
•

W I S C O N SI N

•

F
U

S
IO

N
•

TECHNOLOGY
• IN
S

T
IT

U
T

E

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

Discrete Ordinates Solution of the Time
Dependent Radiation Transport Equation on a

Distributed Network of UNIX Workstations

Timothy J. Tautges and Osman Yasar

January 1991

UWFDM-846

Discrete Ordinates Solution of the Time

Dependent Radiation Transport Equation on a

Distributed Network of UNIX Workstations

Timothy J. Tautges and Osman Yasar

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

January 1991

UWFDM-846

http://fti.neep.wisc.edu/

Abstract

The radiation transport equation is solved using the Sn method on an adaptive mesh.

The solution is performed in parallel on a network of workstations, communicating with

each other using message passing. Analytical speedup estimates are formulated for the

calculations and compared with measured speedups. Speedups of 1.83 and 2.97 are achieved

on two and four processors, respectively. Finally, suggestions are given for improving the

parallel performance.

Acknowledgements

This work was made possible by the switchboard software provided by Professor Barton

Miller of the UW-Madison Computer Science Department. Thanks also go to staff scientist

Joe MacFarlane and graduate student Kim Simmons for their enlightening discussions on

the subject of radiation hydrodynamics.

This research was made possible in part by an appointment to the Nuclear Engineering

and Health Physics Fellowship Program administered by Oak Ridge Associated Universities

for the U. S. Department of Energy. The United States Nuclear Regulatory Commission

provided support for the purchase of the UNIX workstations used in this research.

Contents

1. Introduction 1

2. Radiation Hydrodynamics Equations 4

2.1. Discretization of the Radiation Transport Equation 8

2.2. Coupling of Radiation Transport With Hydrodynamics 9

3. Solution Technique on Distributed Processors 9

3.1. Using a Distributed Network of Workstations 9

3.2. Problem Partitioning . 10

3.3. Control Flow . 12

4. Distributed Processing Tools 15

4.1. Necessary Features . 15

4.2. Unnecessary Features . 16

4.3. Available Public Domain Tools . 17

5. Performance Estimates 19

5.1. Benchmarks . 20

5.2. Communication to Computation Ratio . 22

5.3. Speedup Estimates . 23

6. Results 30

6.1. Parallel Speedup For Various Problem Durations 31

6.2. Measured Parallel Speedup and Processor Efficiency 33

6.3. Analysis . 35

6.4. Improved Speedup Estimates . 37

7. Conclusions 37

1. Introduction

Radiation transport calculations are used to model the transport of photons in an

absorbing medium. This physical process is important in scientific applications, such as the

modeling of stellar atmospheres and the simulation of inertial confinement nuclear fusion

devices. This study was motivated by the need to simulate the radiation transport occuring

in ion beam driven inertial confinement fusion devices. These devices achieve the high

temperature and confinement times needed for nuclear fusion by bombarding fuel pellets

with large amounts of energy in the form of energetic ion beams.

Delivering a focused energetic beam of light ions to a small fuel target is very difficult in

practice. Light ion beams, with their high charge to mass ratio and high current densities,

cannot propagate large distances in a vacuum without significant beam divergence. One

solution to this problem is to charge and current neutralize the beams so that their mutual

electrostatic repulsion and tendency to pinch is removed. This involves filling the channel

region (between the cathode, where the beam is produced, and the target) with an ionized

gas. One method of doing this, proposed by Yonas [9], is to fill the channel region with

a gas and strike a discharge along the beam path just before the beam travels through

the channel. The discharge produces an ionized gas plasma inside the channel as well as

a magnetic field which confines the beam. The ionized gas plasma charge neutralizes the

beam; it also current neutralizes the beam by reacting with a return current in a direction

opposite to the beam direction. Figure 1 shows a diagram of a typical light ion beam

channel. For a more detailed discussion of light ion beam plasma channels, see [8].

There are many competing physical processes which affect the ability of the plasma

channel to confine the ion beam. One very important effect is the initial state of the

channel when the ion beam is injected. A short time before beam injection into the plasma

channel, the plasma is created by discharging a laser beam along the ion beam path. This

1

Figure 1. Diagram of beam propagation in a typical light ion beam plasma channel.

2

produces a relatively hot ionized plasma, which is surrounded by a relatively cool neutral

gas. This region of ionized gas surrounding the beam is vital to the beam’s stability, since

it produces the charge and current neutralization. The behavior of this region is dominated

by the radiation of energy to the relatively cold gas on the periphery. It is the modeling

of this radiation transport that dominates the execution time of ion beam plasma channel

simulations.

Simulation of plasma channels and the propagation of ion beams through them are

executed on supercomputer architectures, and take full advantage of vector hardware on

these machines. These simulations are extremely expensive in terms of execution time.[8]

Yet, they are still limited by the accuracy one can obtain while maintaining reasonable

execution and response times1. Faster simulations are required for improved accuracy,

particularly in the radiation transport modeling. Since present solution techniques are

already fully vectorized, the only remaining answer to this problem is parallel processing.

The easiest way to speed up present codes would be to run them in parallel on the

CRAY Y/MP, since they are already vectorized for these machines. However, the parallel

speedup is limited to 8, the maximum number of processors on these machines. Also, even

though the response time would be much lower for a parallel code, the user would likely be

charged for the cumulative execution time on all the processors, plus some added overhead

cost for parallel processing. This leads us to propose another method of performing parallel

radiation transport simulations–one that takes advantage of fixed-cost computers and has

a much greater maximum potential speedup.

1Both execution time and response time are important. Execution time depends on the program being run
and can use up a time allocation too quickly. On the other hand, response time depends on the user load
of the computer being used, and can be much larger than the execution time; this makes large simulations
(long problem duration or high accuracy) impractical.

