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Abstract

A one-dimensional adaptive-grid finite differencing computer code is presented for radiation-

magnetohydrodynamics (R-MHD) simulations of fusion plasmas. The governing equations consist

of the continuity, momentum, and energy equations of a non-relativistic, radiative and magnetized

fluid plus field-intensity equations of radiation and magnetic fields. The equations are solved on

an adaptive grid that dynamically moves the points at every timestep to follow steep gradients

in physical quantities, such as temperature, mass density, pressure and momentum. The fluid

equations are solved explicitly and the timestep control is based on the CFL condition for fluid

flow. The radiation and magnetic field equations are solved implicitly because the timestep set

by fluid flow is several orders of magnitude larger than the timescale for radiation and magnetic

fields.



PROGRAM SUMMARY

Title of program: R-MHD

Catalogue number:

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer: CRAY X-MP and Y-MP: Installation: San Diego Supercomputer Center, San

Diego, CA 92186-9784.

Operating System: UNIX, UNICOS (CRAY Operating System).

Programming language used: FORTRAN 77

Number of bits in a word: 64

Peripherals used: line printer, disk files, tektronix terminal.

No. of lines in combined program and test deck: 6020

Keywords: Adaptive grid, equidistribution principle, nuclear fusion, plasmas, inertial con-

finement fusion, radiation hydrodynamics, magnetohydrodynamics.

Nature of physical problem

Radiation processes and radiation transport play an important role in inertial confinement

fusion (ICF) plasmas. The dynamics of target implosion, and of the plasma channels can

be strongly affected by radiative transfer. The coupling between the plasma, radiation and

magnetic fields in light ion beam transport channels must be accurately determined to pre-

dict and interpret the outcome of ICF experiments.

Method of solution

The problem involves continuity, momentum and energy equations for the plasma, and field

intensity equations for radiation and magnetic fields. These governing equations are solved

on an adaptive grid system where mesh points follow dynamically the steep gradients to

provide better resolution. The adaptive mesh generation is based on the equidistribution
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principle and an explicit procedure is followed to update the mesh distribution in time.

The plasma equations are also solved explicitly using donor-cell spatial differencing. The

timestep control is done through the CFL condition and a constraint on the time-rate change

of plasma energy. Since the timestep is chosen to be on the order of the plasma timescale,

the radiation and magnetic field equations are solved implicitly considering the fact that

they would have required a smaller timestep if they were solved explicitly. The radiation

transfer equation describes how photons travel in the medium, thus it requires angular

dependent solution of the specific intensity. The multigroup radiative transfer equation is

solved for discrete angles and energy groups which makes the solution a detailed one but

a necessary one because any approximation (e.g., diffusion) to a shortcut solution might

have sacrificed the accuracy of the results. The discrete ordinate SN method with many

number of discrete angles would be very close to the real answer. Since the equation is also

discretized for the photon energy groups, there is a need for groupwise opacity data which

is found from an atomic physics code [1] published earlier. The equation of state data for

plasma equations is also obtained from this code.

Restrictions on the complexity of the problem

Our radiation-magnetohydrodynamics (R-MHD) code is one-dimensional, assuming symme-

try in all other directions. The plasma is considered in the magnetohydrodynamics (MHD)

frame, thus it is assumed non-relativistic and it involves low frequencies. Although the code

was originially designed for inertial confinement fusion plasmas, it can be applied to any

compressible flow. When applied to plasmas, it should be noted that ions and electrons

are assumed to have the same temperature. Regarding the numerics, the physical problem

is solved on an adaptive grid system that is generated through an explicit procedure. The

resolution via mesh refinement could be as low as a factor of 10−2 − 10−4 of the initial uni-

form mesh spacing. The discrete ordinate method used to solve the radiation field intensity

is based on S6, although one can try to modify this for a higher number of angles.
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Typical running time

The CPU time largely depends on the simulation time and the number of photon energy

groups. For a run with 20 energy groups and a simulation time of 2 µs, the code takes 3−5

minutes on CRAY Y-MP. This time may go up to 30 − 40 minutes for 200 energy groups.

The hydrodynamic part does not seem to be a problem timewise, but the detailed solution

of the radiation field is, when used with a large number of groups.

Unusual features of the problem

The R-MHD code involves a great deal of physics including the mesh adaptivity scheme,

fluid dynamics, particle transport and radiation-magnetohydrodynamics. It is written in

FORTRAN 77 and best handled in a UNIX environment with make utilities.

References

1. J. J. MacFarlane, Comput. Phys. Commun. 56 (1989) 259-278.
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LONG WRITE-UP

1. Introduction

Radiation processes and radiation transport play an important role in inertial confine-

ment fusion (ICF). The dynamics of target implosions can be strongly affected by radiative

transfer. The indirect drive approach for target design purposely converts the driver beam

energy in the form of laser light or ion beams to x-rays and uses these x-rays to drive the

implosion. A background gas in the target chamber is important for transporting light

ion beams from the final driver element to the target. Light ion beams with their high

charge to mass ratio and high current densities, cannot propagate over large distances in a

vacuum without significant beam divergence. One solution to this [1], is to fill the standoff

region with a gas and strike a discharge along the path from the diode to the target. This

gas is preconditioned by passing a current through it to form a long magnetized plasma

between the ion diode and the target to confine the ion beams. Radiative transfer can play

an important role during the formation of this z-discharge plasma channel. It certainly

plays a role as an ion beam passes through and heats the plasma channel. The gas in the

target chamber also interacts with the exploding target, creating a so-called microfireball.

