully ionized plasma comprising, in the
first approximation, an ideal gas of degenerate electrons that can move freely
with respect to a “Lattice” of bare ions. Pressure ionization is dominately a
volume effect: When particles are jammed closely together, bound electron
orbitals filling too large a volume fail to survive and the electrons migrate
from atom to atom.

The two most widely adopted models for describing pressure ionization
effects are (1) the confined atom (CA) model[99, 102, 103], and (2) the static
screened coulomb potential (SSCP) model[24, 104]. The CA model imposes
an infinite potential barrier at the mean interparticle separation and thus
stimulates an extremely stiff interaction. This model seems appropriate for
neutral-neutral interactions, but is clearly problematical for the long-range

coulomb potential operative in ionized media. The SSCP model attempts
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to stimulate the intra-atomic effects of the Debye-shielded coulomb interac-
tion among free charged particles. This model seems appropriate when the
medium is strongly ionized. Although the SSCP model has become increas-
ingly popular, it is more fragile than the CA model because it fails when
the gas becomes completely neutral. In contrast, the CA model is obviously
rough, but works at all temperatures and densities of interest.

It has been argued that one cannot rely upon the very predictions of
the CA and SSCP models that are essential to produce pressure ionization.
In a partially ionized plasma one must be able to account for the effects of
both neutrals and ions simultaneously. But because no potential function can
describe all of the possible interactions, most published calculations have em-
ployed one extreme model or the other. Unfortunately the two models predict
rather different perturbed energy-level spectra (both positions and numbers
of levels) at a given (IV;, T'). The point is that even though each model par-
tially describes the inter-atomic potential between neighboring particles, nei-
ther provides an accurate description of actual forces produced inside atoms
by their surrounding, and neither leads to a fully consistent theory. Also,
the existing experimental evidence has shown that the energy-level shifts
predicted by both CA and SSCP models are not reliable[20].

Another procedure for dealing with the pressure ionization effect has been
suggested by Hummer and Mihalas[20], i.e., the “ occupation probability

formalism ”. In this procedure, a factor, w;j; (0 < w;jr < 1), is introduced
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for each atomic level. The physical significant of w;;; is the probability of
finding the ion in question in state z relative to that of finding it in a similar
ensemble of non-interacting ions. Alternatively, w;jj can be considered as a
factor expressing the survival probability of the level due to the perturbation
of surrounding particles, neutral and charged. The survival probability has to
be calculated directly from a physical description of interparticle interactions.
It is here that one makes contact with atomic physics and can attempt to
introduce some level of realism into the model.

In the models suggested by Hummer et al.[20], perturbations by neutral
particles are based on an excluded volume treatment and perturbations by
charges are calculated from a fit to a quantum mechanical Stark ionization
theory. The level survival probability can then be expressed as

4z
ln wijk = —(-5—){ Z [(T‘l]k + rlu’k')3 + 5(7‘1jk + Tlulk./)‘/]
vk

Jzjk + 1€2
+ 16[——Z’—k———f—]32nsz§/2} (4.15)

Kijelije ™ e
Here the index v/ runs over neutral particles, the index s runs over charged
ions, r;;i is the radius assigned to a particle in state ¢ of ion j of species k,
;i is the ionization potential of such a particle, z;; is the net charge of a

particle of ion j of species k, # and v are two empirical parameters, and

1 P <3
Kz = ] ) (4.16)
l] Bk AL

Pitl p2ip+1/2
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is a quantum mechanical correction and p; is the effective quantum number
of the state 2.

The occupation probability formalism has several advantages. (1) The
wj;k decrease continuously and monotonically as the strength of the rele-
vant interaction increases relative to the binding energy of a level. (2) The
continuous state-by-state fadeout with decreasing wj;i allov&s one to assure
continuity of all material properties ( pressure, internal energy, opacity, etc.).
(3) The probabilistic interpretation of w;;i allows us to combine survival
probabilities from statistically independent interactions. It is thus straight-
forward to allow for the simultaneous action of different mechanisms, as well
as of several different species of perturbers by any one mechanism. Hence
the method provides a scheme for treating partially ionized plasmas, and it
goes smoothly to the limits of completely neutral or completely ionized gas.

