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RICHARD POST, LLNL

THE D-He3 REACTION: HISTORY, PHYSICS,
CONJECTURES

Outline of Talk:

« The D-He3 reaction, its history and
other aspects

« Sources of He3

- Early speculations on D-He3 fuel cycles
and D-D-He3 fuel cycles

« D-He3 and direct conversion

'« An analogy: The gas turbine

« Some physics issues

- Toward 21st century D-He3 fusion power

plants with "near-zero" neutron flux; some
heresies and some conjectures.
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A COMPARISON OF REACTION-RATE
PARAMETERS

- At plasma temperatures > 100 keV
maxwellian-averaged reaction-rate
parameters for D-He3 approach within
a factor 2 of those for D-T.
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Figure I Values of gv averaged over a Maxwellian distribution for a variety of fusion
reactions.



SOURCES OF He3 FOR FUSION POWER

- For fusion power purposes He3 could be
obtained from a variety of possmle
sources:

1. Fusion fuel cycles using the D-D
reaction, with re-injection of He3
from the DDn branch and from the
decay of the T from the DDp branch.

2. "Breeding"”, using the p-Li6 reaction,
either in situ, or in "fuel factories".

3. "Mining” lunar or other extra-
terrestrial sources.

References:

G. H. Miley, Nuclear Instruments and Methods , A271,
197 (1988)

R. F. Post, Nuclear Fusion: 1962 Supplement, Part I, 99

R. G. Mills, Nuclear Fusion 7, 223 (1967)




AN EARLY THOUGHT ON D-He3 FUEL CYCLES

- The D-He3 cycle with recycling of the He3
from the DDn branch of the D-D reaction
and from the reaction of the high-energy

protons with Li6:l"]

D+D —» | He3(0.8 MeV) | + n(2.4 MeV)

p + Li6 —» Hed4(1.7 MeV) + He3(2.3 MeV)

« Nice if it would work, but probably "pie
in the sky".

[1] R. F. Post, "Critical Conditions for Self-
Sustaining Reactions in the Mirror Machine",
Nuclear Fusion: 1962 Supplement, Part |

(p-99)




ENERGY CONTENT OF He3 AS A FUSION FUEL

He3 has the highest energy content/gm
of any nuclear fuel.

D + He3 - Hed4 + p + 18.3 MeV

Energy per gram:

—,\% = 5.86x10""  Joules/gm He3

= 163,000 kwhr/gm

Compare U235 at 23,000 kwhr/gm

Compare U.S. per capita annual primary
energy use at approx. 100,000 kwhr/yr.



ADVANTAGES OF D-He3 AS FUSION FUEL

Possibility of greatly reduced neutron
component in fusion power output.

No need for in situ breeding, simplified
first wall and blanket problems.

Negligible wall activation problem with
sensible choice of materials.

"Hands-on" maintenance should be
possible with care in design.

Charged particle power output opens up
possibility of replacing thermal power
conversion by high-efficiency direct

conversion in an all-electrical system.

No possibility of diversion of fusion

fuel or use of D-He3 power plants for
significant production of fissile material
for nuclear weapons.



D-He3 FUSION AND DIRECT CONVERSION

« A direct conversion system should be a
part of any D-He3 fusion power plant.

- The practical limits on the efficiency of
conversion of plasma and charged fusion-
product energy by direct conversion will
be set by economic considerations, not by
thermodynamic (i.e. Carnot cycle) ones.

Example: Electrostatic Direct Conversion

- Efficiency of 86% achieved in LLNL
experiments using plasma source with
broad energy spectrum (1974).

References:

1. R. F. Post, Proc. BNES Conf. Nuclear Fusion Reactors,
Culham Laboratory, Sept. 1969

2. R. W. Moir, W. L. Barr, R.P. Freis, and R. F. Post, Plasma
Physics and Controlled Nuclear Fusion Research,
Vol. lll, p. 315, IAEA (1971)

3. G. H. Miley, Fusion Energy Conversion, American
Nuclear Society (1976)



CONSEQUENCES OF HIGH CHARGED-PARTICLE
ENERGY RELEASE OF D-HE3 REACTION

Because of its large energy release in
charged reaction products, the D-He3 fuel
cycle is uniquely suited for use in fusion
power systems with direct conversion.

The conversion efficiency of a direct
converter system can be much higher than
that of a steam turbine system, and its
capital cost might be substantially lower,
so that it may be possible to contemplate
D-He3 fusion power plants that function at
much lower fuel burn-up fractions (lower
"Q") than D-T systems.

Low Q systems can have several important
advantages over high Q ones:

- Reduced neutron yield from parasitic DDn
reactions.

- Increased direct conversion efficiency
from decreased collisional randomization
of reaction products and unburned fuel ions.

- Lower electron temperatures resulting in
reduced synchrotron radiation emission.



THE GAS TURBINE: A "LOW Q" SUCCESS

STORY

The development of a net-power-
producing gas turbine required first the
development of high-efficiency

turbines and of turbo-compressors of

comparable efficiency.

Schematic Drawing of a Gas Turbine

Hot 'gas at

Combustion
system
High-pressure %
a Fuel
Compressor

high pressure

——

Turbine | Load

Atmospheric_(

air

\L>Exhoust

gases

Fig. 2-2. Flow diagram of simple gas-turbine engine.

In modern gas turbines, the amount of
"recirculated” power is several times
that of the usable output power.



THE GAS TURBINE, CONT.

- Living with low-Q: a Brayton-cycle QT.
25 ,

085

- n
6)) (®)
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Xy
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Brake thermal efficiency , per cent

Qi
OO 2 4 6 8
Pressure rotio

Fig. 5-5. Brake thermal efficiency as a function
of pressure ratio and component efficiencies,
Brayton cycle.

. At a tic pressure ratio of 4.9, power
output drops to zero at n,=n,_ = .75.

« At n, =n, = .85 recirculated power is
3.5 times output power.



MINIMIZATION OF PARASITIC D-D REACTIONS

- From environmental and safety standpoint,
and to simplify the design of D-He3 fusion
power plants it is desirable to minimize
parasitic DD reactions.

Two approaches:

A. Use "deuteron-lean" fuel cycle.

1.0
0.9-
0.8
0.7
0.6 -
0.5
0.4 -
0.3
0.24
0.1
0.0-

Relative Power Density

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Deuterium Fraction

B. Use counter-streaming beams of
near-monoenergetic D and He3 ions,
plus high efficiency injection and
direct-conversion systems to permit
net energy output with low fractional
fuel burn-up.



SCATTERING OF COLLIDING BEAMS

- The mean-free-path for scattering of one
beam (D), by the other (He3) can be

estimated from Spitzer!), in the limit
of zero beam temperatures.

2
<(AVL) 1 vito_n
2 _—
V1 1 S 2

« The "effective scattering cross-section"”,

o, Is:
2ne? 22 1InA
s T Wi,
W., = Energy of D relative to He3.

[1] L. Spitzer, "Physics of Fully lonized Gases", 2nd Ed.



SCATTERING OF COLLIDING BEAMS, CONT.

The mean-free-path for scattering of
of the directed beam energy into
perpendicular energy in a ratio e,

B 2
<(Av)) >,
2 =€
V1
] A €
IS: e =V t8 = h o
2 S

Define a "reduced mean-free-path” for
fusion reactions (i.e. a mean-free-path for
a fusion energy release equalling the total
energy in the beams):

- 1 |:W1+W2}
Gf

f
n2 wf

The ratio of ke to kf is a measure of the

degree to which the beams are scattered
while releasing fusion energy.



SCATTERING OF COLLIDING BEAMS, CONT.

« Putting in constants, with InA = 17, the
ratio of mean-free-paths is:

A € 0,

M
& 17 | —— _1]1 [W. W
= 4.5x%10 {ZS {1+MJ[ 12 Wi

2

. Example A: D-He3 at W12 = 500 keV:

A

£ _
A " 1.54 ¢

. Example B: D-T at W12 = 100 keV:

= 1.65 ¢




FUSION POWER BALANCE IN COUNTER-
STREAMING BEAMS

If direct conversion and beam injection
efficiencies can be made to be sufficiently
high, net fusion power might be achieved in
counter-streaming beams of D and He3.

Reaction Products

f + Residual beams
. Y
Counter-Streaming
| » Beams N n R
Tll — Y > nl
P
input
P
Y output
P
net

With high direct conversion and injection
efficiencies, net power can be realized
with a small fractional burn-up, and
therefore with minimal DD neutron yield.



POWER BALANCE IN COUNTER-STREAMING
BEAMS, CONT.

- The condition for a positive power balance
can be written in terms of the fractional
fuel burn-up, f, the beam energies, W1 and

W2, and the direct conversion and injection

efficiencies, Mpe and Mt

f qus ninjnDC
QE = 3 > 1 for net power

W1+W2 MiniMp e

- Example: D-He3 reaction between equal-
energy beams.

WD= WHe3=125 KeV (energy of D rel. to He3 ~ 500 keV)

nDC = 0.9, ninj = 0.8

QE=188f QE=1.88 at f = .01




BURN-UP FRACTION FOR SINGLE-PASS
COUNTER-STREAMING D-HE3 BEAMS

* For sufficiently small burn-up fractions,
single-pass counter-streaming D and He3
beams at beam energies of order 125 to
150 Kev can be assumed to interact close
to the maximum point of the D-He3 fusion
cross-section, with relatively small
percentage changes in energy from beam-
beam coulomb collisions.

D-He3 Beam-Beam Burn-up Fractions
19

n=10E17

™\

.01 -

Burn-up Fraction

n=1.0E16
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Interaction Length - km



DOES THE HIGH-ENERGY PHYSICS COMMUNITY
HAVE SOMETHING TO TEACH US?

* Underground tunnels; high-field SC magnets:
- LEP at CERN, 27 km. (completed)
- SSC in Texas, 80 km. (in progress)

B Reg:onat

Dalfas -
- Ft. WOﬂ-h /% -------- X :

Superconductlng g
Super'Colhdecg RAERE

UNITED
STATES TEXAS

D-He3 "Linear Collider" to
same scale as SSC




TECHNOLOGICAL REQUIREMENTS FOR A D-He3
LINEAR COLLIDER FUSION POWER PLANT

« At counter-streaming beam densities of
order 10'® cm™ or higher, a single-pass,
"linear-collider”, D-He3 fusion power
plant with a length of order 10 kilometers
and an electrical power output of order 1
gigawatt or higher might be a possibility.

« Some of the technological requirements
for such a power plant are:

- Small bore solenoidal magnet, 20 to 50 T.

- Electrostatic direct converters, Ny 20.9.

- Injector system, ninjz 0.8, U > 125 keV.

« The most demanding one of these to satisfy,
given present understandings, is the
injector system.



PRELIMINARY RESULTS: COMPUTER SIMULATION
OF COUNTER-STREAMING PLASMAS

« A new computer code developed at LLNL by
Denavit and Rambo[1] has been applied to
the case of counter-streaming D and He3
plasma columns as a first step beyond
"back of the envelope" estimates.

« The code uses fluid equations (including
collision forces), coupled with Poisson's
equation, to model the physical processes
in interpenetrating multi-component
plasmas.

« Initial conditions for data shown:

lon and electron temperature: 100 eV

D and He3 ion densities: 10'7 cm™

Plasma column lengths: 1 km

- D-beam energy (relative to He3): 700 keV

[1] P. W. Rambo and J. Denavit, "Time Implicit Fluid Simulation of
Collisional Plasmas”, UCRL Preprint JC-104240, 28 June 1990



COMPUTER SIMULATION OF COUNTER-
STREAMING PLASMAS

« Initial spatial distribution of electron
density:

Y 30000
$10000 [
120000

The plot shows the initial electron density
distribution of the streams, with the "nose"
of the D plasma stream appearing at the
left, and the He3 plasma stream (at twice
the electron density) shown on the right.
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SUMMARY

D-He3 is unique among fusion reactions in
its combination of high cross-section and
high energy release, solely in charged
reaction products.

If parasitic DDn reaction rates can be
minimized, D-He3 fuel cycles can have
major environmental and safety advantages
over D-T fuel cycles.

When combined with the employment of
high-efficiency injectors and
electrostatic direct converters,
kilometer-length, single-pass, "linear-
collider”, D-He3 fusion power plants with
strongly suppressed D-D neutron yields
might become a possibility.

With the development of practical transient
end-plugs, multi-pass linear colliders of
shorter length and/or lower stream
density might become feasible.

"Today's heresy might become tomorrow's
dogma, and vice-versa".












