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Abstract

An adaptive grid finite difference scheme has been derived for simulating
non-linear and unsteady one dimensional (planar,cylindrical and spherical)
fluid flow by adapting to steep gradients in different physical quantities. The
scheme is applied to z-pinch plasma channels that are used for ion beam
transport in Light Ion Beam Fusion Reactor designs. The axial plasma is
subject to joule heating caused by the discharge current (~ 100kA) that is
used to create azimuthal magnetic fields to confine an ion beam current of
~ 0.5M A. The radiation emitted by the plasma seems to be vitally important
for analyzing the formation of channels, requiring accurate methods that
treat radiative transfer coupled to magnetohydrodynamics.

The channel formation and ion beam injection is studied by simula-
tions with what we call a 1-D Adaptive Radiation Magnetohydrodynamics
(ARMHD) computer code developed for the purpose of this thesis research.
ARMHD models the plasma with single-fluid MHD equations, and there-
fore does not distinguish between the electrons and ions. It solves for the
radiation field intensity through the radiative transfer equation using a multi-
group discrete ordinate Sy method. The governing equations are hyperbolic
conservation laws (PDEs) transformed to an adaptive grid reference frame
that moves in time to follow the high gradients in the solutions. An explicit

procedure based on the equidistribution principle is used to move the grid

il



system to avoid the implicit coupling between the physical equations and the
grid system.

Adaptive gridding seems to be most effective in flows with high gradient
regions. Typical quantities which have been tried for adaption are density,
momentum, temperature, electrical resistivity or any combination of two of
these. For z-pinch plasma channel simulations, the adaption on temperature-
momentum proves to be better in terms of the high mesh concentration it
provides throughout the channel, where other quantities besides the tem-
perature and momentum are also varying. Also, the mesh spacing in the
channel] provided with the adaptive gridding seems to be about two times
smaller than what was obtained with a lagrangian scheme using the same
number of mesh points.

Applications of ARMHD indicate the feasibility of using argon and nitro-
gen for plasma channels. These were ruled out in favor of helium by earlier
calculations using a radiative diffusion model. ARMHD calculations treat
the thin plasma in the channel more accurately than the diffusion approxi-

mation, leading to this different conclusion.
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Chapter 1

Introduction

Z-pinch plasma channels are important to the design of Light Ion Beam
Inertial Confinement Fusion (ICF) Reactors and near term experiments. In
these applications, such as the Laboratory Microfusion Facility (LMF) and
Light Ion Beam Reactor (LIBRA), high intensity ion beams are used to
ablatively implode a target to achieve extremely high densities and to shock
heat deuterium-tritium (D-T) fuel to temperatures sufficiently high to have
a thermonuclear burn [2].

Light ion beams (Z < 6), with their high charge to mass ratio and high
current densities, cannot propagate over large distances in a vacuum with-
out significant beam divergence. The standard solution of this is to charge
and current neutralize the beams so that their mutual electrostatic repulsion

and tendency to pinch is removed. This involves filling the region between
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Figure 1.1: Schematic of beam propagating plasma channel in LIB fusion.



the diode (the place where ions are formed) and the target with an ionized
medium. One method of doing this, first proposed by Yonas [3], is to fill
the standoff region with gas and strike a discharge along the path from the
diode to the target. The discharge in the gas provides the required charge
neutralization and confines the ions as they propagate. This confinement is
due to the magnetic field produced by the discharge current. The ionized
gas (plasma) responds to the ion beam with a return current in the opposite
direction to current neutralize it. Figure 1.1 shows a schematic diagram of a
z-pinch plasma channel.

The idea of using ion beams as drivers in the ICF studies emerged as an
alternative to laser fusion because of the low efficiency and high cost of the
laser drivers. The attention to ion beam drivers was split into Heavy Ion
Beam (HIB) {4] and Light Ion Beam (LIB) [5] applications. Even though
both have their promising futures, the LIB fusion appears to be less expen-
sive in terms of technology. Some LIB designs include LIBRA [5], UTLIF
(6], ADLIB [7] and EAGLE [8]. Among these, the LIBRA study is a self-
consistent conceptualv design of a commercial fusion power reactor. It is a
330 MWe power plant with a direct capital cost of $2200/kWe. A major goal
of the study is to understand the potential of light ion fusion as the basis
for small yet economically attractive power reactors. This is done by com-
pleting a self-consistent point design, evaluating its cost, and cost scaling the

design to different power levels. A schematic of the LIBRA design is shown



n [9].
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in Figure 1.2 and a cross section of the reactor chamber is shown in Figure
1.3. Fusion targets are imploded by 4 MJ shaped pulses of 30 MeV Li ions
at a rate of 3 Hz. The high intensity part of the ion pulse is delivered by 16
diodes through 16 separate free-standing z-pinch plasma channels formed in
100 torr of helium with trace amounts of lithium [9].