These hot and dense plasmas emit and reabsorb radiation at soft x-ray energies (1-1000

eV). The radiation represents a significant energy transfer mechanism in the plasma, thus

the coupling between the plasma and the radiation field must be accurately determined to

predict and interpret the outcome of ICF experiments.

Previous studies involved modeling these target chamber problems on a lagrangian

grid system with the radiative transfer represented by a diffusion equation [2, 3, 4]. The

plasma hydrodynamics in both ion beam transport channels and ICF target explosions

has characteristics of steep gradients and shock structures that need to be handled with
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a robust computational grid system. The advancements made in this paper and in Ref.

[5] are solving the governing equations on an adaptive grid system and representing the

radiative transfer without making the diffusion approximation. In the following sections,

we describe our adaptive-grid radiation-magnetohydrodynamics (R-MHD) computer code

that satisfies these needs.

2. Radiation-Magnetohydrodynamics Equations

We analyze only the radial motion of the plasma and thus assume a one dimensional

model with symmetry in all other dimensions. The equations are presented for curvilinear

as well as cartesian coordinates. The problem of ion beam transport channels is in cylindri-

cal geometry whereas the target explosion problem is studied in spherical geometry. The

radiation hydrodynamics equations are written in the laboratory frame and then transferred

to the adaptive grid frame. They are solved along with a set of grid equations that describes

how the grid system evolves in time. An explicit scheme is used for grid generation to pre-

vent implicit coupling between the physical equations and the grid system. A conservative

differencing scheme based on the control volume approach is chosen to retain the conserva-

tive nature of the governing equations. The numerical method to discretize the equations

is a first-order upwind differencing scheme (donor cell). The dissipative characteristics of

the upwind differencing are minimized with grid adaptation.

The governing equations for a nonrelativistic fluid in the frame of radiation magneto-

hydrodynamics (R-MHD) are described as [6, 7]

∂ρ

∂t
+ ∇ · (ρu) = 0

∂

∂t
(ρu +

1

c2
F) + ∇p + ∇ · (ρuu + �P) =

J ×B

c
∂

∂t
(ep + eR) + ∇ · (q + (ep + p)u + F) = J ·E (1)
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where ep and eR are energy density for plasma and radiation, F and �P are the radiation

flux and pressure tensor. Also J · E is the Joule heating term and is equal to E′ · J′, the

rate of Joulean dissipation in fluid frame, plus u · (J×B
c

), the rate at which the force J×B
c

does work. A relation is needed between the pressure, density and temperature to close the

system. This relation can be found using the equation of state

p = (1 + Z̄)nkT

where Z̄ is the average charge state, n is number density and T is temperature.

The state of the radiation field and the magnetic field are found through the radia-

tive transfer equation, the Maxwell’s equations and Ohm’s law respectively. The radiative

transfer equation is a mathematical statement of the conservation of photons and is given

in the following form [8]

(
1

c

∂

∂t
+ Ω̂ · ∇)I(r, t, Ω̂, ν) = η(r, t, Ω̂, ν) − χ(r, t, Ω̂, ν)I(r, t, Ω̂, ν) (2)

where I is specific intensity, η and χ are called emissivity and extinction coefficients, and Ω̂

is the directional unit vector. The space-time evolution of the magnetic field in the MHD

approximation is given as

∂B

∂t
= ∇× (u× B) −∇× (

c2

4πσ
∇×B) (3)

where σ is the electrical conductivity of the plasma. The equation describes how the mag-

netic field lines are convected and diffused in the non-relativistic and low-frequency plasma

fluid.

In cylindrical coordinates, particularly for the z-pinch plasma problem, the radial de-

pendence of an azimuthal magnetic field interacting with an axial current becomes

1

c

∂B

∂t
− ∂

∂r
(
ηc

4π

1

r

∂

∂r
(rB)) +

1

c

∂

∂r
(uB) = − ∂

∂r
(ηJb) . (4)
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Here Jb is the ion beam current density flowing in the channel, and η is the plasma

resistivity. Also the multigroup photon conservation equation in one-dimensional (radial)

cylindrical coordinates becomes

1

c

∂

∂t
Ig(r, t, Ω̂) +

µ

r

∂

∂r
(rIg(r, t, Ω̂)) − 1

r

∂

∂ω
(ζIg(r, t, Ω̂)) = ηg − χ̄gIg(r, t, Ω̂) (5)

where we have replaced the streaming term [9] in the radiative transfer equation by

Ω̂ · ∇Ig =
µ

r

∂

∂r
(rIg) − 1

r

∂

∂ω
(ζIg). (6)

Cylindrical coordinates are complicated by the fact that even in one spatial dimension

two angular variables, ζ and ω, are needed to describe the angular dependency of specific

intensity I. ω is the angle between r̂ and Ω̂, and µ and ζ are the components of Ω̂ in r̂

and θ̂ directions. The angular discretization is done with a level-symmetric quadrature set

described in Ref. [10].