3

This method uses RISC workstations, each capable of around 1 MFLOP execution

speed, connected over a high speed local area network. These workstations have become

quite common in scientific research establishments, and are powerful tools for code devel-

opment, data visualization and of course serve as terminals that network to more powerful

computers. Yet, these workstations are often underutilized during the daytime, and are

seldom utilized at night. In addition, they are a source of fixed-cost computing, where

users are charged only for the purchase of the machine and not for actual execution time.

Finally, the UNIX operating system that runs on virtually all of the current RISC worksta-

tions already has networking software in place which is both relatively easy to use and very

powerful. This report will show that these workstations could be used to perform plasma

channel simulations in parallel with response times that could rival supercomputer response

times, for a much cheaper cost.

The remainder of this report is arranged as follows. Chapter 2 contains a brief de-

scription of the physics and derivation of the equations used to model radiation transport.

It then describes the numerical methods used to solve these equations. Chapters 3 and 4

outline the technique used to solve these equations in parallel, on a network of distributed

workstations, and the parallel software tools used for communication between the worksta-

tions. A prediction of the parallel performance is derived in Chapter 5, and compared to

actual results in Chapter 6. Chapter 7 contains conclusions and future directions for this

research project.

2. Radiation Hydrodynamics Equations

The governing equations for a nonrelativistic fluid in the frame of radiation hydrody-

namics (RHD) are described as [8]

∂ρ

∂t
+ ∇ · (ρu) = 0

4

∂

∂t
(ρu +

1

c2
F) + ∇p + ∇ · (ρuu + �P) = 0

∂

∂t
(ep) + ∇ · (q + (ep + p)u) =

∫ ∞

0
dν

∫
4π

dΩ(χI − η) (1)

where ep is plasma energy density, and F and �P are the radiation flux and pressure tensor.

A relation is needed between the pressure, density and temperature to close the system.

The pressure can be found using the equation of state relation

p = (1 + Z̄)nkT

where Z̄ is the average charge state, n is number density and T is temperature.

The state of the radiation field is found through the radiative transfer equation, which

is a mathematical statement of the conservation of photons and is given in the following

form [8]

(
1

c

∂

∂t
+ Ω̂ · ∇)I(r, t, Ω̂, ν) = η(r, t, Ω̂, ν) − χ(r, t, Ω̂, ν)I(r, t, Ω̂, ν) (2)

where I is the specific intensity, and η and χ are called emissivity and extinction coefficients,

and Ω̂ is the solid angle.

In cylindrical coordinates the multigroup photon conservation equation in one-dimensional

(radial) cylindrical coordinates becomes

1

c

∂

∂t
Ig(r, t, Ω̂) +

µ

r

∂

∂r
(rIg(r, t, Ω̂)) − 1

r

∂

∂ω
(ζIg(r, t, Ω̂)) = η̄g − χ̄gIg(r, t, Ω̂) (3)

where the streaming term [8] in the radiative transfer equation is replaced by

Ω̂ · ∇Ig =
µ

r

∂

∂r
(rIg) − 1

r

∂

∂ω
(ζIg). (4)

The group constants η̄g and χ̄g are given as

η̄g =
∫ νg

νg−1

dνην

5

and

χ̄g =

∫ νg
νg−1

χdν∫ νg

νg−1
dν

(5)

assuming that one has enough groups so that χ is constant for each group. Here µ, ω and

ζ are angular variables as shown in Figure 2 [8]. Cylindrical coordinates are complicated

by the fact that even in one spatial dimension two angular variables, ζ and ω, are needed

to describe the angular dependency of specific intensity I. As shown in Figure 2, ω is the

angle between r̂ and Ω̂ and µ and ζ are given as

µ = (1 − ς2)
1
2 cos ω

ζ = (1 − ς2)
1
2 sin ω. (6)

The numerical accuracy of these equations can be improved by solving them on an

adaptive grid. That is, the grid does not remain fixed, but moves in such a way as to

provide more grid points where the solution has larger gradients. Thus improved accuracy

is achieved with little penalty in execution time. The adaptive grid is varied as a function

of several dependent variables. This adaption is described using two variables, the mesh

metric rξ and the mesh velocity rτ . A transformation is done to convert the governing

equations to use these variables as the independent variables; for the radiation transport

equation, the result is [8]

1

c
[rrξIg]τ − 1

c
[rrτIg]ξ + µ[rIg]ξ − rξ[ζIg]ω − rrξ(η̄gBg − χ̄gIg) = 0. (7)

The numerical solution of this equation is more complicated than that of the continuity,

momentum, energy and magnetic field because of the degree of discretization it requires.

Even though it describes the radiation transport in only the radial direction, by assuming

symmetry in azimuthal and axial directions, it includes surprisingly two angular variables ζ

and µ besides the radial component r. Therefore more care must be taken in indexing the

6

Figure 2. Cylindrical space-angle coordinate system.

7

discrete directions so that the angular differencing formulas can be applied in a consistent

manner.

2.1. Discretization of the Radiation Transport Equation

Equation 7 must now be discretized in time, space and angle. This task is complicated

by the fact that even though we are solving the equations in one (radial) dimension, two

angular variables were introduced to completely describe the azimuthal symmetry of the

geometry. Using the Sn method to discretize the angles and standard finite difference

techniques to discretize the space and time coordinates, the final form of the radiation

transport equation is (see [8] for details)

1

c
{ (rrξIg;pq)

n+1
i − (rrξIg;pq)

n
i

∆τ
} − 1

c
{ (rrτIg;pq)

n+1
i+1/2 − (rrτIg;pq)

n+1
i−1/2 }

+µpq {(rIg;pq)
n+1
i+1/2 − (rIg;pq)

n+1
i−1/2 } +

2αp
q+1/2

wpq

(rξIg;pq)
n+1
i

−(αp
q+1/2 + αp

q−1/2)

wpq

(rξIg;p,q−1/2)
n+1
i − (rrξ(η̄gBg − χ̄gIg;pq))n+1

i = 0. (8)

Here, rξ and rτ are mesh metric and velocity and need to be known in advance for the

new timestep before solving this equation. Also p, q, α and wpq are all defined in terms of

the level-quadrature discrete ordinates as described in more detail by Yasar [8]. To solve

this equation, we then start at the outer boundary and march inward for decreasing values

of i. Once the solution for negative µpq is found, the boundary condition at the center of

the cylinder can be applied. If there is a reflective boundary (symmetry around the axis)

then the I values for positive µpq can be set by the negative µpq direction I values which

have been calculated by inward marching. Then we solve for positive µpq and increasing i.