The efficient transport of ion beams for LIBRA requires the design pa-
rameters shown in Table 1.1. Channels are ~ 6 meters long with a radius of
0.5 cm. Channels enter the target chamber along two cones, 35° above and
below the horizontal plane containing the target. For each channel, there
is a return channel to return the discharge current that leaves the target
chamber through the top. To be useful and efficient, the channel parameters
at the time of beam injection must meet a variety of competing conditions
[10]. The density in the channel must be low enough to minimize beam
collisional losses, but high enough to prevent the beam from expanding it
via the Lorentz force produced by the plasma return current induced by the
beam. Its temperature must be high enough to provide good neutralization
of the beam current and to minimize the energy lost by the return current
heating the channel. Its radius must be small enough to maintain the beam
fluence (power/area) transmission efficiency. Finally, the channel magnetic
field just before beam injection must be high enough to confine the ions with
the highest expected energies and injection angles.

The study of plasma channel transport has been aided by a considerable



Table 1.1: LIBRA Parameters [9)].
General Net electric power 331 MW
Gross electric power 441 MW
Thermal power 1160 MW
Recirc. power fraction 0.25
Driver efficiency 0.23
Target gain 80
Fusion gain 18.4
Direct capital cost $2200/kW
Lithium Ion Beams Energy 25-35 MeV
Number high/low power | 16/2
Peak power on target 400 TW
Pulse compression ratio | 5
Pulse length on target 9 ns
Current/channel 0.3 MA
Entering on target 1.1 MA
Energy transport eff. 0.63
Laser-Guided, Length 5.4 meters
Free Standing Channels | Radius 0.5 cm
Peak B-field 27 kG
Peak current 100 kA
Rise time 1 us
Voltage drop 1 MV




body of theoretical work. It needs efforts in both direct numerical simulation
and experimental verification. The work by Freeman, Baker and Cook [10]
represents the most complete set of simulations of the development of an
optimized propagation channel. In addition to these researchers, Watrous,
Moses and Peterson [11] contributed to this issue by further developing an
optimized plasma channel. Several computer codes (ZPINCH [11], ION [12],
WINDOW [13]) were written at UW-Madison to study ion beam formation
and propagation. Among these, ZPINCH [11,14] is used to simulate the
channel formation. It is a 1-D lagrangian radiation magnetohydrodynamics
code and was developed by making extensive modifications and additions to
an existing radiation hydrodynamics code, MF-FIRE [15].

Lagrangian grid schemes have often been used to model this type of prob-
lem. In these schemes, the mass of each computational cell is constant be-
cause the cell boundaries move at the fluid velocity (i.e., there is no mass flux
across the cell boundary). Typical plasma channel simulations by ZPINCH
indicate a blast wave character of the discharge plasma while it is interact-
ing with the magnetic field. The nature of the z-discharge plasma channel
problem creates steep gradients in density, temperature and electrical con-
ductivity which one would like to resolve. Being a lagrangian code, ZPINCH
automatically resolves only density gradients as shown in Figure 1.4 {1]. Yet
because the density is low in the region where the temperature (and hence

the conductivity) peaks, the mesh in this region will be elongated. This
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Figure 1.4: Temperature, density and magnetic field profiles of the plasma

channel by ZPINCH [1].
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effect will tend to smear the temperature and magnetic field gradients in
space, thus losing the resolution (accuracy) needed to follow this non-linear
conduction problem.

The weakness of the ZPINCH code is not only the grid system. There
are some other issues in it that need to be improved. The plasma in the
channel is dense and hot and it radiates. There exists a population of photons
that interact with the plasma. ZPINCH treats the radiation with a diffusion
approximation. However, the mean free path of x-rays in most of the plasmas
(argon,helium) used for z-pinch channels is much larger than the physical
dimensions of the channel. Hence, the diffusion approximation of radiation
hydrodynamics (RHD) simply is inadequate for such applications. Moses
and Peterson [17] have indicated this inadequacy in published results when
they included the radiation effects in the channel simulations .

In the past two decades, finite difference numerical methods to solve par-
tial differential equations (PDE) have been developed quite significantly. Ad-
vances have been made in grid generation, computer technology as well as
in numerical methods. The complexity of the problems, though, has also
grown and far more computer resources are needed to handle the increased
complexity. Thus, one is faced with finite computer resources (memory and
CPU time) and must worry about the problems of how many grid points to
use and where to place ther~ to get a more accurate solution. The complexity

of such problems arouses the interest to develop techniques for constructing
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adaptive grid systems by which the solution of the differential equation is
obtained on an arbitrarily moving grid system. Mesh points move in such a
way that they concentrate in places where needed. The updated grid point
positions are determined by some measure of the quality of the numerical
solution [18,19].