The group constants ηg and χ̄g are given as

ηg =
∫ νg

νg−1

ηνdν

and

χ̄g =

∫ νg
νg−1

χdν∫ νg
νg−1

dν
(7)

assuming that one has enough groups so that χ is nearly constant for each group. The

radiation and material properties on the RHS of equation (5) are being measured in the

inertial (lab) frame and they are assumed to be isotropic. Actually, there is a need to account

for the velocity-dependence of these terms but this velocity-dependence is on the order of

O(v/c) and the authors believe the velocity-induced frequency shifts are ignorable for the

problems of interest. The alternative is to use radiation/material properties evaluated in

the comoving frame [8].
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3. Equations on Adaptive Grid System

The grid generation is based on the equidistribution principle [11, 12]

∆x · W (x) = constant

which states that at every timestep in the simulations the mesh points are arranged such

that this product remains constant. Here, ∆x is the cell size and W is a cell-averaged

weight function. This principle leads to an explicit grid generation technique that has

some advantages over an implicit one. It is easy to apply and easy to control such a mesh

distribution. Mesh smoothness is simple and robust. In the present work, the smoothing is

done on the weight function W , which indeed results in a smooth grid distribution.

Governing partial differential equations for fluid systems are generally described using

a laboratory frame of reference. They can be transformed to a more general reference

frame that reduces to the eulerian and lagrangian frames when the reference velocity is

zero or equal to the local fluid velocity. In order to transfer the governing equations from

(x, t) to such a moving frame (adaptive system; ξ,τ), we use a variable transformation

as τ = t, ξ = ξ(x, t), thus ∂
∂t

= ∂
∂τ

− xτ
∂
∂x

and ∂
∂x

= 1
xξ

∂
∂ξ

, or in another representation

[ ]t = [ ]τ − xτ [ ]x, [ ]x = 1
xξ

[ ]ξ.

Transforming the R-MHD equations to the adaptive frame, we reach the following

one-dimensional adaptive fluid equations.

Continuity

[xξx
δρ]τ + [xδρ(u − xτ )]ξ = 0 ,

Momentum

[xξx
δ(ρu + c−2F )]τ + [xδρu(u − xτ )]ξ − [xδxτc

−2F ]ξ + xδ[p]ξ + [xδP ]ξ = xδxξFm ,
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Energy

[xξx
δ(ep + eR)]τ + [xδep(u − xτ )]ξ − [xδxτeR]ξ + [xδ(pu + q + F )]ξ = xδxξEm (8)

where δ = 0, 1, 2 for planar, cylindrical and spherical coordinates. Here Fm and Em are the

electromagnetic force and energy for the chosen coordinate system. Also xξ and xτ are the

mesh metric (jacobian) and speed, and we must estimate these mesh quantities before any

attempt to solve the transformed equations. One also has to determine what the weight

function should be. Many forms of weight function can be postulated. One that proves to

be both simple and robust is the following

W = 1 + αa | Ax | +βa | Axx | +αb | Bx | +βb | Bxx | (9)

where A and B are some normalized physical quantity such as velocity, pressure, mass,

density, momentum density or temperature. Also Ax, Axx, Bx, and Bxx are the first and

second derivatives of A and B with respect to the spatial coordinate x.

It is important to note that the identity

[xδxξ]τ = [xδxτ ]ξ

must be preserved in the difference equations in order for them to preserve the conservative

form. That is, when differenced equations are solved on the discretized coordinates, care

should be taken to provide this identity relation which also introduces a formula to calculate

the grid speed while the grid points move from xn to xn+1. Under the control volume

approach, the identity equation is discretized as follows

(xδxξ)
n+1
i − (xδxξ)

n
i

∆τ
= (xδxτ )

n
i+ 1

2
− (xδxτ )

n
i− 1

2

where indices i and i ∓ 1
2

represent the i th cell’s center and edge values. ξ is chosen to

be the successive number of mesh points. Therefore ∆ξ is equal to 1. For this difference
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equation to conserve the involved quantities, the cell edge velocities should be given as

follows

(xτ )
n
i∓ 1

2
=

(xδ)n+1
i xn+1

i∓ 1
2

− xn
i∓ 1

2

(xδ)n
i

(xδ)n
i∓ 1

2

∆τ
.