8

2.2. Coupling of Radiation Transport With Hydrodynamics

The effect of radiation transport on the plasma hydrodynamics is represented by terms

for radiation energy, pressure and force in the equations for plasma energy and momentum

(Equation 1). Likewise, the plasma conditions affect the radiation transport and are used

in the calculation of plasma opacity and emissivity. In addition, this coupling between

the hydrodynamics and radiation transport equations replaces coupling that would nor-

mally exist between the radiation intensities at different energies. That is, under normal

conditions, the plasma radiative properties (opacity and emissivity) would depend on the

radiation intensities at all energies, which themselves depend on these radiative properties.

This dependence would make the radiation transport equation nonlinear and very difficult

to solve. This is the reason for the indirect coupling through the hydrodynamics equations.

The elimination of this dependence is also critical to solving the radiation transport calcu-

lation in parallel, since it makes the radiation intensities at each energy group completely

independent of each other over the course of one timestep.

3. Solution Technique on Distributed Processors

3.1. Using a Distributed Network of Workstations

Distributed parallel processing involves the generation of tasks, or processes, which

execute on different processors, or cpu’s. There is a certain amount of overhead associated

with starting up each task on an individual machine. In addition, these tasks must commu-

nicate with each other in order to coordinate the work to be done; in practice, this is called

synchronizing the tasks. On a distributed system of processors, tasks are synchronized using

message passing. These messages have their associated overhead as well. The overhead of

starting up multiple processes and passing messages in between them does not exist in a

9

serial solution on one processor, and can limit the maximum possible speedup obtainable

by a certain algorithm. It is important, then, to minimize this overhead.

The overhead required for starting up multiple processes cannot be eliminated. How-

ever, if the problem simulation time is long, the overall execution time will usually dominate

and this overhead will be insignificant.

On the other hand, the synchronization or message passing overhead cannot be made

insignificant by altering the simulation time. It must be minimized in order to maintain

speedup, since this is work that would not normally be done in a single processor solution.

For constant problem size, increasing the number of calculations done in each task would

reduce the number of tasks and therefore the total number of synchronizations required,

since sychronization typically occurs at the end of a task. This is called increasing the

granularity of a code.2 However, reducing the total number of tasks limits the number of

processors that can be used and reduces the maximum speedup obtainable. Thus, choos-

ing the granularity size is a tradeoff between reducing overhead while maintaining a large

maximum speedup.

In a later section, a relation will be derived between the granularity of a problem and

the maximum obtainable speedup. For now though, it will be assumed that increasing the

granularity of a code will be most important. The number of tasks will usually be equal to

the number of processors, to avoid the overhead of starting up extra processes.

3.2. Problem Partitioning

When considering an algorithm for parallel processing, one must isolate portions of

code that can be executed concurrently. These portions are then split up into tasks. This is

2The granularity is a relative measure of the size of a code’s tasks compared to the total amount of work
done by the code.

10

called partitioning the problem or algorithm. It is vital that as much of the total execution

time as possible be spent in these parallel sections, since parallel speedup is limited by a

well known relation called Amdahl’s Law:

Sp =
1

(1 − Fp) + Fp

Np

(9)

where Sp is the maxumum achievable speedup for a code with Fp, the fraction of time spent

executing parallel code, and Np, the number of processors used.

It was established in the previous chapter that the calculation of radiation intensities

for any group is completely independent of those for other groups, over the course of a

timestep.3 Without considering the solution cost of the hydrodynamic equations, it is clear

that virtually all of the execution time would be spent solving for new radiation intensities,

successively over energy groups and mesh points. Even the opacities and emissivities could

be calculated in parallel over energy groups (in practice they are obtained from a table

using plasma density and temperature as independent variables.) When the solution cost

of the hydrodynamics equations is included, the radiation transport solution still dominates

the execution time. Thus, the fraction of time spent in the radiation transport solution is

close to one, and Eqn. 9 shows large maximum speedups over a wide range of processors.

It is also important that the granularity be as large as possible, in order to minimize

synchronization overhead. This will determine the partitioning of work among the proces-

sors. The granularity of this problem is limited on the upper end by the total amount of

work required to solve the radiation transport equation for one timestep. It is limited on the

lower end by the calculations for one energy group, since dependencies between mesh points

and angles preclude using more than one processor per energy group. Since the calculations

for each energy group are independent of all other groups, each group calculation could be

3Between successive radiation transport solutions (one at each timestep), the hydrodynamics equations are
solved and the plasma conditions are then used to calculate the plasma opacities and emissivities, which
are used in the next transport solution.

11

a separate task. This limits the maximum number of processors to the number of energy

groups used in a calculation. If fewer processors are used, each task solves several groups,

to minimize synchronization overhead.

This topic will be discussed again in Chapter 5, when synchronization time and task

execution times will be estimated. These estimates will be used to predict the actual

speedups obtained for these calculations.

3.3. Control Flow

In a distributed system of processors (workstations, in this case), it is necessary to ex-

plicitly specify the control flow between the parallel processors as the calculation progresses.

This means specifying when and how parallel processes will be started, and how they will

synchronize with each other. For simplicity, we decided to use a host-slave paradigm, where

a host controlled the startup of the parallel processes on the remote machines and inter-

faced with the slaves, while the slaves performed all the actual computations. Data was

communicated between the host and the slaves using message passing. This message passing

could either be synchronous or asynchronous. In synchronous message passing, the sending

or receiving process blocks until the operation completes successfully, while asynchronous

message passing operations do not block. In this study, since messages were used to synchro-

nize the distributed processes, there had to be some form of synchronous message passing.