Because of the tremendous potential adaptive gridding has for reducing
computational costs while maintaining the same level of accuracy, it is a
forefront area in computational physics. The need for it is basically due
to two concerns; better accuracy and minimizing the number of the mesh
points. The accuracy concern arises from the fact that more challenging
simulation problems are highly time-dependent (unsteady) and have regions
of high gradients. One would like to have a sufficient number of mesh points
at these high gradient regions while trying to keep the total number of mesh
points at a minimum. The adaptive mesh systems solve this dilemma and
cluster the points where needed in the space domain while just requiring a
reasonable amount of mesh points. The mesh distribution is changed as the
solution develops in time.

Therefore, problems with high gradient regions benefit the most from
adaptive mesh systems. In fact, for some problems there exist multigradient
regions, even of different quantities (density and temperature) and they may
occur at different space points. Then, again one would like to catch and

resolve these gradients by the least costly way, which is the adaptive mesh
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system. The redistribution of mesh points is not like a local grid refinement
nor a periodic rezoning as used in ad hoc ways with eulerian and lagrangian
schemes. It is quite general and it can treat many problems with a great
deal of flexibility. Typical examples of high multigradient problems are high-
temperature blast waves, laser or ion beam ablation of a surface and as
mentioned previously z-pinch plasma channels.

The motivation for this work comes from the fact that the physics and
numerics of the z-pinch plasma channel formation and ion beam transport
for the Light Ion Beam Fusion Reactors need to be improved to more accu-
rately predict channel behavior. The idea of this thesis is to create a
new numerical model that will solve the z-pinch channel problem
on an adaptive grid system, along with a more descriptive picture
of radiation hydrodynamics (RHD) and ion beam current. An ad-
ditional practical advantage of the adaptive grid method is that we can start
with an existing adaptive Navier-Stokes hydro code written by Bartel [20] for
slab type of problems. Extensions and modifications to the other geometries
(cylindrical, spherical) as desired for channel simulations are required. Since
the plasmas used in the channel could be regarded with a negligible abso-
lute viscosity u, the original Navier-Stokes equations will be replaced with
less complicated Euler equations that are easier to cast to curvilinear co-
ordinates. Furthermore, the equations of radiation magnetohydrodynamics

(RMHD) will have to be added to the rather simple hydrodynamics equa-
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tions and the whole set of equations will be casted first to the curvilinear
coordinates and finally to the adaptive system.

For a general comparison with ZPINCH, some aspects of our new adaptive
radiation magnetohydrodynamics (ARMHD) computational model are given
in Table 1.2. It models the plasma with single-fluid MHD equations and
therefore does not distinguish between the electrons and ions in the plasma.
The plasma is subject to a discharge current of ~ 0.5M A/cm? which elevates
its temperature to many eVs due to the ohmic heating. The radiation that es-
capes the plasma is determined through the radiation transfer equation with
a multigroup discrete ordinate Sy method. The coupling between the plasma
and radiation field is a non-linear process but is eased by using appropriate
numerical schemes which first solve the radiation field and then the plasma
properties. It is assumed that plasma conditions do not change significantly
within a given timestep during the simulation, thus the radiation field can be
calculated based on the previous timestep plasma conditions. The equations
are written in the laboratory frame and then transferred to the adaptive grid
frame. They are solved along with a set of grid equations that describe how
the grid system evolves in time. An explicit procedure will be followed to
move the grid system to prevent the implicit coupling between the physical
equations and the grid system. A conservative differencing scheme based on
the control volume approach is chosen to retain the conservation rature of

the governing equations.
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A literature review of z-pinch plasma channel work and adaptive grid
investigations follows in the next chapter. Chapter 3 presents the model
equations for the plasma, magnetic field and the radiation field. It also
describes the adaptive grid generation and the numerical methods to solve
the discretized adaptive equations on the moving grid system. Chapter 4
makes comparisons of the standard lagrangian scheme used in ZPINCH and
the adaptive scheme used in the current computation. An application of our
adaptive computer code ARMHD to the LIBRA Fusion Reactor design is

given in Chapter 5 followed by a conclusion and future considerations.



Table 1.2: A comparison between ZPINCH and ARMHD codes.

15

ZPINCH ARMHD
PHYSICS Single-fluid plasma Single-fluid plasma
One temperature plasma | One temperature plasma
Multi-group Radiation Multi-group Radiative
Diffusion Transport
EOS & Opacities EOS & Opacities
from IONMIX code from IONMIX code
External Discharge User Defined
Current Equation Discharge Current
No Beam Current Beam Current
NUMERICS | 2 nd order explicit hydro | 1 st order explicit hydro
2 nd order implicit 2 nd order implicit
radiation diffusion radiation transport
Conservative Differencing | Conservative Differencing
ADAPTION | Lagrangian General




Chapter 2

Literature Survey

Since the present investigation undergoes the numerical simulation of a plasma
physics problem, it requires review of two areas of the literature : review of
the theoretical and experimental work done on the understanding of the z-
discharge plasma channels and review of the adaptive mesh systems. In this
chapter, these two areas will be discussed in as much detail as it requires to

carry the task further.