4. Conservation of Energy

The total energy of the whole system is considered to be a combination of plasma,

radiation and electromagnetic energies whose time dependent evolutions are given as the

following:

Plasma Energy:

∂

∂t
ep + ∇ · (q + (ep + p)u) = Jp ·E + Scol−

∫ ∞

0
dν

∫
4π

dΩ[η(r, t, Ω̂, ν) + χ(r, t, Ω̂, ν)I(r, t, Ω̂, ν)] (10)

Radiative Energy:

∂

∂t
eR + ∇ · F =

∫ ∞

0
dν

∫
4π

dΩ[η(r, t, Ω̂, ν) − χ(r, t, Ω̂, ν)I(r, t, Ω̂, ν)] (11)

Electromagnetic Energy:

∂

∂t
eem + ∇ · S = −Jnet ·E (12)

The total energy change rate is then

∂

∂t
et + ∇ · (q + (ep + p)u + F + S) = Jp · E + Scol − Jnet · E + Scol (13)
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where S = c
4π

(E × B) is the electromagnetic energy flux. Also here Jnet = Jp + Jother.

These equations are not necessarily solved at each time step except for the plasma

energy equation. Radiation energy and electromagnetic energies are controlled by the ra-

diative transfer and magnetic diffusion equations. These energy equations, however, provide

a means to check the solution of those that are solved through the adaptive mesh technique.

Based on the solutions we calculate what the system energy is, then we also calculate the

energies through the energy equations; actually we solve them too to a first degree ap-

proximation. Thus we compare the solution of our complex equations with rather simple

equations to check for consistency. The simulations done so far have shown energy conser-

vations of 95 – 98 %.

Conservation of Magnetic Flux and Current:

In addition to the energy conservation equations, the magnetic flux conservation check

also provides an indication of how accurately the magnetic diffusion is being solved. To get

an expression for a numerical check on magnetic flux we will integrate Eq. (4) over space

and time. That is,

∫ rmax

0
dr′

∫ t

0
dt′

1

c

∂B

∂t
=

∫ rmax

0
dr′

∫ t

0
dt′

∂

∂r
{ ηc

4π

1

r

∂

∂r
(rB) − 1

c
uB − ηJb}.

This indeed is Faraday’s Law and becomes

1

c
[φ(t) − φ(0)] =

∫ t

0
[El(rmax, t) − El(0, t)] (14)

where φ =
∫ rmax
0 dr′B(r′, t), El = Ef − 1

c
uB. In finite difference form,

1

c
(φn+1 − φ0) = εn+1

where εn+1 = εn + ∆tn(En+1
imax − En+1

i=1 ).

The current conservation check is a comparison between the discharge current Id and

the current calculated by integrating the net current density Jnet. In other words, the
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current conservation check compares the discharge current In
d , as obtained either from the

current equation solver or the user-specified current, and the following one that is calculated

through the current density Jn
i as

In
d = 2π

∫ rmax

0
Jnetr dr ∼= 2π

imax∑
i=1

Jn
i rn

i ∆rn
i . (15)

5. The Equation of State and Opacity Tables

The solution of governing equations in previous sections must be supported with some

tabular data for average charge state, specific internal energy, and emission and extinction

coefficients; all being dependent on the temperature and the density of the plasma. The

tables are generated by the atomic physics computer code IONMIX [13] that takes into

account both LTE and non-LTE conditions. A logarithmic scale is used to tabulate the

temperature and density. The tabular values for specific energy as a function of temperature

and density, ε = f(ρ, T ), are converted to a table for temperature as a function of the

specific internal energy and density T = f(ρ, ε). This is because the scheme solves an

energy equation for the plasma rather than a temperature equation as is done in many

hydrodynamics codes. Thus, knowing the total energy and the hydro energy one can deduce

the specific internal energy that is used to predict the plasma temperature.

6. Time Step Control

Among the governing equations, continuity, momentum and energy equations are solved

with an explicit scheme whereas the magnetic diffusion and radiative transfer are solved

with an implicit scheme. The time step, ∆t, for the simulations is calculated as

∆t = min(∆tCFL, ∆tjh, ∆tbc, ∆tre, ∆tra)

12



where the CFL condition follows as

CFL = (| u | +a)
∆tCFL

∆x
≤ 1

and ∆tjh, ∆tbc, ∆tre, ∆tra are calculated from a constraint on the allowed change in plasma

energy (ep) due to joule heating, beam-collisional energy, radiation emission and absorption

for a given time step. That is, we assume

∆ti ∆ėp,i = 0.1ep

where i represents the components above.

The differencing formulation describes the solution at a mesh point in terms of the

solutions at neighboring points. Hence, in order for the solutions to be stable and error-free

(as much as possible), we do not want any information to move more than one cell at a

time step. This is a stability condition for the explicitly solved continuity, momentum and

energy equations. For most of the simulations ∆t is on the order of nanoseconds and this

is small compared to the timescale of hydromotion but large compared to the magnetic

diffusion and radiative transfer timescales. An attempt to work with smaller time steps

would certainly make the simulations more costly and lengthy. Therefore we have chosen

to solve magnetic and radiation equations with an implicit scheme that does not have any

time constraint.

7. Subroutines

ADAPT Performs the adaptive mesh logic to obtain the new mesh locations, xn+1
k , based

on the Dwyer equidistribution method.

BFIELD Calculates the magnetic field through the magnetic field diffusion equation. It
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uses an implicit time differencing along with a three point spatial differencing, and thus it

solves a tridiagonal system. Also found here are the current density and the electric fields.

BOUND Sets up the boundary conditions at every time step.

