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1. Introduction

The purpose of this report is to provide a detailed description of work performed during
the 1990 calendar year in the area of spectral diagnostics for ion beam-heated plasmas. This

work has been supported by Kernforschungszentrum Karlsruhe (KfK) as part of a multiyear
effort to develop theoretical models and computational tools that can be used to study high

energy density plasmas created by KALIF (the Karlsruhe Light Ion Facility). To date, our
efforts have primarily concentrated on the development and testing of a non-LTE (LTE ≡
local thermodynamic equilibrium) radiative transfer/ionization balance code which can be
used to predict the spectral radiation flux from laboratory plasmas. In addition, atomic

physics codes have been developed to provide the data base for the radiative transfer code.

The statement of work for the 1990 calendar year is listed in Table 1. Each of these

tasks will be described in detail below. In Section 2, progress in the development of the
radiative transfer code is described. Here, we discuss all of the items in Tasks 1 and 6, along

with some recent improvements in the areas of line profiles and convergence techniques. In
Section 3, a discussion of the Dirac chord length method and its potential for improving

the accuracy of the angle-averaging algorithm in the radiative transfer code is presented.
In Section 4, we present the results of calculations in which we benchmarked the escape

probability radiative transfer code with ONEDANT calculations.

Table 1. Tasks for 1990

1. Model attenuation of line radiation by bound-free absorption; compute bound-free

coupling coefficients for calculating photoionization rates; include effects of “shifts”
in photoionization edges for different ionization stages; compute frequency-dependent

spectra for bound-bound and bound-free emission.

2. Perform calculations for potential KALIF targets; find suitable candidate lines for a
temperature determination; examine emission and transport forKα lines for diagnostic

purposes; send preliminary results to KfK, preferably by the end of August 1990.

3. Document atomic physics models; compare results with experimental data (where
available) and other calculations, especially at plasma conditions relevant to KALIF

experiments (T ∼ 10 − 50 eV, ρ ∼ 10−2ρ0 and higher).

4. Examine Dirac chord length method to improve accuracy of angle-averaging technique

in cylindrical and spherical geometries; compare with exact solutions for 2-level atom
cases.

5. Benchmark escape probability code with SN neutron transport code (either ONEDANT

or ANISN).
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6. Perform preliminary steps to model temperature and density gradients; work out de-
tails for model in which escape probability integrals are computed using line profiles

based on local temperature and density conditions; begin implementation into radia-
tive transfer code and perform test calculations.

A brief description of the atomic physics codes we use to compute the data base for

the radiative transfer/ionization balance calculations is presented in Section 5. In addition,
we compare the results of some of our atomic physics calculations with those from other

published calculations and experimental data. A more detailed write-up of the atomic
physics codes is currently being prepared by Wang Ping for his Ph.D. dissertation. This

will be sent to KfK when completed. In Section 6, we describe results from our target

(beam-plasma interaction) calculations. We have examined in particular the potential for
using Kα satellite line radiation as a temperature diagnostic for beam-heated laboratory

plasmas. We also discuss our recommendations concerning the types of targets that can
be used for beam-plasma interaction experiments on KALIF. Finally, we present an overall

summary of this year’s work in Section 7.

2. Progress in the Development of the Non-LTE Radiative
Transfer Code

2.1. Overview of Radiative Transfer/Ionization Balance Code

Let us first briefly review the major features of our non-LTE radiative transfer code
(RTEP). Steady-state ionization and excitation populations are computed by solving multi-

level atomic rate equations self-consistently with the radiation field. This is a collisional-
radiative equilibrium (CRE) model which includes the effects of photoexcitation and pho-

toionization on the level populations. Detailed configuration accounting (DCA) is used to
track the populations of the atomic levels. That is, the population of each atomic level is

determined by computing the collisional and radiative transition rates between each level.
This type of model — as opposed to an average atom model, for instance — must be used

to compute the detailed radiation spectra from laboratory plasmas.

The ionization processes considered in determining the atomic level populations are

collisional ionization and recombination, photoionization and stimulated recombination,
and radiative and dielectronic recombination. In addition, when proton beam effects are

important (such as when computing the Kα line spectrum), proton-impact ionization and
autoionization rates are also included. The excitation processes considered are collisional

excitation and deexcitation, photoexcitation and stimulated emission, and spontaneous ra-
diative decay. A description on the models used to compute the various transition rates is

presented in Section 5.
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The photoexcitation and photoionization rates depend on the characteristics of the
radiation field. To evaluate these rates we use an escape probability radiation transport

model (Apruzese et al. 1980, Apruzese 1981, MacFarlane et al. 1990, hereafter Paper I).
This model employs angle- and frequency-averaging techniques that allow for computation-

ally efficient solutions that produce only a modest loss in accuracy (typically ∼10-30%).
The motivation for using this approach for non-LTE radiative transfer is that it can be

coupled with hydrodynamics codes to study rapidly changing laboratory plasmas (Duston
et al. 1983, Clark et al. 1986, Clark and Davis 1990).

2.2. Bound-Free Radiation Transport

We now discuss improvements to the radiative transfer code in modeling the transport
of bound-free radiation. This work began in 1989, and initial results were described in

Paper I. During 1990, the model was completed and benchmarked against ONEDANT
calculations (see Section 4).

The frequency-averaged escape probability is obtained by averaging the attenuation

factor, e−τν , over the emission profile φE:

Pe(τ0, α0) =
∫ ∞

ν1

φE(ν, α0) exp(−τν)dν, (1)

where

φE(ν, α0) =
exp(−hν/kTe)

νE1(α0)

and

α0 ≡ hν1/kTe.

The optical depth and frequency at the photoionization edge are τ0 and ν1, respectively, τν
is the optical depth at frequency ν, Te is the electron temperature, and E1(x) represents

the exponential integral of order 1. The quantities h and k as usual refer to the Planck
constant and Boltzmann constant, respectively.

As in the case of line transport, frequency-averaged escape probabilities have been

fitted to simple analytic functions to allow for computationally efficient solutions. We have
obtained new curve fits that are somewhat more accurate than those shown in Paper I. The

curve fits are given by:
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Pe(τ0, α0) =

{
e−γ1t , t ≤ 1.0

t−1/3 exp[−γ1 − γ2(t
1/3 − 1)] , t > 1.0

(2)

where

γ1(α0) = 2.01α0 − 1.23α
3/2
0 + 0.210α2

0,

γ2(α0) = 1.01α0 + 0.0691α
3/2
0 − 0.0462α2

0,

and t ≡ τ0/3. The fits are accurate to about 15% over a wide range of parameter space:

0.3 < α0 < 10 and values of τ0 such that Pe(τ0, α0) ≥ 10−5. Figure 1 shows a comparison
of the numerical solution to Eq. (1) (solid curves) and the fitted values (dashed curves).

For a constant optical depth, the escape probability increases as the electron temperature
increases (i.e., as α0 decreases). This occurs because as the temperature — and hence the

mean thermal speed of electrons — increases, the photons emitted by recombinations tend
to have energies farther above the threshold energy. Thus, as the photon energies become

higher, the probability of photoabsorption decreases, and the escape probability increases.

The photoionization rate in zone a is obtained by summing the recombinations over all

emitting zones e. Thus, the photoionization rate from lower level � to upper level u can be
written as:

dNa
u

dt
=

ND∑
e=1

N e
u n

e
e α

e
rr Q

ea, (3)

where αe
rr is the radiative recombination rate coefficient for zone e, ne

e is the electron den-
sity in zone e, and ND is the total number of spatial zones in the plasma. The coupling

coefficient, Qea, represents the probability that a photon emitted in zone e will be absorbed
in zone a. These are obtained by integrating escape probability integrals over the emission

zones. Formulae for evaluating Qea are given by Eqs. (17) and (26) in Paper I.

2.3. Calculation of Frequency-Dependent Emission Spectra

When calculating the atomic level populations self-consistently with the radiation field,
we use frequency-averaged escape probabilities. Given those populations, the spectral flux

is computed at a large number of frequency points. Thus, the computed spectral fluxes
depend only indirectly on the frequency-averaged escape probabilities. We now describe

how the frequency-dependent emission spectrum from a plasma is computed.
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We first compute the opacities and optical depths in each spatial zone from all possible
sources. At present, we consider the contributions from free-free (Bremsstrahlung), bound-

free (photoabsorption), and bound-bound (line) transitions. The optical depth at frequency
ν in zone d, is related to the opacity by:

τν,d =
∫ zmin

zmin

χν(z)dz (4)

= χν,d ∆zd,

where the opacity in zone d, χν,d, is assumed to be constant throughout the zone, and ∆zd

is the zone thickness. The opacity can be written as (Mihalas 1978):

χν =
∑
j

nenj+1(1 − ehν/kT ) αff (ν) (5)

+
∑
j

∑
n

[nnj − n∗
nje

−hν/kT ] αbf
n (ν)

+
∑
j

∑
n

∑
m>n

[
nnj −

(
gnj

gmj

)
nmj

]
αbb

mn(ν),

where the index j refers to the ionization stage, n and m refer to the excitation levels, ne

is the electron density, gnj and gmj are the statistical weights, nnj is the number density of

atoms in level n of ionization stage j, and nj+1 is the number density of atoms in ionization
stage j + 1 summed over all excitation levels. The quantity n∗

nj is the LTE population of

state nnj computed using the actual ion density of the upper ionization stage. The first
term in Eq. (5) is the contribution from free-free absorption, the second is from bound-free

absorption, and the third is due to bound-bound absorption. The free-free cross section is
given by

αff (ν) =

(
4e6

3ch

)(
3π

3kme

)1/2

gff Z
2
eff T

−1/2 ν−3, (6)

where e and me are the electron charge and mass, respectively, c is the speed of light, gff

is the free-free Gaunt factor (Karzas and Latter 1961), and Zeff is the effective charge.