2.1 Z-Pinch Plasma Channels

The z-pinch plasma channels play an important role in light ion beam trans-
port. In fact, not only are they found in this context but are also found
in the context of lightning and gaseous electronics [21] and certain types of

plasma radiation sources [22]. Plasma channels are an example of magnetized

16
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plasmas that have drawn attention for the past three decades.

A recently published work by Watrous [14] reviewed the concept of z-
pinch plasma channels starting from the electrical discharge to today’s cur-
rent work. However, only the most important ideas and their references will
be summarized here. The following section includes the concept of discharge
initiation, equilibrium z-pinch channel, its stability, and the radial evolution

of a non-equilibrium z-pinch channel.

2.1.1 Discharge Initiation

As mentioned previously in the introduction chapter, the proposal of using
discharge plasma channels in ion beam propagation was first made by Yonas
[3]. The channel as shown in Figure 1.1 is filled with a gas and a discharge
is created along the channel axis, which is hopefully the path of the ion
beams. It is necessary that the discharge be both straight and uniform. Two
simple methods have been used to form straight, uniform discharges. The
simplest one is to form the discharge in a narrow tube which is a wall con-
fined discharge with no choice but to be straight. The second method is that
a fine wire is stretched between electrodes and a high voltage pulse is applied
to vaporize all or part of the wire that then becomes a conducting plasma.
However, both methods cannot be used in a realistic reactor where several
repetitions per second are needed. The most effective method of creating

discharges is the suggestion of using a laser beam [3,23]. Several demon-
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strations of discharge guiding with lasers have been performed [24,25,26,27]
and the progress made in this field has led to even better ideas. A method
that meets the required criteria (such as straight and uniform discharge but
low laser energy) for reactors is laser initiation based on resonance saturation
(LIBORS) [28,29] and it is basically rapidly ionizing a gas that uses relatively
low energy lasers. The idea is to tune a laser to an atomic transition from
ground state to some relatively long-lived state. The laser pumps up the
population of the higher state at the expense of the ground state population,
thus it creates a pool of energy that is tapped by free electrons through super
elastic collisions. Free electrons colliding with excited atoms gain energy at
the expense of the excited atoms to the point where they can cause collisional

ionization. The result is a rapid, nearly complete ionization of the gas.

2.1.2 Equilibrium Z-Pinch and Its Stability

The equilibrium properties of the z-pinch plasma have been studied by many
researchers. One of the earliest analyses is by Pease [30]. He has considered
the plasma separated from the wall by a vacuum and based his analysis on
three steady-state balance equations: the balance of energy in the plasma,
the balance of forces on the plasma column and the balance of momentum
gained by electrons from the applied electric field to the momentum lost by
collisions with ions. He has also assuiued that the plasma was transparent to

the radiation. The conclusion he drew was that the plasma’s energy loss due
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to radiation (bremsstrahlung) emission could be balanced by energy gain due
to resistive heating (Joule heating) only for a unique value of the discharge
current. Falthammer [31] extended this simple analysis by using the complete
set of steady state magnetohydrodynamics (MHD) equations. Unlike Pease’s
work, he studied gas-embedded z-pinch plasmas and he additionally included
the effects of bremsstrahlung radiation and thermal conduction losses. The
results showed that both temperature and density of the plasma peak on
axis and fall rapidly at a common radius. The magnetic field is linear within
this radius and behaves as 1/r outside indicating that most of the current
is confined within this critical radius. Whereas Pease found that the steady
state could exist only for a unique current value, Falthammer showed that
any value less than one megaampere (< 1M A ) would make it.

Several other analyses [32,33] were done and these altogether have helped
to characterize the steady state z-pinch channel in which plasma tempera-
ture and density are peaked on the axis and fall rapidly at a distance. The
current is mainly contained in the region of elevated temperature, the mag-
netic field is linear inside this region and acts as 1/r outside it. The relative
importance of the bremsstrahlung and thermal conduction losses depend on
the magnitude of the current.

Having some understanding of the equilibrium z-pinch, one would won-
der how stable the equilibrium is. An unstable mode, if it exists, would grow

so rapidly that a smooth, straight channel could not last long enough or
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could never be created. A simple example might tell us about the type of
instabilities a z-pinch channel may suffer. Because the discharge plasma is
highly conducting, the magnetic field in azimuthal () direction is frozen in
the plasma and thus it may increase or decrease if the plasma experiences a
compression or a rarefaction. A consequence of a small perturbation, the im-
balance between magnetic pressure and fluid pressure, would increase bowing
in the cylindrical shape of the column and the bowing would further increase
the imbalance in the pressure. This positive feedback would certainly cause
an instability.