In our work, we adopt the Hummer-Mihalas occupation probability for-

malism to take account of pressure ionization effects.
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4.3 A Collisional-Radiative Equilibrium

Model for Plasmas

In this section we develop a collisional-radiative equilibriurn model for cal-
culating ionic charged-state abundance and the level occupation number iﬁ
plasmas. The nonideal effects on the population distribution are considered
by introducing a survival probability factor for each level included in the
calculation.

A general rate equation for the population density in level j of ion z, Ny j

can be written as

dn. j

el I(z,7;2+ 1, k)nen, ; + ZI(Z —Lkjz,j)nen,_1
k

R(z,j52 = L, k)nen; ;+ 3 R(z 41,k 2,5)nen, 11 4
P

|
™ =0 =

E(z,j;2,unen; j — 3 D(z,5; 2, nen j

u>j I<j
+ Y E(z, z,J)neny 1 — D D(z,u;2,j)nenz (4.17)
I<j u>j

where ne is the density of electrons, I(z,j;z + 1,k) is the ionization rate
coefficient for the ionization of ion z in level j to ion z+1in level k, R(z, j; z—
1, k) is the recombination rate coefficient ( radiative+collisional+dielectronic
)s E(2,7; z,u) is electron collisional excitation rate coefficient, and D(z, j; z, )
1s the deexcitation rate coefficient ( spontaneous decay + collisional ).

In plasmas with ne < 1022 cm™3, the coupling between excited levels
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of neighboring ionization stages through ionization and recombination is, in
general, negligible. Assuming that the residual ions (for ionization) and the

target ions (for recombination) are in the ground state only, we have

dnz,j

il I(z,j;z+1,1)nenz,j+[ZI(Z—1,k§2,j)nenz—1,k]5jl
k

+ R(z+1,1;2,5)nen 411 — [D_ Rz, 552 — 1, k)nen; ;16;

k
— Z E(z,j; z,u)nen; j — Z D(z,j;2,0)nen; ;
u>j I<j
+ Z E(z,l;z,5)nen, | — Z D(z,u;2,5)nenz u (4.18)
I<j _u>j

The ideal gas model, which assumes that interparticle interaction is negli-
gible, leads to an infinite coupled set of the rate equations because of the
infinite number of existing levels. In reality, however, the pressure ionization
determines that there are only a finite number of levels for each ion and hence
truncates the coupling rate equations to a finite set.

There are two factors affecting the atomic level occupation numbers : (1)
does this level survive ? (2) how is it occupied ¢ If we assume the level
survival probability is w, ; and the occupation probability is p, ;, then the

level occupation number density can be expressed as

Nz,j = Wz,jPz,j Az (4.19)

with

Do =D weips Az = N (4.20)
J j
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where N is the ion abundance of ion z. Now, the rate equation becomes

d(wz,jpz,j)AZ _
dt -

+

+

+

+

=I(z,j; 2+ 1, 1)ne(w, jp; ;) Az

[Xk: I(z = 1, k52, j)ne(w, 1 jp-—1,)A-~1]651
R(z+ 1,12, j)new; j(w;41,jPz41,)Azt1
(Xk: R(z,j52 — 1, k)new,_q p(w; ;p: j)Az)651

Z E(z7j; 2, u,)ne(wz’jpz,j)Az
u>j

Z D(Z,j; 2, l)ne(wz,jpz,j)Az
I<j

Z E(Zv lv Z,j)ne(wz’lpz’])Az
<y

Z D(Zau;z7j)ne(wz,upz,u)14z (4.21)
u>j

Note that for the recombination processes we need to account for the survival

probability of the final level. By summing over all levels of the ion, we have

d
Et- Z(wz,jpz,j)AZ
J

= —Zl(z’j;z+lvl)ne(wz,jpz,j)AZ (422)
J
+ DIz = 1L, K 2, )ne(wo—1 jpo—1,j)Az—1]851
T

+ ZR(Z + 1, L Z,j)newz,j(wz+1,jpz+l,j)Az-H

J
— [XoR(z,552 = L k)new,_q (w; jp. ;) A:]651
ik

Defining the effective ionization rate coefficient for the ionization of jon z — 1

to ion z as

Q1

=Z[(z— 1ak§z>j)wz—l,kpz—l,k (4.23)
7k
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and the effective recombination rate coefficient for the recombination of ion

ztoilon z—1 as
B:=Y_ R(z,j;z— 1, k)w,_j pw: jp. j
Jk
Then the equation for the proportional factor A, become

dN,
dt

Assuming the plasma is in steady state, namely,

dN,

a =0

z =0,1,2,3,-+,2.