We use the hydrogenic frequency dependence for the bound-free cross section:

αbf (ν) = αbf(ν1)
(
ν1

ν

)3

, ν ≥ ν1, (7)
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where ν1 is the cutoff frequency. The value of αbf(ν1) is determined such that it is consistent
with the radiative recombination rate, which is based on Hartree-Fock calculations. The

bound-bound cross section is given by

αbb(ν) =

(
πe2

mec

)
fnmφν ,

where fnm is the oscillator strength and φν is the normalized line profile (
∫
φνdν = 1).

After the total optical depth for each spatial zone is calculated, the frequency-dependent

flux at the plasma boundary is computed as follows. The flux at the surface due to photons
emitted in zone d, Fν,d, can be written in terms of the plasma emissivity of the zone, ην,d:

Fν,d =
4πην,d∆Vd

A
Aν,d, (8)

where ∆Vd is the volume of zone d, and A is the area of the plasma boundary. The

attenuation factor, Aν,d, represents the attenuation due to all other zones along the path
to the boundary. As before (Paper I), the path from the emitting zone to the boundary

is defined by the “mean diffusivity angle.” The optical depths for each zone are computed
along this path. An example of this is illustrated in Figure 2, where ∆τd is the optical

depth of the emitting zone and τd is the optical depth from the plasma boundary to the
closer boundary of zone d. The attenuation factor is then obtained by averaging over the

emitting zone:

Aν,d =
1

∆τν,d

∫ τν,d+∆τν,d

τν,d

e−τνdτν . (9)

The emissivity can be written as (Mihalas 1978):

ην =

(
2hν3

c2

)∑
j

{nenj+1e
−hν/kTαff(ν) (10)

+
∑
n

n∗
nje

−hν/kTαbf
n (ν)

+
∑
n

∑
m>n

(
gnj

gmj

)
nmjα

bb
mn(ν)}.
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An example of the frequency-dependent emission spectrum from a laboratory plasma is
shown in Figure 3, where the flux has been computed for a planar Al plasma of thickness

0.1 mm, T = 50 eV, and n = 10−2n0 (n0 ≡ solid density). Shown along with the total flux
are the contributions from free-free, bound-free, and bound-bound emission. Also shown

for comparison is the blackbody spectrum.

Figure 3 shows that except at frequencies near optically thick lines, the greatest con-

tribution to the flux below 100 eV is free-free emission. It is also seen that at energies
below 30 eV, the calculated flux lies very close to the blackbody curve. This is because

the free-free optical depth becomes larger than unity at lower photon energies (τff ∼ ν−3).
At energies above 100 eV, bound-free emission is the greater contributor to the continuum

flux. The fluxes of a large number of emission lines exceed the continuum flux between
30 eV and 300 eV.

Note that the radiation produced by one type of transition can be significantly at-

tenuated by other types of transitions. For instance, the free-free emission flux decreases
abruptly near the cores of optically thick lines and photoabsorption edges. We note, how-

ever, that this interaction of the radiation field for different transitions is not fully accounted
for when calculating the level populations. We do not expect this to be a serious deficiency

in the model for most types of plasma diagnostics. But it is important to recognize that
occasionally the approximations in the model will lead to inaccuracies.

2.4. Attenuation by Inner Shell Photoabsorption

Attenuation by inner shell photoabsorption has recently been included in computing
emission spectra. The process — the ejection of an inner shell electron by a high energy

photon — can significantly affect the observed spectral flux in an experiment (Duston et
al. 1983). For example, when a relatively cold plasma lies between a hot x-ray-emitting

plasma and a detector, high energy photons created in the hot region can be photoabsorbed
in inner shell electrons of the cooler material.

The optical depth across zone d due to inner shell photoabsorption can be written as:

τν,d =
∑
j

∑
s

njNsαj,s(ν)∆zd, (11)

where Ns is the number of electrons in shell s, and nj is the number density of ions in

ionization stage j. Cross sections for each ionization stage and shell, αj,s(ν), are tabulated
from Hartree-Fock calculations. For each ionization stage, we use the frequency-dependent

cross sections corresponding to the ground state.
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Figure 4 shows the calculated photoabsorption cross section for the first 10 ionization
stages of Al. The curve for neutral Al is represented by the dashed line. Also shown for

comparison are the calculated cross sections of Reilman and Manson (1979) for Al I and
Al II. Note that the energy of the photoionization edges for theK-shell (near 1 to 2 keV) and

L-shell (near 100 to 300 eV) electrons increases as the ionization increases. Our results are
in good agreement with those of Reilman and Manson at energies above 50 eV. We expect

our results to be more accurate in the 10 to 50 eV range because of the approximations
used in the Reilman and Manson calculations.

An example of how inner shell absorption affects the opacity of a plasma is shown
in Figure 5. The frequency-dependent optical depth is shown for an Al plasma at T =

20 eV, n = 10−2n0, and L = 0.1 cm. Shown with the total optical depth (solid curve)
is the contribution to the absorption from inner shell electrons (dashed curve). Note that

at photon energies above 0.5 keV this effect is the dominant continuum opacity. It is also
seen that because of this effect, the continuum optical depth is ∼ 1 around 1.5 keV. This

suggests that inner shell absorption can affect the Kα satellite line spectrum in beam-plasma
interaction experiments (see Section 6).

2.5. Voigt Line Profiles

In this section we will briefly describe improvements in our modeling of line profiles.

We recently have added the capability of modeling Voigt line profiles. Thus, our code now

has the capability to transport 3 types of line profiles: Doppler, Lorentz, and Voigt.

In evaluating the escape probability integrals we use an approach similar to that of
Apruzese (1985). Simple analytical fits to exact numerical solutions to the frequency-

averaged escape probability were obtained for two different regimes of the Voigt broadening
parameter a. For a < 0.49:

Pe(τ) =




(1 + 1.5τ)−1 (τ ≤ 1),

0.4τ−1 (1 < τ ≤ τc),

0.4(τcτ)
−1/2 (τ > τc),

(12)

where

τc ≡ 0.83

a(1 + a1/2)
.
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For a ≥ 0.49,

Pe(τ) =

{
(1 + τ)−1 (τ ≤ 1),

0.5 τ−1/2 (τ > 1).
(13)

The fits are typically accurate to about 20%, although errors of up to 40% can occur. Note,

however, that in our present model the frequency-averaged escape probability integrals are
used only to compute the level populations self-consistently with the radiation field. The

frequency-dependent spectral calculations do not directly use frequency-averaged escape

probabilities.

The Voigt damping parameter au� for the transition from the upper level u to the lower
level � can be written as (Duston and Davis 1981):

au� =
Γu�

4π∆νD
, (14)

where ∆νD is the Doppler width, and Γu� represents the sum of all radiative and collisional
rates, Rij and Cij, depopulating the upper and lower levels:

Γu� =
∑
k

(Cuk +Ruk) +
∑
k

(C�k +R�k). (15)

The values of au� for each transition are then used to evaluate the escape probability integrals
and zone-to-zone coupling coefficients, much like in the cases of Doppler and Lorentz profiles.

2.6. Convergence Considerations

In non-LTE radiative transfer codes, iterative methods are generally used to obtain
atomic level populations that are consistent with the radiation field. The most straightfor-

ward iterative approach, known as Λ-iteration, is to compute the radiation field using level
populations obtained from the most recent solution of the multilevel rate equations. This

technique can have convergence problems when plasma densities are low and optical depths

are large. We have recently added three new approaches for improving the convergence
rates in our code. They are: (1) a Rybicki-type core-saturation method (Rybicki 1971,

Apruzese et al. 1984), (2) a “collision-radiative switching” algorithm (Hummer and Voels
1988), and (3) an acceleration scheme originally proposed by Ng (1974).

The Rybicki-type core-saturation method is based on the description of Apruzese et al.

(1984). When this approach is invoked, the populations on the first iteration are obtained
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by diluting the spontaneous emission coefficients by a factor which accounts for the reab-
sorption of photons that do not escape the plasma. Stated mathematically, if Pe is the

probability a photon will escape the entire plasma, the spontaneous emission coefficient,
Au�, is replaced by Au�Pe. The zone-to-zone coupling model effectively accounts for the re-

absorption of line core photons within the emitting cell. Thus, on subsequent iterations, the
spontaneous emission coefficients are diluted in each zone by the escape probability from

that zone. An analogous approach is also used for bound-free radiation. Although this
approach has improved convergence in some instances, it has had a less significant overall

impact on convergence than the other two convergence acceleration methods.

Collisional-radiative switching is a new approach that was recently reported by Hummer

and Voels (1988). The basic idea is to “steer” the iteration process from the LTE solution
(i.e., the starting point) to the non-LTE solution. To do this, we use a collisional switching

parameter, λc, which multiplies all collisional rates by the same number. At first, this
number is very large so that all collisional rates dominate their corresponding radiative

rates. This of course leads to LTE level populations throughout the entire plasma. Then
on subsequent iteration cycles, λc is decreased until it reaches a value of 1, at which point

the correct non-LTE populations are obtained. This method has been particularly valuable
for problems in which bound-free optical depths are very large.

The third method to improve convergence rates is based on the work of Ng (1974). More

recent descriptions of implementing this approach for radiative transfer problems have been

presented by Olson, Auer, and Buchler (1985) and Auer (1987). This method represents an
extremely powerful acceleration technique that can be applied to any linearly convergent

problem.