COORD Updates the coordinate control variables depending on the geometry of the prob-

lem.

FUNCT Defines the weighting functions for the grid adaption.

INIT Initializes the primitive solution variables at the initial time.

KAPPA Finds the thermal conductivity which is a function of the temperature and some

other plasma conditions.

LLAM Calculates the Coulomb logarithm LogΛ.

LOOK Does table lookup for one-variable dependent table.

LOOKV1 Does table lookup for two-variable tables, especially average charge table.

LOOKV2 Table lookup for the opacities. Again it is a three-variable table depending on

temperature, density and energy group.

MAIN Main program that controls the calculation. Reads in the input, defines the con-

stants, parameters, advances the solution for the next time step, makes a conservation

check, and dumps the output.

MESHIN Initializes the adaptive mesh to the initial conditions and it is done to prevent

rapid mesh movement for the first few time steps.
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PDESOL Solves a single time step of hyperbolic partial differential equations (compressible

flow problem) using the first order upwind explicit scheme.

OMEGA Defines the angular variable discretization for the SN method. It uses a level-

quadrature method and discretizes 2 angles for the cylindrical case and one angle for spher-

ical cases.

RADFLD Solves the radiative transfer equation by the discrete ordinate method. It uses

an implicit time differencing and a diamond spatial differencing method.

RCOLL Calculates the collisional energy loss of ions which is a function of the temperature,

density and some other plasma and beam properties.

RESIST Calculates the electrical resistivity.

RESTRT Restarts the problem from a previous run.

TABLE Table lookup and conversion for EOS table.

UPWIND Performs the actual solution of the differenced equations using the first order

upwind differencing method.

WEIGHT Computes the adaptive weight integrals based on Dwyer’s adaptive method.

Among these subroutines pdesol, upwind, adapt, weight, radfld, bfield are most

crucial ones for job execution. The flow diagram for a typical run follows the structure in

Figure 1. After initialization of the grid system, the problem runs from the main program

periodically calling subroutine pdesol which in itself calls the mesh updaters (adapt, coord,

bound) and the solvers such as upwind, radfld, bfield.
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8. Common Blocks

Table 1. COMMON/MESH/

VARIABLE DESCRIPTION

xn(k) grid locations at tn in x dimension (cm)

yn(k) grid locations at tn in y dimension (cm)

xnp1(k) grid locations at tn+1 (cm)

ynp1(k) grid locations at tn+1 (cm)

psie(k ± 1/2) geometric factor (1,r,r2 for slab, cylinder and sphere)

psic(k) geometric factor (1,r,r2 for slab, cylinder and sphere)

dxn(k) grid size at tn (cm)

dxnp1(k) grid size at tn+1 (cm)

dxdt(k ± 1/2) grid velocity (cm/sec)
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Table 2. COMMON/ADAPTX/

VARIABLE DESCRIPTION

alpha(1:2) used in W = 1 + α[A + B]x + β[A + B]xx

beta(1:2) used in W = 1 + α[A + B]x + β[A + B]xx

ra(1:2) Rα, fraction of points assigned to follow Ux

rb(1:2) Rβ , fraction of points assigned to follow Uxx

dxmin average minimum mesh spacing desired (cm)

xint
∫ L
0 Wdx

′

xint1a
∫ L
0 Axdx

′

xint1b
∫ L
0 Axxdx

′

xint2a
∫ L
0 Bxdx

′

xint2b
∫ L
0 Bxxdx

′

17



Table 3. COMMON/MISC/

VARIABLE DESCRIPTION

cycle current number of cycles

delt current time step (sec)

cfl CFL number (stability)

time current simulation time (sec)

iadapt adaption flag (0,1:off,on)

icoord coordinate flag (1,2,3:slab,cylinder,sphere)

iloop number of cycles for initial iteration

xl domain length (cm)

xmax,xmin maximum and minimum lengths (cm)

ireg number of meshes

imx length of subscript over mesh points (ireg + 2)

im1,im2 imx − 1, and imx − 2

kpta,kptb,kptd 2,imx − 1,imx

ivar1,ivar2 misc boundary conditions
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Table 4. COMMON/BC/

VARIABLE DESCRIPTION

bc(k) boundary conditions

ibcr,ibcl right and left bc

tbcr,tbcl rigth and left temperature bc

ubcr,ubcl right and left velocity bc

Table 5. COMMON/BEAM/

VARIABLE DESCRIPTION

bcur(k) beam current density (statA/cm2)

bdens(k) beam particle density (particles/cm3)

scoll(k) beam collisional energy loss rate (erg/sec · cm3)

btime,puls beam shooting time and its duration (sec)

bcmax beam peak current density (statA/cm2)

bmass,vbeam beam mass and velocity (g, cm/sec)

bchrg, achrg beam and background electron charge

alphms background electron mass (g)

poynt,emjoul poynting vector and joule heating terms (erg/sec · cm2, erg/sec · cm3)

pljoul,emeng plasma joule heating and em energy terms (erg/sec · cm3)
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Table 6. COMMON/TIMEN/