Therefore, a z-pinch in steady state is unstable to perturbations. Insta-
bilities in the plasma may be more specifically studied ig a numerical way by
using MHD equations to follow the evolution of a perturbation imposed on
a model equilibrium state or analytical methods can be used to find grow-
ing modes of a perturbed idealized equilibrium. Kruskal and Schwarzchild
[34] studied perturbations of a uniform, ideally conducting, vacuum embed-
ded z-pinch channel. The fastest growing modes they found had a growth
rate of approximately v = (%)1/ 2¢s. Tayler [35] extended their analysis by
studying a more realistic equilibrium state in which a current density as
J(r) = const. xr™ is formed by the plasma column. A uniform curreni: den-
sity tended to stabilize the column and m = 0, m = 1 azimuthal modes had
a growth rate of the Alfven time, 74 = rc/vy4.

Mannheimer, Lame and Boris [36] studied the instabilities of a z-pinch
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containing an ideally conducting plasma in the center and surrounded by
a corona of a resistive-current carrying plasma. The last layer beyond the
corona was a cool and neutral gas. The maximum growth rate of unstable
modes depending on the ratios of the temperatures and densities in the three
regions could be lower by as much as one-hundredth of an Alfven timescale.

For the typical parameters of the z-pinch plasmas as a beam transport
medium the Alfven timescale is about 200 nsec. Therefore, if we would like
to place an upper bound on the time during which the optimized channels

may be created a useful value for this upper bound is about 1 usec [14].

2.1.3 Evolution of Z-Pinch Channel

As mentioned above, the timescale that characterizes the formation and evo-
lution of the discharge is as important as the timescales involved in the growth
rate of the instabilities. A snowplow model has been used by several people
to estimate the timescale on which the discharge radius changes. Killeen
and Lippman [37], by working with this method, indicated that a discharge
channel with a radius of around a centimeter could pinch significantly.

A search for whether there may exist a dynamic equilibrium was at-
tempted by Braginskii [33] and he found that the radius of the discharge
could be held constant if the discharge current increased as t!/3. For more
slowly rising currents the channel’s radius would increase while rapidly rising

currents would cause the channel to pinch. Mannheimer [38] tried to answer
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this question by studying the power flow into the confining magnetic field and
into the plasma’s internal energy. Again, he arrived at the same conclusion.

Consequently, the equilibrium of the channel depends on a delicate bal-
ance between energy input, joule heating, thermal conduction and radiation
losses. This balance is essentially very much dependent on the current rise

times.

2.1.4 Z-Pinch Plasma as a Beam Transport Channel

The last but most important step in the application of the z-pinch plasma
channel in the context of light ion beam fusion is when an ion beam is in-
troduced in the channel. Instabilities with an ion beam present are likely
to be different from those mentioned so far. These instabilities can degrade
the quality of the beam transport. In his review of z-pinch channels, Wa-
trous [14] confirms that there are two basic instabilities with an ion beam
present in the channel. These are called macroscopic and microscopic in-
stabilities. Macroscopic ones can alter the shape and the position of the
beam whereas microscopic ones can cause turbulence in the channel. Ot-
tinger, Mosher and Goldstein [39,40,41] studied microscopic instabilities in
two categories:electrostatic and electromagnetic. Electrostatic instabilities
are [40] : streaming instabilities between the beam ions and the background
electrons, and streaming instabilities between the background electrons and

background ions. Electromagnetic instabilities are [41] : Weibel and Whistler
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instabilities. The linear analysis of these modes indicated that they could
be driven unstable, but the growth rates were not rapid enough to cause
problems during the ion beams’ propagation timescale.

Mankofsky and Sudan [42,43] used a Q%d particle simulation code to study
ion beam propagation in a z-pinch channel that was assumed in equilibrium
carrying a uniformly distributed discharge current at the time of beam in-
jection. The result was that ion beams could propagate with 80 % efficiency
for a distance of one meter and that current neutralization was good for the
channel electron density of one hundred times greater than the beam number
density.

Many experimental investigations of the z-pinch plasma as a transport
channel have been performed. Miller [44] created the discharge by an ex-
ploding wire. The wire was made of tungsten with a diameter of 2.54 x 10~3
cm and was suspended in air. A maximum of 50 kA discharge current peak
was reached at about 1 usec. The results showed a shock wave travelling ra-
dially outward and leaving a rarefaction region behind. John Olsen studied
laser-guided plasma channels in ammonia and measured beam transport ef-
ficiencies [45,46]. What he found was that the transport efficiency decreased
with increasing discharge current. The reason for that was explained to be
the MHD instabilities occurring at high currents.