The Ng acceleration method is applied every several (perhaps 2 to 6) iterations to
obtain updated solutions to the solution vector x. In our case, the solution vector is the level

populations in each spatial zone. The “accelerated” solution is calculated from solutions
obtained during the past several iterations — that is, the evolution, or history, of the

convergence becomes important. The accelerated solution vector after the n’th iteration
can be written as:

xn =

(
1 −

M∑
m=1

αm

)
xn−1 +

M∑
m=1

αmxn−m−1, (16)

where xm−n is the solution vector of the (n−m)’th iteration. The acceleration coefficients,
α, are determined from the solution

Aα = b, (17)
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where the elements of A and b are given by:

Aij =
D∑

d=1

(∆xn
d − ∆xn−i

d )(∆xn
d − ∆xn−j

d ), (18)

bi =
D∑

d=1

∆xn
d (∆xn

d − ∆xn−i
d ),

and

∆xk
d ≡ xk

d − xk−i
d .

The quantity xk
d refers to the d’th element of x on iteration cycle k. The order of the

acceleration method, M , represents the number of previous cycles used to compute the
accelerated solution for x.

In our radiative transfer code M can be chosen to have a value from 2 to 4. It is found

that using M = 2 provides very good acceleration to the final solution. This method has
proven to be particularly valuable in improving the computational efficiency of our radiative

transfer simulations.

2.7. Modeling of Temperature and Density Gradients

During the past year, we performed preliminary steps to model the effects of temper-
ature and density gradients. This has been done to the extent that arrays tracking the

temperature and density in each spatial zone are used, and the ionization, electron density,
and atomic rate coefficients are computed for each zone. Test calculations have not yet been

performed. We anticipate this model will be completed within the next year, and plan to
benchmark our calculations with results from previously published papers and ONEDANT

calculations.

With the exception of the transition rates that depend on the radiation field, tempera-
ture and density gradient effects are easily and accurately accounted for. This can be seen

by examining the multilevel rate equations. The steady-state rate equation for level i can
be written as:

dni

dt
= −ni

NL∑
j �=i

Wij +
NL∑
j �=i

njWji = 0, (19)
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where Wij and Wji are the depopulating and populating rates between levels i and j, and
NL represents the total number of levels in the system. For upward transitions (i < j):

Wij = Bij J̄ij + neCij + neγij + βij , (20)

while for downward transitions (i > j):

Wij = Aij +Bij J̄ij + neDij + neαij + n2
eδij , (21)

where ne is the electron density and J̄ij ≡ ∫
φij(ν)Jνdν . The rate coefficients for the various

transitions are represented by:

Aij = spontaneous emission

Bij = stimulated absorption (i < j) or emission (i > j)

Cij = collisional excitation

Dij = collisional deexcitation

αij = radiative plus dielectronic recombination

βij = photoionization and stimulated recombination

γij = collisional ionization

δij = collisional recombination.

In the escape probability formalism, the stimulated absorption and emission rates are
written in terms of the coupling coefficients, so that:

na
jBjiJ̄ij − na

iBij J̄ij =




−Aji
∑ND

e=1 n
e
jQ

ea
ji , (i < j)

Aij
∑ND

e=1 n
e
iQ

ea
ij , (i > j).

(22)

All terms excluding photoexcitation and photoionization (and their stimulated inverse pro-
cesses) depend on local quantities such as the rate coefficients and electron densities. These

are evaluated “exactly” for each spatial zone. However, in evaluating the photoexcitation
and photoionization terms, approximations are introduced because the escape probabil-

ity integrals are computed assuming a spatially uniform emission and absorption profiles.
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This assumption is of course not valid when temperature and density gradients exist in the
plasma.

Dunston and Davis (1981) use a model in which the escape probability integrals are

evaluated using properties of the emitting zone. They estimate that this approach may
introduce errors of as much as a factor of 2 for most laboratory plasma conditions, with

typical errors being less than this. They argue that this simple approach leads to an

acceptable representation of radiative transfer in nonhomogeneous laboratory plasmas.

We plan to implement the same approach as Dunston and Davis in our radiative transfer
model, and benchmark the results against ONEDANT calculations. If the accuracy of this

approach is shown to be reasonable, we will continue using this method. However, if the
errors are found to be unacceptably high, we intend to explore alternatives to this relatively

simple model.

3. Examination of Angle-Averaging Method in Radiation
Transport

3.1. Introduction

In this section we examine two methods by which the angle-averaged radiation escape
probability method developed by Apruzese (1980) can be improved. The first method is

based on the Dirac chord method which will be used for the establishment of a criterion
for the definition of a “mean diffusivity angle”. The method can be applied to planar as

well as curvilinear geometries. The second method is based on the integral representation
of the transport equation through the use of first-flight kernels. A brief comparison is made

between the radiation transport problem under consideration and the steady-state collision
probability (SSCP) method employed in reactor physics.

3.2. The Dirac Chord Length Method

The Dirac chord length method was developed by Dirac (1943) to assist in the cal-
culation of particle escape probabilities for solids of arbitrary shape and uniform density.

Though the application of the method is not restricted to solids of a specified shape, the
Dirac chord method has usually been applied to solids having nonreentrant surfaces and

isotropically emitting sources. Following the analysis of Case et al. (1953), the escape prob-
ability for uniformly distributed and isotropically emitting sources within a convex body

can be computed from the expression
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Po =
�

RAv

∫ Rmax

Rmin

(
1 − e−R/�

)
φ(R) dR (23)

where RAv is the average chord length, φ(R) the chord length distribution function, � the

mean free path of the particles in the medium and Rmin and Rmax are the minimum and

maximum chords within the solid. The Dirac chord method provides a means of computing
the chord length distribution function φ(R) and the average chord length RAv for a given

solid. Once these quantities have been computed, the escape probability is obtained by
performing the integration indicated in Eq. 23. A tabulation of results for bodies having

special shapes (slab, sphere, cylinder, hemisphere, etc.) can be found in Case et al. (1953).
Lewis (1967) generalized the Dirac chord method to include problems having anisotropically

emitting sources. However, the sources are still uniformly distributed throughout the solid.

From the above brief introduction, one notes that the problem of computing the par-
ticle escape probability has been reduced to the geometrical problem of finding φ(R) and

RAv and performing the integration over the maximum and minimum chords of the body
under consideration. Additionally, one notes that the Dirac chord method in its traditional

application is restricted to solids having a uniform density and that the source region is
distributed throughout the solid. However, the radiation transport problems under consid-

eration for our application have heterogeneous density and nonuniform source distributions

throughout the geometrical domain of interest. Hence an exact calculation of escape prob-
abilities for these problems using the Dirac chord method does not seem feasible. However,

the relevance of the Dirac chord method to the angle-averaged radiation escape probability
method proposed by Apruzese (1981) requires further investigation.

The method proposed by Apruzese (1981) uses a mean diffusivity angle along which

the optical pathlength of the particles emitted is computed. Presently the only criterion
used for choosing one mean diffusivity angle over another is by comparison with exact

numerical results. However, it would be preferable to have a well defined criterion for the
initial choice of a mean diffusivity angle. Is the mean diffusivity angle in any way related

to the geometrical shape of the body under consideration? If we assume that this is the
case, then the Dirac chord length method can provide a criterion for the selection of a mean

diffusivity angle.

To demonstrate this we examine the radiation transport problem in planar geometry.

Figure 6 depicts the geometry. The average chord length of a slab of thickness a is (Case
et al., 1953);

RAv = 2a. (24)
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The cosine of the angle µ corresponding to this average chord we denote as µ̄ and is given
by

µ̄ =
a

RAv
= 0.50. (25)

Apruzese (1981, 1985) has indicated that the best results are obtained using a cosine of the

mean diffusivity angle of 0.51 for Doppler, Lorentz and Voigt profiles. Thus we note, to
zero’th order (not including any line profile or opacity weighting), the cosine of the mean

diffusivity angle can be obtained using the average chord length, RAv, as computed from
the Dirac chord method.

The emitted radiation is transported along one angular direction in the angle-averaged

radiation escape probability method. However, because the emitted radiation travels through
heterogeneous regions of differing densities and opacities, an improved calculation of particle

attenuation would be obtained by going to a multiangle transport scheme and to transport
the radiation within angular bins or sectors. The Dirac chord method can be used to com-

pute the average chord length within each angular sector. Once this has been computed, a
mean diffusivity angle for each angular sector can be obtained.

To illustrate this procedure, we consider the transport of radiation within two angular
sectors in planar geometry. The angular sectors have boundaries 0.5 < µ < 1.0 and 0.0 <

µ < 0.5. As stated above, the objective is to compute the cosine of the mean diffusivity
angle for each angle sector which are denoted as µ̄1 and µ̄2. For this computation the chord

length distribution function φ(R) is required. The chord length distribution function for
the slab depicted in Figure 6 is (Case et al., 1953);

φ(R) dR = 2a2dR

R
. (26)

The average chord length within the i’th angular sector is computed from the expression

R̄Av,i =

∫Rmax
Rmin

Rφ(R) dR∫ Rmax
Rmin

φ(R) dR
, (27)

where Rmin and Rmax are the maximum and the minimum chord lengths within the angular

sector. They are obtained from the relationship

Ri =
a

µi

, (28)
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where µi is the i’th angular sector boundary. Computing the minimum and maximum
chords for each angular sector and completing the integrations indicated in Eq. (27), the

cosine of the mean diffusivity angles along which the optical pathlengths are to be computed
are (using the relationship indicated in Eq. (25) µ̄1 = 0.75 and µ̄2 = 0.25. Again this is

a zero’th order approximation as the average chord lengths have not been weighted over
line profiles or opacities. This procedure can be extended to any number of angular sectors

desired.

In curvilinear geometries, the emitted radiation is also transported along one mean

diffusivity angle. By choosing one mean diffusivity angle, the emitted particles miss inner
and outer material zones (in a heterogeneous density configuration) which are not inter-

sected by the chord described by the mean diffusivity angle. This forces a portion of the
source particles to traverse a different optical pathlength than they would normally travel.