Technological Advantages
of DHe3 Cycle
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Director, Fusion Technology Institute
University of Wisconsin

Presented at the

1st Wisconsin Symposium on DHe3 Fusion
Madison WI

21-22 August 1990
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Most Attractive Fusion Reactions

50 % % I ‘
5 + Q Helium-3 Neutron
50 %
Deuterium Deuterium I O

Tritium Proton

019 —Sg+e

Deuterium  Tritium Helium-4 Neutron

DHes 8+'O—>89+Q

Deuterium Helium-3 Helium-4 Proton

MeV/Reaction
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NASA Conference Publication 10018

Lunar Helium-3
and Fusion
Power

Proceedings of a workshop held at
NASA Lewis Research Center
Cleveland, Ohio

April 25 and 26, 1988

NNASN
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'PERCENT OF FUSION POWER IN NEUTRONS
(0% Tritium Burnup)

100 n i 1 I UL i 1 [ [ LR -
- DT §
= -
10 | ", .
Q i B ]
0 i %" 1
L %
Q - o ‘... -—
A\
9~
’? ,"'
1 -
[ . ]
[ . ]
- i‘ N
- §~ .
- ~~~.. -
0.1 ] I | ! | I |";"fn.l
2 100

10
ION TEMPERATURE (keV)



PERCENT OF FUSION POWER IN NEUTRONS
(100% Tritium Burnup)
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PERCENT OF FUSION POWER IN NEUTRONS
(50% Tritium Burnup, 3He:D=3:1)
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PERCENT OF FUSION POWER IN NEUTRONS

(3He:D=3:1)
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PERCENT OF FUSION POWER IN NEUTRONS

(3He:D=11)
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TEMPERATURE C

The Low Radiation Damage in DHe3 Reactors Allows
Permanent First Walls to be Designed

400

300

200

100
10

ried STARFIRE
| TIA

'‘PERMANENT

LIFE REGIME

FOR STEEL :
FIRST WALL *
REPLACEMENT
REQUIRED FOR
STEEL P

100 1000 10000

DPA DAMAGE ACCUMULATED OVER ENTIRE REACTOR LIFE (30 FPY)



MAJOR SAFETY DIFFERENCES BETWEEN D-He3
AND DT FUEL CYCLE

TRITIUM INVENTORY < MAXIMUM PUBLIC EXPOSURE
(ALL TRITIUM RELEASED)

485 GRAMS 24 Rem

2 GRAMS
EXHAUST
0.1 Rem
DT_MINIMARS D-He3 Ra D-He3 DT
(600 MWe) (600 MWe) Ra MINIMARS

(600 MWe) (600 MWe)



Advantages of Not Having Tritium
Breeding Blankets

No Need for Liquid
Metals (Safety)

No Need for Solid
Breeders (Heat Transfer)

No Need for Beryllium
(Resource/Safet )

First Wall/Shield Design
Much Simpler

Much Lower Volatile
Radioactivity

No Tritium in Heat
Transfer Loop

Maintenance Much
Easier

N T
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TERRESTRIAL
ELECTRICAL
POWER

SPACE
ELECTRICAL
POWER

SPACE
PROPULSION

VOLATILE
SIDE PRODUCTS
FOR SPACE COLONIES
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Helium-3 Resources:
A View from Space

H.H. (Jack) Schmitt

Geologist
Former Apollo 17 Astronaut
Former U.S. Senator
Albuquerque NM

Presented at the

1st Wisconsin Symposium on DHe3 Fusion
Madison WI

21-22 August 1990
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3He ,
“He @A@
.’ He
= proton
= neutron

@® =positron

e =V )’= gamma ray

SOLAR NUCLEAR FUSION REACTIONS
VIA THE PROTON-PROTON CHAIN
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SIDE VIEW OF LUNAR MINER MARK-II



TOP VIEW OF LUNAR MINER MARK-II




p-wnijeH 00 YHO 200 °N OH °H

- 0061 0091 001

00L€ 00€E sauuo}
0019

wdmmh: NOLLVHVd3S H3ISNIANOD
gl J ¥ Jldolosl |<— molviavy RET™

YI[0SIY Ieun’ WoI]
S-WNI[OH SuIjoeI}Xy I0J SS9201d



1 kg He-3 equals ~10 MWe-y
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The Moon
May be the ‘Persian Gulf’
of Energy in the 21st Century



APPLICATIONS OF LUNAR VOLATILES

FUSION ENERGY
(Propulsion, Electric Power, ...)

PRESSURIZATION, CRYOGENICS

WATER, FUEL, HYDROCARBONS,
REAGENTS, OXYGEN

@ LIFE SUPPORT, OXYGEN

FOOD, ATMOSPHERE,
PRESSURIZATION, REAGENTS

FOOD, ATMOSPHERE,
PRESSURIZATION,
HYDROCARBONS

MOON \
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Energy Requirements for Lunar
Mining of He-3

Incremental
Base Cam

5 BRIRORLaInn0Ny
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echnical Memorandum 101652

Report of NASA
Lunar Energy

Enterprise Case Study
Task Force

July 1989
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Legal Regimes for the Mining
of Helium-3 from the Moon

Richard B. Bilder, Eugene N. Cameron,
Gerald L. Kulcinski, Harrison H. Schmitt

February 1989
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D-He3 Operation In Future Machines

R.R. Parker
What performance can be expected with D-He3 in CIT

and ITER? With standard confinement? With improved
confinement?

- What are the high payoff physics areas for improving
D-He3 performance?

What modifications to ITER design should be
incorporated to burn D-He3?

What are implications for U.S. fusion program?
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Conclusions

D-He3 performance in CIT and ITER is Q@ < 1 for
standard and even strongly enhanced
confinement

By raising the field to ~ 10 T and current to 2 30
MA, ignition appears possible in ITER-scale
devices with only slightly enhanced H-mode
confinement

~or Goldston-like scaling, P is not a limiting
constraint

Important implications for future program:

— Emphasize confinement understanding and
improvement

— Emphasize high-field magnet technclogy









D-3He Tokamak Power Reactors
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Outline

Basic features of D-3He tokamak reactors
- from the Apollo study

Critical Issues identified in the Apollo
and ARIES studies

Ash accumulation

Current Drive

Plasma Disruption

Synchrotron Radiation



Apollo Studies

At the Fusion Technology Institute
University of Wisconsin
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Objective of the Apollo Project

' ' University of

Wisconsin

To Illustrate and Document the

Technological,
Economic,
Safety, and
Environmental

Advantages of a Superconducting Tokamak Fueled with
Deuterium and Helium-3.
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Overview of Apollo

" ” University of
A Wisconsin-Madison

e Commercial tokamak power reactor study using the
D-3He fuel cycle

e High field (B, ;=20 T), first stability regime

col

e Direct conversion of synchrotron radiation to electricity

at high efficiency

e First wall lasts full reactor lifetime

e Class A waste disposal rating

e Low cost of electricity

e Inherently safe design



Key Parameters of Apollo-L2 1200 MWe Fusion Reactor Design

Parameter

Plasma

Bmax

BPiasma

Plasma Current

Beta

Avg. lon Density

Avg. lon Temperature

TE

NeTe
He3/D Density Ratio

Geometry
Aspect Ratio
Major Radius
Horiz. Half Wiath
Elongation
Plasma Volume

Power

Fusion Power(a@)

Net Electric Power
Net Efficiency

Synch. Power
Bremsstrahlung
Divertor Power

D-D Neutron Power
D-T Neutron Power
Avg. FW Heat Load(®

Economic(€)

Direct Capital Costs

Total Overnight Capital Cost
Direct Capital Cost Density
COE

T
T
MA
%
1014cm-3
keV
S

1014s cm-3

MW,
MWe
%
MW,
MW,
MW;
MW;
MW,
Wicm?2

B$
B$
$/kWe
mills/kWh

(@3)Does not include neutron power.

(b)includes all of bremsstrahlung and 1/3 of particle loss.

Table 2

A

Microwave Microwave
& Thermal

20
9.5

70
9.3
1.37

51.4
22

50
.76

b

2
6.
2

s O

2
1548
2110
1200

54

989

852

207
24.6

86.4
86

1.359
2.031
1133
43.5

B

C

Conversion Thermal
Unit Conversion Base Case Conversion Conversion

20
9.75
80
9.3
1.07
70.7
23

41
.66

NoPum
uoR-=ow

—

2807
1200
41
1663
790
267

36.5

102
67

1.388

2.675
1187
40.8

20
9.74
79.4

9.3
1.43
51.0

29

71

.88

R
80(0—‘01

3122
1200
37
1496
1347
225
37.1
105.1
107

1.4186
2.116
1180
49.7

D
Microwave
& Therm_al

20
10.6
60.7
9.3
1.43
51.4
23

54
.76

2.85
6.8
2.42
2.0
1431

2109
1200
54
1001
859
193
24.4
85.3
87

1.378
2.060
1148
43.7

(c)For the case of partial nuclear components, He-3 costs = 1000 $/g, Capacity Factory (CF)=75% for
cases A, C, D and 85% for case B.

16
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Current Drive in Apollo-L2

" ” University of
A Wisconsin-Madison

e Apollo-L2 requires a plasma current of 80 MA.

e This current can be provided by a combination of
> Bootstrap current (20-30%) and
> Synchrotron current drive (>90%)

> That 1is, “passive” methods can provide more
than the total required plasma current, barring

problems associated with profile requirements.

o 40 MW of external current drive is assumed to l.e
provided in the costing in order to correct for startup

and control requirements.



Average Heat Fluxes to the

First Wall and Divertor Plates
of Recent Toroidal Reactor Designs

TITAN
APOLLO-L2
ITER
STARFIRE
TITAN
APOLLO-L2
ITER

STARFIRE

(W)

University

0

67
50 FIRST WALL
7 90
-z , Z v A—
100 200 300 400 500

AVERAGE HEAT FLUX -WATTS/cm2
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The Vulnerable Tritium Inventory in
Apollo-L2 is Very Low

X/ Tniversity ol
‘A‘ Wisconsin-Madisou

Key Tritium Parameters

Production Rate Tritium/g
Born in Plasma 40.2/d
Burned in Plasma 19.5/d
Exhaust from Plasma Chamber 20.7/d

Inventory |
First Wall + Tiles (end of life) 0.01
Divertor Plates (4 y life) 1.5
Coolant Water (end of life)

e Shield + FW 10-3
e Divertor 1.0
Plasma Exhaust and Reprocessing 3.5

Total ' 6



Power Density Should be Measured
in kWe/kg. not in kWy /V |

" L/ University of
“ Wisconsin-Madison

eactor

® Traditional power density arguments based on 3°B*
scaling are only very rough indicators of performance.

® Reduced neutron flux helps greatly.
D> Reduced shield thickness and mass.
D> Reduced magnet size and mass.

D> Increased B field at plasma.
® Direct conversion increases net electric power.

® Many configurations can increase B fields in the fusion

core.

i1

Study Mass Power

[P VY

Density

tidad

D-T ARIES-I ~95 kWe /Mg

0.01

D-3He Apollo ~90 kWe /Mg

4
.
.
.
’
- e,
o ’
- .
’
.

NORMALIZED FUSION POWER DENSITY

0.001

10 100 1000
ION TEMPERATURE (keV)



APOLLO FEATURES

Apollo L-2
® First Stability Tokamak
Utilize present database
¢ High Magnetic Field
Minimize cost
® Low Aspect Ratio
High B
¢ High Synch. Radiation Fraction
Direct conversion

Second Stability Reactor
® High Beta (Second Stability)
Unproven physics
® Moderate Magnetic Field
Easier magnet technology
® Moderate Plasma Current
Reduce plasma disruption worry

® Thermal Conversion
Proven technology



Key Plasma Parameters for Apollo

Major Radius (m)
Aspect Ratio
Elongation
Plasma Current (MA)

On-Axis

B-field (T)

B-Field at Magnet (T)

Beta (%)

ni (1014 ¢cm-3)

D Fraction in Fuel
Ti (keV)

Te (keV)

netg (1015 s/¢m3)
Radiation Fraction (%)

Net Synchroton Refl.

Net Electric Power (MW)
Fusion Power - Ions (MW)
D-D Neutron Power (MW)
D-T Neutron Power (MW)
% Fus. Power in Neutrons
Neut. Wall Load (MW/m2)

COE

(mills/kWh)

(%)

1st

Stability

7.11
2.50
2.00
80.
9.75
20.

R NI =D
aHchNh

.93

1200
2795

101

=T "N
-t~

2nd

Stability

7.81
4.50
2.00
18.

8.78



Apollo L-2
Closer to Present Physics Database

Advanced Technology

Second Stability Reactor

Advanced Physics - reduced database

Near Term or Proven Technology



ASH ACCUMULATION

The high fraction of fusion power
radiated to the "walls" increases the ash
accumulation problem.

Power Balance:

Npng<ov>Q(1-fr5q) = Npt+NgetNe

TE
Ash Particle Balance:
Ei:nDnHe<<5v>
Tp
a = {protons, 4He}
Thus
n, _ (T%) T
nD'l"nHe'i'ne TE Q(l‘frad)



Reflection Coefficient

RED

REFLECTION

TO MAINTAIN POWER BALANCE

E
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Effect of Ash Concentration on Size
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Current Drive Considerations for SSR case

Bootstrap Current = 37.8 MA
(Ehst model)

Synchroton CD -17.1 MA
Auxiliary CD -2.8 MA
Plasma Current = 17.9 MA
Available CD Power 58.4 MW
Required CD Gamma 1.1 A/Wm2

This CD Gamma is consistent with NBI
CD, but getting the right current profile is a
critical issue since the bootstrap current
vanishes on axis and the synchrotron CD
peaks on axis.



CONCLUSIONS

Apollo is economically competitive with
the D-T ESECOM design (V/Li)

The low neutron production in Apollo
results in

e a permanent first wall

e Class A waste disposal rating

e an inherently safe reactor

Critical issues for a first stability
reactor are

e high plasma current - disruptions

e current drive

e ash accumulation - active ash removal
e sensitivity to synchrotron radiation.

Quick look at second stability reactor

e much lower current - eases the
disruption problem

e smaller and lower field magnets

e ash accumulation is less severe, may
not require active ash removal.

Bootstrap current overdrive and its
compensation is a critical issue for SSR.









Comparison of Parameters of ESECOM
"Reference Tokamak" and D-He3 Tokamak

« The ESECOM report[1] contains a table
comparing the parameters of their
"reference tokamak” to a tokamak of
comparable power output, but using D-He3
fuel and direct conversion of the
microwave power emitted by synchrotron
radiation from the plasma.

Parameter Ref. Tok. D-He3 Tok
Blanket LI/Li/V H,O/SiC/V
Thermal power (MWth) 3563 3271

Net elec. power (MWe) 1200 1200
Capacity factor 0.65 0.75

Coil toroidal field (T) 10.0 16.0
Plasma toroidal field (T) 4.29 10.12
Major radius (meters) 5.89 8.56
Minor radius (meters) 1.47 2.38
Triangularity 0 0.5
Elongation, « 2.5 2.2

Plasma current (MA) 15.8 60.2
Average J 0.10 0.12

TF stored energy (GJ) 29 200
Energy conversion steam cycle solid state
Cycle efficiency 0.404 0.768 of uw
Neutron wall load (MW/m2?) 3.20 0.09

[1] J.P Holdren, et. al. "Report of the Senior Committee on
Environmental, Safety, and Economic Aspects of Magnetic
Fusion Energy"”, UCRL-53766, September 25, 1989



Conversion of Millimeter-Wave Electron
Synchrotron Emission by "Rectennas"”

« Logan and Orvis[1] have proposed the use of
arrays of miniature field-emission diodes
coupled to dipole antennas to convert