We have a recursive equation

A, Q-1

Az—l ,32
z =1,2,3,---, 2.

This recursive equation can be solved in the following way, set

Bz

Uz]

= Cz.
Then
A, = Cz+1Az+1

= Cy41°Cz42 Cz43° - Cz Az

2 =0,1,2,--,Z —1.

= —ne(azAz + ﬂz+1Az+1 +a; 1A,_1 — ﬂzAz)

(4.25)

(4.30)

(4.31)



By using the particle conservation condition

2Nz =3 (3 wsjpz j)As = Nyotal, (4.32)
. :

£

N,
AZ = 7T total . (433)
Z:J wz,jPZ,j + Z:z:O [(Z] Wz jPz,j " Cz41 " Co42 Cz]

Finally, the ion abundances and the level number densities are given by
nzj = Wz,iPzj Az

Nz = sz’jpz’jAz (4.34)
J

This model has two advantages: (1) by combining the general CRE model
and the level survival probability formalism, the pressure ionization effects
can be directly introduced in the calculations of ion abundances and level
occupation numbers for a non-LTE plasma; (2) this model reduces to the
Coronal equilibrium result at low densities and Saha-Boltzmann equilibrium
at high densities. At intermediate densities, the average charge state of
the plasma estimated from this model lays between those estimated from
Coronal and Saha models. In Figure 4.1 we plot the average charge state
of a C plasma as a function of plasma density at T = 10 eV. It can be
seen that the result from our model converges to the Coronal equilibrium,
at the density of about 1018 ¢m™3, our result merges smoothly to the LTE

curve. The average charge state as a function of plasma temperature is
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plotted in Figure 4.2, and our result is between the estimations of the LTE
model and Coronal model. The pressure ionization effect can be clearly seen
in Figure 4.3, where the dashed line represents the result of no pressure
ionization included ( by setting w, ; = 1 for all levels ), and the solid curve
was obtained by introducing the Hummer-Mihalas level survival probability
into the calculation. At low temperatures, where the pressure ionization
effects are expected to be small, the two curves match. As densities increase,
the curve without accounting for pressure ionization drops down very fast
and eventually reaches a completely neutral state ( a non-physical result!),

while the solid curve drops down slower and has a increased trend when

Nipp > 1022 em~3,
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Figure 4.1: Zgy as a function of plasma density for C plasma at T=10 eV
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4.4 Equations of State of Non-LTE Plasmas

As we already mentioned before, for the physical conditions encountered in
most laboratory plasmas, especially ICF plasmas, where plasma densities can
vary from 1014 to 1022 jons/cm3 and temperatures from 1 eV to 1 keV, the
ideal gas model is not appropriate. Non-ideal effects need to be taken into
account in the computations of equations of state for these plasmas. In our
calculations, the equations of state of plasmas come from four different con-
tributions: (1) the translation of ions and atoms, (2) the partially degenerate
electrons, (3) configuration effects from coulomb interaction ( Debye-Hiikel

correction ), (4) atomic internal contributions.

4.4.1 Analytical Expressions for Equations of State

of Plasmas

In this section we summarize the analytical expressions for the equations of

state of plasma for a given set of occupation numbers {N;} and {n, ;}.