Additionally, the mean diffusivity angle chosen is the same as that for the planar case. This
is a good approximation for material zones and radiation emitted at large radii but a poor

approximation for radiation emitted within inner small radii zones. The calculation in the
curvilinear geometries can by improved by considering a multiangle scheme in combination

with the average chord length as computed using the Dirac chord method.

To illustrate the multiangle transport scheme in curvilinear geometries, we consider
the transport of radiation in a heterogeneous spherical shell configuration. Figure 7 depicts

the geometry under consideration. We are interested in obtaining the radiation impinging

upon the outer spherical shell at radius r = a which can be obtained by considering the
radiation impinging upon the point A. The most straightforward division of the angular

range into sectors is to draw lines tangent to the radii zone boundaries as depicted in Fig.
7. The procedure illustrated in planar geometry can now be used in spherical geometry by

properly defining the angular sector boundaries. The cosine of the angle of a ray tangent
to an inner shell is

µi =

√
1 −

(
ri

a

)2

, (29)

where ri is the radius of the i’th inner shell. Once having computed the angular sector
boundaries, the length of the chords along the angular sectors, Rmin and Rmax, which are

required for the calculation of the average chord length within the angular sector, can be

computed from

Ri = µi × 2a. (30)

The chord length distribution function for a sphere of radius a is (Case et al. 1953)
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φ(R) dR =
R

2a2
dR. (31)

Once the average chord length has been determined from the integrations indicated in Eq.
(27), the i’th cosine of the mean diffusivity angle along which the optical pathlength is

computed can be obtained from the relationship

µ̄i =
RAv,i

2a
. (32)

We note that with the straightforward division of the angular range, chords defined by the

cosines of the mean diffusivity angles will intersect all intervening spherical regions; thus the
calculation of the optical pathlength traversed by the source particles has been improved

which improves the overall calculation.

In the above illustration, the radiation was transported to a point A on the surface of
the spherical body. A modification to the chord length distribution function, φ(R), must

be made to consider radiation transported to a point r within the spherical body. A similar
procedure can be developed for cylindrical geometry.

We expect that the multiangle transport scheme outlined above will improve the pho-
toionization rates within the medium and the line radiation flux escaping from the surface

of a body in curvilinear as well as planar geometry. However, this is only one aspect of the
angle-averaged radiation escape probability method. Additionally, the escape probabilities

are frequency-averaged over the line profile, φν . Hence to improve upon that aspect of the
problem, a scheme should be devised to incorporate line profile averaging and/or opacity

weighting of the opacities in the various regions. Another alternate approach would be to
consider a multifrequency approximation.

3.3. Use of the Radiation Transfer Equation

In the previous section, we have considered a multiangle radiation transport scheme

using the Dirac chord method to improve the angle-averaged radiation escape probability
method. Another approach would be to solve the radiation transfer equation itself. This

approach is discussed below.

The form of the radiation transfer equation considered is due to Mihalas (1984) and is

given in the steady state approximation as

(
Ω̂ · �∇ + χ(�r, Ω̂, ν)

)
I(�r, Ω̂, ν) = η(�r, Ω̂, ν), (33)
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where η and χ are called the emissivity and extinction coefficients. By just considering
absorption and emission, the solution to the above equation is reduced to determining what

is known in transport theory as the first-flight distribution of particles for each frequency
group. The first-flight distribution can readily be obtained by converting the above equation

into an integral equation from which the first-flight transport kernels are obtained. The
SSCP method based on the first-flight kernels has been successfully used in reactor physics

for the calculation of the flux distribution in reactor lattices, the calculation of disadvantage
factors in unit-cell computations, and in resonance integral calculations. Various computer

programs have been written which utilize the SSCP method (Tsuchihashi 1979, 1983, 1986;

Kier and Robba 1967; Kier 1965; Kavenoky 1969). Hence an integral transport formulation
of the radiation transfer within the plasma would parallel the SSCP developments. We note

that the only difference in the formulation of the method for radiation transport lies with
the use of a scattering matrix. Since we are only considering the first-flight distribution, a

scattering matrix is not required.

Above we have just considered the treatment of the spatial domain. The frequency
domain can be treated as discussed in the previous section; by line profile and/or opacity

weighting of the opacities or by a multifrequency approximation. We expect that both
the first-flight approach and an improved frequency domain treatment will improve the

angle-averaged radiation escape probability method.

3.4. Summary

Two methods by which the angle-averaged radiation escape probability method de-

veloped by Apruzese (1980) can be improved were briefly examined. The first method is
based upon the Dirac chord method which is used to compute the average chord length RAv

within angular sectors of a convex body for a multiangle treatment of the angular range.
The average chord lengths are then used to define mean diffusivity angles within the angu-

lar sectors along which the optical pathlengths of the emitted radiation is computed. The
second method examined is based upon the integral form of the transport equation through

the use of the first-flight kernels. The development of the method would parallel the SSCP
method used in reactor physics except for the use of a scattering matrix. Both methods are

expected to yield improved results over those obtained using the angle-averaged radiation
escape probability scheme particularly if a improved scheme for the frequency domain can

be devised.

We have explored the possibility of using the Dirac chord method to improve the

angle-averaged radiation escape probability method in the radiation transfer code. It was
shown that the Dirac chord method can be used to define a mean diffusivity angle which

is required for the computation of the optical pathlength traversed by the emitted radi-
ation. The Dirac chord method can also be used to define mean diffusivity angles for a
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multiangle radiation transport algorithm. The multiangle transport algorithm could be in-
corporated into the existing radiation transfer code. However, this approach would require

a non-trivial computational effort (multiangle versus one angle). Given the fact that there
are other approximations are used in the current model, such as using frequency-averaged

escape probabilities, this may not be the best way to proceed. We feel a better way to
proceed in this area is to develop a separate, more exact, radiation transfer model based

on a multifrequency approach for the frequency domain and a multiangle approach using
the Dirac chord method or an integral transport theory approach using the first-flight ker-

nels of radiation transport for the spatial-angular domain. This model would be used to

perform more accurate radiation transport calculations which could be used to benchmark
the escape probability code, as well as more readily and accurately assess the importance

of effects such as velocity gradients in an expanding plasma and temperature and density
gradients. Additionally, this approach would allow for greater frequency-coupling between

different atomic transitions, thus enabling the code to reliably model a wider range of spec-
tral regimes.

4. TWODANT Benchmark Calculations

We have performed a series of benchmark calculations to assess the accuracy of the

escape probability radiative transfer code. The primary purpose of the calculations was
to check the reliability of the angle- and frequency-averaging techniques employed in the

escape probability model. To do this, we performed radiation transport calculations with
the ONEDANT code (Alcouffe et al. 1984) using input data supplied by RTEP calculations.

The output from the two calculations were then compared to determine the magnitude of
the errors due to the angle- and frequency-averaging models. Because both codes used the

same spatial grids (i.e., the grid of RTEP was the same as the coarse grid for TWODANT),

particle densities, absorption cross sections, and emission (source) terms, the differences in
the results are expected to arise from the angle- and frequency-averaging approximations

in the escape probability model.

4.1. Overview of Angle and Frequency-Averaging Techniques

We first briefly review the angle- and frequency averaging methods in our escape prob-
ability model. The photoexcitation rate corrected for stimulated emission is given by (Eq.

(15) of Paper I):

(N�B�u −NuBu�)J̄ =
ND∑
e=1

N e
uAu�Q

ea, (34)
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where Nu and N� are the populations of the upper and lower states, respectively, B�u and
Bu� are the Einstein absorption and induced-emission transition probabilities, and Au� is

the spontaneous emission rate. J̄ is the mean intensity averaged over the line profile φν :

J̄(r) ≡
∫ ∞

0
dνφν(r)

1

2

∫ 1

−1
dµIν(r, µ), (35)

where r is the position in the plasma, µ ≡ cos−1 θ, θ is the angle between the propagation

direction of the photon and the normal to the surface, Iν is the specific intensity, and the
summation is over all ND zones of the plasma. The zone-to-zone coupling coefficient Qea

between the emitting zone e and absorbing zone a can be written as

Qea =
1

τe

∫ τe

0
[Pe(τB + τ) − Pe(τB + τa + τ)]dτ, (36)

where Pe(τ) is the probability that a photon will travel a line center optical depth τc before
being absorbed averaged over the emission profile φE(ν):

Pe(τc) =
∫ ∞

0
dνφE(ν)eτcφν/φν0 . (37)

The quantity φν0 is the value of the line profile at the line center frequency ν0. For
lines, we assume that the emission and absorption profiles are identical; that is, we as-

sume “complete redistribution”. The optical depths in Eq. (36) represent those of the
emitting zone (τe), the absorbing zone (τa), and the optical depth between zones e and

a. The optical depths are computed along a ray defined by the “mean diffusivity angle,”
θ̄(≡ cos−1 µ̄). Apruzese (1981, 1985) found that reasonably accurate, yet very efficient,

solutions for Doppler, Lorentz, and Voigt line profiles could be obtained by computing the

coupling coefficients along the ray defined by µ̄ = 0.51. The primary purpose of the present
benchmark calculations is to test the accuracy of these angle- and frequency-averaging

methods.

The method for computing the photoionization rate (bound-free absorptions) is similar
to the bound-bound case. The photoionization rate is given by:

ND∑
e=1

N e
u n

e
e α

e
rr Q

ea, (38)

where N e
u is the number of particles in zone e in upper state u (that is, the ground state of

the next higher ionization stage), ne
e is the electron density of zone e, and αe

rr is the radiative
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recombination rate in zone e. The coupling coefficients are again evaluated using optical
depths computed along µ̄ = 0.51. Using the same mean diffusivity angle µ̄ for all transitions

improves the computational efficiency. In addition, comparisons with TWODANT results
indicate that µ̄ = 0.51 provides reasonably good accuracy for both bound-bound and bound-

free transitions (see below).