microwave energy into dc power.

\OB‘LC_—*z
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Schematic of an Array of A/2 Rectennas

[1] B. G. Logan, W. J. Orvis, "High Frequency Rectenna”
( LLNL patent disclosure RL-10,108)
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SAFFIRE signifies a Self-Sustained, Advanced-Fuel Field-REversed
Configuration., It was devised in an earlier conceptual design
study a D-He3 pilot unit to demonstrate on a near term scale

tge feasibility of burning advanced fuels / EPRI AP-1437, July
1980/.

Topics covered in. the design report include: equilibrium field
and diamagnetic current contributions; fueling; plasma stability;
SAFFIRE start-up; fusion product heating and transport; divertor
design; blanket énergy recovery systems; pilot unit; small size
power reactor; cost estimate and econonmic plausibility of
SAFFIRE; comparison of direct capital costs; SAFFIRE indirect
costs and cell cost reduction.

Critical issues from this work will be discussed with emphasis
on problems related to stead -state operation. These include
fueling and diamagnetic currents, ash build-up, and the gas
blanket. Comments will also be given about the mass production
concept and cost projections for a reactor version of SAFFIRE.



The Pilot plant version of SAFFIRE employed a single formation-~
burn chamber plus a cold plasma/divertor with thermal dump. The
small reactor version used separate formation and burn chambers,
but the burn was to be stationary followed by an eventual purge.,
A venetian blind type direct converter was used with a low

energy thermal dump. For ease of mass production, construction

and maintenance, modular construction wasg used.
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Figure 2-19. Plan Drawing of the SAFFIRE Pilot Plant with a "gas box" End Plug.



Table 2-3

SINGLE CELL PILOT UNIT REFERENCE DESIGN

Principal Plasma Physics Parametersg

Ion, Electron Temperature (kev) 80, 68

Ion, Electron Density (xlozo) (m-3) 5.7, 8.5

Vacuum Field (T) 6

Plasma Radius R{cm) 19

Plasma volume (litre) 30

Elongation Factor, k 1

Size Factor § = 65 10

c

0/°He Fuel Ratio 1/1

Steady State Ash Buildup (%) 5.2

Fusion Product Heating (Mw) .43

RF Heating'(MW) .30

Fusion Power (Mw) 1.2

Energy Multiplication (Qp) 3.6

Net Power Output (Mwe) ) .32

Overall Efficiency* (%) 27

Plasma Power Outflow (Fraction of 1.5 Mw) (1.5)
Bremsstrahlung Radiation .15 ]
Cyclotron Radiation .02 To
Neutrons .02 J first-wall
Charged Fusion Products .97 To thermal
Leaking Plasma .34 J dump

-2 -1 15
Neutron Wall Flux (m “sec 7) (at S0 cm) 5.3x10
Total Neutron Source/cell (sec-l) 3.7xlO16

*Assumes thermal, injection, ion cyclotren efficiencies of 40, 80, 80%.



THE EXTRAPOLATION FROM 2X-II TO THE PILOT UNIT IS MODEST IN

TERMS OF T, B, VOLUME, POWER. THE KEY ISSUE IS THE PHYSICS

SCALING - STABILITY WITH S, HEATING, COMPATIBILITY WITH THE COLD

PLASMA, TRANSPORT SCALING, ETC.

Table 1-1
PILOT UNIT PARAMETERS

2X-II
SAFFIRE D-T FRM Experiment

Avg. ion, electron

energy (kev): 80,68 70,25 20,4
Max. Magnetic
Field (Tesla) 6 4 ~1

Plasma Volume
(Liters): 30 116 ~25

Fusion, Net Elect.
Power (MW): 1.2,.32 20,6.7 -
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Table 2-10

REACTOR DESIGN (Single Cell)

Principal Plasma Physics Parameters

Ion, Electron Temperature (keV) 100, 90
. 20 -3
Ion, Electron Density (x1077) (m 7) 2.9, 4.3
vacuum Field (T) 6
Plasma Radius R{cm) 32
Plasma Volume (litre) 424
Elongation Factor, K 3
. R
Size Factor S = E_ 15
c
3
D/ He Fuel Ratio 1/1
Steady State Ash Buildup (%) 23
Fusion Product Heating (MW) 2.7
RF Heating (MW) .13
Fusion Power (MW) 4.6
Energy Multiplication (Qp) 33
Net Power Output (MWe) 2.3
overall Efficiency* (%) S0
Plasma Power Outflow (Fraction of 4.8 MW) (4.8)
Bremsstrahlung Radiation .26 |
Cyclotron Radiation .09 To
Neutrons .03 | first-wall
1
Charged Fusion Products .39 To direct
Leaking Plasma .23 convertor
-2 -1 16
Neutron Wall Flux (m “sec ) (at 50 cm) 3.6x10
-1 17
Total Neutron Source/cell (sec ) 2.7x10

*assumes thermal, direct, injection, ion cyclotron efficiencies of 40, 60, 80, B80%.

2-41



PELLET INJECTION WAS USED TO SUSTAIN THE BURN AND PROVIDE

DIAMAGNETIC CURRENTS TO MAINTAIN THE CONFIGURATION.

THE INJECTED PROFILE WAS DESIGNED TO MAINTAIN THE HILL's VORTEX

DENSITY PROFILE.

THE CLOSED FIELD LINES ON THE OUTER EDGE ALLOWS USE OF REASONABLE

PELLET VELOCITIES.
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Figure 2-5. Comparison of Required and Calculated Source Profiles for SAFFIRE.
The "injected" profile assumes a neutral beam arrangement such as
illustrated in Fig. 2-6.
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STABILITY ANALYSIS USED AN ENERGY PRINCIPLE THAT EMPLOYED
A PERTURBATION OF AN EQUILIBRIUM CALCULATED FROM THE
PARTICLE CODE SUPERLAYER. THIS SUGGESTED THE REQUIREMENT
S <5, BUT S =10 AND 15 WERE ASSUMED FOR THE PILOT AND
REACTOR UNITS, RESPECTIVELY,



ASH BUILD-UP WAS STUDIED USING A MONTE CARLO TRACKING CODE TO
FOLLOW THE SLOWING OF THE FPs. REACTOR PERFORMANCE IS VERY
SENSITIVE TO ASH EFFECTS AS SHOWN HERE. A FULLY SELF-CONSISTENT
CALCULATION IS NEEDED TO ACCURATELY EVALUATE THE EFFECT.

A NEW CONTROL_METHOD MAY BE REQUIRED. THE COLD BLANKET SERVES

THIS FUNCTION TO SOME EXTENT.
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Figure 2-8. Tllustration of Orbits for an Escaping and for a Confined High=Energy

Fusion-Produced Proton in SAFFIRE.
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Figure 2-12. Distribution of Thermal ash per Unit Pg vs. Pg. This distribution
is accumulated as the fp slow down and reach the 3T, cutoff. Note

. i
the large fraction of fps that are absolutely confined but not
closed-field confined.



THE COLD PLASMA BLANKET SERVES TWO KEY PURPOSES:

1. PARTIAL CONTROL OF ASH BUILD-UP

2. PREVENTION OF NEUTRAL IN-FLOW

Table 2-7
PLASMA BLANKET

Density (cm-3) l-5x1013
Temperature (eV) 10-50
Particle Throughput (sec-l) ”1023

(Torr-liter sec-l) ~3.lxlO3
Power Outflow (MW) ~1
Formation Mechanism Gas Box Ionization
Heating Requirement Fusion Product

Self~Sufficient

Dump Requirement

Pumping (Torr-liter sec-l) ~3xlo3

Thermal Cycle Efficiency (%) 30
Potential Profile:

Collector Sheath Negative

Divertor Positive
Effectiveness

Ash Removal Good

Neutral Shield Excellent
Status of art Near-Term

Alternatives: Ultra-High Vacuum (< 10-8 Torr)




FIRST WALL

COLD PLASMA

A 4

Z Neutrons .01i

)_ Radiation 5 \
& Trans. Beam 03
Plasma 02
Leakage
FUSION .25 THERMAL
PLASMA Mirror Loss BLANKET
.02
Fusion
Products 4
10
Mirror Loss
Figure 2-13. Fraction of Power Outflow (case of Table 2-2, column 3)

Deposited in Reactor Regions Through Various Channels.

The total power is 2.4 MW.



THE PILOT UNIT USED A THERMAL DUMP TO COLLECT PARTICLES ESCAPING

THE PLASMA AND INTRODUCED FROM THE GAS BOX TO FORM THE COLD

FLOWING PLASMA ON OPEN FIELD LINES.

THE HIGH PUMP RATE INVOLVED CAUSED CONSIDERATION OF A LITHIUM

RAIN COLLECTOR AS AN ALTERNATIVE TO COLD PUMPING.

A SIMILAR DUMP WAS USED IN CONJUNCTION WITH THE DIRECT COLLECTOR

ON THE SMALL REACTOR TO REDUCE THE LOW ENERGY PARTICLE LOAD ON

THE COLLECTOR PLATES/PUMPS.
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Figure 2-16, Diagram (not to scale) of a Thermal Dump to Collect
Particles and Recover Energy from the Divertor Plasma
Flow. The dump length is approximately 3 meters.
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THE PILOT UNIT USED A SMALL AIR TURBINE GENERATOR AND MODULAR

CONSTRUCTION. THIS WAS POSSIBLE DUE TO THE RELATIVELY SMALL

TRITIUM INVOLVEMENT.

IN ADDITION TO THE DIRECT COLLECTOR, A UNIQUE RADIATION

CONVERSION CONCEPT WAS CONSIDERED FOR LATER GENERATION DEVICES.

RADIATION MANAGEMENT/COVERSION TECHNIQUES APPEAR CRUCIAL FOR

LATER DESIGNS.



THE SMALL REACTOR HAS A RELATIVELY LOW CAPITAL COST BUT CANNOT

TAKE ADVANTAGE OF THE ECONOMY OF SCALE TO REDUCE THE COST/KW.

CONSEQUENTLY WE FELT THE MODULAR DESIGN AND MASS PRODUCTION

WERE IMPORTANT TO USE TO ACHIEVE A COMPETITIVE COST/KW.



PARAMETRIC STUDY ON D-3He FRC REACTORS

THEORETICAL AND EMPERICAL SCALINGS WERE
COMPARED WITH THE VALUES REQUIRED FOR

IGNITION

VALUES NEEDED FOR IGNITION ARE WITHIN THE
WIDESPREAD RANGE BETWEEN BOHM (lower end)

AND CLASSICAL (upper end) SCALINGS

WELL BELOW THOSE PREDICTED BY THE VELOCITY

SPACE PARTICLE LOS8 (VSPL) SCALING

WELL ABOVE PREDICTIONS RESULTING FROM

INSTABILITY-BASED SCALINGS

(TRX) SCALING MOST FAVORABLE ONE AND WOULD

PRODUCE AN IGNITED D->He FRC REACTOR

REVISED TRX SCALING WAS EVEN MORE FAVORABLE



PARTICLE CONFINEMENT SCALING:

Scaling

Empirical

Rz/"ie
xgR2/py (1 g/x )34
¢

TRX-1

FRX-C/T

TRX

Theoretical

LHD

Bohm
Krall
Classical

VSLS

Reference

273
409

28
40
21

142

57
410

62

©O O ©o o o

0.75

0.2

™

3.3

2.7

~ gaybycpdre

s7s"¢C

2.2

1.4

3.6

1.25

1.8

0.5
0.5

0.5
0.6
0.5
0.9

0.5
0.5
0.5

0.2

0.5
0.3

0.4

-0.7
-0.5
-0.5
1.5
1.5



FSL-88-132

Basic Parameters

Reversal Factor 1.

- Separatrix radius 0.4 m
Wall Radius 0.57 m
External Field ST
Volume Averaged Beta 0.76
Confinement T =T,
Fuel Mixture D/3He 1/1
Impurities 1 7%
Zimp ; Aimp 6:12
Synchrotron Wall 0.99

Reflectivity




phere Scattering Transport

LSST: Loss S

Ignition Domain
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*He—3HE Ignition Domain
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Fusion Power Density
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Neutron Production, P, /Pg, [-]
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Neutron Production
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Tritium Inventory in Plasma
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Burn—up Fraction of He
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FRC SOURCE PRODUCTION BY FRTP

© /SNOW PLOW MODEL’ IMPLOSION

o EXPANSION

© ADIABATIC COMPRESSION
- CONSISTENT WITH THE FRX-C/LSM EXPERIMENT
= DISCHARGE BANK IS A8 LARGE A8 2 MV

= CAPACITY OF 100 MJ IF THE INITIAL

PLASMA IS LARGE



Plasma radius at midplane (m)
Separatrix length (m)

Electron mean desnity (10%° m™®)
Mean temperature (keV)
External field at midplane (T)

Flux trapped by the plasma (Wb)

0.88

0.28

0.33

0.29

Table I.

Plasma Formation and Heating Parameters:

(a) by

reversed-field theta pinch at the formation section,
(b) after the translation to the burning section, and
(c) after attaining ignition conditions.




r, r, 1, V. c W, B, Toax
2.0m 1.9 m 10 m 0.4 MV | 0.41 mF| 33 MJ 0.87 T 35 us
Table IV. Dimensions of the formation area and parameters for

the source bank.




Fusion Power: 1.4 GW

14.7 MeV Protons 260 MW
Other Fusion Products 30 MW
Thermal Ions 725 MW
Radiation 320 MW
Neutrons 65 MW
Plasma Volume: 80 m’° (1.25-m; r; 17.0-m 2)
Plasma Temperature: 100 keV
Energy Confinement Time: 2.5 sec
Mean Electron Number Density: 5.2 x 10%° m-3
Deuterium: 2.23x109m™®
Helium-3: 1.12x10% n7°
Others: 0.47x10%° m™
Fuel Supply: 2.0x10%/sec )
Pellet: 1.8x1021 m° x 11/sec
NBI: 3.0x%x10/sec
NBI: 1l MeV, 5 A
External Magnetic Field: 6.44 T
Average Plasma Beta: 87.5%

Table II. Principal Parameters of FRC/’He Stationary Burning
Plasma.




STEADY-STATE MAINTENANCE

© NEUTRAL BEAM INJECTED NEAR-FIELD NULL

MAKES AN OHKAWA CURRENT

- SEED DRIVING A BOOTSTRAP CURRENT

TO MAINTAIN A STEADY STATE

= ROTATION SPEED INDUCED

© LARGE RADIAL DIFFUSION LOSS, DRIVES A

LARGE BOOTSTRAP CURRENT

~ REDUCES THE NBI CURRENT NEEDED FOR

SEED

- REDUCES THE INDUCED ROTATION



o o o -
» » ) o

o
X
L
\

Normalized Current Density

1

0 0.25 0.5 0.75 1
r/a

Fig. 3.1. Distribution of the proton current density pro-
duced in a D-*He fusion plasma; current density
normalized by the plasma current (dashed line) at
the edge is calculated as a function of r/a.



STABILI2ING EFFECT OF GYROVISCOSITY ON INTERNAL TILT

© STABILITY CRITERION BASED ON THE CURRENT

GYROVISCOSITY TREATMENT

© MULTIPLICATIVE FACTOR TO ALLOW FOR THE

STABILIZING EFFECT FROM OTHER ION SPECIES

© COMBINATION OF THE S’s FOR VARIOUS

COMPONENTS

ROTATIONAL INSTABILITY

©0 COUNTERINJECTION OF HELIUM BEAMS

APPEARED MOST ATTRACTIVE

© QUADRUPOLE FIELD AND AXIAL CURRENT

ARE ALTERNATIVES



DIRECT ENERGY CONVERSION FOR 14-MEV PROTONS

© EXPANSION OF THE PROTONS LEAKING FROM

THE X POINT

© CHANGES THE PERPENDICULAR KINETIC

ENERGY TO THE PARALLEL ENERGY

© VELOCITY MODULATION BY A RADIO-

FREQUENCY WAVE TO BUNCH THE PROTON BEAM

© ENERGY RECOVERY BY INTERACTION WITH
AN APPLIED TRAVELING WAVE OF MHZ

RESONANT FREQUENCY

© SUPPRESSION OF SECONDARY ELECTRONS

NEEDED TO KEEP A HIGH EFFICIENCY



HIGH POWER DENSBITY

© ADVANCED CONCEPTS FOR THE FIRST WALL

FOR HIGH BREMSSTRAHLUNG RADIATION

© LOW RADIOACTIVITY FLUX



FSL—-88-133
Conclusions

High Fusion Power Density
Low Neutron Production

® low Tritium Inventory

Low *He Burn—up Fraction

Questions

Stability (how good for large devices)

Size (confinement, start—up, stability)
S—Parameter (large gyro radius effects)
Scaling Expressions (transport mechanism)
Steady—state Operation (current drive)
Suprathermal lons (confinement, current drive)
Start—up (use of D-T)

Source (Theta Pinch, slow formation)

Supply of °He (moon, terrestrial, breeding)



pD-3He FRC TO SPACE PROPULSION

© POTENTIAL ADVANTAGES

© POWER DENSITY

© POWER-TO~-WEIGHT RATIO

© PROPELLANT THERMALIZATION
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FIELD REVERSED CONFIGURATION PARAMETERS

Magnetic Field ST

Beta 0.76
Confinement Time 2 sec

Electron Temperature 66 keV

lon Temperature 86 keV

3He/D 60/40

Fuel Consumption ~ 5.2x1077 kg/m3s
Fuel Burnup 37%

Fusion Power 6.4 MW/m?3

Jet Power 297%

Neutron Power 1.9%

Propellant Addition 0-10"2 kg/m3s
Specific Impulse 10°-10%s