I. Translational Contribution of The Ions And Atoms

E| = -;’-kT 3 Ns =2403 x 107127(eV) T Ny(erg/em?) (4.35)
s#e s#e
Py =kT S Ns = 1.602 x 107127(eV) 3 Ny(dyn/em?) (4.36)

s#e s#te
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I1. Contribution of Partially Degenerate Electrons

F3/9(n) _12 F3/9(n) 3
Eo = NekT——— =1.602 x 107 "*N.T(eV erg/cm 4.37
= Fy o) T )F1/2(77)( ) (437)

2 F3/9(n) 12 F3/9(n) 5
Py = =-N.kT = 1.068 x 107 *“N.T(eV dyn/cm 4.38
3 Fyy(n) Tt )F1/2(77)( fom?) (438)

where 7 is the degeneracy factor determined by
\/7? 27rme 3/2 Ne _22 Ne
F = = L — .

1/2(77) 4 ( A2 ) 3/2 = 1.468 x 10 T3/2(6V) (4 39)

III. Debye-Hikel Correction Terms

_ 2w 24 \3/2
k3 = (3\/ﬁ)(23:NSZSGS) T(z)

TNeY, On T(IL’),T Oz

X (1.5 - 1.5mé“f - T—(:L‘7 5&—7)
= —1.037 x 10722 Nsz205)3/ 27 (2
T(eV)(Xs: sz50s)" “1(z)
TN, QQ 3 r(z) 0z
x (1.5 — 1.5-————23 No220, 0T ~ 7(z) TaT)(erg/cm ) (4.40)

Py = (NI (5 N300 ()

3VkT
.8, o 1), 0x
< 08 = LS oy ~ ) Lav)
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1
T(eV)
TN, on T(:c)'T_ai

= —1.037 x 10722 (Z Nsz205)3/2r (2)

2
X (05 - 15mav - T(.r) av)(dyn/cm ) (441)
where ,
96 _ F_I{Q(W) o e( Fl {2(77) _ e) .
Frjalm) - 7¢ = "y o) (4.42)
0s =1 6, =0 (s#e)

2
r(z) =3z 3[In(1+z)—z + %] ~1—-0.75z(z < 1)

3. 1

)=

) (4.43)

2ymed 1 Frpn) Teze sts
kf3/2 T3/2 F3/2(77) zs#eNs

1 F]_/Q(T/) Zs#e Nszs

Z Ngz205)1/2 (4.44)

v o=

— 1.9377 x 10*1°T3/2(ev) Fral) T V) Zst 85)1/?
e
B a2 ri0 - //22((”)) e 9l an
Oz 1 3Fy/2(n) N8, . on

gy ~ gy +10 - F35(n) +223N3z39315x7 (4.48)
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IV. Atomic Internal Structure Contribution
( Ionization and Excitation )
If we set £, 1 = 0 ( neutral ground state ) , then the internal contribution
may be expressed as
Ey =3 NeEs1+ 3 D Nei(Esi— Es1)] (4.49)
s#e s#1 i
If we set Ez 1 = 0 ( fully ionized ), then

Ey = Z#: NS(ES,I - Eo,l) + ;[Z Ns,i(Es,i - Es,l)] (4-50)
s#e s#1 1

4.4.2 Numerical Computations And Discussion

We have taken a carbon plasma as a sample calculation. The thermody-
namic quantities P(pressure), E(internal energy) and Cp(heat capacity) are
computed in the density and temperature region of our general interest.

In Figure 4.4 and Figure 4.5 we compare the internal energy and pressure
calculated from different models. It can be seen that in the low density
regime the LTE model significant overestimates the internal energy, while the
Coronal model gives a constant internal energy in the density range of 1013
to 1022 ¢m™3. Our calculation result converges to the Coronal equilibrium
at low density and merges smoothly to the LTE at high density. Different
models seems have little effect on the pressure. This is because the major