In the area of plasma channel numerical simulations in the light ion beam

fusion, there have been comprehensive studies.. Colombant, Goldstein and
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Mosher [47] used a 1-D MHD simulation code to study the response of a deu-
terium channel to the passage of the ion beam. They modeled the channel
with an initial step function density profile and assumed a uniformly dis-
tributed discharge current. Freeman, Baker and Cook [10] also used a 1-D
MHD code to study the evolution of the discharge and current neutralization
of an 8 MeV Het? beam. They concentrated on producing a channel with
a low MHD instability growth rate. Because the growth rate is inversely
proportional to the channel radius, increasing the radius will decrease the
MHD instability growth rate. What they suggested was to use a specially
tailored discharge current as shown in Figure 2.1. The current consisted of
two pulses with a time of 4usec in between. The first pulse was a maximum
of 5 kA at 0.5usec causing the channel to expand. The second pulse, starting
at 4usec later reached a maximum 50 kA in 1usec and was meant to confine
the beam ions through the magnetic field it created. This method and efforts
by Freeman represent a significant amount of development of an optimized
channel. Most recently, Watrous, Moses and Peterson at the University of
Wisconsin-Madison have spent a great deal of effort as well. In numerical
simulation, they have used a 1-D lagrangian multifrequency radiation hy-
dro code, ZPINCH [14], to find an optimized channel picture for the fusion
devices TDF (Target Development Facility) and LIBRA (Light Ion Beam
Fusion Reactor) in cooperation with the Sandia National Laboratory and

Kernforschungszentrum- Karlsruhe (Germany). Including the MHD physics
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and radiation hydrodynamics of the channel, the simulation code ZPINCH
is a state of art code. However, it does not include the ion beam current in
the simulation and it approximates the radiation population with a diffusion
theory which is inappropriate for such small plasmas. Improvements in these

two areas will be necessary for comparison with experimental work.



T wa) 4

50 =

>

0 1 5 6 t (microsec)

Figure 2.1: Two stage current drive by Freeman,Baker and Cook [10].
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2.2 Adaptive Grid Systems

Although there might be many other studies done on the adaptive mesh sys-
tems, we will only mention the most general and and the most relevant ones
to our approach. Thompson [48] and Bartel [20], in their recent publications,
reviewed the current work in adaptive grid generation. Some of their ideas
will be summarized here.

Adaptive grid methods fall into two categories. Despite any difference
between adaptive methods, they all must provide a technique for calculat-
ing the grid distribution and the grid speed at each time step of simulation.
Estimating these quantities differently puts the adaptive methods into dif-
ferent categories. In one of these categories, some set of rules relating the
grid points in the physical and computational domain is used to establish
new mesh locations at the end of each time step. The grid speed afterwards
is simply estimated by using a backward difference on the new and old grid
locations. The determination of the metric and the solution of PDEs in
this category have been tried both implicitly and explicitly. In the second
category, the schemes depend on establishing the grid speed by some rule
and then the grid speed is integrated along with the PDEs to get new grid
locations. A lagrangian scheme would be in this class because the the grid
velocity is predetermined by using the fluid velocity and grid locations are

established upon that.
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The advantages and disadvantages of both categories almost compete
with each other. However, it could be said that the grid metric method
(class 1) is easier to apply, except that the use of a backward time difference
to determine the grid speed is only first order accurate. On the other hand,
the grid speed method (class 2) is harder to formulate the physical laws
to determine the grid speed but it can be implemented more easily with
multidimensional problems.

An important fact about differential equations which enlightens the adap-

tive system work is what Thompson states as:

. many studies on ODEs have shown that the solution error can
be reduced by distributing the grid points- in such a way that some

positive weight function W(z) satisfies the following condition

Az;W; = constant. (2.1)

This strategy is called the Equidistribution Principle and it can be
applied also to the numerical solution of PDEs. Here; i represents the i th
computational cell. Az; is the size and W; is the average value of W for that
computational cell. Note that, Az’s are going to be different each time for
a time-varying W, which means the cell points will reposition themselves in
such a way that the error in the solution of W is somehow reduced. Therefore,
the Equidistribution principle can be used for repositioning, or so-called mesh

generation. To see how it could be further improved for a grid metric method
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(class 1), we present the following formulation.
It is often more convenient to define a new variable ¢ as the successive
number of mesh points, say £ = 1 for the first mesh and ¢ = 2, 3.. for the

next mesh points. Then A will be equal to 1. Now Eq.2.1 can be written

as
zeW = const. = ¢ (2.2)
where
Te = %—2— = Az.
The equidistribution expression leads to the following relation
N
E Az;W; =N -¢
=1
and
Ng

Z Az;W; = Nz - ¢
=1
where N is the total number of mesh points and Ny is the number (N, =

£(x)) of the mesh points located at z. These relations can be used to obtain

Z?g} Az;W;

f) =Ny =N
? >N, Az W;
or in the continuous form
!
[F Wdx

where L is the length of the physical domain. Rearranging this equation, we

obtain

z ! fL Wdz
| wds' = e(@) (=) (2.4)
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which can be used to develop an explicit adaptive grid generation technique.
The dependent variable W is a function of z and could be established from
the physical variables such as density, temperature, pressure and momentum.
The grid point distribution resulting from the equidistribution principle, as
Bartel [20] states, is smooth and it represents the equilibrium state of a spring

system. This can be seen by interpreting the following integral

N
I= /0 W (¢)z2de

as representing the energy of a spring system with spring constants W (¢).
With an explicit grid generation method, all that is required is to perform
the integral on the right hand side of Eq.2.4 at time n and perform the left
hand side integral for the new value of z at time n+1. Then all new mesh
locations will be calculated and the grid speed is found from a backward time

difference

wn+l — N

Tr =
where A7 is the time step.