Thrust 5-600 N/m?
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j@ SCIF Concept

DIRECTED
TECHNOLOGIES, INC.

N - =/
CTRON ¢ IR - DENSE
S cLoun &\ € CORE
i
1 %r,
ton _
VACUUM
VESSEL

e A spherical potential well is created by the space-charge of a small
excess (~ 107/cm?®) of fast injected electrons in a neutral plasma
confined in a magnetic cusp field.

e Ions oscillate through this potential well, creating a spherically con-
vergent flow with a large radially directed velocity.

o High central ion density created by convergent flow, along with high
central ion velocity, initiates fusion in the central core region.



\

(°1)°L(%1)usg ~ @ :FONVIVE JUNSSIU
21(% < Ny :g507
(%1 > 1)bu :NoISNA

A

e
2, "

C1~Du<<(©>au

(0 = zalalu up/p) SNOI LNIISNVHL 40 3HOD ISNIQ
0 X 1 ‘'VIWSVd ALISNIA MO
ano1o Nol (d ~ le) LigHo 39UV

ano7d NOHLO3T3 A3NIINOD ATIVOILINOVN  :1INS3H

(@GINNILNOD) ¢ LYHM STIVI
SJOISAHd LINJWEANIINOD TTAMATO0d Tvax




L

1A

(¢ = w) 3an2 A3LVONNYL a1314-g | STLvidossy

(2):MOH , €




ALIX3TdINOD SOISAHd AISYIHONI
‘ALIX31dINOD TVOID0TONHO3L a3ona3y “TVHaN3O

SSOT ONIHILLVYIS I
MO ONIHILLYOS I ‘NOISNd H :3HO) TYNOISINI02

NOISHIANOD L03HIa - H << de :$19nAOHd NoIsN4
g/b-g)/1 ~u ‘0 = Auz1 sefe «0 = Au-A 3HOD ISNIA
(wiq )1 = e :sNOI DNILVINOHIDIY
SNOYLO3T3 Q3ddIHLS ANV A3LOIrNI
SNOI 13n4 nmm_ntzﬁt._ﬁ“uﬂﬂe*:?io wew
SNOI ALIHNdWI  :VYIWSVTd TYHININISVYND
VA L - SdAV M3J :SNND NOHLOITI :WILSAS .ONILYIH, HO3L MOT
o) 01-s ~ %8 ‘SIINDYIN HO3L MO

e-W2 2101 - 9,01 ~ U ‘(ATIVOILINOVIN) SNOYLOFIT QIddvHL

SILVIOOSSY
31V1S AAV3LS T1IMATOd vax




;::::igijg  ENERGY BALANCE

TECHMOLOGEES, INC.
R =100 cm fie,=1x 10""/cm3
Teore = 1 cm ¢o =50 kV
By, =5 kG
¢ Gain:

Fusion power ([ npnrop;odV )

e Electron losses:

—Electron cusp loss (Npyup(pe/R)*E. [ Tiransit 2)
—Cross-field transport (LH instability)
—Ilon defocusing (scattering from electrons,
lons, or neutrals, charge exchange, or
angular deflection by B fields) — carries
charge-neutralizing electron from well
—Joule heating of coil

(superconducting)

o Scales favorably with R

20 MW

5 MW
5 MW

1MW
10 MW
(<1 MW)



ALIAILDONANOD HOIH NOILYZITVHLNIN LNIHHND
((1)ax3) sLigHO ‘-4 ‘uA ‘0«4 ‘A IONIHIHOD AILINN

VINSY1d TVHLNIN-NON
34NSS3Hd JIdOHLOSINY

IWV3HLS-2 NOI-NOI
WV3H1S-2 NOH.LD313-NOI

:$3S§S300Hd 3181SSOd

SHLIVIDOSSVY
$3SS300Hd SSO1 3AILOITI0D IV




ISNOdSIY, NOH.19: HYINIINON + ‘HLMOH® a30naay +
w/lw MLEN = IN'wyag NOI isdaH o) NOILYOITddV

TIVINS 001 N > ON swvag-o
‘NOSLVM 8 XONL ‘FHOWTI OL NOILYDINddY

FaVISNN 29N < Ay “a

.._.> .
I < m .m\,lv —£—  1VH1 HoNs 9N 1v 318VLSNN
r4

2t 20

3GOW ON 1 < Y 41 1ng

4
2 A

F18VISNN | < A .i <% 4 SNIQVH ‘WY3E LINIY
3

[ A4

b)9'd
ﬁrat.t.{uw.;:v «niQa r'*g fwia

AHL13INO3® ._<o,m_m_.:_m - (€961 “4°'d) H1HNS
v

2 g

TVOIHAHdSY ‘OlLLANDYWOHL1D3 13 ‘ALITIGVLSNI 73g13m

FTdWNVYX3T - S3SSIO0Hd 3AILOITI0D

SILVIDOSSV
\




stajowreled 4108 LLA

SUI Gg = [)3us] oSN
c=uw
Oy ¢ o} = &..:cm
sdury ), 03 6z =
AY 6T = "¢

u g6 =Y

"ONI ‘SAIDOTONHIAL

B~/

1
!

i



sur gz 10A0 ;) dooip 9Bejjos asind e

‘Bungogims

oje)s pros Ypm S8rarpsip tojoeded v £q parpddns juarmd ym espnd un® sur g7 e

su0x3290 a1)) Jupmnd pEYy J[DS Yim saurf dsno Fuofe padse|]

sopoyjeo Jesuadsip jeurerjoadg Buisn ‘s901A0(] U0I1II[Y U0 Aq pauBso(]

pes sdury g ‘AY G e sund ¢ o d)

2

SN1D NOHLOHTH

"ONI ‘SZIDOTONHIAL

@ aaroana




st ()g-g Jo sas[nd ul saaemoIdIUI JO MY (-G s9onpoid 801nog e

‘U 0G ~ 4

Je 208pms |g| reowoyds-senb e je 10 ‘D G)8 18 ZD GH'Z UM JURUOSII SUOIJID[ e

92IN0S 2ABMOIDIUI Z[[K) m.v.m Y3m uoljpeziuol YO

JINVL

"ONI ‘SAIDO0TONHIAL

NHOH
Alddns _.._
i :
MXN 0}
ZO_._.OAOJ_I_
H3INNL
MOGNIM
ADUNOS NOI

@ aaroavia




(4SdV) 0661 ‘1oquIsaoN 91e]-PIN — oUMDRUI [T, UL §30Ys vuIse|d e

0661 ‘TOqUISAON — UOIRZLIdIORIRYD JDINOS UOI PUR UOIJIS[d ‘Surues[d s31eydsi] o
0661 ‘12q030() — uoryejzodrodus srjsouser] o

0661 ‘roquajdag — A[quiesse pue JNONIYD [I0D ‘[9SS9A WINNORA LILq ¢

0661 ‘12q032( 0} SUN{ — JNOXDAYD puUB UOIIRIGI[ED ‘sITIsOUTLIP 18a£ jusim)) e

dTNAdAHDS

"ONI ‘SIDOTONHIAL

M aaroavia



"A2 08 = AV ‘TAV ynm g/ ,o1 £ysusp 93pa [erjrur ‘edros uor A 00T —

‘A € = gV ‘TAY 1m qun/ 07 Lysusp odps eitur ‘un-s Ay g7 —

(seounoq woxjav[e (O] X g) 09SUI | SAUII) JUIAUYUOD UOT ‘UOTJIRNG —

(& 2 %9 ‘¢4 2 g) 1ennuajod jusreambo ue jo sueour £q papnpour ppRYy omuomwﬁz —
da)s awiry yowa 10§ L1epunoq sy e

PaYIpoUI SUIId} 880] PUY JDINOS UOI PUB UOIIII[D [}IM IPOD AOSB[A 97e}s-Lpea)g —

(dnpping [jom [erjusjod juapuadap aurry) uorn|os d1jEqRIPY e

sl g ‘(4)¢ s 1°Q ‘(4)¢

R R T S i B

\\J//

/ B

4 U -

y 2
|
eq

]
©

Ol"

"ONI ‘S3IDOTONHOAL

asloavia
SLINSAY TA0D AOSVTA @ \




A ST © ¢wd/,,01 X 9 = Ou

sur g ‘(+4)'u suI (g ‘()¢

(w) snypoy

01 9°0 9°0 o |u-.o 0°0 o 01 80 om”._ Q:Jv%w Lo 00
II.'../ J \\il_l

o o \ J o
) L~ ~l o
c

e

owm \ -
g 7 ne

“ s

o >
a g
» -
~ e

/ &2
(B

. L
" 8
| | © [

~ x
o !

[~ ] DA .0 ﬂ,.

"ONI ‘STIDOTONHIAL

(‘3m0d) STTNSTAY AAOD AOSVTIA

@ QN.-..U&B—D




——— - P vy
S FPOWOL.

=t IR - HATRS

i | i

i i -
H i

i {

10?

:
I
3

Fusion Rate (/eec)

Fusion Power (kW)
)

3
3

H i
L

H i i
lL'l!!'J!'Illl‘!"l'LLJL

|

| i

"[ll!ll
40 60 3 10 120 149 1%

10" //

Figure 1: Total fusion power and reaction rates for various fusion resctions in a 50%
deuterium, 50% >He HEPS plasma. The central ion density is 10'®/cm3.
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3. FUSION WITHOUT IGNITION
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P= ngne<ov) VE = 2.24 MW

MAGNETIC FIELD Bex= 5 kG
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6 ION INJECTORS 500 KV, I16KA, lpsec; 2/sec
P;= 0.1 MW
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TRAPPING A NEUTRALIZED BEAM
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Dr. J. Dawson, UCLA

ALTERNATE APPLICATIONS FOR
DHe?

(I) FUSION REACTIONS ARE A NEW FORM OF FIRE
WHICH PRODUCES THEIR ENERGY IN UNIQUE
FORMS WHICH CAN FIND SPECIAL APPLICATIONS
BESIDES POWER PRODUCTION. THIS IS
PARTICULARLY TRUE FOR D-Hé’.

(IT) D-He® HAS A NUMBER OF FERATURES THAT CAN
FIND UNCONVENTIONAL APPLICATIONS:

(a) A substantial fraction of it's energy is
given off as X rays.

(b) A substantial fraction of it's energy is
given off as Microwaves and Infrared.

(¢) Large numbers of 14.7 Mev Protons
are produced.



14.7 Mev Protons are useful for producing
proton rich isotopes which can not be
produced by neutrons in fission reactors.

The most efficient way to do this is through
the use of p-n reactions which have relatively
large cross sections; 14.7 Mev protons have
sufficient energy to penetrate the Coulomb
barrier of all atoms.

Convert radioactive waste into non radioactive
materials.

*One application of such isotopes is as sources
of positrons; a D-He?reactor can be a factory for
positron emitting tracer elemenrts with
applications in medicine and industry.

It can also be a factory for positron

with numerous applications; there are almost
certainly many applications which have not yet
been invented because sources do no¢ exist.



MEDICAL APPLICATIONS

At present the the major use of positron
emitters is for PET scans in medicine.

For this application Cyclotrons are used that
produce about 100 micro amps of 10 Mev
protons. The cost of such cyclotrons is ~ $10M.

Typically 103 of the protons produce positron
emitting atoms. Similar fractional production
rates can be achieved in a D-He® reactor.

A typical PET scan requires 10 mc or ~4x10'?
atoms ( for example F!%),

To some '"Degree" a 200MW D-He® reactor is
equivalent to 10°cyclotrons!



D L APPLICATION

Fluorocarbon oils can be put in operating
engines and PET scans of an operating engine
made.

CF* can be used to PET scan for cracks in pipes,
turbine blades, or other industrial components.

Positron emitters can make unique gamma  ray
sources. -

A positrom Microscope has been proposed as
having advantages over an electron Microscope.

Positrons are used in investigations in solid
state and chemistry.
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i F.esearchers study snapback on television

R ‘ R MMMHWSICALPMOMA&:MIMBM

e <€mportant 10 electronics researchers who are designing next-generation devioes.

i T Toth:send.amolmachennSndiaNaﬁoulhbomoﬁs.A&w
NM, bas produced the first live TV pictures of transistors experiencing )
mapback—apomﬁanyamwhicwiamLSmpbackmmm
n-channel metal oxide semiconductor transistars are operating above s theesheid
voltage (the snapback voltage) and aa initiating event occurs to trigper saapbeck,
such as an influx of static electricity. The trigger produces an oversbusdancs of
electrons in the transistor (light area in photograph), thus causing snapback. if lefs
uncorrected, snapback can melt metal interconnect wires of an integrased civonis
and can cause electromigration, which can lead 10 short or open circuits om the IC.
Snapback is eliminated by reducing the power to the transistor 10 less thaa the

b . Sy B8 snapback vohage. According to Jerry Soden of Sandia, filming snapback caa

~e A s o 'ﬁgﬁﬁa‘:gy‘:gplcwper:;%ggu?:g:nm&ngoﬂwwdl.h“h

S eMeRer W ° causes ni to control it, lp insure that the next generation of
g -*4 o« OB ' lewon‘tbephg?n::swit." P

-0 00 i ALTHOUGH THE TRAGEDY¥ OF THE SPACE SHUTTLE bas temporarily

Co Bahed U.S. space endeavors, planning esntisnes oa future courses the U.S.
should take in commercialization of space. Owe mech effon is being headed by
Frank Vandiver, president of Texas A&M Unin., College Station. Vandiver is
proposing that the U.S. create “space-gramt™ wninersities as 3 way 10 make the
best use of the nation's space capabilities. These space-grant universities would
operate in much the same manner that land-geent and sea-grant institutions have
served the U.S. in the past. Vandiver is laying the groundwork that he hopes will
lead to Federal legislation creating a network of space-grant universities. He said
that his ideas have bees given a pood receptins by members of Congress and by
NASA. “The opportamites are magnificent,” he said, when commenting on the
proposal and its relasionship with Texas A&M. “We cam offer a most important
marriage of basic sciewce with commercializstion. I we can work with the private
sectoz, as well as with government, we can achiove great advances.”

CONSIDERING TRE TARNISHED IMAGR of @s sucicar industry, any siga of
4 relinbilicy and sweagth is welcome, cven if it eownss bem an experimental reacaos.
Oue asea of pevsimeent reliability and techmivel advames in the suciear
sceme % somne om the Fast Flux Test Facilioy FFTF) is Richland, WA (R&D
Ocwmabes, p 33). Researchers there recently sepovtsd thet they had achicved s W%
sumusl capacity—e performance goal that is sesaguined as 2 standard of selinbility
througheut the suclear industry. Io companises, the sverage ansual capmrity
fiascose for commercial nuclear plants is the ULS. is STR. Capacity facser is &
measuse of 3 plant’s performance at full duning s specific peviod of Sme.
“Achieving this important objective at presmass the sucicar industry widh &
signilicant symbol of reliability in 2 Bquid mesal semctor,” said Charie
Peckinpeugh, FFTF plant manager. » whith is eperated by Westinghouse
Maatord Co., is used t0 perform advanced sesting of suciear fuels and materials as
part of the U.S, liquid metal reactor program.

-

LOOKING INSIDE AN ENGINE WHILE it is operating seems 10 be an impossible

M} €sk, but it may be getting easies. British researchers at Rutherford Appleton
Laboratory, Rolls Royce, and Univ. of Birmingham have developed a positron
emission tomography (PET) system that allows engineers to see how componeots
behave while an engine is running. In operation, a positron-emitting isotope is
introduced into the oil flow of the engine under test, and radiation-sensitive
monitors on either side of the engine register the emissions. With the aid of
computers, images of the oil can be displayed as slices through the flow in the

engine superimposed on matching drawings. With PET, relative positions of static
and rotating parts can be obscrved as engines warm up or change power. and an ya
engineer can see how well a particular component is sealed against leaks. N
Resoerch Trencieter & 8 Pademart swned by Research & Development megazing

RESEANCH § DEVELOPMENT—MAACH 1008 33
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snapback voltage. According to Jerry Soden of Sandia, filming snapback can
significantly help IC designers. “A good understanding of [snapback], including ies
causes and techniques to control it, should help insure that the next generatioa of
ICs won't be plagued by it.”

ALTHOUGH THE TRAGEDY OF THE SPACE SHUTTLE has temporarily
halted U.S. space endeavors, planning continues on future courses the U.S.
should take in commercialization of space. One such effort is being headed by
Frank Vandiver, president of Texas A&M Univ., College Station. Vandiver is
proposing that the U.S. create “space-grant™ universities as 2 w2y to make the
best use of the nation’s space capabilities. These spacc-graat usiversities would
operate in much the same manner that land-grant and sea-grami institutions have
served the U.S. in the past. Vandiver is laying the groundwork that he hopes will
lead to Federal legislation creating a network of space-grant unsversities. He said
that his ideas have been given a good reception by members of Congress and by
NASA. “The opportunites are magnificent,” he said, when commeating on the
proposal and its relationship with Texas A&M. “We can offer a most important
marriage of basic science with commercialization. If we can work with the private
sector, as well as with government, we can achieve great advances.”