contribution to the pressure comes from free electron translational motions in
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the plasma, while the electron density obtained from different models varies
by only a factor of 1.5 to 2 for the plasma conditions we are dealing with.
Different contributions to the internal energy for several plasma condi-
tions are plotted in Figure 4.6 and Figure 4.7. In most cases the major con-
tributions are from atomic internal structure (i.e.,ionizations and excitations
) and partial degenerate electrons. At high densities and low temperatures,
however, the contribution of kinetic energy of the ion becomes important.
The isothermal internal energy and pressure curves are given in Figure
4.8 and Figure 4.9. As the plasma temperature increases, internal energy and
pressure increase. In Figure 4.10 we plot the heat capacity as a function of
plasma temperature. The heat capacity curveis a little bit more complicated,
the variations of the heat capacity to the plasma temperature are closely
related to the ionization stage distribution and atomic internal structure
of the plasma. At very low temperature, the neutral atoms are the most
abundant particle, a large amount of energy is needed to ionize the atoms
and hence the heat capacity is high. As the temperature increases from 1 eV
to about 2 eV, the abundance of neutral atoms decreases and the abundance
of the first ionized ions increases. However, the temperature is not high
enough to ionize the first ionized ions, so the major contributions to the
heat capacity are the ionization energies of neutral atoms and the excitation
energies of the first ionized ions. The decrease of the abundance of neutral

atoms leads to the decrease of heat capacity in this temperature regime. As
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temperature increases from 2 eV to 4 eV, the thermal ionization of the first
ionized ion takes place and the increase of the abundance of the first ionized
ions leads to the increase of the heat capacity.

The electron degeneracy parameter isothermal curves are shown in Figure
4.11. General speaking, for n < —5, the electrons are essentially nondegen-
erate. Our calculation shows that for 7' < 100 eV and N, > 1022 cm_3,

electron degeneracy effects should be taken into account.
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4.5 Opacities of Non-LTE Plasmas

4.5.1 Computational Formulas

The opacity at any given frequency contains contributions from all possible
transitions (bound-bound, bound-free, free-free) of all chemical species that
can absorb photons at that frequency.

The contribution of a bound-bound spectral line to the monochromatic
opacity is

 we?
ky(a;b) = —n—lzNaf(a,b)qSV (4.51)

where the profile factor is normalized to
/ dudv = 1 (4.52)
The contribution due to photoionization is
Ky = Naalb,f(a) (4.53)

Here, N, is the occupation number of the initial level.

The contribution of a free-free transition is
kp(N;) = NoNead (2) (4.54)

where N; is the number density of ions with charge z, N, is the number
density of electrons.
Other processes contributing to the opacity are coherent scattering and

plasma oscillation scattering. Two forms of coherent scattering are Thomson
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(radiation scattered by electrons) and Rayleigh scattering (radiation scattered
by atoms or molecules). Since Rayleigh scattering only becomes significant
for cool plasmas, for ICF plasmas we only need to consider Thomson scat-
tering:

ky = Nlop (4.55)
where N} is the effective electron density which includes coﬁtributions from
each bound electron for which the photon energy is greater than its binding

energy, and

Sred

3mlct

or = (4.56)

is the Thomson scattering cross section. The scattering of photons by plasma
oscillations can occur at low photon energies and high electron densities

(> 1019 cm_3). The plasma wave scattering coefficient can be written as

2 W2/ ifhy <
43} w Cc 1 14 W
P = (g = - (4.57)

0 if hu > huy

where

(4:7'('62Ne )1/2

Me
is the plasma frequency.
Except for the scattering components, the monochromatic opacity must

be corrected for stimulated emission. Summing over all levels and processes

we have the general opacity expression[107]

- TS S N - 9— Nlf(@,8)60 + S (Na = Nye™/4T)0l ()

me “q b>a



+ S NeNooff (2, 7)1 = e W/*T) 4 Noor + SP(1/cm) (4.59)
z>0

The corresponding emissivity is[107]

o r)hl/ 7re Zz Nbfa b¢y+2 N* —hl//kT) bf( )

mc a b>a

+ Z NeN.off (z,T)e—hV/ kT (4.60)
z>0

Where 7, is the emissivity in the units of erg.cm_?’.sec"l.Hz_1 sl N} de-
notes the LTE occupation number of state a from the usual Saha-Boltzmann

formula using the actual ion density V.1 o, namely,

N3y =N.110Ne - 1.66 x 10722( 28 )7 (e1) =312z a~AEG)/T (4 61)
9z41,0

In the LTE case, we have

Xy = ZZN* aqu,,-%—ZN*agf
mc @ b>aq
+ 3 NeNooff (2, 1)1 = e ?/*¥T) 4 Noop + SB,(1/cm)(4.62)
z>0
and
2h 3 _ 7re
¢ m @ b>q
+ S Nio¥(a)+ 3 NeN:off(2,1)] (4.63)
a z>0