VARIABLE DESCRIPTION

u1(k) volumetric mass (g)

u2(k) volumetric momentum (g · cm/sec)

u5(k) volumetric energy (erg)

u6(k) volumetric radiation energy (erg)

Table 7. COMMON/TERMS/

VARIABLE DESCRIPTION (erg/sec)

term11(k) work-energy term

term22(k) artificial viscosity-energy term

term33(k) joule heating-energy term

term44(k) heat conduction-energy term

term55(k) radiation convection-energy term

term66(k) radiation heat flux-energy term

term77(k) collisional-energy term

term88(k) radiation emission-energy term

term99(k) radiation absorption-energy term
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Table 8. COMMON/TABL/

VARIABLE DESCRIPTION

rhotb(1:10) logarithmic mass density vector for EOS table log(g/cm3)

tmptb(1:20) logarithmic temperature vector for EOS table log(eV )

arhot,brhot initial values and increment for rhotb()

attb,bttb initial values and increment for tmptb()

etable(10,20) specific internal energy array, f(t, ρ), (joule)

zch(10,20) average charge state array, f(t, ρ)

Table 9. COMMON/LOOK1/

VARIABLE DESCRIPTION

tm(k) initial temperature (eV )

xnpos(k) positions for initial temperature (cm)

axnpos,bxnpos initial values and increment for xnpos() (cm)

ntable table size

Table 10. COMMON/OPA/

VARIABLE DESCRIPTION

engrup(ν) energy groups for photons

orgp(ν, T, ρ) extinction coefficient (opacity), (cm−1)

opgpe((ν, T, ρ) emission coefficient (opacity), (erg/cm3 · sec · Hz · sr)
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Table 11. COMMON/PRMVAR/

VARIABLE DESCRIPTION

rho(k) mass density (g/cm3)

u(k) average fluid element velocity (cm/sec)

e(k) energy density (erg/cm3)

p(k) pressure density (erg/cm3)

t(k) temperature (oK)

b(k) magnetic field (gauss)

cur(k) net current density (statA/cm2)

pcur(k) plasma current density (statA/cm2)

bcur(k) beam current density (statA/cm2)

elecl(k) laboratory frame electric field (statvolt/cm)

felec(k) fluid frame electric field (statvolt/cm)

radint(k),ordint(k) total radiation intensity at times tn, tn+1 (erg/cm2 · sec)
radeng(k),ordeng(k) radiation energy density at times tn, tn+1 (erg/cm3)

radpre(k),ordpre(k) radiation pressure at times tn, tn+1 (erg/cm3)

radfrc(k),ordfrc(k) radiation force at times tn, tn+1 (erg/cm2 · sec)
radfrq(ν, µ, k) specific radiation intensity at tn (erg/cm2 · sec · Hz · sr)
ordrad(ν, µ, k) specific radiation intensity at tn+1 (erg/cm2 · sec · Hz · sr)
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9. Input

The input is provided in two text files: prminp (primary input data) and tabinp (tabu-

lar data for EOS and opacity tables). Between these two, tabinp need not change unless the

gas type is different, or the opacity group structure is changed. The primary input, however,

reflects the entries of how many grid points to use, or what fraction of points to assign for

adapting a certain function. The adaptive function is set in the code (in subroutine funct)

and this is where it will need changing. The format of the input file prminp is given below

(all formated with format(e11.0)):

head: One line of text describing the run.

tinit: Initial time to start with (sec).

rstrt: Restart flag (0-no, 1-yes) if run depends on a previous run (sec).

icoord: Coordinate flag: 1-planar, 2-cylindrical, 3-spherical.

ibcl: Left boundary condition, 0-no, 1-yes.

ibcr: Right boundary condition, 0-no, 1-yes.

ibct: Top boundary condition, 0-no, 1-yes.

ibtb: Bottom boundary condition, 0-no, 1-yes.

tbcl: Left temperature boundary condition, 0-no, 1-yes.

tbcr: Right temperature boundary condition, 0-no, 1-yes.

tbct: Top temperature boundary condition, 0-no, 1-yes.

tbtb: Bottom temperature boundary condition, 0-no, 1-yes.

gamma: Ratio of specific heats.

xmui: Absolute viscosity (g/cm · s).
xkapi: Thermal conductivity (erg/cm · K · s).
eamb: Ambient temperature (K).

wtmol: Atomic or molecular weight (a.m.u.).
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rgas: Universal gas constant, 8.328 × 107(erg/g · mole · K).

ireg: Number of grid points in x direction.

xmin: Minimum x value.

xmax: Maximum x value.

jreg1: Number of grid points in y-region 1.

dy1: ∆y in y-region 1.

jreg2: Number of grid points in y-region 2.

dy2: ∆y in y-region 2.

jreg3: Number of grid points in y-region 3.

dy3: ∆y in y-region 3.

iadapt: Adaptation flag: 0-no, 1-yes.

iloop: Initialization loop to prevent rapid mesh movement.

ra(1): Fraction of points to assign to the 1st derivative of function 1.

rb(1): Fraction of points to assign to the 2nd derivative of function 1.