CONSIDERING THE TARNISHED IMAGE of the nuclear industry, any sign of

‘| dreliability and strength is welcome, even if i comes from an experimental reactor.
- b Onecarea ofpcxsistcnxrdiabilityandwchnia!admhthenudcuindumy
seems to come from the Fast Flux Test Facility (FFTF) in Richland, WA (R&D
October, p 33). Researchers there recently reported that they had achieved a 70%
annual capacity—a performance goal that is recoguized as a standard of reliabilicy
throughout the nuclear industry. In comparison, the average annua! capacity
factor for commercial nuclear plants in the U.S. is $7%. Capacity factor is a
measure of a plant’s performance at full power during a specific period of time.
“Achieving this important objective at FFTF presents the nuclear indusiry with a
significant symbol of rebabdility in a liquid metal reactor,” said Charlie
Peckinpaugh, FFTF plant manager. FFTF, which is operated by Westinghouse
Hanford Co., is used to perform advanced testing of nuclear fuels and materials as
part of the U.S. liquid metal reactor program.

% LOOKING INSIDE AN ENGINE WHILE it is operating seems 10 be an impossible
Py <€task, but it may be getting easier. British researchers at Rutberford Appleton
§ “1  Laboratory, Rolls Royce, and Univ. of Birmingham have developed a positron
emission tomography (PET) system that allows engineers to sce bow components
behave while an engine is running. In operation, a positron-emitting isotope is
introduced into the oil flow of the engine under test, and radiation-sensitive
monitors on cither side of the engine register the emissions. With the aid of
computers, images of the oil can be displayed as siices through the flow in the
engine superimposed on matching drawings. With PET, relative positions of static
and rotating parts can be observed as engines warm up or change power. and an
engineer can see how well a particular component is scaled' against leaks.
Research Trendietter is a trademark owned by Research & Development megazine
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2.

3.

S.

6.

D + 3He + “He + p (14.7 MeV)

llg + 113 + ¥ (7172 = 20 min.)

P+ 13 +13N+n (Ep =3 MeV)

13y + 13¢ ++8 (7172 = 10 min.)

P+ I5N + 150 +n (Ep = 3.53 MeV)

150 + 15y + et (ty/2 = 2.03 min.)

P+ 170 + 17F 4+ (Er = 3.55 MeV)

17}" > 170 + +e (fvz = 66 SeC-)

P+ 18 + 18r 4+ (ET = 2.45 MeV)

P+ 19F + 19Ne + n (Ep = 4.03 MeV)

1940 + 19F + +¢ (ty/2 = 18 sec.)

P+ 26Mg + 26A1 + n (ET = 5.0l MeV)

2651 » ZGHg + te (tl/Z = 6.5 sec.)

18p 4 189 + et (ty/2 = 1.87 hr.)

Use DT reaction (about 0.05 !8F/n)

g = 200 mb



D + He® He' + p(14.7Mev)
p + Ne? Na®* +n
Na?? Ne?? +e* (1

1 = 2.5 years )
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RANGE OF PROTONS
nelmfp(proton) =2.5 x 108E1/2[ E + 1836Te 13/2

E = proton Energy

Two Examples

(1) D-He’ Reactor
Te = THe3 = Tp= 50 Kev
ne Imfp(proton) = 1.1 x 1024

(2) Present Experiments
Hot He’in D, (TFTR, JET)
Te =~ 10 Kev
ne lmfp(proton) =3 x 1023



POSITRON EMITTERS PRODUCED PER
PROTON

=~ M< G lpfp(proton)> =
(Mt/Me) Ne< O 1y, pp(proton)) > =
[(nt/“e)] Ne lmfp(pI'Oton) <o >

Nt = Density of Target Nuclei for producing
positron emitters

f = Fraetion of Protons producing a positron
emitter



Example

Take < 0 > = 2 x 10-25

Case (1) f= (Nt/Me) x 2x10-1
Case (2) f= (Mt/Me) x 6x10-2
For (n¢/me) x s5x10-3

fi= 10-3

f2= 3 x10-4

JET has produced 100 KW of power from the
D-He3 reaction corresponding to 5x10-3 Amps
of protons.

Taking a reaction time of 0.5 sec gives
1.5x1016 protons or 4.5 x1012 positron
emitters.
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MAGNETIC FUSION ENERGY
and
SPACE DEVELOPMENT

" L/ University of
A

Wisconsin

John F. Santarius

Fusion Technology Institute
University of Wisconsin-Madison

and

Wisconsin Center for Space Automation and Robotics

First Wisconsin Symposium on D-3He Fusion
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e Why is fusion attractive for space applications?
¢ How would fusion aid space development?

¢ What would fusion propulsion systems look

like?
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D-3He Fusion Provides the High Power Density,
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D-3He Fusion Energy is Ideal for
Space Power and Propulsion

University of
W

Wisconsin-Madison

® D-3He reactions produce only charged particles, which
can be guided by magnetic fields.

> D + SHe = 4He (3.67 MeV) + p (14.68 MeV)

Deuteron Proton

Helium
Nucleus

® Highly efficient ( 2 70%) direct conversion of energy to
thrust or electricity.

> Reduced heat rejection mass.
> Reduced biological and magnet shield mass.

> Very flexible thrust and specific impulse tailoring.
® Extremely high fuel energy density.

® No radioactive materials present at launch.



Advantages of Fusion for Space Applications

X/ University of

Wisconsin

® No radioactive materials present at launch,
and only low-level radioactivity present after
operation.

¢ Higher projected specific power values (1-10
kWiprust/kg) than for nuclear or solar electric
propulsion.

e High, flexible specific impulses, allowing

efficient long-range transportation.

¢ Net-energy-producing fuel, available throughout
the Solar System.



D-3He is More Attractive For Space than D-T

X/ University of
Wisconsin

e High charged particle fraction allows efficient
direct conversion to thrust or electricity.

> Increased useful power.

> Reduced radiator mass.

¢ Low neutron fraction reduces radiation

shielding.

e Eliminates need for tritium breeding blanket.



3He Resources are Abundant from a
Cosmic Perspective

LOCATION

Earth (accessible)
Moon
Gas Giants

Galaxy

) University of
h'l Wisconsin

ENERGY
AMOUNT CONTENT
(_kg_)_ (MW—yrs)
500 5x109
109 1010
1023 1024
1036 1037



NEW SCIENTIST (No. 307), 4 OCTOBER 1962 .

New Scientist L@_ (307), 16 (1962).

Towards thermonuclear
rocket propulsion

If controlled thermonuclear fusion can be used to
power spacecraft for interplanetary flight it will

give important advantages over chemical or nuclear
fission rockets. The application of superconducting
magunets and a mixture of deuterium and helium-3 as

fuel appears to be the most promising arrangement

by Gerald W. Englert
Lewis Research Centre, US National Aeronautics and Space Administration

PROPELLANT
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A Prophecy Whose Time Will Come

) University of
‘A'l Wisconsin

“The short-lived Uranium Age will see the dawn
of space flight; the succeeding era of fusion power

will witness its fulfillment.”

Arthur C. Clarke

from The Planets Are Not Enough
in The Challenge of the Spaceship (Ballantine, NY, 1961).



Fusion has the Highest Energy Density of
Any Net-Energy-Producing Fuel
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SOAR: Space Orbiting Advanced
Fusion Power Reactor Configuration
and Major Parameters

" y University ol
A Wisconsin-Madison

CENTRAL CELL END CELL |

Choke Coil

Central Cell Coils

Direct
Converter
Region

lon Cyclotron Resonance Heating
for MHD Stabilization

Neutr
Electron Cyclotron Beam
Resonance Heating
i} Magnetic Flux Tube
at Plasma Edge

® SOAR Reference Case Parameters

Specific power 2.2 kWe/kg
Fusion power 1960 MW
Net power 1000 MWe
Net efficiency 51%
Operating time 600 s

Total mass 450 tonnes
Central cell first wall radius 0.41 m
Central cell length 93 m

He-3 to D density ratio 1

First wall surface heat load 1.6 MW/m2

Neutron wall load 0.17 MW /m?



Tunable Rocket Trajectories
Greatly Enhance Performance

X/ University of

Wisconsin

Based on: Krafft A. Ehricke Space
Flight, Vol II: Dynamics (Van Nostrand,
Princeton, 1962).



Optimizing Low-Thrust Tra jectories
Requires a Wide Range of Specific Impulses

X/ University of
‘Al Wisconsin-Madison

4 T ' { 'I
] ) "

\\, L e | LT
2 c VAR 1 WA
E: 0 \‘\ ’/ §: / / \ \
< ; S 100p y A
= \ > \
S 2z N
zé 2 \ f; / N

N
‘\ // 2= 04 kw kg™ |

-4 10
0 02 04 06 08 10 0 { 2 3
Relative time t/r Time, months
F1c. 4-47. Radial and circum. Fi1c. 4.48. Exhaust velocity as
ferential thrust accelerations function of time on three-month
of spaceship on three-month transfer trajectory to Mars 1].

transfer to Mars [1].

From: Ernst Stuhlinger, Ion Propulsion for Space Flight,
(McGraw-Hill, NY 1964).



D-3He Fusion Provides Efficient,
Extremely Flexible Propulsion

% ¥4 University of
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1000 MW OPERATING MODE
500 tonnes
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D-3He Fusion Enables Fast Human Transport

" 'l University of
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FLIGHT TIME FOR SAME PAYLOAD
1000

1000
CHEMICAL
= 800 41 W FUSION
S
(11
KS)
)
£ 600 -
[
=
K=
T 400
-
Ke)
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R
= 200 1
5 5
yd V4

Earth-Moon Earth-Mars Earth-Jupiter
50% payload 33%payload 7% paylad

e Assumes specific power = 1 kW /kg and thrust/weight
ratio§10'3.



D-3He Fusion Enables Efficient
Large-Payload Cargo Vessels

" 'l University of
A Wisconsin-Madison

PAYLOAD FOR SAME FLIGHT TIME

1.0 7

CHEMICAL
08_/““ B FusioN
0.6 1

0.41

Payload Fraction

0.2

: A

Earth-Moon Earth-Mars Earth-Jupiter
5 days 260 days 1000 days

¢ Assumes specific power = 1 kW /kg and thrust /weight
ratio§10'3.



The Field-Reversed Configuration (FRC)
Appears to be Very Promising for Space
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D-3He Fusion Propulsion Reactor Design

" y University of
A Wisconsin-Madison

® Tandem Mirror Configuration.

® Based on UW Fusion Technology Institute designs for
terrestrial fusion reactors and burst-mode space fusion
reactors.

D> Auxiliary modules and systems designed by UW
Engineering Mechanics Senior Design Project class
subgroup.

- BELT RADIATOR

ONE OF 25 SETS SHOWN ‘0",,!)'9‘

MODULES FOR:
Airlocks
Bathrooms
Bedrooms
Cafeteria
Controls
Library

Life Support
Recreation
Recycling
Research

Saferoom
Storage

® Key parameters

Specific power 1.2 kW, ..../kg
Fusion power 1960 MW
Thrust power 1500 MW
Thrust efficiency 7%
Total mass 1250 Mg
Total length 113 m
Midplane outer radius 1.0 m

Main magnetic field 64T



A Prediction

University of
"A" Wisconsin

Fusion W:ill Be to Space Propulsion

What Fisston ts to the Submarine.



Space Development Will Be
Profoundly Enhanced and Expedited

W

University ot
Wisconsin-Madison

e D-3He fusion will enable large-scale settlement of the

Solar System

—Safe, efficient propulsion

of humans

and

throughout the whole Solar System

cargo

—Power in orbit, on surfaces, or beamed from orbit to

surfaces

The Bridge Between Worlds

envisioned by

the

National Commission on Space can become a reality in

the 21st century

BRIDGE BETWEEN WORLDS

Earth
Spaceport .~
p P//

Vehicle

/

Transport

\ / -
//
Fusion
Propulsion

Saturn

Jupiter

=

Outer
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S. Dean, FPA

Pop Quiz
(Multiple Choice)

eMost Advocates of DHe3 Fusion are:

a) Crazies

b) Radicals or fringe minority
c¢) Innovators

d) Mainliners

e) Visionaries




Industry Interest vs. Their Perception
of DHe3 Advocates

a) Crazies

b) Radicals or fringe minority
¢) Innovators

d) Mainliners

e) Visionaries




eIndustry Perspectives on Fusion in General

~Government not committed to development as a
commercial energy source

—Program is managed as open—ended research

—-Industry involvement not wanted by government

eAre there any reasons why industry should view DHe3
differently than they view fusion in general?



olf fusion goal were DHe3, two possible approaches:

1) Follow existing track to DT, carry DHe3 as “second
generation”

2) Optimize development path so that DHe3 is “first
generation” fusion

eDepending on choice above, near-term programs would be
radically different in such areas as

-materials development
—concept improvement

—-some technologies

oFirst approach not attractive to DHe3 advocates because it
attaches no urgency or priority to their work

eSecond approach not attractive to most fusion scientists
because it threatens most existing groups



Third Approach

eMaintain near-term momentum of DT program

¢Go slow on long-range DT technology, i.e. 14 MeV neutron
testing

elnitiate intense near-term program on physics approaches to
optimum DHe3 system

eSet up decision point (~5 years?) on whether to proceed
toward DT as “first generation” or switch to DHe3.

elnvolve industry on front-end of the search for a DHe3
development path.
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Report on the
First Wisconsin Symposium on D-3He Fusion
held at Madison WI, USA
21-22 August 1990

G.A. Emmert
University of Wisconsin, Madison WI USA

R.F. Post
Lawrence Livermore National Laboratory, Livermore CA USA

The Fusion Technology Institute of the University of Wisconsin initiated
and sponsored a symposium on D-3He fusion systems, held at Madison,
WI on 21-22 August 1990. The purpose of the Symposium was to bring
together a small group (there were 18 invited participants at the meeting) of
knowledgeable researchers to discuss the present status of thinking on such
systems. While the D-T fusion fuel cycle, having the largest cross section
and the lowest ignition temperature, has received the most attention from the
fusion community, there are substantive reasons for considering alternative
fuel cycles, especially the D-3He cycle. The cross section for the D-3He
reaction is second only to the D-T reaction, and, more importantly, its large
energy release is carried entirely by charged reaction products. Neutron
production in a fusion power plant using D-3He fuel is due to parasitic D-D
reactions and is at least 1 to 2 orders of magnitude less than that in a D-T
system. Insofar as it is possible to suppress these parasitic D-D reactions, the