Writing &}, = x} — S, we see that n}, = Byk}, as expected from the Kirchoff-
Planck relation[107]. Hence one way to check whether the plasma is in LTE
or not is to compare the spectra of s, and 7,/B,. If they are close, the

plasma is close to LTE, otherwise the plasma is far from LTE.
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The Roseland and Planck mean opacities are obtained by integrating the
absorption, emission, and scattering coeflicients over the photon energy. The
Rosseland mean opacities are generally used in determining the transport
characteristics of radiation through a medium, while the Planck mean opac-
ities are used to calculate the rates of energy exchange between the plasma
and radiation. In non-LTE cases, Planck mean opacities for absorption and
emission need to be computed separately.

The Planck mean group opacities for absorption and emission in the pho-

ton energy range from x4 = hvg/kT to zgq1 = hvg1/kT are defined by

K

xr
1fed ! kuBy(Ty)da
B(g) =

p fx9+1 By(Ty)dz (4.64)

and .
1 St e
P 3! By(Ty)de

kB(g) = (4.65)

where p is the mass density, By (Tr) is the Planck function characterized by
the radiation temperature 7.

The Rosseland mean group opacity is determined from a weighted average
of the inverse of the total extinction coefficient, x,,. In this case, the radiative

coefficients are weighted by the temperature derivative of the Planck function:

1 gt (G )da
P [ g+l(%§")x%dx

The mean opacities integrated over all photon energies can be computed

kr(9) = (4.66)



o
p—
o

from group opacities:

> kp(9) f2 I By(Tr)da

_ 4.67
K’P,tOt fooo By(Tr)d.'E ( 6()
d
" J5° gk )da
KR tot = - (4.68)

Sy kgt (9) fod T (9B )da
4.5.2 Numerical Computations And Discussion

We have computed the monochromatic opacity and emissivity spectra for
a pure carbon plasma at T=10 eV, N; = 10¢cm=3 and T=10 eV, N; =
1018¢m 3. In Figure 4.12 we show the spectra for the plasma at T=10 eV
and N; = 101 em ™3 calculated from a set of LTE occupation numbers. It
is easy to see that the opacity spectrum and the emissivity spectrum are
identical. This is the result of the Kirchoff-Planck relation[107]. However,
when we used a new set of occupation numbers calculated from non-LTE
CRE model, the resulting spectra are quite different. This is shown in Figure

4.13. Two points in the spectrum are of interest:

1. Inner shell contributions are very important. There are two big jumps
in the continuum background, these are the photoionization edges of,

respectively, the K-shell and L-shell.

2. The magnitude of emissivity is much smaller than that of opacity. This

is because for a plasma at T=10 eV and N; = 1014 ¢em =3 the occupation
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number of excited levels are much smaller than that estimated from

LTE model, the plasma is far from the LTE.

Figure 4.14 shows the spectra for plasma at T=10 eV, N; = 1018cm =3 with
occupation numbers calculated from non-LTE CRE model. The opacity and
emissivity spectra are close in this case. This is because as the density
increases, the plasma is closer to LTE.

We have seen from Figure 4.12 to Figure 4.14 that the opacity and emis-
sivity spectra are not smoothly varying functions of the photon energy. Thus,
to evaluate the group opacity inéegrals with the desired accuracy, y, and 7,
must be evaluated at a number of strategically placed points. Examples of
this include points on either side of each photoionization edge, and several
points in the vicinity of each important bound-bound transition energy. The
integration scheme employed to evaluate the group opacities in our work is a
trapezoidal method using logarithmic interpolation between adjacent points.
By placing a reasonable number of mesh points near each important line tran-
sition energy (~ 11) and photoionization edge (3), the numerical accuracy of
the integration is about a few percent.