ra(2): Fraction of points to assign to the 1st derivative of function 2.

rb(2): Fraction of points to assign to the 2nd derivative of function 2. All four normalized

to 1.

dxmin: Average minimum mesh spacing.

dtrst: Time step for dumping information for restarting purposes.

dtdmpa: Time step for dumping information for various quantities.

dtdmpb: Time step for dumping information for various quantities.

dtdmpc: Time step for dumping information for various quantities.

dtdmpd: Time step for dumping information for various quantities.

ictrlb: Control flags for which quantities to write out: file b.

ictrlc: Control flags for which quantities to write out: file c.

delt: Initial time step (sec).
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cfl: CFL number.

con(3): Artificial viscosity coefficient.

ivar1: Miscellaneous boundary condition.

ivar2: Miscellaneous boundary condition.

bvar3: Pressure ratio for shock tube problem (not used for z-pinch).

bvar4: Pressure on left side of shock tube (dynes/cm2).

bvar5: Temperature on left side of shock tube (K).

dtmin: Minimum time step (sec).

idelt: Number of time steps for initialization.

con(50): Smoothing coefficient – k em th cell.

con(51): Smoothing coefficient – k − 1, k + 1 em th cells.

con(52): Smoothing coefficient – k − 2, k + 2 em th cells.

con(7): Maximum number of weight iterations.

con(8): Absolute error on mesh initialization.

con(9): Adaptation error residual.

axnpos: Step value for x in representing initial T as T (x).

bxnpos: Initial value for x in representing initial T as T (x).

ntable: Table size for representing initial T as T (x).

rhoin: Initial number density (particles/cm3).

curin1: Discharge current density amplitude (statA/cm2) - first pulse.

tper1: Time period for the first pulse (sec).

curin2: Discharge current density amplitude (statA) - main pulse.

tper2: Time period for the main pulse (sec).

trelax: Delay time between pulses (sec).

epsilon: Criteria for adaptation integrals.

btime: Beam shooting time (sec).
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puls: Beam duration time (sec).

bcmax: Beam current density amplitude (statA/cm2).

frac: Relates to the beam flow radius.

bmass: Beam particle mass (g).

vbeam: Beam particle velocity (cm/s).

bchrg: Beam particles charge.

achrg: Background particles (electrons) charge.

alphms: Background particles mass (g).

TABINP input file

attb: Increment in temperature (logarithmic) for the average charge state and EOS ta-

bles.

bttb: Initial temperature (eV ) for the average charge state and EOS tables.

arhot: Increment in density (logarithmic) for the average charge state and EOS tables.

brhot: Initial density (logarithmic) for the average charge state and EOS tables.

head0: Heading for charge state table (one line).

zch(10,20): Average charge table vs. temperature and density.

head1: Heading for EOS table.

etable(10,20): Specific internal energy table as ε = f(T, ρ), (Joule) = f(log(eV ), log(g ·
cm−3)).

head2: Heading for photon energy groups.

engrp(20): Photon group energies.

head3: Heading for group extinction coefficients.

orgp(20,10,20): Multigroup extinction coefficients (cm−1) as f(ν, T, ρ) with format 4(e12.6).
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head4: Heading for group emission coefficients.

opgpe: Multigroup emission coefficients (erg cm−3s−1Hz−1sr−1) as f(ν, T, ρ) with format

4(e12.6).

10. Output and Other Auxiliary Files

There are five output files; four intended for plotting and one for restarting purposes.

Those files are gdmpa, gdmpb, gdmpc, gdmpd. Among these, only gdmpc is actively

used now. The time step for dumping information to these files is in the prminp input file,

and it is currently set up to dump only to gdmpc. There is a mask array for the eleven

physical quantities that can be written out to gdmpc. If it is 1, then it attempts to write

it out. Those physical functions are set up to be: velocity, magnetic field, pressure, den-

sity, mesh spacing, temperature, plasma current, channel current, radiation energy density,

emission, extinction. The order in the mask array is reversed, that is the rightmost element

belongs to velocity.

There are plotting routines on the CRAY that take this data and make plots for various

times. This plot package consists of two routines called plt.f and subplt.f, each written in

FORTRAN to take advantage of the DISSPLA and GKSNCAR graphics libraries on the

CRAY. When fed with the gdmpc input file, the plot program creates a file called gmeta

and this file eventually can be displayed through a tektronix terminal (window) by a gplot

command as “gplot -stek gmeta”.
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Table 12. FORTRAN files

MAIN.f initial.f omega cyl.f restart.f

adapt.f kappa.f omega sph.f sbcmp.f

bfield.f llam.f pdesol.f subcvm.f

boundary.f look.f radfld cyl.f table.f

coord.f lookv1.f radfld sph.f upwind.f

dtstep.f lookv2.f rcoll.f weight.f

funct.f meshini.f resist.f

11. How to Compile: Make

The source program consists of FORTRAN programs (.f) each holding a subroutine,

and also header files (.h) that hold common blocks for those subroutines. Running problems

in different coordinates (especially spherical and cylindrical) requires different subroutines

to solve the radiative transfer equation, thus the idea of modularity was used to retain

the code’s generality. Table 12 lists the FORTRAN files. Among those, radfld cyl.f (and

radfld cyl.h) or radfld sph.f (and radfld sph.h) has to be changed to radfld.f (and radfld.h)

depending on the problem to run. This also has to be done with omega cyl.f and omega sph.f

(no need for changing anything to omega.h since it already exists and it is the same for

both coordinate systems).