environmentally related problems of tritium inventory and of neutron activation
can be further reduced by orders of magnitude compared to D-T systems. In
addition, the fact that the fusion energy released is given to charged reaction
products makes possible the consideration of fusion power systems using
high-efficiency direct converters with no need for thermal conversion.

Standing in the way of realizing the advantages of D-3He are the
long-standing issues of fuel supply and of the demanding plasma temperature
and pressure requirements that are implied. Both of the these issues were
addressed in the papers given at the Symposium. In chronological order the
presentations included the following:



R.F. Post (LLNL) gave an historical overview of D-3He fusion research and
concluded his talk with a speculative example of how one might minimize the
level of parasitic D-D reactions in a fusion power system by employing D and
SHe beams in a “linear collider". Choosing 125 keV for the energy of each
beam yields a relative energy matching the peak cross section for the D-3He
reaction. If high (80 to 90 percent) direct conversion and injection efficiencies
could be achieved, net fusion power might be achieved at a small fractional
burnup, and collision-induced heating of the D beam would be minimal, thus
largely suppressing parasitic D-D reactions. Such a collider would necessarily
be long (kilometers) and would require the development of very high field
solenoidal magnets (20 to 50 T) and, most difficult, the development of
high-efficiency beam injectors capable of producing centimeter-sized beams at
beam densities of order 1016 cm™ or higher. The purpose of the discussion
was simply to illustrate that D-3He fusion systems permit the consideration of
magnetic fusion configurations and techniques that are radically different in
character (and in capabilities) from the ones that are normally considered for
the D-T cycle.

G.L. Kulcinski (UW) discussed the technological advantages of D-3He
fusion compared with D-T fusion. These include the much reduced neutron
production and the resulting much reduced radiation damage of the structure,
30 full power year lifetime of the first wall, much reduced tritium inventory, the
possibility of meeting the Class A waste disposal standard, and of achieving a
passively or inherently safe reactor system in an accident. Despite the lower
power density in the plasma, the technological advantages of the D-3He fuel
cycle lead to estimated costs for D-3He reactors which are competitive with
D-T reactors.

H.H. Schmitt (consultant, former U.S. Senator and Apollo astronaut)
discussed the lunar resources of 3He and engineering, economic, and legal
issues related to recovering the 3He from the moon and transporting it back
to earth for use in terrestrial fusion reactors. His conclusion was that lunar
3He mining is technically feasible and there are no inhibiting legal or liability
factors which would prevent the use of the moon as a source for 3He. He
also concluded that an adequate rate of return on capital investment can be
obtained if the 3He can be sold for 1 000%/gram, which would add only about
9 mills per kWh to the cost of electricity.

A communication from D. Meade (PPPL) was presented by G. Emmert



(UW) because Meade was unable at the last moment to attend. Meade'’s
basic point was that the physics issues for D-3He fusion in tokamaks are
extensions of those for D-T fusion. These issues are increased confinement
and beta, improved current drive efficiency, and improved plasma heating.
Second stability operation may improve the performance for D-3He fusion by
allowing higher beta and improved energy confinement. Several tokamaks
(PBX-M, Versator, DIII-D, and TFTR) have approached the second stability
regime. Novel current drive schemes, such as helicity injection, or a large
bootstrap current, may make operation with large plasma currents energetically
feasible. Present D-3He heating experiments (minority heating in JET and
second harmonic heating in TFTR) are yielding encouraging results and may
lead to D-3He specific physics experiments utilizing the fast ions from the
SHe(d,p)*He reaction in the next 1-3 years.

R.R. Parker (MIT) presented calculations of the anticipated performance of
CIT and ITER with D-3He fuel. In both CIT and ITER, the highest energy
multiplication that can be achieved is less than one, even with an energy
confinement time up to 4 times that given by the present L-mode scaling
expressions. By raising the magnetic field at the plasma to 10 T and the
plasma current to about 30 MA, ignition appears possible with only a modest
improvement over present H-mode energy confinement scaling.

G.A. Emmert (UW) presented the basic features of D-3He tokamak power
reactors drawn primarily from the Apollo study. Apollo is a first stability
tokamak with a high magnetic field; the low neutron production in Apollo
results in a permanent first wall, class A waste disposal rating, and an
inherently safe reactor. Critical physics issues for a first stability D-SHe
tokamak include the high plasma current because of the potential for structural
damage in a plasma disruption, driving the plasma current without needing
large amounts of auxiliary power, and the possible need for active techniques
to keep the steady-state ash concentration at a reasonable level. For a
second stability reactor, the plasma current and magnetic field is much lower
and the reactor operating point is much less sensitive to ash accumulation.
Bootstrap current overdrive and its compensation is a critical issue for a
second stability D-3He tokamak reactor.

A. Hoffman (Spectra Technology) discussed transport scaling and
stability considerations for field-reversed-configuration (FRC) D-3He reactors.
Experimentally, the stability appears better than calculated. A combination of



energetic fusion products and energetic injected ions could provide stability for
reactor scale FRCs. FRCs may be an ideal configuration for D-3He fuel due
to the high beta, natural divertor, and the kinetic nature of stability.

G. Miley (Univ. of lllinois) reviewed the SAFFIRE and RUBY FRC reactor
studies. SAFFIRE utilizes a venetian blind direct converter to convert the
energy of the escaping plasma to electricity, pellet injection to sustain the Hill
vortex density profile, and a cold plasma blanket control the ash concentration
and shield the plasma from neutral particle in-flow. The RUBY reactor
study, from the U.S-Japan Workshop series, utilizes neutral beam injection
to generate an Ohkawa current to sustain a steady-state, and direct energy
conversion of the 14.7 MeV protons by RF travelling waves.

N. Krall (Krall Associates) discussed the Polywell, or Spherically
Convergent lon Focus (SCIF) concept. SCIF utilizes a magnetic cusp
field to confine a low density plasma containing a small excess of high
energy electrons. The resulting electrostatic potential causes ions to oscillate
through the center with a large radially directed velocity, producing a dense
plasma at the center and results in fusion in the central core region. Initial
estimates indicate that a favorable power balance for a D-3He reactor can be
achieved with this concept. An experimental program is underway at Directed
Technologies.

N. Rostoker (UC-lrvine) discussed large ion orbit magnetic confinement
for D-3He fusion applications. In this approach, self-consistent rigid rotor
equilibria with energetic ions eliminate the effects of ion-ion collisions.
Possible applications are to FRCs with large angular momentum and toroidal
configurations with no toroidal magnetic field.

J. Dawson (UCLA) proposed some alternate applications for the unique
products of D-3He fusion. The 14.7 MeV protons from the 3He(d,p)*He
reaction are useful for producing proton rich isotopes and for converting the
radioactive waste from fission reactors into non-radioactive waste. Proton rich
isotopes are useful as positron emitters for applications in positron emission
tomography (PET), to make a positron microscope, and as unique gamma
emitters.

J. Santarius (UW) discussed applications of magnetic fusion energy to
space development. The 3He(d,p)*He reaction produces only charged
particles, which can lead to direct conversion of fusion energy to either thrust

4



or electricity. In addition, it has the highest fuel energy density of any
net energy producing fuel and there are no radioactive materials at launch.
D-3He fusion allows a variety of propulsion modes with widely ranging specific
impulse. With pure plasma exhaust, a very high specific impulse can be
obtained. By injecting mass into the exhaust stream, lower specific impulse
with higher thrust can be achieved. This flexibility can be used to reduce
the trip times or enhance the payload fraction significantly for interplanetary
missions.

S. Dean (FPA) discussed D-3He fusion from an industrial perspective. He
saw three approaches to D-3He fusion. The first is to maintain D-T as
the main approach and carry D-3He fusion as a “second generation” fuel.
The second approach is to optimize the fusion development path with D-3He
as the first generation fuel. The third approach is to maintain the near
term momentum of the present D-T program concerning physics issues, but
go slow on long-range D-T technology experiments and initiate an intense
program on physics approaches to an optimum D-3He system. One would
then set up a decision point (in the near future) on whether to continue with
the D-T as the first generation fuel, or switch to D-3He. Dean also noted that
industry, which has been largely neglected in the fusion program, should be
involved in the front-end of the search for a D-3He development path.

No conclusions were officially adopted in the conference, but one could not
avoid the general impression that there exists a number of exciting possibilities
for achieving the promise of D-3He fusion. Achieving a credible D-3He reactor
using “standard” first stability tokamak physics cannot be disregarded, and
offers the advantage of utilizing the extensive database already developed.
Other magnetic configurations, such as FRCs, offer potential advantages
through their higher beta, but have a less developed database at present.
Further, there exist more speculative concepts, such as counterstreaming
beams, large orbit confinement, and SCIF, that offer even greater potential
advantages, but await proof-of-principle experiments. Finally, the technical and
economic feasibility of lunar 3He mining appears to be at least as promising
as the physics of D-3He fusion at the present stage of development. The
procurement of 3He fuel appears to be feasible in the early 21st century,
which is consistent with the timetable for the development of fusion, and also
opens up new possibilities for the exploration of our solar system.
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Columbia University in the City of New York | New York, N.Y. 10027

DEPARTMENT OF APPLIED PHYSICS Seeley W. Mudd Building
TEL (212) 854-4457, FAX (212) 854-8257 500 West 120th Street

Thursday, August 16, 1990

Dr. Gerald L. Kulcinski

Fusion Technology Institute

Nuclear Engineering and Engineering Physics Department
University of Wisconsin

439 Engineering Research Building

1500 Johnson Drive

Madison, Wisconsin 53706-1687

Dear Gerry:

As I explained in my telephone conversation with you, I am very disappointed that I
was unable to attend your Symposium on DHe3 Fusion.

As you probably know, I am interested in this subject both because of the recent
observations (made by the Columbia-Princeton-MIT collaboration) of high poloidal
beta discharges in TFTR and because of the conceptual DHe3 dipole reactor design
that Akira and myself developed. I hope to be able to talk with you at a later date to
learn of the highlights of the meeting.

I have attached a few copies of the preprint of the Nuclear Fusion article describing
the conceptual dipole reactor design. The article is self explanatory, and it lists the
major advantages and uncertainties of this concept. If you are able, I would be
pleased if you could make copies of the article available to interested participants of
your Symposium.

Best wishes for a successful meeting.

Sincerely

P

Michael E. Mauel
Associate Professor

Attachments




A D-He3 Fusion Reactor Based on a Dipole Magnetic Field

Akira Hasegawa
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Liu Chen

Princeton Plasma Physics Laboratory
Princeton University

Princeton, New Jersey 08543

Michael E. Mauel

Department of Applied Physics
Columbia University

New York, New York 10027

Abstract

An innovative fusion reactor suitable for D-He3 fuel is proposed, based
on a dipole magnetic field produced by a levitated superconducting coil.
The equilibrium plasma, whose phase-space density satisfies Aoy, J,
W) /dy = 0, where v is the flux function, has a steep enough pressure
profile for an efficient fusion reaction yet is stable to low frequency
instabilities for local beta exceeding unity. At the outerwall, the plasma
is stabilized by line-tying or localized magnetic cusps which can be used
for direct conversion. The fusion product confinement time can be
controlled for ash removal by breaking the axisymmetry of the dipole
magnetic field. A conceptual 70 MW reactor design is presented.

1. Introduction

With nuclear fusion researchers expected to demonstrate scientific breakeven in

the near future, experts in reactor design are increasingly concerned about the use of

deuterium-tritium (D-T) fuel. D-T fuel use introduces problems of excessive neutron