4.2. Overview of TWODANT Calculations

The two-dimensional discrete-ordinates diffusion-accelerated transport code system

TWODANT was used to perform the 1-D photon transport calculations for the bench-
mark comparison with the RTEP code. The form of the radiative transfer equation solved

is given in the steady state approximation as:

Ω̂ · ∇̄I(r̄, Ω̂, ν) + χ(r̄, Ω̂, ν)I(r̄, Ω̂, ν) = η(r̄, Ω̂, ν) (39)

where η and χ are called the emissivity and extinction coefficients. The radiative transfer

equation was solved using the multigroup approximation with the photon frequency domain
divided up into G groups. The number of groups used in the benchmark calculations ranged

from 50 to 100. The emission source term for each group g is given by:

Sg =
∫ νg+1

νg

dν
4πην

hν
(40)

where νg and νg+1 are the frequency boundaries of group g. The absorption coefficient is

given by:

κg =
1

∆νg

∫ νg+1

νg

dνκν , (41)

where ∆νg = νg+1−νg. One could also use expressions for Sg and κg in which the integrands

are weighted by the emission profile or the Planck function. However, as the sizes of the
groups (∆νg) become small, the weighting method becomes irrelevant. Thus, the group-

averaged emission and absorption terms defined above were sufficient for our purposes.
Calculations were performed using a larger number of groups to confirm this.

The TWODANT transport code system solves the Boltzmann equation in the standard

one dimensional (slab, cylindrical, spherical) and two dimensional (planar (x, y) and cylin-
drical (r, z) and (r, θ)) geometries using the standard multigroup formulation. Suppressing

the group index g, the Boltzmann equation is given as
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Ω̂ · ∇̄ψ(r̄, Ω̂, E) + σt(r̄, , E)ψ(r̄, Ω̂, E) (42)

=
∫
4π
dΩ̂

∫ ∞

0
dE ′σs(E

′ → E, Ω̂′ · Ω̂)ψ(r̄, Ω̂, E) + S(r̄, Ω̂, E).

In the Boltzmann description of neutral particle/photon transport, the scattering of

particles/photons is explicitly described by the scattering kernel, whereas in the radiative
transfer equation the scattering of photons is contained in the emissivity and extinction co-

efficients. Thus to model the radiative transfer equation using the Boltzmann equation, the
groupwise scattering matrix elements for the TWODANT code are set to zero. The remain-

ing input requirements for the code are the geometry mesh, total cross sections, the absorp-
tion cross sections (extinction coefficients) and the photon sources (emissivity coefficients)

which were obtained from the output of the RTEP calculations. RTEP computed position-
dependent level populations, and based on these, the group- and position-dependent ab-

sorption cross sections and emission terms. The spatial grid in the RTEP calculation was

used as the “coarse grid” for TWODANT. Hence, the absorption cross sections and photon
sources (emission terms) were entered per frequency group per spatial coarse mesh zone.

To avoid numerical instabilities due to opacities differing by orders of magnitude between
neighboring cells, the criterion (∆/λ) <| µ1 | — where ∆ is the mesh spacing, λ is the

photon mean free path within the mesh interval ∆, and µ1 is the smallest cosine of the
angle with respect to the outward normal in the angular quadrature integration set — was

applied to the spatial fine mesh zoning of the geometry considered. This ensured positivity
of the fluxes and helped mitigate numerical instabilities. The TWODANT calculations were

performed on a DEC3100 workstation using an S8 discrete-ordinates approximation.

4.3. Results

By using the same spatial grid, densities, absorption cross-sections, and emission terms,
we have attempted to find those differences that occur solely due to the different trans-

port schemes: that is, multiangle, multifrequency calculations versus angle- and frequency-

averaged calculations. Two figures of merit were examined to assess the reliability of the es-
cape probability model: (1) the position-dependent photoexcitation/photoionization rates,

and (2) the frequency-dependent flux at the plasma boundary (note that the term flux in
radiative transfer corresponds to the term current in neutron transport, i.e., the flow of

particles/photons across a boundary).

We performed 2 sets of calculations. Six calculations each were performed for bound-
bound and bound-free cases. Tables 2 and 3 summarize the parameters for those calcula-

tions.
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Table 2. Bound-Bound Cases

No. of

Case No. of Energy Optical Quenching Router

No. Geometry Zones Groups Depth Parameter PQ Rinner

1 Planar 80 50 103 10−4 -

2 Cylindrical 50 50 103 10−4 -

3 Spherical 50 50 103 10−4 3
4 Spherical 50 50 103 10−4 300

5 Spherical 50 100 103 10−4 300
6 Spherical 100 50 103 10−4 300

Table 3. Bound-Free Cases

No. of

Case No. of Energy Optical hν1/
No. Geometry Zones Groups Depth kTe µ̄

1 Planar 40 50 300 11.9 0.51
2 Cylindrical 40 50 300 11.9 0.51

3 Spherical 40 50 300 11.9 0.51
4 Spherical 40 50 0.37 2.37 0.51

5 Spherical 40 50 11 11.9 0.51
6 Spherical 40 50 300 11.9 0.70

For the bound-bound calculations, the line center optical depth was τc = 103 and the
“quenching parameter” PQ, which is a measure of the photon scattering (see Paper I),

was 10−4. Doppler line profiles were assumed. For spherical geometry, calculations were
performed for hollow shell plasmas so that we could check our results against previously

published calculations (Kunasz and Hummer 1974). The ratio of the outer radius-to-inner
radius was varied between 3 and 300. To ensure that 50 spatial zones and 50 energy groups

were adequate, we performed calculations in which the number of each was doubled.

For the bound-free calculations, the base case was a plasma with an optical depth of
300 at the photoionization edge (E = hν1) and a temperature such as hν1/kTe = 11.9.

The absorption cross-section was assumed to be hydrogenic (κν ∝ ν−3). In the RTEP

30



calculations, this corresponds to a temperature of 10 eV for the Al V → Al IV recombination
edge (hν1 = 118.6 eV). The plasma density in each case was 1019 cm−3. We also performed

calculations in which the temperature was increased (Case 10) and the optical depth was
decreased (Case 11). In addition, we tried a calculation in which the mean diffusivity angle

was changed from µ̄ = 0.51 to 0.70 (Case 12).

We shall now discuss the results of each case separately. The results are shown in Fig-

ures 8 through 18. In each case, the photoexcitation/photoionization rate and the percent
differences between RTEP and TWODANT are plotted as a function of zone index. The

bound-bound fluxes at the boundary are plotted as a function of scaled frequency
(
= ν−ν0

∆νD

)
.

The bound-free fluxes are plotted vs. (ν/ν1)
−1. Thus, the photoabsorption edge is at the

right (ν = ν1). The percent differences for the fluxes are also plotted.

Case 1: Bound-bound case for a planar slab. The photoexcitation rate is greatest at

the center of the slab (≈ 109 transitions/ion/s) and falls by more than an order of magnitude
at the slab boundaries. There is some minor numerical noise at the right boundary of the

TWODANT calculations due to some roundoff problems in setting up the grid. This does
not affect our conclusions.

Throughout the slab, the RTEP photoexcitation rates are 10-15% higher than the

TWODANT rates. The RTEP fluxes are ∼10-15% low near the center of the line (| ν−ν0 |<
2∆νD). (For a discussion of the physics behind the profile inversion, see Avrett and Hummer
(1965).) In the wings of the line, the TWODANT flux decreases faster than the RTEP flux.

The relative error continues to rise in the wings, but the flux in the wings is very low.

The higher photoexcitation rates and lower flux near the line core for RTEP indicate
that the code slightly overestimates the degree of scattering in the plasma. We consider

errors of this magnitude to be perfectly acceptable.

Case 2: Bound-bound case for a cylindrical plasma. The photoexcitation rate is great-
est along the axis of the cylinder. RTEP again overestimates the photoexcitation rate by

10-15%. The RTEP fluxes are about 7% too low at the line center, and up to 20-25% too
high in the wings.

Case 3: Bound-bound case for a hollow sphere. The ratio of the outer radius to inner
radius is 3. The RTEP photoexcitation rate is 10-15% larger than TWODANT. The RTEP

flux is about 10-15% lower in the line core, and about 15-20% too high in the wings.

Case 4: Bound-bound case for a hollow sphere. The ratio of the outer radius to inner
radius is 300. The RTEP photoexcitation rate is 10-20% too high, and the errors in the

flux are less than 20%.
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Case 5. Same as Case 4, but with the number of photon energy groups doubled. Results
are very similar to Case 4.

Case 6. Same as Case 4, but with the number of spatial zones doubled. Results are

again very similar to Case 4. Cases 5 and 6 show that the resolution of our spatial and
frequency grids is adequate.

Case 7. Bound-free case for a planar slab. The photoionization rate at the center of the
slab is about 2× 106 transitions/ion/s. The RTEP photoionization rate is about 7% higher

than TWODANT at the center of the slab and about 15% higher near the slab boundaries.
At the photoionization edge (ν1/ν = 1), the RTEP flux is about 6% lower than TWODANT.

At ν = 5 · ν1(ν1/ν = 0.2), RTEP is about 10% lower. The higher photoionization rates and
lower fluxes indicate RTEP slightly overestimates the scattering for these conditions. We

feel errors of this magnitude are quite acceptable.

Case 8. Bound-free case for a cylindrical plasma. The RTEP photoionization rate is
7% higher than TWODANT along the axis of symmetry, and rises to about 15% higher at

the plasma boundary. The RTEP flux is 5-6% too low near the photoionization cutoff.

Case 9. Bound-free case for a spherical (non-hollow) plasma. The RTEP photoioniza-
tion rate ranges from 5% to 15% higher than TWODANT. The flux is roughly 2-10% lower

than TWODANT.