This came in the form of message receive operations. When processes attempted to receive

a message from other processes, the receive operation did not return until a message had

been received successfully. Message sending was assumed to be asynchronous.

As we stated in the previous section, each task calculated new radiation intensities for

several energy groups, over all mesh points and angles. This was done once for every problem

timestep, with synchronization between the host and slaves between timesteps. Since the

12

coupling with the hydro calculation was through the plasma conditions, each task was

synchronized at the beginning of each timestep by its need for input data. That is, in order to

find plasma opacities and emissivities for a new timestep, each task needed the new plasma

conditions at that timestep. The adaptive mesh parameters used in this solution method

were calculated after the hydro solution; therefore, the new mesh parameters were needed

by the slaves as input. Likewise, each task synchronized at the end of each timestep by

sending its results back to the host. These results were simply the moments of the radiation

intensity, which were used in the plasma energy and momentum equations (Equation 1) for

the next timestep.

The actual functions of the host and slave programs are shown in Table 1. It was

assumed that the hydro part of the calculation would be performed serially, by the host,

at the beginning of each problem timestep. When a “timestep” is mentioned below, it

means the radiation transport calculation for that problem timestep, not counting the

hydro calculation. Note that any of the workstations being used could act as the host.

There are several things to note from Table 1:

1. As mentioned above, the host and slaves were synchronized by their need for data,

the slaves at the beginning of each timestep and the host at the end of each timestep.

2. While the host was still sending input data to slaves, some slaves had already started

their calculations. This overlapped computation on some of the slaves with commu-

nication on the host. Allowing the first slave to begin computing before all the slaves

received data meant that the host had less time to wait before receiving results from

the first slave. Performing communication on the host in parallel with computation on

some slaves reduced the overall finish time of the calculation, and therefore improved

speedup.

13

3. The host took care of initializing the slaves and coordinating the work between them.

Thus, it could be substituted for the radiation transport module in the original hydro

code. This was a very simple way to use parallel processing in only the parts of the

code that need it.

Table 1. Pseudo code for the host and slaves.

Host Code

1. Initialize problem

2. Start slaves and estab. conn.

3. Send initial data to slaves

For each timestep, do:

4. Perform hydro calc. for this step

5. Send new timestep data to slaves

6. Initialize rad. moments to zero

7. Receive rad. moments from slaves

8. Sum partial rad. mom. into total mom.

Slave Code

1. Idle

2. Initialize data and connect with host

3. Receive initial data

For each timestep, do:

4. Idle

5. Receive new timestep data

6. Calc. new intensities and moments

7. Send radiation moments to host

8. Save new var’s into old var’s

The only remaining issue was how to terminate the slaves. This could be done by

passing a special flag to each slave (which was expecting input data for the next timestep),

telling that there would be no next timestep. The slaves, upon receiving that message,

simply terminate. This was the only change required in the hydro code outside the radiation

transport module, i.e. the radiation transport module had to be called one last time and

passed a special terminate flag.

14

4. Distributed Processing Tools

There were many distributed processing tools in the public domain at the time of

this project. The tools fell mainly into two categories: function libraries and distributed

operating systems. It was a fortunate situation to be able to choose between so many

different packages; however, it was important to decide which features were needed and

which weren’t. Unneeded features added overhead and, just as important, made packages

more difficult to use and maintain. Therefore, before considering all the various distributed

processing tools in the public domain, we considered it important to decide which features

were and were not important.

4.1. Necessary Features

The features we decided on were:

Remote Job Startup: Using the host slave paradigm, we required the ability for the host

to start up slave processes on remote machines.

Message Passing: The ability to pass floating point numbers between processes on remote

machines was crucial. The numbers had to be passed in machine independent form,

since we wanted to utilize different kinds of UNIX workstations in the department.

Portability: The majority of the UNIX workstations in the department were made by

either Sun Microsystems or Digital Equipment Corp. Thus, the software package had

to be portable to these architectures. It was desirable to have portability between

most other architectures as well, to add flexibility to the code.

Speed: The overhead of the message passing routines determined the minimum granu-

larity of the tasks in the program. If this overhead dominated the largest possible

granularity, it would not pay to run this calculation in parallel at all.

15

User-Friendliness: Last but certainly not least, the package had to be user friendly.

4.2. Unnecessary Features

In addition, there were several features commonly included with distributed processing

tools that we did not need. These features usually added overhead and complicated the

calling sequences for even the basic functions. These features were:

Fault Tolerance, Security: Although these features are extremely important in a large

computing environment, they also add lots of complexity and can give a false sense of

security. Since the purpose of this project was to investigate the possible advantages of

distributed computing and not to develop a production code, we did not consider the

issues of security and fault tolerance. When it is time to develop a production code,

however, we recommend strongly that the code be implemented with these issues in

mind.

Complicated Slave Control: Again because we chose not to develop a production code,

we did not need complete control over processes executing on remote processors. In

this case, this means that we would not use the program to kill off any runaway or

deadlocked processes. It was assumed that the user would do this. Note that this

could be a difficult thing if many (100) processors were used.

Dynamic Load Balancing: The situation could arise where one workstation became

overloaded due to other users on the same machine. While it would be desirable

to be able to decrease the amount of work required of such machines, building this

capability into the first version of the code was beyond the scope of this project. The

easiest way to implement this capability would be to have the host adjust the number

of energy groups given to each slave. However, it would be necessary to redistribute

16

the “old” intensity values; this would require a great deal of overhead, and might

outweigh the benefits of decreasing the work on the loaded workstation.

4.3. Available Public Domain Tools

In light of the requirements listed above, we examined the various options.

The distributed operating systems were capable of performing very high level functions,

such as dynamic load balancing, but the added features came at the price of overhead and

added complexity. They also required much more effort to install and maintain. Therefore,

they were ruled out from the start.