production and reactor wall activation, tritium handing and breeding, and higher

construction costs. Since the lunar soil is now recognized to be a relatively long-term

source of He3 fuel [1], interest in aneutronic fusion based on D-He3 fuel is increasing.
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It is argued that although the D-He3 reaction requires an n7t (density-confinement ﬁmé
product) that is a factor of ten larger and a temperature that is approximatély three
times present D-T designs, D-He3 reactor designs can be significantly simplified
because the fusion products are primarily charged particles.

A magnetic confinement scheme for D-He3 requires a configuration which can
provide a stable plasma confinement for  (defined as the ratio of plasma to magnetic
field energy density) near unity with little or no anomalous transport loss. It is further
desirable to have a configuration that controls the confinement of charged-particle
fusion-products enabling extraction for direct energy conversion or ash removal.
However, because of the much reduced neutron flux, the structure of a D-He3 reactor
can often be designed more simply.

The dipole magnetic field configuration described here satisfies these
requirements [2]. Figure 1 shows a schematic diagram of one such reactor
configuration. The dipole magnetic field is produced by a properly shielded and
insulated superconducting coil which is magnetically levitated with much weaker
magnetic mirror coils. A very large vacuum vessel (~50 m diameter) contains the
dipole coil allowing the field strength to decay by nearly four orders of magnitude from
the coil to outer wall. This large variation of the magnetic flux function, vy,
distinguishes this reactor concept from earlier concepts such as the spherator (with
purely poloidal magnetic field) [3] and the levitron (with combined poloidal and
toroidal fields) [4]. These earlier devices were initially limited by transport to
mechanical coil supports that were not magnetically-shielded [5], but later
experiments with levitated superconducting dipoles indicated that “fluctuations or
convective cells” reduced confinement by at least a factor of four compared with
classical expectations (as described in Ref. 3). In the dipole reactor design presented
here, low-frequency fluctuations and convective cells can not lead to enhanced losses
since Jfp(, J, w)/dy = 0.

We suggest two ways to produce the plasma depending on whether the plasma
is fueled from the edge or the core. For edge fueling, a low-density, low-temperature
(nedge S 2% 1016 m=3, Tpg0, > 100 €V) plasma is formed on the outer flux surfaces,
and the hot, dense reactor core plasma is generated by applying a wide spectrum of
low frequency magnetic oscillations (20 Hz < wy/2n < 750 Hz). Inward radial
diffusion results due to stochastic azimuthal drift resonances, CT)d(u, J, ) = of,
where the drift frequency is dependent on the magnetic moment, u, the parallel
adiabatic invariant, J = §v| dl, and the flux or third adiabatic invariant, y. Significant
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heating and compression of the plasma occurs because the LF oscillations break the
third adiabatic invariant while g and J are conserved because Wy < @Wp < @, with
wp representing the bounce frequency and @, representing the cyclotron frequency.
For the second method, a target plasma for neutral beam injection is produced near the
dipole magnet (for example with electron cyclotron resonance heating). When
energetic neutrals are injected into the reactor core region, the plasma is initially
unstable with respect to interchange instabilities. These instabilities naturally induce
low-frequency oscillations, wyf, diffusing plasma radially outward until the marginally
stable equilibrium fp(ut, J, W) /dy = 0 (or dlnP/dr = — 4y = — 20/3) is achieved.

The remaining of this article addresses the Qfo/c?y/ = 0 radial profile of the dipole
fusion reactor that naturally results from stochastic radial diffusion. Then, a brief
discussion of energetic charged-particle confinement and adiabaticity is presented to
illustrate how fusion product confinement can be controlled. This is followed by a
stability analysis that demonstrates MHD ballooning stability of the dipole profiles for
B > 1. Then, an example of a dipole reactor design is presented and the practical
issues of the reactor design are itemized. Finally, the D-He3 dipole reactor concept is
summarized, including the main issues that may be investigated experimentally to

verify the concept.

2. Plasma Equilibrium

The first plasma physics issue to discuss concerns the radial profiles of the
plasma density and plasma pressure. Given that the LF oscillations have sufficient
intensity to induce global stochasticity while having frequencies low enough to
preserve u and J, the equilibrium plasma produced in a dipole reactor has an intrinsic
phase-space density satisfying fou, J, w)/dw = 0. The corresponding equilibrium
density, n(r), perpendicular and parallel pressures, P (r) and P(r), are given,

respectively, by

n—f fotu, n ERLEL B, e

Bd
PL= f uB fotu, T Bz’

Py= ffmvnfo(/l, vililﬂrb 13, (3)

(2)
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where [(B, y) is the length of the field line, 7, is the particle bounce or circulation
period, and vy is the parallel component of the particle velocity. For a low S plasma, B
is approximately given by the vacuum dipole field with moment, M,

B=VyxVg; y=Msin2d (4)

Thus, for a low B plasma, n~r =4, P ~r=7, Py~r=9, where r is the spherical radial
coordinate.

Collisions or microinstabilities would isotropize the pressure. If the inward
diffusion is made adiabatically, the plasma pressure would vary, P ~ V -7, where y=
5/3 is the adiabatic constant and V = u/Idl/ B is the flux tube volume with a constant
total flux. The plasma pressure would then be P ~ r =47~ r —20/3 which is a marginally
stable pressure profile with respect to ideal MHD [6].

Since the fusion reaction rate is proportional to P2, the reaction occurs only near
the core region even if the plasma is extended to a larger radius. The centrally peaked
density and pressure profiles even for dfp/ dy = 0 are an important and unique
consequence of the dipole field. In contrast, the condition dfp/ dy = 0 gives
essentially a spatially-flat pressure distribution for a toroidal field (such as a large-
aspect ratio tokamak).

The equilibrium isotropic pressure distribution is given by P(y) while (for a
vacuum) ¥ = M sin26/r. Thus, if P ~ r—20/3 ~ y20/3, the equilibrium plasma pressure

is concentrated near the equatorial plane,

B sin403 g
P(6) 2073 ) (3)

In fact, a stable plasma equilibrium in a dipole magnetic field with S > 1 and with
plasma pressure concentrated near the equatorial plane has been obtained in the

Jovian magnetosphere [7].

3. Confinement of Fusion Products

In order to achieve ignition in a D-He3 fusion reactor, the energetic protons and
alpha particles must be confined. On the other hand, in order to prevent the dilution of
the fuel by ash accumulation and to provide a means for reactor burn control, the
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reactor should have a means to reduce energetic particle confinement and divert the
charged particles either to a direct or thermal convertor.

This control is facilitated in the dipole fusion reactor by breaking axisymmetry.
Since the ratio of energies between the thermal plasma and the fusion products is
large (T, ~T;= 75 keV whereas Eq = 3.6 MeV and Ep = 147 MeV), the field
strength of the dipole can be made large enough to maintain adiabaticity of the thermal
plasma but (for a reasonably sized reactor) the fusion products will be non-adiabatic.
Recent numerical calculations [8] indicate that charged particles lose adiabaticity (i.e.
M is no longer conserved) when v/w.L > 0.12 sinf,, where v is the velocity of the
particle, L is the equatorial radius of the particle’s flux-surface, and 6y is the particle’s
pitch angle at the equatorial plane with respect to the magnetic field. Adiabaticity is
relatively easy to maintain for the thermal plasma but difficult for the energetic fusion
products.

However, since the dipole is axisymmetric, canonical angular momentum is
conserved, and charged particles are radially localized provided that v/w.L < 1/4 [9].
For the reactor design shown in Figure 1, both the protons (v/w.L = 0.11) and the
alpha particles (v/w.L = 0.054) are non-adiabatic but still radially-localized. Since the
orbits of the charged fusion products are already chaotic, by applying either non-
resonant or drift-resonant non-axisymmetric magnetic perturbations (for example, with
an azimuthal mode m = 1), the fusion products will move radially outward where they
can be collected by direct convertors at the reactor wall. Once the canonical angular
momentum of the fusion products are destroyed, their outward convection velocity is of
the order of their thermal speed since w;L decreases rapidly. Thus, this technique of
ash removal can act on time-scales shorter than the slowing-down time for the fusion
products (approximately 7 seconds).

4. Stability of the Dipole Reactor

Low frequency instabilities with @ ~ w4 can be studied by means of the phase-
space distribution function, f(t, J, ¥, ¢), which satisfies [10],

¥, 9 . o _
AT (6)

where



- oH oH

= 3 =— ’ 7
OV, s v 00|y )
H=[.lB+%—mv,%+q(D. (8)

We consider general electromagnetic perturbations, 6@, éy, and 6B. It is
immediately clear from Eq. 6 that the corresponding perturbed distribution function, &f,
is identically zero if the equilibrium distribution function, fol, J) does not depend on
w. This fact guarantees that there are no instabilities based on wave-particle
interactions at @ ~ @y, and, thus, no anomalous cross-y diffusion [11]. Furthermore,
the electrostatic interchange instability is absent for this equilibrium [12]. Needless
to say, if 8f0/9q/ > 0 (i.e. if the pressure varies more gradually), the plasma is
kinetically stable.

While the plasma is kinetically stable, magnetohydrodynamic (MHD) ballooning
instabilities can, however, still be excited since w*a)d. > 0, i.e. due to the bad
curvature effect. We note that even if dy = 0, the pressure perturbation appears due
to the perturbation of the Jacobian in Egs. 2 and 3. Since the particles are magnetically
trapped, we employ here the low-frequency kinetic energy principal [13] which is given

by

oW = 6Wr+ 6Wk, (9

where the fluid, Wy, and kinetic, Wk, contributions are

5Wf—ﬂ las———ek VP, Mﬂ Hz

Q 2 T T
—475[{;?!5\[/1 ek - (VP||+%VPL):H,

ady

I

(10)

Wk =16a2 ), <<m,(:__fg) % | Qudy + 3B >> (11)

jlf

and where



L-d=falsd, (= f[aae). Q=L fals)

__1+4758P_L, o_=1+47t'(P_|_—P||)’
B 0B B2

wxfo=(ex - Vfo)/ Q2 ex =k X ey, 0g=BRgq/ 2, Q4= up +vi2Q2,/B, 2 =ex-V

In B, Q¢ =ex - &, kK= (e - V)ey, and fy = fo(i, €, ¥). Note also that, in deriving Egs.
9 to 11, one has employed the equilibrium condition

TQB+4—72rek-€P_L=O'.QK (12)
B

oW can be further simplified for @20/ Jdy = 0 [14]. In this case, we have

@:fo % g, (13)

The final term in Wy, the ballooning driving term, can then be combined with Wg. W
then becomes oW , where

SW = H |68 - iek VPLSV/”] HZ

9oy ﬂ+5WB, (14)

where

6WB—16n22mj<<rb f"[a QK( ; "“)16v42—l 048y + 110B D> (15)

aJ

Note, also, W agrees with that given by the collisionless energy principal [15], i.e.
with &fo/aw = (, the two energy principles converge. Using Eq. 15, one can readily
demonstrate, as we should, that the interchange modes are marginally stable, i.e.
SWg — 0 for flute (8 = constant) modes in the low- limit. Physically, this marginal
stability occurs because the bad-curvature ballooning driving energy is balanced out by
the trapped particle compressional stabilization. Since B «< r~3, f is highly localized
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about the equator. We therefore expect the near cancellation of SWp remains true
even for the fundamental even-dy mode.

For the odd-6y modes, 6Wk = 0 due to bounce averaging. Wy is then
minimized by 6B = (4n/B27)(ex - VP ) Oy. Since the first harmonic odd-8y mode
suffers the least field-line bending stabilization, it may be expected to have the worst
stability properties. From Eq. 10, an estimate for the beta-limit is Ber = ( wg/ w*)(I/
Al), where Al is the length of the field line over which the plasma is localized. Since
for a high beta equilibrium, the curvature near the equatorial plane is large, wq/ @+ is
expected to be larger than unity, while 1/ Al is also larger than unity. By assuming an
isotropic plasma, this estimate has been verified numerically by solving the eigenmode
equation with a self-consistent MHD equilibrium. The critical B value at the equator
was found to exceed 2.4 [16].

Thus, from these results, the beta limit due to MHD ballooning is expected to
exceed unity in the dipole fusion reactor. These facts differ significantly from toroidal
confinement schemes where generally, wg/ 0« ~a/R <« 1 while I/Al = 1 giving B,
=a/R.

5. A Conceptual Dipole Reactor Design

In this section, the reactor issues relevant to a D-He3 dipole reactor are
presented by describing a conceptual reactor design shown in Figure 1. This example
results from a three-step design procedure. First, the vacuum magnetic field and
overall size of the reactor was determined. This involved designing a superconducting
coil having current density profile comparable to limits imposed on multi-filamentary
Nb3Sn conductors and choosing a reactor size that (1) prevented fusion protons from
striking the coil, (2) reduced the temperature of edge plasma to ~150 eV with a core