Grid metric T¢ and velocity z, are two characteristic variables to be
added to the set of the problem unknowns when solving the PDEs. The
last thing to do before attempting such an explicit scheme is to determine

the appropriate weight function W(z) that indicates what physical variable

(density, temperature, momentum) is adapted.
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2.2.1 Weight Functions

According to the Equidistribution Principle the effect of the weight func-
tion is to decrease Az when W is large and increase it when W is small.
Hence, the weight function W is established from the solution variations so
that Az becomes small where a better resolution is needed in the region of
high variations (high W).

Most of the studies done in the literature have taken W in terms of a
single variable, such as U(z). The simplest choice would be taking W as the
derivative of U(z) so that Az spacing is arranged as shown in Figure 2.2.
That choice of W, however, has a disadvantage of making the spacing (Az)
very large where the solution is constant (W = %% = 0). Another choice for
W is

W =4/(1+U2)
and it requires that the arc length be kept constant as shown in Figure 2.3.
The disadvantage with that is the point concentration in the high gradient
region is decreased.

Many other choices have been made by researchers, such as by Eiseman

[50,51] in the following way;

W=(1+8%|K|\/1+a2U2)

where B controls the concentration of points near the extrema of U(U, = 0)

and a controls the points concentration near high gradients, that is where U,
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is large. However, one of the most successful choices is by Dwyer [19,52,53]

by which he suggests
W=1+Q‘Uz|+ﬂ|Uzzl

where again # and o« have the same meaning as in the previous example.
Dwyer has developed a strategy to determine a and 3 through user-specified
fraction of points to be assigned to each function variation. That is, if R,
is defined as the fraction of grid points to be assigned to the first derivative

variation, Uz, then

L
«a Uz | dz
«= - Jo Uz | z (2.5)
Jo 14+a|Uz |48 | Uszz |)
and also for the second degree of variation U,
L

= X
Pt a Uz [+6[Uee )
If Ry and Rg are held constant for the problem, then o and g will be

determined at each time step while the solution develops.

2.2.2 Numerical Methods

No attempt has been made to review the literature on numerical methods
in great detail. One reason is that there are a large number of methods to
be reviewed, second we tend to mention only the most relevant ones to our

approach.
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The most relevant work to us is what Dwyer [20] has suggested. He
states that mesh adaption allows most numerical methods to work better
and that the simpler ones work best. Dwyer and Anderson [54,55,56] have
used simple-first order (Donor Cell) upwind differencing and a single step
of MacCormack’s method [57,58,59,60] in their adaptive grid studies. The
dissipative characteristics of the upwind scheme are minimized with grid
adaption. The grid speed near high gradient regions (shocks) will be close to
the fluid velocity and the adaptive grid scheme is then similar to a lagrangian
scheme in these regions. Bartel’s adaptive work also proves what Dwyer and
Anderson have suggested about the upwind scheme. The artificial diffusive
characteristics of first upwind differencing schemes are being addressed by
second order or quadratic upwind schemes (QUD). Leonard [61] has devel-
oped such a method. In his method, the upwind derivatives are determined
assuming a quadratic rather than a constant (Donor Cell) or a linear profile
for the dependent variables.

The Donor Cell method is a simple (and first order accurate) algorithm
and proceeds according to Figure 2.4. In Figure 2.4 ¢ is a physical variable
such as density, momentum and energy flux. The cell edge values of (g1 /2)

are simply set to the upstream, cell averaged value as

Giv1/2 = G o 41220 and gipq9 = qit1 if ujpyyn <0,
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and

gGi—1/2 =¢i-1 if ui_19 20 and g¢;_1/9=1q;i 1f u;_1/9 <0.

This scheme is basically a piecewise constant grid representation and ¢ is
assumed constant over the computational cell. This is a fairly simple as-
sumption and ¢ has no slope at the cell center. A piecewise linear description
called van Leer method [76] can be used instead for a better accuracy which
assumes a slope for ¢ at the cell center. This scheme is shown in Figure 2.5

and sets the cell edge values of ¢ to an upstream, but a weighted value as
1 .
%iy1/2 =G+ 594 of vigyyn 20,

1 }
%Giy1/2 = Qi+l — '2'd<1i+1 if uiy179 <0,

and
1 :
%i-1/2 = %i-1+ 5401 if vi_y79 20,
1, .
%i-1/2 = % — 344 if ui_1/3 <0,
here dg; = —SU0i=l  ir AgAg; _ .
where % = Aq;+8q; if AqiAgi—1 >0 and dg; =0 otherwise.

Here Aq; = ¢;+1 — ¢; and the constant ¢ controls the order of interpolation.
If ¢ is set to zero then the scheme recovers the Donor Cell scheme and if it
is chosen to be 2, the scheme becomes second order accurate.