This left us with several very good function libraries. Among these were the ISIS

package from Carnegie Mellon University [1], the Cosmic Environment from Caltech [5],

and Sun RPC from Sun Microsystems [7]. These packages had some or all of the following

capabilities, bundled with their own calling syntax:

Remote Procedure Call: The ability for a program running on one workstation to call

a procedure (create a process) on a different machine.

Authentication, Authorization: The ability to award or deny access to users or users’

(remote) processes based on some authorization conditions.

Fault Tolerance: The ability to restart processes that are lost due to machine failures or

other reasons.

Process Grouping and Allocation: The user could create an arbitrary grouping of pro-

cessors and interact with them as a group.

Obviously these packages contained many features that we did not need. Including

some of the features such as process grouping and remote procedure call added complexity

17

to the calling sequence, and all these packages probably incurred overhead by providing these

functions. We decided therefore that we needed something simpler and more lightweight.

Fortunately, there were other alternatives. Although we did not find one package with

all the desired features, we were able to combine several easy to use packages that suited

our needs.

Unix Sockets and Utilities: Virtually all RISC workstations ran the UNIX operat-

ing system. Although there were several versions of UNIX, all versions included the Berkeley

Socket library, which was built on top of the TCP/IP network protocol. This library pro-

vided simple functions to establish connections (called sockets) between processes executing

on local or remote machines, and functions to pass messages between processes. Although

the sockets were a bit tricky to set up, passing messages through them used the same read

and write routines used to read and write disk files in the C programming language.

UNIX also provided a high level command for remote job execution (rsh). Using this

command the slave programs could be started up on remote machines; the host would then

be started up on the local machine as a normal executing program. All standard input and

output was routed through the local machine.

Using the UNIX library calls provided the best portability possible. Since many higher

level distributed processing tools were built on top of these library calls, they were also

the least expensive in terms of overhead. There were disadvantages, however. The socket

connections were difficult to set up, and there were no high level functions for passing

floating point numbers between different machines.

Switchboard Package: A process switchboard package [2], written at the University

of Wisconsin-Madison, provided a simple way for processes to establish socket connections

with each other. As the name implies, processes called up the switchboard (through a

18

function call), passing it their name and the name of the process with whom they wanted

to establish a connection. The function blocked until it found another process making an

analogous call, then passed back to each an integer to be used as a file desriptor in normal

UNIX read and write calls. This package was used only at the beginning of the program, to

initialize the socket connections. The switchboard process ran as a system process on each

workstation, and was easily installed.

XDR Package: We still did not have a way to pass machine independent floating point

numbers. A simple method would have been to translate the floating point numbers into

character strings (using FORTRAN internal files), then pass ASCII strings, retranslating

on the other end. However, this would have been prohibitively expensive, since every

floating point number would have required 5 bytes plus a byte for each digit of precision,

compared to the 4 bytes required to store the floating point number in the computer. A

solution was found that used the XDR (eXternal Data Representation) protocol [6]. This

was simply a protocol for passing machine independent data between computers. Functions

were provided to translate various data types to and from their external representation;

floating point was among those data types. This library of functions was installed on the

Sun and Dec workstations that were to be used for this project. It was not known what

other architectures had XDR implementations, but we assume that most of them did have

XDR functions.

Used together, the UNIX function libraries and commands and the Switchboard and

XDR packages provided the simple, portable functionality required of this project.

5. Performance Estimates

Before undertaking a project of this type, it is wise to estimate the maximum possible

speedup, to ensure that the problem is worth solving in parallel at all. This involves

19

benchmarking the communication routines and the computation speed, and using these to

form analytical speedup estimates.

5.1. Benchmarks

The overhead involved with starting up remote programs and establishing connections

between them is a one-time cost. This cost can be made insignificant to the total calcula-

tion time by increasing the size or duration of a calculation4. However, the message passing

overhead for each task is not constant but scales with problem size and duration. Thus,

we must ensure that the message passing overhead is insignificant compared to the compu-

tations done between synchronization points. This requires us to benchmark the message

passing and computation costs.

A program was written to measure the cost of passing floating point numbers between

workstations over the network. The cost of a round trip between two workstations was

measured, where each leg of the trip involved encoding the numbers, passing them to the

remote machine, and decoding the numbers. The cost was represented as the wall clock

time required to pass one floating point number to another machine. Measurements were

made between machines that were physically close to each other (one or two meters) and

between machines that were far away (several tens of meters.) The results are shown in

Figure 3.

It is obvious from this figure that there is some “magic” message size that occurs

between about 510 and 760 floating point numbers. After investigating further, we found

that messages in this range used one chunk of 2048 bytes to pass characters over the network,

plus a small chunk to pass the remaining bytes. Larger messages were using 3072 byte

chunks, while smaller messages were using 1024 byte chunks. While we did not investigate

4Within certain limits, of course. The longer calculation must be representative of those done with serial
codes, or at least must be useful for something other than demonstrating the benefits of parallel processing.

20

Figure 3. Message passing times for passing floating point numbers between workstations

at varying distance (within the same building.) Includes coding and decoding
time.

21

further, it is thought that either the particular machines and/or the network work best with

messages of 2048 byte size. This phenomenon was considered when writing the message

passing routines. That is, smaller messages were padded to bring them to the optimal size

of 2048 bytes.

Several simple loops were run on a Sun Sparcstation 1 to measure the computation cost

for each floating point operation. After subtracting the loop overhead cost, the cost for each

floating operation was 2.0 microseconds. Note that all the test programs were compiled in

debug mode, which produced code that ran at speeds below the benchmark speeds for these

machines.

5.2. Communication to Computation Ratio

It is worthwhile solving a program in parallel only if the computations in each task

dominate the overhead of running those tasks. We have already stated that the overhead of

starting the tasks and establishing the communications between them can be made insignif-

icant by increasing the problem duration. However, the synchronization overhead for each

task scales with problem duration just as the number of computations does. This overhead

must be estimated and compared to the computations done in each task.