Because the program is mainly developed for UNIX environments, it should be easy

to compile it and run it under any UNIX environment varying from workstations to CRAY

Y-MP.
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12. Examples

The following two examples are typical runs for z-pinch plasma channels used in the

design of light ion beam fusion reactors. The problem is in cylindrical coordinates and

the simulation is done for the radial motion of an argon plasma that interacts with the

magnetic and radiation fields in the channel. Initial conditions assume a uniform density of

3.5×1017 particles/cm3, and a gaussian temperature profile with 0.3 cm half-width resulting

from a laser preionization in the channel. The plasma is subject to a discharge current shown

in Figure 2. Most of the input parameters are given in the file “prminp” except that the

radiative properties of the plasma are given in “tabinp”. Following section 12, you will

find the “prminp” file for such a problem. The second input file (tabinp) will not be given

because of its size. Also given there are some portions of the output file (gdmpc) and some

plots found from that file. The opacity tables in “tabinp” are found by running an atomic

physics code IONMIX [13].

12.1. Example 1

The first run is an MHD simulation of the plasma. Thus, the radiation field is artificially

turned off. The subroutine call to radfld in pdesol is simply commented. Without the

magnetic field, the simulations of a fluid expanding in the r-direction is in the form of a blast-

wave. This motion is due to the gaussian temperature (thus pressure) profile whose gradient

sets the gas into the radial motion. With a magnetic field in the azimuthal direction, the

plasma is subject to a magnetic force radially inward. This magnetic force works against the

gas pressure to reverse the radial motion. Figure 3 shows the mass density of the plasma

for various times. The information on this plot and others presented here is taken from

output file gdmpc. Since the discharge current increases in time, the plasma does not feel

the magnetic pressure until the second pulse comes along around t = 1.5 µsec. Prior to
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this time, the plasma is expanding leaving behind a rarefaction region. The presence of a

stronger field pushes the plasma back toward the center creating a situation not desired for

beam propagation since a high density in the center means a high energy loss for the beam

through plasma-beam collisions. The temperature profiles, Figure 4, show the typical shock

heating behind the shock region. The temperature is elevated by one order of magnitude

due to the ohmic heating caused by the discharge current. The magnetic field in Figure 5

displays that this cylindrical plasma column behaves like a coaxial cable with a conductive

inner region surrounded by a less conducting layer. The temperature drop around r = 0.5

cm causes a drop in the conductivity and the linearly increasing magnetic field up to that

point starts to drop as ∝ 1/r. The input files presented here should be able to reproduce the

MHD results if user turns off the radiation by commenting “call radfld” in the “pdesol.f”

subroutine.

12.2. Example 2

The second example is to add the radiation field to the previous example. The purpose

of doing such a run is to see how the presence of radiation will affect the plasma hydrody-

namics. The hot plasma in the center radiates the most and this radiation gets reabsorbed

at the cool region if the mean free path of photons is smaller than the channel radius. It

turned out that there are significant radiative effects when the plasma interacts with ra-

diation in these conditions. The emission of radiation first of all flattens the temperature

profile and causes a large drop due to emission. Secondly, the cold plasma reabsorbs the

radiation coming from the center, and this absorption causes a premature expansion in the

channel which ends up lowering the magnetic field peak value. When compared to previous

plots, Figures 6, 7, 8 and 9 illustrate how this is happening: the channel radius (where

magnetic field peaks) changes from 0.6 cm to 0.8 cm, the magnetic field drops from 23
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kG to 19 kG. For plasma channels, these two parameters (the peak magnetic field and its

corresponding channel radius) are important design issues. A certain magnetic field has to

be achived at a certain channel radius (typically 0.5 cm) in order for the beam to transport

the required energy to the target efficiently. One has to account properly for the radiation

effects since those effects simply degrade the quality of the channel. An overestimation or

an underestimation could create a significant flaw in the channel design. The use of the

radiative transfer equation, and of a delicate grid system should all contribute to the quality

of the results one would get through use of the R-MHD code.
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Figure 1. Flow diagram for R-MHD.
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Figure 2. Double pulse discharge current history for the formation of plasma channels.

33



Figure 3. Mass density profiles for an argon plasma channel (MHD case).
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Figure 4. Temperature profiles for an argon plasma channel (MHD case).
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Figure 5. Magnetic field profiles for an argon plasma channel (MHD case).
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Figure 6. Mass density profiles for an argon plasma channel (R-MHD case).
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Figure 7. Temperature profiles for an argon plasma channel (R-MHD case).
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Figure 8. Magnetic field profiles for an argon plasma channel (R-MHD case).
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Figure 9. Radiation energy profiles for an argon plasma channel.
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