The purpose of using group opacities rather than spectra themselves in
the radiative hydrodynamic calculations is to reduce the computational time.
However by doing so much of the detailed information is lost in the group
opacities. When setting up a group structure (e.g., number of groups and

boundaries), one must try to save as much information as possible. In Fig-
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ure 4.15 and Figure 4.16 we show the Planck and Rosseland group opacities
calculated under different group structures and compare them with the cor-
responding spectra. In all cases, the group boundaries have been set in a *
prudent” manner: we set narrow groups to bound those important steep re-
gions, i.e., important photoionization edges and lines. For the Planck mean
opacity, 50 groups can give reasonably good representation to the spectrum,
20 groups can still give a roughly similar shape. Ten groups, however, misses
almost all the important features except that K-shell jump. For the Rosse-
land mean opacity, the results are not very sensitive to the group structure.
Even 10 groups can contain most of the important features of the spectrum.
This is because the Rosseland mean is weighted with the inverse of the ex-

“wings” of the lines and the continuum

tinction coefficient and hence the
background are more important than the line center. The stéep Jump effect
is less important in the Rosseland mean. Our calculations show that in ra-
diative hydrodynamics computations, 50 group mean opacities are necessary
in order to have the desired accuracy.

The effects of the accuracy of atomic data on opacity has always been
questioned. In order to check this effect, we have computed the opacities with
two sets of different atomic data but exactly the same plasma model. The
‘accurate’ atomic data are calculated using the Hartree-Fock method, while

the ‘approximated’ atomic data are calculated from a hydrogenic model. The

opacity results are shown in Figure 4.17 and Figure 4.18. It can be seen that
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the opacities are quite sensitive to the atomic data. The differences of opac-
ities from the two sets of atomic data can be as large as a factor of 5 in some
groups. This shows that high quality atomic data are necessary for obtaining
accurate opacities. On the other hand, however, the general features of the
two sets of opacities are close. Hence, as a first order estimation, hydrogenic

atomic data can still be a good choice.
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Figure 4.17: Affect of the accuracy of atomic data on Planck mean opacity
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4.6 Computational Procedure And
Data Management

We have developed a suite of computer programs for doing the computations
of equations of state and opacities for non-LTE plasmas. This suite consists

of three parts:
1. atomic data generator;
2. interface between atomic data and EOS and opacity calculations;

3. computations of EOS and opacities

There are five major programs included in the atomic data generator and
they have been discussed in detailed in the second chapter. The rather huge
amount of output of atomic data from the atomic data generator are stored
in catalogue files. For example, the atomic data for neutral carbon are stored

in five different files:
1. c6.lev — stores all the atomic structure data;
2. cB.0sv — stores oscillator strengths and transition energies;
3. c6.pcs — stores photoionization cross sections;
4. c6.eac — stores electron collisional data;

5. cb.pac — stores proton collisional data.
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The file names are designed for easy identification: c is the atomic symbol,
6 is the number of bound electrons, for the first ionized carbon ion, we have
c5.lev, c5.0sv, and so on. These raw atomic data need to be analyzed, pro-
cessed and mapped to the formats suitable for input to the EOS and opacity
computations. The “interface” stage involves selecting atomic data for spe-
cific levels, filling in the requested number of Rydberg energy levels based on
a scaled hydrogenic approximation, and computing the rate coefficients from
the raw atomic data. The analysis and interface of atomic data are carried
out by the code ATABLE, which produces the atomic data files for the EOS
and opacity computation code EOSOPC. Since the amount of atomic data
required for the EOS and opacity calculations is rather large, especially for
mixtures of elements, all the atomic data cannot be stored in the memory at
the same time during the computation because of the limitation of computer
memory. EOSOPC has been designed in such a way that the atomic data
are stored in the memory ion by ion, t.e., only one ion’s data is stored in the
memory. This reduces the memory requirement and enables the calculation
to include more levels. A simplified flow chart of EOSOPC is shown in Figure
4.19.
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Chapter 5

Conclusions

I. Basic Atomic Data Calculation Suite
With the primary aim of generating large scale, high quality, atomic data for
ICF/MCF research applications, a basic atomic data calculation suite has

been created. The major features of this suite of programs are:

¢ Atomic structure and radiative data: Atomic energy levels, oscil-
lator strengths and photoionization cross sections are calculated by us-
ing the Hartree-Fock method. The non-relativistic single configuration
approximation is assumed for large scale calculations (default setup).
The multiconfiguration calculation plus relativistic correction can be
done to generate high accuracy data for specified levels. Generally, the
accuracy of the data is better than fifteen percent for the single config-

uration HF calculations and a few percent for the multiconfiguration
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HF calculations.

e Atomic collisional data: Electron impact excitation and ionization
cross sections can be calculated using three different methods (distorted
wave approzimation, first Born approzimation and semiclassical impact
parameter method). A factor of 1.5 to 2 accuracy is expected for most
calculations. Proton impact excitation and ionization cross sections are
calculated using the plane-wave Born approximation. For high energy
incident protons, the calculation can provide good estimation for the

cross sections (within a factor of 2).

o User friendly setup: In large scale atomic calculations, one of the
difficulties for users without much atomic calculation experience is the
preparation of input files. We have developed a state generator which
can generate a LS-coupling scheme table for most levels of each ion
automatically with only a very simple interactive input. Also, the
default setup of all programs has been checked carefully to insure the

convergence of the calculations.

II. Al Ka X-Ray Spectrum Analysis
The applications of atomic data generated from our atomic calculation pack-
age to analyze the Al Ka x-ray spectrum obtained in recent PBFA II exper-

iment has produced the following results:
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o Each main peak and important high degree term-dependent structure
in the spectrum has been identified. Our calculated wavelengths of Ka

transitions agree well with the experimental data.

e Our collisional-radiative-equilibrium calculation with the inclusion of
proton impact effects indicates that the peak electron temperature of

the target plasma should be in the range of 40 eV to 60 eV.

e Our calculated spectrum for the thin plasma model qualitatively ex-
plains the experimental spectrum. By comparing our calculated spec-
trum with the experiment data and that of radiative transfer calcula-
tions we find that line opacity is very important to Ka x-ray interpre-

tation.

II1. Equations of State And Opacities

We have applied our atomic data to compute the equations of state and
opacities of non-LTE plasmas. A non-LTE collisional-radiative equilibrium
model which takes account of pressure ionization effects self-consistently has
been developed. This model convergences to the Coronal equilibrium at
low density and merges to LTE smoothly at high density. Non-ideal effects
including pressure ionization, Debye-Hiikel correction for charged particle
interactions and electron degeneracy have been treated in the calculations of
equations of state. Qur calculations show that the contributions from partial

degenerate free electrons and atomic internal structures to the equations of
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state are dominate except for low temperature and high density plasmas.
Electron degeneracy effects are not obvious in the plasma conditions of our
interest.

Our opacity computation code can setup the group structure automati-
cally in a prudent manner. The calculation results show that the Planck mean
opacities are very sensitive to the selection of the group strﬁcture. In order
to have reasonable accuracy, 50 groups or more are recommended in practi-
cal multigroup radiative transfer calculations. The Rosseland mean opacities
are less sensitive to the group structure, however, we still need to have at
least 10 groups to insure the calculation accuracy. We have also checked the
sensitivity of opacities to the accuracy of atomic data. Our results indicate
that opacities are quite sensitive to the accuracy of atomic data. Accurate

atomic data are necessary for obtaining high quality opacities.

IV. Further Considerations

e Our current atomic data calculations are basically limited to low-7Z
and intermediate-Z elements because we consider only the LS-coupling
approximation and treat the relativistic effects as perturbations. High-
Z elements are actually very important to ICF research. To properly
treat these, we must extend our atomic data calculation package to

including high-Z atomic data.
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e The accuracy of collisional data is about a factor of 2 in our current cal-
culations. This may be acceptable for preliminary investigation in prac-
tical plasma diagnostic applications. For doing detailed spectroscopy
analysis, we may require better collisional data. It is important to have
the capability to generate or/and access high quality atomic collisional

data.

o It has been shown that ion beam-induced transitions offer many pos-
sibilities for deducing plasma conditions in ICF target experiments.
Experimental Ka spectra in conjunction with a judicious mix of hy-
drodynamics simulations and non-LTE radiative transfer calculations
can lead to an improved understanding of beam-plasma interaction

physics. This issue is currently under study at UW-Madison.
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