Case 10. Same as Case 9, but with a higher temperature (50 eV). The higher temper-

ature decreased the optical depth to 0.37 and hν1/kT to 2.37. The RTEP and TWODANT
fluxes are within 5% at all frequencies, but the photoionization rate error increases to

about 25-30% near the center of the sphere. Qualitatively similar results were obtained by
Apruzese (1981). Evidently, the angle-averaging model leads to some inaccuracies near the

center of cylindrical and spherical plasmas with relatively small optical depths (τ < 10).

Case 11. Same as Case 9, but for a smaller sphere, so that the optical depth was 11.
The RTEP photoionization rates are about 3-15% too high, and the errors in the flux are

less than 3%. There is some numerical scatter in the RTEP photoionization rates for this
case. The source of this is not presently known.

Case 12. (Figure not shown) Same as Case 9, but with µ̄ = 0.70 (instead of 0.51).
Errors were considerably larger ( >∼ 40%). Based on calculations of the escape probability

integrals, it was thought that having a mean diffusivity that was a function of hν1/kT might
improve the accuracy. This idea was not supported by the calculations.
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4.4. Summary of Benchmark Calculations

In all cases, we find that the errors introduced by the angle- and frequency-averaging

models in RTEP are usually a couple tens of percent and always much less than a factor
of 2. Given that the uncertainties in atomic data are often of this magnitude, we conclude

that the present model is quite sufficient for studying spectra from laboratory plasmas.

We note, however, that there are certain situations in which frequency-averaging in

particular could potentially cause significant errors. An example of this is when the transi-
tion energies of 2 lines are very close, so that their line profiles overlap considerably. In the

current model, frequency-averaged escape probabilities are obtained by integrating over a
single line. Obviously, if there is considerable overlap between the 2 profiles near the line

cores, the level populations and emission spectra could be affected. We do not consider this
to be a serious flaw in the model. Our intent is only to point out that there may be certain

situations in which the accuracy of the model could be affected.

5. Atomic Physics Calculations

In this section, we present an overview of the atomic physics models that are used to
provide the data base for the radiative transfer/ionization balance calculations. A much

more detailed description of the models used in the atomic physics codes is currently being
prepared by Wang (1991), and will be sent to KfK when completed. Here, we describe: (1)

our model for the atomic level structure, (2) the models used to compute the transition rate
coefficients, and (3) calculations relevant to the production of Kα satellite lines.

A schematic illustration of the transitions we consider is shown in Figure 19 for a simple
3-level atom. Every state is coupled to the ground state of the next higher ionization

stage by collisional ionization, photoionization and stimulated recombination, collisional
recombination, and radiative recombination. Adjacent ground states are also coupled by

dielectronic recombination. The excited states of each ion are coupled to the ground state
and all other excited states by collisional excitation and deexcitation, stimulated absorption

(photoexcitation) and emission, and spontaneous radiative decay.

Collisional coupling is complete in our calculations. Thus we consider forbidden and
spin-flip transitions as well as those which are electric dipole allowed. The interaction

between bound electrons is approximated by an L − S coupling scheme. Energy levels
and oscillator strengths are normally computed using a single configuration Hartree-Fock

approach. However, when a very high degree of accuracy is needed, such as when computing
the transition energies of Kα satellite lines, multi-configuration Hartree-Fock calculations

are performed.
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For problems involving ion beam-plasma interactions, we also consider the effects of
ion-impact ionization and autoionization. Ion-impact ionization rates are computed using

a plane-wave Born approximation model with Hartree-Fock wave functions for the bound
electrons. To date, our autoionization rates have been determined from previously published

fluorescence yields (e.g., Duston et al. (1983) for Al).

5.1. Rate Coefficients

Transition rate coefficients are used to compute the populating and depopulating rates

for each level. The rate coefficients are computed as follows.

A. Collisional ionization and recombination

The electron collisional ionization rate coefficients used in this study are calculated
using the semi-empirical formula proposed by Burgess and Chidichchimo (1983):

q = (2.17 × 10−8 cm3 s−1) C
∑
j

ζj(IH/Ij)
3/2 (Ij/kT )1/2 E1(Ij/kT ) wj (43)

where the summation is over shells j of the initial ion, ζj is the effective number of electrons
in j, Ij is the effective ionization energy of j, and IH = 13.6 eV. The parameter C is

determined from experimental data. For the cases in which experimental data are not
available, the value of C is taken to be 2.3. The quantity E1(x) is the first exponential

integral,

wj = [ln(1 + kT/Ij)]
β/(1+kT/Ij),

and

β =
1

4
{[(100z + 91)/(4z + 3)]1/2 − 5}.

Here z is the charge of the initial ion. The electron collisional recombination rate coefficient

is obtained by using the principle of detailed balance.

This empirical formula has been shown to produce good agreement with cross-beam
experimental data over a wide range of conditions. Figure 20 compares calculated electron

impact ionization cross sections with experimental data for Hf+3, Zr+3, and Ti+3. The
calculated cross sections are in reasonably good agreement with the experimental data.

Typical errors are seen to be ∼ 5 − 25%.
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B. Photoionization, Radiative Recombination, and Stimulated Recombination Rates

Hartree-Fock calculations are performed to obtain frequency-dependent photoioniza-
tion cross sections. This approach is of course significantly better than using hydrogenic

ion cross sections. This is illustrated in Figures 21 and 22, where the photoionization cross
sections of NeI and HeI are shown as a function of wavelength. Shown with the Hartree-

Fock (HF) results for HeI are curves representing experimental data (Marr and West 1976)

and hydrogenic ion cross sections. It is very clear that the HF results are in much better
agreement with the experimental data than the hydrogenic cross sections. Figure 23 com-

pares the HF photoionization cross sections for NI with experimental data (Sampson and
Cairn 1965). Again, it is seen that HF results are in good general agreement with the data.

The cross section for radiative recombination to the ith atomic level can be obtained

from Milne’s relation (Sobelman et al. 1981):

σr(ε) =
gi(Ii + ε)2

geg + εmec2
σi(ε) (44)

where σi is the photoionization cross section, Ii is the ionization potential of the atom at

the i’th state, ε is the kinetic energy of the incident electron, and ge, gi, and g+ are the
statistical weights of electron, combined ion, and uncombined ion, respectively.

Rate coefficients at each electron temperature are then obtained by integrating over a

Maxwellian velocity distribution. Stimulated recombination rates are determined from the
detailed balancing relation with the photoionization rate.

C. Dielectronic Recombination

As shown by Burgess and Seaton (1964), the dielectronic recombination rate in many

cases can considerably exceed the radiative recombination rate. Therefore, in low density

and high temperature plasmas, dielectronic recombination must be considered. We have
calculated the dielectronic recombination rate coefficient using the Burgess-Merts model

(Post et al. 1977). Figure 24 shows the dielectronic, radiative, and collisional recombination
rates from NeIX to NeVIII as a function of electron temperature. It is clear from these

results that dielectronic recombination becomes the dominant recombination process for
this ion at temperatures >∼ 200 eV.

D. Collisional Excitation and Deexcitation

Three methods are employed for the calculation of excitation cross sections and rate

coefficients. For all electric dipole allowed transitions, the excitation cross sections are
calculated by using the semiclassical impact-parameter method (SCI) (Burgess and Summer
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1976). A distorted wave model (DW) (Sobelman et al., 1981) is used to calculate the
excitation cross sections of forbidden and spin-flip transitions for helium-like and lithium-

like ions, while the orthogonalized function method (Beigman and Vainshtein, 1967) in the
Born-Oppenheimer approximation (BOA) is used for other ions. The rate coefficients are

obtained by averaging the cross-sections over a Maxwellian electron velocity distribution.
The principle of detailed balance is applied to obtain the deexcitation rate coefficients from

the excitation rate coefficients.

Figure 25 compares our computed excitation cross sections for LiII using the DW

method (solid curve) with those calculated by Van Wyngaarden and Henry (1976) and
Christensen and Norcross (1985) using multiconfiguration closed coupling (CC) methods.

It is seen that our results are generally within a factor of 2 over the electron kinetic energy
range shown. Figure 26 shows our computed electron impact excitation rates for several

highly ionized states of Al. Unfortunately, we are unaware of any experimental data for
electron impact excitation rates of moderate-to-highly ionized Al.

E. Spontaneous Decay

The spontaneous decay rate for a bound-bound transition is simply proportional to

its oscillator strength. We perform Hartree-Fock calculations to determine the oscillator
strengths. Table 4 compares our computed oscillator strengths for several transitions of CI,

Al III, and Al VIII with those of Smith and Wiese (1971), whose tabulated data are based

on experimental data. It is seen that our results are in good general agreement with the
Smith and Wiese data, with errors typically ranging from a few percent up to about 25%.

5.2. Atomic Data for Kα Line Spectra

We next discuss our atomic physics calculations of rate coefficients and transition en-

ergies relevant to Kα line spectrum. Details of the spectral calculations and the potential of
using the Kα spectral region for diagnosing plasma conditions will be discussed in Section

6.2. Here, we will focus on calculations for the proton impact ionization cross sections and
transition energies.

Proton impact ionization cross sections are computed using a plane-wave Born approx-

imation model (PWBA) with Hartree-Fock wave functions for bound electrons. Figure 27
shows the cross sections for neutral Al as a function of proton energy. These curves are

labeled by the shell from which the electron is ejected. Note that the outer shell cross

sections are substantially larger that the inner shell values. Thus, the primary heating (ion
stopping) mechanism is the interaction of the proton beam with the outer shell electrons.