temperature of 75 keV, and (3) maintained the surface temperature of the levitated
dipole below 1400 °C enabling pulse-lengths exceeding one day. Second, the peak
value of § £ 3 in the fusion core was chosen to be below the critical value while still
producing sufficient fusion power (i.e. of the order of 100 MW). (The total fusion
power was estimated by integrating the profiles resulting from the condition Qfo/aw =
0 and using the vacuum magnetic field of the superconducting dipole.) The final step
was to determine constraints on the particle and energy transport (particularly at the
outer edge) which leads to thermonuclear ignition. This calculation also determines,
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for example, the neutral-beam power required to initiate the plasma. The overall
dimensions and parameters of the 70 MW reactor example are listed in Table 1.

Figure 2 illustrates an expanded view of the dipole coil and hot core plasma
shown in Figure 1. The coil consists of three superconducting subcoils each near the
maximum permissible current density for multi-filamentary Nb3Sn conductor. (This
coil design strategy is the same as that used in the high field, D-He3 tokamak reactor
design presented in the ESECOM study [17].) For this dipole reactor example, the
inner conductor operated with 5 kA/cm? at 20 T; the middle conductor operated at 15
kA/cm? at 16 T; and the outer conductor at 40 kA/cm? at 12 T. The coil shield and
dewar are designed to follow the inner most field line, and this places most of the
shield on the outside of the conductors—the direction of most of the residual neutron
flux.

The warm-up time for the superconductor is determined by the surface
temperature of the outer shield and the ability to insulate windings from the shield.
Studies of a 1000 MW D-He3 levitated octupole [18] and a 2000 MW D-T tandem
mirror using a levitated field-reversing endplug [19] indicate that pulse-lengths of one
to ten days are possible provided that the equilibrium shield temperature can be
maintained below 1400 °C. For the relatively low-power conceptual design described
here, balancing the incident bremsstrahlung and neutron flux with the shield’s black-
body radiation gives a shield temperature of only 800 °C, and much longer pulse
lengths should be possible.

As mentioned in the introduction, the plasma can be produced using one of two
methods, and we have separately illustrated both a multifrequency array of LF
antennas and an approximately 25 MW neutral-beam injection system in Figure 1.
We expect that one technique will be preferred over the other because of the relative
cost of either a high-Q antenna and oscillator system or a neutral-beam injection
system. We believe, however, that the neutral beam system has engineering
simplicity and proven capability, and if the transport characteristics of the naturally-
induced oscillations indeed saturate at %/aw = 0 as expected, neutral beam heating
would be preferable.

When the core plasma is generated by externally-induced magnetic oscillations,
the edge plasma is produced from low-density, low-temperature (1 > 1016 m—3 and T,
~T;2 150 eV) plasma sources located at the top and bottom of the reactor along the
open field lines of the magnetic mirror coils. These plasma sources both fuel the outer
field lines of the dipole coil and stabilize the outer edge via line-tying. An array of low-
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frequency, m = 1 antennas are located along the upper and lower walls of the reactor,
and these antenna produce the low-frequency magnetic oscillations inducing the
diffusion from the edge into the core region. In order to reduce the reactive power
losses associated with antenna, the reactor walls must be highly conducting so as to
form a low-frequency resonant cavity. Additionally, the oscillations should consist of A
many frequencies with small-amplitudes instead of a few large-amplitude oscillations,
because this also reduces this reactive losses in the reactor walls and antennas. As
shown in Figure 3, the low frequency oscillations must span approximately the range
from 15 — 600 Hz. The maximum frequency, @y, determines the radius of the
innermost extent of the plasma. Notice that the inward diffusion will be ambipolar
since @y does not depend on the particle mass.

When the core is generated by neutral beam injection, the low-temperature
plasma source is not needed, but a central target plasma must be generated. For this
purpose, we envision using pulsed electron cyclotron resonance heating. The neutral
beam would operate between 100 and 150 keV using existing technology. Penetration
of the beam to the core at full density is not difficult provided that the beams are
injected at an angle near the dipole’s axis since, in this case, the line-density along
the beam can be made as small as 1019 m~2 or as large as 1020 m=2 [20] .

The reactor’s power output due to the primary D-He3 reaction is 70 MW and the
total stored plasma energy is 170 MJ The self-sustained burn occurs for a confinement
tme of 2.4 seconds. We note that (1) the synchrotron radiation loss is small because
Wpe/Wce > 2 and B~ 1, (2) the classical collisional thermal loss at the inner edge of
the dipole plasma (corresponding to ion thermal conductivity, x;) has a characteristic
time of 7= 4 A,%k; ~ 30 seconds, and (3) the classical collisional thermal loss at the
outer plasma edge has a characteristic time of 7~ 40 seconds. Hence, ignited and
self-sustained operation should be achieved.

Generation of electricity involves either a thermal or direct conversion of the
energetic fusion products at specific locations at the outer wall. At reactor start-up,
the fusion products would be confined (as described in Section 3) by maintaining
axisymmetry and preserving the angular momentum. After ignition, axisymmetry
would be broken to such a degree as to direct a fraction of the energetic protons and
alphas to conversion sites. Since the magnitude of the static or fluctuating non-
axisymmetric field inducing the radial transport of the fusion products can be easily
adjusted, the dipole D-He3 reactor is equipped with a simple burn-control technique.
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6. Summary

In summary, we have presented an innovative fusion reactor concept suitable for
D-He3 fuel. The simplicity of the design, the semi-open field line configuration, and the
absence of low-frequency micro- and macroscopic plasma instabilities make an
aneutronic reactor potentially feasible.

The important reactor issues are (1) the superconducting coil design, (2) the
generation of the 8]50/81;/ = 0 plasma equilibrium with 8 > 1, and (3) the control of
energetic fusion product confinement enabling the use of a direct convertor. We have
presented one possible configuration for a D-He3 dipole reactor using a levitated
Nb3Sn superconducting coil, a mirror coil set which can direct charged particles axially
along open field lines to a thermal or direct convertor, and a ring cusp at the outer edge
to stabilize the low-temperature and low-density edge plasma. We proposed two
plasma startup schemes using either (1) an array of LF antennas, or (2) a neutral-
beam injection system that achieves the marginally-stable state due to naturally-
occurring instabilities.

In closing, we note that it seems possible to construct a relatively low-cost
experiment which should be able to test the concepts proposed here. The experiment
would attempt to demonstrate the two key requirements for the dipole reactor: (1) the
generation of a 8,7?0/81// = 0 plasma equilibrium with 8 > 1 using a levitated magnet,
and (2) the achievement of plasma thermal confinement that is not reduced by more
than an order-of-magnitude as compared with classical predictions. This experiment
would be significantly different than previous spherator experiments because of the
much larger volume of enclosed flux for a given dipole coil current.
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Table

Table 1. A summary of the dimensions and parameters of an

example D-He3 dipole fusion reactor.

Dimensions:
Outermost radius (m)
Dipole plasfna height (m)
Reactor volume (m3)
Dipole Coil:
Major radius of conductor (m)
Cross-section of conductor (m)
Total current (MA)
Stored magnetic energy (MJ)
Diameter of dewar & shield (m)
Edge plasma parameters:
Density (m -3)
Temperature (eV)
Magnetic field strength (G)
Core plasma parameters:
Density (m -3)
Temperature (keV)
Vacuum B-field strength (T)
Beta (B)
Major radius (m)
Stored energy (MJ)
Fusion power (MW)
Ignition confinement (sec)
Proton gyroradius (m)
Wpe/ Wce

24
12
24 x 103

1.6
0.2x0.5
20

800

0.8

1.5 x 1016
~ 150
20-250

2 x 1020
75

2.5
170
70
224
0.19
2.3
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Figure Captions

Fig. 1.
Fig. 2.

Fig. 3.

Schematic cross-sectional diagram of one possible configuration of a D-He3
dipole fusion reactor.

A close-up cross-sectional view of the high-field dipole magnet used in the
configuration shown in Figure 1.

Approximate radial profiles of (a) the magnetic field and plasma parameters
and (b) the average cyclotron, bounce, and drift frequencies of the thermal
plasma. The gyrodiameter of the protons created during fusion is also

indicated.
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_A Statement From the Participants of the
First Wisconsin Symposium on D-He3 Fusion

Madison, Wisconsin
August 21 and 22, 1990

Dear FPAC Member:

The undersigned would like the FPAC to recognize our present thinking on the
D-He3 fusion fuel cycle, and its relationship to the U.S. fusion research effort. This
communication reflects the results of a just-concluded technical meeting held at the
University of Wisconsin on August 21 and 22, 1990. Some of the conclusions reached
at the meeting were deemed to be of sufficient importance at this critical time in the
U.S. fusion research effort that we felt we should summarize and communicate them to
you prior to your upcoming FPAC meeting on August 27 and 28, 1990.

Our conclusions do not bear on the "mainline" thrust of the U.S. and the world
fusion effort, namely the investigation of the tokamak as a potentially viable avenue to
the generation of power through the use of the D-T cycle. They are concerned with
another aspect of the overall fusion effort, the investigation of the D-He3 cycle for its
perceived environmental and safety advantages, and less demanding materials and
technology requirements. Particular note should be made of the greater likelihood for
public acceptance of DHe3 fusion and its potential for an “all-electric" fusion power
system, through the use of direct conversion. There are also alternate applications of
D-He3, besides energy production, which can have near term payoffs. All of these
features could become increasingly important in the quest for safe sources of electrical
energy which is playing an increasingly central role in our society.

We will not elaborate here on the numerous potential advantages of D-He3
fusion, nor on the increased difficulty of achieving its physics requirements relative to
D-T. Suffice it to say that during our meeting several innovative and plausible
approaches to the problem were suggested. The salient points that we do wish to
make in this letter are the following ones:



» Serious examination of the D-He3 option should be an integral part of any future

U.S. fusion research plan.

* A search for viable approaches to D-He3 fusion, including the testing of promising
new confinement, energy conversion, and magnet concepts, represents an
intellectual challenge that would broaden the interest in fusion research,
particularly for young and innovative scientists and engineers.

e Support for such a search would require the commitment of only a small fraction of
the fusion budget, but could reap a return far greater than the resources expended.

It is our strong feeling that, as a research field, fusion should always have a
component, however small, that aims toward its highest potential, and that is dedicated
to a search for innovative improvements in what is now perceived as the "mainline”
approach. It is our opinion that the D-He3 cycle represents just such a component.

We strongly urge that your committee endorse the D-He3 option in your final

recommendations.

Protessor Bruno Coppi

Massachusetts Institute of Technology |

Department of Physics

Dr. B. Grant Logan
Lawrence Livermore National Laboratory

Préfessor John Dawson
University of California-Los Angeles

Professor Michael Mauel
Columbia University
Department of Applied Physics

Dr. Stephen O. Dean
President, Fusion Power Associates

/7
Professor George Miley
University of lllinois
Department of Nuclear Engineering



Professor Gilbert Emmert
University of Wisconsin

Department of Nuclear Engineering

and Engineering Physics

A —al

Professor Ronald Parker
Massachusetts Institute of Technology
Director Plasma Fusion Center

Dr. Akira Hasegawa
AT&T Bell Laboratories

Dr. Richard F. Post
Lawrence Livermore National Laboratory

ly
Dr. Alan Hoffman
Spectra Technology
Vice Presiident, Plasma Physics

,~
Professor Norm Rostoker

University of California-Irvine
Department of Physics

/
Nickolas A. Krall
Vice President, Krall Associates

Dr. John Santarius
University of Wisconsin
Fusion Technology Institute

Professor Gerald Kulcinski
University of Wisconsin

Department of Nuclear Engineering

and Engineering Physics

Director of Fusion Technology Institute

Dr. H.H. (Jack) Schmitt
Former Astronaut & U.S. Senator
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