The computation cost per task was estimated simply by counting up the floating point

operations done in each task, giving equal weight to all operations (add, subtract, multiply,

divide). All other operations (compare, assignment, etc.) were neglected. The communica-

tion required for each task was counted as well, in terms of how many numbers had to be

passed. Note that for estimating the actual communication cost, the fact that 2048 byte

messages were ideal was considered, since the code padded small messages to bring them

to 2048 bytes. The computation and communication costs are shown in Table 2.

22

The ratio of the communication to the computation speed is called the communication

to computation ratio, Rcc. This is just the ratio of the total communication and computation

costs shown in Table 2:

Rcc =
2 · max[(4 · np + 1), 511] · Scomm

[845 · Ng

NP
+ 1] · np · Scomp

, (10)

where Scomm = communication cost in seconds per floating point number passed, and

Scomp = computation cost in seconds per floating point operation. Rcc was calculated using

Eqn. 10 with np = 100 (a typical spatial mesh size) and for varying numbers of processors

NP and energy groups Ng. The time required to pass a floating point number, from Figure 3,

was taken to be 1.8e-5 s/floating point number, and the computation time was taken to be

2.0 microseconds. The results are shown in Table 3. This data shows that communication

cost becomes significant compared to computation cost only when each processor calculates

only one or two groups. Otherwise the computation cost dominates.

5.3. Speedup Estimates

The communication to computation ratio gave us an idea of whether it was worthwhile

to use parallel processing for our problem. Since that test had positive results, it was

instructive to form an estimate of the speedups that would be obtained when actually

running the problem in parallel. In our distributed computing paradigm where the host

and slave processes are running on distributed machines and communicating using system

library calls, the interaction with the host workstation and with the network would not be

deterministic, and could vary with network and workstation load from other users. Since

these variations would be difficult to quantify, estimates of the upper and lower bounds to

the speedup would be both easier and more meaningful.

Under favorable conditions, we assumed that all slaves would perform calculations at

the speed measured on a single user system. We also assumed that the messages were passed

23

Table 2. a) Computation cost in terms of floating point operations (each ad-

dition, subtraction, etc. given equal weight), and b) Communication
cost in terms of number of floating point numbers to pass. Here np =

number of spatial mesh points, NP = number of processors (worksta-
tions) used, and Ng = the TOTAL number of energy groups.

Operation Cost

Look up opacities and emissivities [11 + 13 · np] · Ng

NP

Calculate new rad intensities 684 · np · Ng

NP

Sum moments [161 · Ng

NP
+ 1] · np

Total computations [845 · Ng

NP
+ 1] · np

a) Computation cost

Operation Cost
Accept input from host max[(4 · np + 1), 511]

Pass output to host max[(4 · np), 511]

Total numbers communicated 2 · max[(4 · np + 1), 511]

b) Communication cost*

*For each vector of length n, the vector length is passed in an extra number. Thus the
length of the character string message for a vector of 511 numbers is (511 + 1) · 4 = 2048

bytes.

24

Table 3. Communication to computation ratio Rcc for np = 100, and a) Ng = 20,

b) Ng = 100.

a) Ng = 20 b) Ng = 100

NP Rcc NP Rcc

2 .011 2 .002

4 .022 4 .004

8 .044 8 .009
10 .054 10 .011

from the host to the slaves without delay, and that they all took the same amount of time.

The time required for a parallel solution for this case can be estimated using a timeline for

the host and the NP’th slave (see Figure 4). For every timestep, the host sends the initial

timestep data to each slave; from Table 3, the time in seconds required for each slave is

Tcomm = max[(4 · np + 1), 511] · Scomm. (11)

After receiving the input data, each slave immediately starts its calculations. The last slave

receives its message after NP ·Tcomm seconds. This slave performs its calculations in a time

of

Tcomp = [845 · Ng

NP
+ 1] · np · Scomp (12)

seconds. Meanwhile, the other slaves have finished their calculations and are passing results

back to the host. Since they all took the same amount of computation time, they should

all be finished passing data back to the host by the time the last slave is ready to pass

back results. This requires about Tcomm seconds. Therefore, the overall time required for a

25

Figure 4. Gantt chart of a) host process and b) NP’th process.

parallel computation on NP processors is

TNP = (NP + 1) · Tcomm + Tcomp . (13)

The serial time is just Equation 12 evaluated for NP = 1, without any communication time.

Therefore, the speedup on NP processors is

SNP =
Tcomp(NP = 1)

TNP

. (14)

Equation 14 was evaluated for various values of NP and Ng, with np = 100; the results are

shown in Table 4.

The estimated speedups in Table 4 represented upper bounds based on the most fa-

vorable conditions. Now we must form analogous estimates for unfavorable conditions. For

this case, we assumed that all communication had to be finished before slaves could start

performing computations for the timestep. We still assumed that each slave was allocated

all of the execution time on its particular workstation, and that startup time was insignifi-

cant. The computation and communication time for each slave in this case was the same as

26

Table 4. Upper bound estimated speedups for np = 100, and a) Ng = 20, b)

Ng = 100.

a) Ng = 20 b) Ng = 100

NP SNP Proc Eff (%) NP SNP Proc Eff (%)

2 1.97 98.4 2 1.99 99.7

4 3.79 94.8 4 3.96 98.9

8 6.69 83.6 8 7.70 96.2
10 7.69 76.9 10 9.43 94.3

for the favorable case. The order of when functions were done was different, however. In-

stead of overlapping communication from host to slave with computations being performed

in other slaves, no overlap was allowed. Slaves were assumed to start computing when all

communication from the host was finished. Since each slave was given the same amount of

computations, the slaves all finished at the same time, then waited to pass the results back

to the host. The parallel time is just increased by the time required to accept results back

from all slaves instead of just the last one. So, the estimated speedup would be

SNP =
Tcomp(NP = 1)

(2 · NP) · Tcomm + Tcomp
. (15)

This expression was evaluated for the conditions in Table 4; the results are in Table 5.