The calculated cross sections for the 1s shell (which lead to the Kα radiation) are compared
with experimental data in Figure 28 (triangles). It is seen that at all proton energies, the
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calculated cross-sections are within a factor of 2 of the experimental values. It is also ex-
pected that the calculations should be even more accurate at higher proton energies because

the assumptions in the PWBA model become more valid.

Figure 29 shows how the proton impact ionization cross section for Al K-shell electrons
varies with the ionization state of Al. As the ionization stage of the Al increases the cross

section decreases in an almost linear fashion. Our calculations indicate that the proton

impact ionization for the K-shell electrons for Al II is about a factor of 2 higher than that
for Al XIII.

To determine the wavelengths of Kα satellite lines, we have performed multiconfigu-

ration Hartree-Fock calculations with relativistic mass and Darwin corrections. Tables 5
and 6 show results for the energies and transition energies for Al. The main purpose of the

calculations was to test the accuracy of the code for use in Kα diagnostics experiments by
comparing the computed wavelengths with experimental data. (Kα transitions occur when

a proton beam interacts with an Al target, and causes vacancies in the K-shell.) Table 5
shows the energies of the atomic levels, while Table 6 shows the calculated wavelengths and

compares them with the peaks in Sandia data (experimental column; Bailey et al. 1991).

The F-like Al (Al V) experimental spectrum of Bailey et al. (1991) shows a high
degree of structure. Three emission peaks are clearly seen in the data. This portion of the

spectrum is shown in detail in Figure 30. Also shown are the calculated transition energies

for 4 Kα transitions. Note that 2 transitions may be contributing to the central peak in the
experimental data. The calculated wavelengths match up quite well with the experimental

peaks. We estimate the accuracy of the computed wavelengths to be a few milliangstroms
(less than 0.1%).

These results represent a significant improvement in accuracy over previous results pre-

sented in Bailey et al., where wavelengths were determined from Herman-Skillman calcula-
tions (based on a Hartree-Fock-Slater model). The good agreement between our calculations

and the experimental data gives us confidence that we can determine which transitions are
responsible for the peaks in the experimental emission spectra. This in turn means that

plasma temperatures in ion beam-heated targets can be determined more reliably.

6. Target Calculations

We have performed a number of calculations using our radiative transfer and atomic
physics codes to predict the emission spectra of targets for future KALIF beam-plasma

interaction experiments. The purpose of the calculations is to develop an understanding

of the physical processes that influence the emission spectra from targets, and to begin to
identify spectral features that can be used to deduce plasma conditions (e.g., temperature
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and density). Most of the calculations presented here are for Al plasmas with temperatures
in the 10 to 50 eV range and densities of 10−2 − 10−1 times solid density. We also briefly

discuss the implications of using carbon targets in the context of using their Kα satellite
lines as a temperature diagnostic. All results shown in this section are for planar plasmas

with uniform temperatures and densities. We also note the results shown in this section do
not include the effects of inner shell photoabsorption.

In this section, we first discuss the general features of target emission spectra. In
particular, we will show how the overall spectrum changes as a function of slab thickness

and temperature. Secondly, we examine the potential for using Kα satellite lines as a
temperature diagnostic for ion beam-heated plasmas. These lines, which result from ion

impact ionization of target ions by the incoming beams, can be seen in the soft x-ray part of
the spectrum (near 1.5 keV for Al, 0.3 keV for C). Finally, we discuss our recommendations

for target experiments on KALIF.

6.1. Emission Spectra of Moderately-Ionized Aluminum

We first examine the emission spectra from Al targets in the absence of an ion beam
(i.e., with no Kα line emission). Consider the case of a planar Al foil which has expanded

100 times from its original thickness L0 . Assume the plasma has a uniform density of
n = 10−2n0 (n0 ≡ solid density = 6 × 1022 cm−3 for Al) and uniform temperature T . Let

us now examine how the spectral flux varies with original foil thickness and temperature.

Figures 31, 32, and 33 show the spectral fluxes for Al plasmas corresponding to an

original foil thickness of 0.1, 1.0, and 10 µm, respectively. The thicknesses of the expanded
plasma slabs are therefore 10−2, 10−1, and 1 mm. In each case the plasma temperature is

50 eV and the density 10−2n0. In each figure, the blackbody flux is shown for comparison.

With an original foil thickness of 0.1 µm (Fig. 31), the flux below photon energies of
hν <∼ 10 eV is basically blackbody. However, above 10 eV considerable structure is seen in

the spectrum in the form of emission lines and bound-free edges. As the thickness of the
foil increases, the flux becomes more like a blackbody over a wider spectral range. Figure

33 shows that for an Al foil with L0 = 10 µm, the spectrum is very much like a blackbody.
Since targets used in ion beam experiments tend to be >∼ 10 µm in size because of the

stopping range of the ions, one can expect spectral fluxes to be blackbody-like over a wide
spectral range.

The reason for dependence of the emission spectrum on the foil thickness can be un-
derstood by examining the frequency-dependence of the optical depth. Figures 34, 35, and

36 show the optical depths corresponding to spectral fluxes shown in Figures 31-33. The
optical depths correspond to the entire slab thickness and were computed along a ray per-

64









pendicular to the slab boundary. Note that when the original foil thickness is >∼ 10 µm
(Fig. 36), the plasma is optically thick at all photon energies below 1 keV. However, when

L0 = 0.1 µm (Fig. 34), the plasma is optically thin (τ < 1) to continuum radiation at pho-
ton energies above 10 eV. Only the line cores are optically thick at these higher frequencies.

When the continuum is optically thin, emission lines become discernable in the spectrum.
(We again note that these results do not include the effects of inner shell photoabsorption

(see Section 2.4).)

The variation in the target emission spectrum with temperature is shown in Figure 37,

where the spectral fluxes from Al plasmas with T = 50 eV, 15 eV, and 5 eV are shown.
In each case, the plasma density is n = 10−2n0, L = 10−2L0, and L0 = 1.0 µm. The

corresponding optical depth plots are shown in Figures 38, 39, and 40. As the temperature
rises from 5 eV to 50 eV, more structure is discernable in the emission spectra. This is

because at lower temperatures (5 eV and below), the peak of the flux curve shifts to lower
photon energies where the plasma tends to be optically thick.

Based on these results we expect that the bulk of the radiation emitted by plasmas

created during KALIF experiments will very much resemble a blackbody curve at these
temperatures. This is because foil thicknesses, which are constrained by the energy deposi-

tion properties of the beam, are expected to be >∼ 10 µm. Also, at photon energies where
the plasma is optically thick, the emission spectra will be strongly dependent on the tem-

peratures in the outermost regions of the plasma (facing the detector). We shall now focus

on how radiation emitted in the soft x-ray portion of the spectrum for ion beam-heated
plasmas can be used to diagnose plasma conditions.

6.2. Using Kα Satellite Lines as a Temperature Diagnostic

Plasmas heated by intense ion or electron beams can emit detectable x-ray line radi-

ation that can provide important constraints for diagnosing plasma conditions (Nardi and
Zimamon 1981, Chenais-Popovics et al. 1989, Bailey et al. 1991). The reason is because

energetic beams eject inner shell electrons of the target plasma, which can produce fluores-
cent line radiation as the inner shell vacancy is filled by an outer shell electron. Such lines

are called Kα lines when a vacancy in the K shell (n = 1) is filled with an electron from
the L shell (n = 2). Similarly, Lα lines result from a L shell vacancy being filled by an M

shell (n = 3) electron.

The production of Kα lines when a moderately-ionized Al plasma is irradiated by an

intense proton beam is illustrated in Figure 41. For a plasma that is hot enough to have a
significant amount of Al V, small concentrations of highly-excited Al VI are produced as a

K shell electron is ejected by proton-impact ionization. These highly-excited “autoionizing”
levels are depopulated primarily in two ways: (1) a radiationless autoionization in which
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a second electron is ejected as the K shell vacancy is filled, or (2) a spontaneous decay
to a lower lying level of Al VI in which a photon with an energy of about 1.5 keV is

emitted. Thus, a relatively cool plasma is capable of emitting soft x-ray lines because of
the beam-plasma interaction.

This is shown in Figure 42, where the spectral flux is shown for an Al plasma which is

interacting with a 1.6 MeV, 0.3 TW/cm2 proton beam. These beam conditions are typical

of those expected for KALIF experiments (Bauer et al. 1988). The Al plasma is assumed to
be at T = 20 eV, n = 10−2n0, and L = 1 mm; this corresponds to an original foil thickness

of 10 µm. Note that at photon energies below 0.5 keV the flux is basically blackbody. This
is because the plasma is optically thick at these photon energies (see Fig. 43). Near 1.5 keV,

the Kα emission lines are clearly present. Figure 43 shows that these lines can be optically
thick, with optical depths exceeding 103. This indicates that the self-attenuation of line

radiation will significantly affect the emission spectrum.

Let us now examine in detail the narrow region of the spectrum near 1.5 keV in which
the Kα lines are located. For the calculations in the remainder of this section, we assume the

proton beam energy and power density are 5 MeV and 5 TW/cm2, respectively. Figure 44
shows the Kα line spectrum calculated for an Al plasma with a temperature of 10 eV, a

density of 10−1n0, and original foil thickness of 10 µm. For comparison, the time-integrated
experimental spectrum obtained on PBFA II at Sandia National Laboratories is shown

(Bailey et al. 1991). Note that two curves are shown in the experimental plot. The upper

curve represents the lower curve values magnified 15 times. The ionization indices refer to
the ionization stage prior to proton impact ionization. In the experimental spectrum, Kα

lines from Al I-IV, have the largest fluxes. The wavelengths for these ionization stages lie
close together because the number of M shell electrons has little influence on the transition

energy. However, as the Al becomes more ionized and the number of L shell electrons
decreases, the Kα lines are noticeably blue-shifted. Ionization stages up to Al IX are clearly

seen in the experimental spectrum.

The calculated relative intensities of the Al I-IV and Al V in Figure 44 agree quite
well with the experimental spectrum. This suggests that the portion of the plasma most

readily seen by the detector was at a temperature of about 10 eV or below for a majority
of time during the experiment. At 10 eV, however, the plasma is too cold to produce Kα

line radiation from the higher ionization stages.

Figure 45 shows the Kα spectrum from an Al plasma at 40 eV, n = 10−2n0, and

L0 = 10 µm. In this case, Kα lines from Al VIII and Al IX have the highest intensities. The
calculated wavelengths of the Kα lines line up quite well with the peaks in the experimental

spectrum. On the other hand, the relative strengths of the lines are not consistent with
the time-integrated spectrum. This indicates that either: (1) the plasma spent a relatively

short period of time at these temperatures, or (2) the Kα lines from the higher ionization
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stages originate in a hotter region of the plasma, and these Kα lines are attenuated by
cooler material that resides between the detector and the hot plasma. In this case, the

attenuation would be primarily due to L shell photoabsorption.

The experimental data also shows some structure within the Al V profile. This region
is shown in more detail in Figure 46, where again a calculated spectrum with T = 20 eV and

n = 10−1n0 is compared with the experimental spectrum. We believe the structure in the

experimental Al V profile results from at least 4 transitions. The calculated wavelengths
for these transitions are indicated in the experimental plot. (See Section 5 for a description

of the atomic physics calculations.) It is seen that 2 transitions at the “term” level (“fine
structure” levels have not been considered) match up well with the central peak in the

experimental spectrum. Figure 46 also shows the calculated relative intensities also agree
well with the experimental spectrum. This good agreement with experimental data gives

us confidence that Kα line radiation offers an excellent opportunity for diagnosing plasma
conditions in ion beam-heated targets.

The influence of opacity effects on the radiation escaping the plasma is very significant.

This is seen in Figure 47, where the Kα line fluxes from a T = 40 eV, n = 10−2n0 Al plasma
are plotted for two cases. The dotted curve is from a calculation in which attenuation

effects were ignored; that is, the plasma was assumed to be optically thin. The solid curve
was obtained from calculations in which opacity effects were fully accounted for. Note that

the fluxes in the optically thin case are typically 3 orders of magnitude higher than in the

optically thick case. It is also seen that the relative fluxes of 2 lines can be significantly
influenced by opacity effects. For instance, the Al VIII line at 8.04 Å is about a factor of 5

higher than the Al IX line at 7.98 Å in the optically thin case. However, when opacity effects
are included, the lines have peak fluxes that are nearly equal. This clearly demonstrates

the importance of transport effects in this spectral region for laboratory plasmas.

It is also of interest to know the location at which the Kα photons originate. Photons
at the cores of optically thick lines originate near the “edge” of the plasma; that is, where

the line center optical depth becomes small. On the other hand, photons from optically
thin lines and those from the wings of optically thick lines can originate deep within the

plasma and still be detected. This is shown in Figure 48, where the differential emission
flux (= ∂F (r, ν)/∂r) is plotted as a function of frequency and position at which the photons

originate. Note that the position axis is on a logarithmic scale and that the detector is at
the right. The relatively dark regions are the regions with the largest fluxes. The way to

interpret this plot is to look at the gradients in the differential flux at a given wavelengths

(in the horizontal direction). At wavelengths where there are significant gradients, such as
near 8.05 and 8.20 Å, the flux seen by the detector is due to photons originating very close

to the edge of the plasma. At wavelengths where there are no noticeable gradients, the
plasma is optically thin and behaves like a volume emitter.
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Clearly, the spectral intensities at different wavelengths provide information about the
conditions at different locations in the plasma. Thus, in the Kα spectral region one can see

into the plasma at different depths, and can attempt to deduce conditions in the interior
regions of the plasma.

6.3. Recommendations for Beam-Plasma Experiments on KALIF

In the Sandia PBFA II experiments, it was seen that Kα satellite lines present a good

opportunity for diagnosing plasma temperatures in beam-target interaction experiments.

In that experiment, the proton beam energy was about 4-5 MeV, and power density was
roughly 1-2 TW/cm2 (Bailey et al. 1991). The peak electron temperature obtained in the Al

target plasma was ∼ 20 to 60 eV. This temperature was high enough to produce significant
amounts of Al with ionization stages above Al IV; that is, Al ions with Kα wavelengths

that are easily distinguishable from those of Al I-IV.

Because the beam power density in KALIF experiments is expected to be lower than
∼ 0.3 TW/cm2, it is unclear whether the plasma temperatures attained in KALIF experi-

ments will greatly exceed 10 eV. This is an important consideration because Al V and higher
ionization stages — that is, those ionization stages whose Kα lines can be experimentally

resolved — begin to be present in significant amounts at temperatures >∼ 10 eV. If the
Al target plasma temperatures do not exceed 10 eV, it would be difficult to determine the

ionization balance because the Kα lines of Al I-IV are difficult to resolve.

If plasmas temperatures exceed 10 eV in the KALIF experiments, plasma conditions can

be deduced from the Kα line spectrum in conjunction with radiative transfer calculations.
On the other hand, if plasma temperatures do not exceed 10 eV, we suggest 3 possible

alternatives. First, one could consider measuring Al Lα line fluxes near 70 eV. Recall Lα

lines are produced by a proton-impact ionization of an L-shell (n = 2) electron, followed by

the subsequent transition of an electron from the M shell to the L shell. These lines may
be detectable because: (1) the peak of the blackbody is down around 15 eV (see Fig. 37);

(2) the continuum optical depths are <∼ 1 for 10 µm foils (see Figures 38 and 39); and (3)
the cross sections for proton impact ionization of L shell electrons is larger than those for

K shell electrons (see Fig. 27). The Lα lines for Al I-IV could be expected to be resolvable
experimentally because the transition energies should depend strongly on the number of

electrons in the M shell.

A second possibility is to use a carbon-based target (perhaps some type of plastic).

This is because the Kα lines for all ionization stages of carbon should be resolvable. This is
seen in Table 7, where the transition energies and wavelengths for several ionization stages

of carbon are listed. Note that the carbon lines are shifted by an amount comparable
to those of the higher ionization stages of Al. For carbon ∆λ/λ ≈ .07 Å/42 Å = .017,
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while for Al ∆λ/λ ≈ .08 Å/8 Å = .010. Thus, a spectrometer with comparable spectral
resolution to that in the PBFA II experiment should be able to distinguish between the

different ionization stages of carbon. The third possibility is to use an Al target that is
doped with a small amount (perhaps 1%) of lower-Z material (perhaps 5 < Z < 10); that

is elements with a partially filled L shell. These elements would also have Kα lines that can
be experimentally resolved.

Clearly, ion beam-induced transitions offer many possibilities for deducing plasma con-

ditions in target experiments. Experimental spectra in conjunction with a judicious mix
of hydrodynamics simulations and non-LTE radiative transfer calculation can lead to an

improved understanding of beam-plasma interaction physics.

Table 7. Kα Transition Energies for Carbon*

Ion Transition Transition Energy (eV) Wavelength (Å)

CII 1s12s22p2 → 1s22s22p1 287.0 43.20

CIII 1s12s22p1 → 1s22s2 291.7 42.50
CIV 1s12s12p1 → 1s22s1 296.3 41.84

CV 1s12p1 → 1s2 304.2 40.75

*Based on single-configuration Hartree-Fock calculations. Relativistic effects are not included.

7. Summary

During the past year, we have made several improvements to our non-LTE radia-
tive transfer model. New features that have been added include: the transport of bound-

free radiation; the attenuation of line radiation by photoabsorption; the computation of
frequency-dependent spectral fluxes at the plasma boundary; Stark line broadening effects;

and methods to accelerate convergence when computing the atomic level populations. In

addition, we have performed benchmark calculations using the ONEDANT transport code
to test the accuracy of the angle- and frequency-averaging techniques in the radiative trans-

fer code. Our results showed that the errors were typically ∼ 5−25%, a level of error which
is quite modest for a model with such a high degree of computational efficiency.

We have also explored the possibility of using the Dirac chord length method to improve

the angle-averaging technique in the radiative transfer code. We feel that because of the

87



non-uniform level population densities in non-LTE plasmas, this approach would lead to a
sufficiently high degree of computational complexity that it would not be the best way to

improve the accuracy of the radiative transfer code. It is thought a better way to proceed
is to add a model which computes zone-to-zone coupling coefficients based on multiangle,

multifrequency solutions to the radiative transfer equation. This approach would also allow
for greater frequency-coupling between different atomic transitions, thus enabling the code

to reliably model a wider range of spectral regimes.

Calculations were performed to simulate beam-plasma interaction experiments that

could be performed on KALIF. Our results show that Kα satellite line radiation (near
1.5 keV for Al, and 0.29 keV for C) offers a good opportunity for diagnosing temperatures

in ion-beam heated plasmas. Very good agreement was found between our numerical sim-
ulations and the experimental Kα spectrum obtained at Sandia National Laboratories on

PBFA II.

In regards to beam-plasma interaction experiments to be performed on KALIF, we feel
that targets that are composed (at least in part) of carbon may offer a better opportunity

for diagnosing temperatures from Kα satellite lines than pure Al targets. This is because
the Kα lines from the lowest 4 ionization stages of Al are very close together and are difficult

to resolve experimentally. Kα lines from the lower ionization stages of C, however, are much
more easily resolved experimentally. This is an important consideration if the maximum

plasma’s temperature attained in an experiment is ∼ 1-5 eV. One may also wish to consider

either doping an Al target with a small amount (∼ 1%) of a lower-Z element, or attempting
to observe the Lα line spectrum from low-temperature Al plasmas. Additional calculations

to support target experiments on KALIF will be performed in the future.
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