These lower bounds on estimated speedup are still quite good, especially for a large

number of energy groups. Figures 5 and 6 summarize the information in Tables 4 and 5, for

Ng = 20 and Ng = 100, respectively. The upper and lower bounds on estimated speedup

are very close together, especially for Ng = 100; this is because the communication time

was very small and did not affect the overall calculation time very much.

27

Figure 5. Upper and lower bounds for estimated speedup, for Ng = 20.

28

Figure 6. Upper and lower bounds for estimated speedup, for Ng = 100.

29

Table 5. Lower bound estimated speedups for np = 100, and a) Ng = 20, b)

Ng = 100.

a) Ng = 20 b) Ng = 100

NP SNP Proc Eff (%) NP SNP Proc Eff (%)

2 1.96 97.9 2 1.99 99.6

4 3.68 92.0 4 3.93 98.3

8 5.93 74.1 8 7.48 93.5
10 6.47 64.7 10 9.02 90.2

6. Results

For simplicity, the radiation transport calculation was not implemented within a full

hydro calculation, but was run with a driver code instead. This code passed new timestep

values of mesh points and plasma conditions to the radiation transport calculation, as if a

hydro calculation were actually being performed. A simple steady state problem was used

for all the timing tests, where plasma hydrodynamic conditions and mesh point locations

were kept constant. The full radiation transport calculation was still performed for each

timestep.

A serial version of the driver program was written that simply called the slave code and

passed it data through an argument list instead of using messages. The slave performed

calculations for all the groups instead of just a subset of groups. This code ran on one

workstation (processor) and served as a basis of comparison for the parallel version.

The sample problem used for timing tests performed calculations for 20 energy groups.

Although we chose 20 energy groups because of limited group opacity data, we note that

30

this severely limited the number of processors we could use and the granularity size that we

could attain. Since the computation cost scaled with the granularity and the communication

cost did not, having smaller granularity increased our communication to computation ratio.

This reduced the maximum speedups attained with the parallel code.

6.1. Parallel Speedup For Various Problem Durations

Since we did not attempt to predict the overhead of starting up parallel processes on

remote machines, it was necessary to measure the speedup for various problem durations.

As the problem duration was increased, the one-time startup cost became insignificant

and the measured speedup stopped changing. The goal was to find the minimum problem

duration required to achieve as close as possible to asymptotic speedup. Problem duration

was measured in terms of the number of timesteps. The length of the timesteps was not

important, since it had no effect on the number of calculations done during each timestep5.

Calculations were run for 1, 10, 100 and 1000 timesteps, on two and four processors.

The parallel speedups for these calculations are shown in Figure 7. This figure shows

that for two processors, the speedup leveled off very quickly, so that 100 timestep calcula-

tions were adequate for obtaining asymptotic speedup results. In the four processor case,

however, this was not the case. The speedup did not level off below 100 timesteps, and even

increased somewhat between 100 and 1000 timesteps. Therefore, speedup measurements

for four processors had to be made on calculations of 1000 timesteps or more.

5This is in contrast to iterative codes, whose accuracy often depends on the timestep length. Increasing
the timestep in these codes would cause the calculations to be less accurate, which would require more
iterations for an acceptable solution.

31

Figure 7. Measured speedups for two and four processor calculations, with respect to prob-
lem duration; duration is specified by the number of timesteps calculated in the

problem.

32

Figure 8. Measured speedups for two and four processor calculations, for Ng = 20.

6.2. Measured Parallel Speedup and Processor Efficiency

In Figures 8 and 9 the parallel speedup and parallel efficiency (speedup divided by the

number of processors) are plotted with respect to the number of processors. Here we can

see that the speedups were not as good as we predicted in Chapter 5. However, they were

still very acceptable. This shows that calculations run on 4 workstations in parallel could

still run significantly faster than those run in serial fashion on one workstation.

33

Figure 9. Measured processor efficiencies for two and four processor calculations, for Ng =
20.

34

6.3. Analysis

There were several possible reasons for the measured speedups being lower than those

predicted in the last chapter:

1. The slaves running on remote machines may not have been getting exclusive access to

the remote machines’ resources. When a serial program is run on a local workstation,

the user has much more control over the local system load, since much of the normal

load is due to terminal interactions. On remote systems, there may be terminal

interactions taking place that are beyond our control. Since these tests were performed

mainly during daytime hours, there is a good chance that this was happening.

2. Normal network or remote machine activity may have delayed the startup of remote

jobs. This would be a non-deterministic effect, and could cause the startup time to

be significant in some cases.

3. Non-representative prediction of message passing benchmark times or poor behavior

of the network could cause differences between the predicted and actual speedups.

To improve the measured speedup, there were several modifications we could make.

The easiest way to improve the speedup would be to perform the calculation for more

energy groups. Since the computation time scales with Ng and the communication time

does not, this would improve our communication to computation ratio, and would therefore

increase speedup. This would improve the accuracy of the radiation transport calculations

as well.

As the program was written, the host polled the slaves for results in the order that

the slaves were started. This assumed that all slaves required exactly the same time for

computations. If this was not the case, the host could end up waiting for a message from

35

one slave, while there were other messages to be received. Using routines found in the UNIX

socket library, one could instead poll several socket connections, and find one that contained

an incoming message [2]. That way, the host could accept messages from the slaves on a

first come first served basis. This would allow the host to accept messages from slaves that

were ready to send them, while the remaining slaves completed their computations.

If we adhered strictly to the host slave paradigm, as we did up to this point, the host

performed all of the communication with the slaves. This could cause the host to be a

bottleneck, especially for large numbers of slaves. This problem could be eliminated by

allowing the slaves to take part in the message passing to other slaves. Instead of the

host passing the initial data to each slave in succession for each timestep, it could pass

the data to a subset of slaves. While the host was still passing the input data to other

slaves, the first slaves to receive data could pass it to other slaves, and so on. This is called

broadcasting the message, and would reduce the communication time from a scale of NP to

a scale of log2(NP). This would reduce the communication time by a factor of two for four

processors, almost three for 8 processors. An analogous method could be used for gathering

results, with the slaves accumulating the summed moments along the way. The moment

summations could be performed in parallel as well, reducing the computation time of the

host process as well.

We did not investigate what was really being done inside the switchboard package, to

see whether the package was setting up the optimal socket configuration for our problem.

With a little work, the Berkeley socket routines could be called directly from our code. This

would reduce overhead slightly and would give us more control over the socket configuration.

In addition, it would no longer be necessary to install and maintain the switchboard software

on each machine used by this program.

36

6.4. Improved Speedup Estimates

It is possible that the message passing benchmark program was too simple to accurately

represent the message passing behavior in the radiation transport calculation. If this was

true, we might be able to more accurately predict the speedups using a different value for

the floating point message passing time. The most obvious value we could use could be

obtained from the curve in Figure 3. If the curve outside the “magic” range between 511

and 767 numbers was continued inside that “magic range”, we could use the value on that

curve for 511 floating point numbers. We used this value in Equations 13 and 15 to obtain

new speedup estimates; the results are shown in Figure 10, along with the old and measured

speedups, for two and four processors.

We see that the new estimated speedups were below the measured speedups, by about

the same amount as the old estimates were above the measured speedups. This shows that

the actual floating point message passing times were probably somewhere in between the

values used in the old and new speedup estimates.

7. Conclusions

The data in Chapter 6 showed that a distributed network of workstations could indeed

be used to perform parallel calculations, given a suitable communication to computation

ratio for the problem being solved. However, it also showed the sensitivity of these speedups

to the cost of passing messages between workstations over the network. Using more than

four processors would increase the communication to computation ratio, resulting in lower

parallel efficiencies. The existing code would have to be improved before being suitable

to run on more than eight processors or so. It would be most important to implement

the second and third improvements discussed in Section 6.3. For this calculation it would

37

Figure 10. New estimated speedups using a larger floating point message passing time,
compared to old estimated and measured speedups, for two and four processors.

38

also be necessary to increase the number of energy groups, since this severely limited the

granularity size and the maximum number of processors.

This research project could proceed in several directions from here. The first thing that

would have to be done is to generate opacity data for a larger number of energy groups,

and to perform timing studies of the code using that data. That would give better speedup

results because of larger granularity, and would allow us to perform tests on more than four

processors. The program could then use several different workstation architectures. This

was not done in the timing tests in this report, but would be useful to demonstrate the

portability of the code.

Since the code was written for a distributed network of processors, it could easily be

ported to a more tightly coupled distributed processor machine, such as the Intel hyper-

cube. These machines have message passing routines similar to those written for this code,

and of course they have routines for starting up jobs on slave processors [4]. Benchmarks

on this machine and on a similar machine, the NCUBE hypercube, have shown the mes-

sage passing time to be approximately ten microseconds per floating point number and the

computation time to be 17-40 microseconds per floating point operation [3]. This would

give a communication to computation speed ratio of 0.35, compared to the ratio of 10-100

attained with the network of workstations. This would substantially increase the parallel

speedup on these machines. They usually contain 100 - 1000 processors, and so the max-

imum achievable speedup would also be much higher on these machines, given a problem

large enough to keep all the processors busy.

Finally, if this code was to be used for production calculations on the network of

workstations, it would have to be more robust. The code would have to be responsible for

shutting down runaway slaves, and would have to be able to restart failed calculations.

39

The principles used in this report to determine the suitability of the radiation transport

problem to parallel processing can be used on any code with a similar structure, where

most of the run time is spent in loop-type computation and where the loop iterations are

independent. The overriding issue for these codes is the communication to computation

ratio of the parallel tasks. If there are not enough computations done in tasks to dominate

the time required for communication, the tasks simply will not be suitable for running in

parallel.

The use of a distributed network of workstations to perform large engineering cal-

culations has the potential for large cost savings. The cost of calculations performed on

workstations is not proportional to the amount of execution time used; in fact, there is

relatively little cost after the initial purchase. This is in contrast to large computing cen-

ters, which recover costs based on cpu usage. Therefore it is to everybody’s advantage to

get all they can out of workstations that would otherwise stand idle; this report has shown

how this can be done. Considering the declining cost of workstations and their recent pro-

liferation into most research institutions, workstations will likely become an alternative to

supercomputers for performing scientific computing.

References

[1] K. Birman, R. Cooper, T. Joseph, K. Kane and F. Schmuck, “The ISIS project,” The

ISIS System Manual, Version 1.1, (1989).

[2] D. Draheim, B.P. Miller, S. Snyder, “A Reliable and Secure UNIX Connection Service”,

Proceedings of the 6th Symposium on Reliability in Distributed Software and Database

Systems, Williamsburg, VA (March, 1987).

40

[3] T. H. Dunigan, “Performance of Three Hypercubes”, ORNL-TM-10400, Oak Ridge

National Lab, TN (May 1987).

[4] Intel Corp., Intel Hypercube Fortran Programmer’s Manual, 1989.

[5] Charles L. Seitz, Jakov Seizovic and Wen-King Su, “The C Programmer’s Abbreviated

Guide to Multicomputer Programming”, Caltech Computer Science Technical Report

Caltech-CS-TR-88-1, Jan. 1988.

[6] Sun Microsystems, External Data Representation Protocol Specification, Release 2.0,

1989.

[7] Sun Microsystems, Sun Remote Procedure Call Library, 1989.

[8] Osman Yasar, “A Computational Model For Z-Pinch Plasma Channels”, University of

Wisconsin Fusion Technology Institute Report UWFDM-823, Feb. 1990.

[9] G. Yonas, “Particle Beam Fusion”, Bull. Am. Phys. Soc. 21, 1972, p. 1102.

41