The van Leer scheme has a higher order of accuracy when compared with
the Donor Cell method, but because it involves more neighboring cell points

for each step, it requires more calculations than what a Donor Cell method
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does. Therefore, due to its lower cost and simplicity the Donor Cell method
is used in our computational model which altogether is decribed in the next

chapter.
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U(x)

Figure 2.2: Solution gradient weighting [49].
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U(x)

Figure 2.3: Arc length weighting [49].
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Figure 2.4: Schematic of first order Donor Cell method.



Figure 2.5: Schematic of second order van Leer method.
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Chapter 3

Computational Model and
Method

A numerical simulation requires four distinct parts : 1) forming the physical
equations of the system (PDEs), 2) transferring the equations into the mesh
system, 3) discretizing the transferred equations and {) implementing numer-
ical methods to solve the differenced equations. This chapter will present these
four parts and their implementation for the simulation of z-pinch plasma

channels.

40
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3.1 Model Equations

The physical problem, as mentioned in the previous chapters, is the beam
transporting plasma channels or so-called z-pinch plasma channels. A z-
pinch plasma channel, in the context of LIB fusion, can be considered as
a cylindrical plasma column with a length of several meters and a radius of
several centimeters [16]. Since the concern is the focusing of ion beams around
the center of the plasma column, we are interested mostly in investigating
the radial motion of the plasma rather than the axial and azimuthal motions.
Indeed, for such a problem one can assume symmetry in axial and azimuthal
directions [10]. The matter in the column is the plasma of ions and electrons
with different properties (density, temperature) but further assumptions are
made by taking the electron and ion velocity and temperature the same so
that a single-fluid treatment can be used. Therefore, the plasma as a fluid

obeys the standard fluid conservation laws [71] ;

@ + V- (pu) =0 (continuity)

ot
a%(pu) + V- (puu) + Vp =0 (momentum)
g—; +V-(u(pte))+V-q=0 (energy) (3.1)

where p is mass density, u is fluid velocity, p is pressure, e is the total energy
density per unit volume as e = p(e+%u2) and q is the heat flux as q = —xkVT.
In addition to these fluid equations for the plasma, one has to have an-

other relation between the pressure, density and temperature to close the
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system of equations in Eq.3.1. The required relation is the equation of state
(EOS) and is usually entered into the calculations by tabulated forms. The
equations given above are solved for p, u and e. Then one can find the spe-
cific energy, ¢, and have a table lookup to evaluate the temperature that is
tabulated for the various density p and e values. The pressure is then [66]
found by

p=(1+Z)nkT

where Z is the average charge state, n is number density and T is tempera-
ture.

For the plasma in the z-pinch channel one would also like to account for
the discharge current I;, magnetic field B and coupling terms between the
plasma and radiation that is emitted, absorbed or scattered by the plasma.
Hence, the equations to describe the radiating-magnetized plasma in the
channel should be rather a modification and an extension of Eq.3.1. Including
the coupling terms of magnetic and radiation fields in the Eq.3.1 and also
adding the descriptive magnetic and radiation field equations (the so-called
magnetic diffusion equation and radiative transfer equation) complete the set

of governing equations.
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3.1.1 Magnetic Diffusion Equation

The equation governing the magnetic field B is obtained by combining the

Maxwell’s equations as follow

VxB= il-czr—.]net (Ampere's law)
10B /
VxE = T (Faraday's law)
and
ndp = Ep (Ohm's law) (3.2)

where Jper = Jp(ion beam) + Jp(plasma) and Ep = E; + %u x B. Here J;
is the ion beam current density, Jp is the plasma conduction current density
(sum of the return current density J» and the discharge current density J; ;
Jp = Jr+J4). Also Ep and E; are electric fields in the plasma and laboratory
frames and 7 is the resistivity of the plasma.

In cylindrical coordinates in which Jpet = Jpet(r, 1)z, E = E(r,t)z and

B = B(r,t)0, the result of combining the Maxwell equations is

10B 0 ,ncl 0 10 0
5t " rtrrarrB) + S5 (uB) = —-(nd) (3.3)

This equation is called the magnetic diffusion equation and describes how the
magnetic field diffuses through the plasma. Notice that the plasma has been
considered in the MHD frame and therefore it is assumed non-relativistic

and it involves low frequencies. Also, the displacement current %1% has been
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neglected. This implies, of course, that we are working with conductors and

not dielectrics in which case %l{)- would have to be retained.

3.1.2 Radiative Transfer Equation

The radiation present in the plasma interacts with matter through the pro-
cesses of absorption, emission and scattering of photons. Photons are mass-
less particles associated with a frequency v, energy F = hv and momentum
p= % Between collisions with matter, a photon travels in a straight line
with speed ¢ and no change in frequency v. The population of photons at a
space point r and at a time ¢ furnishes further information about the radia-
tion field, energy density, flux and momentum there. The governing equation
for photon population is best represented by the transfer equation. It is a

mathematical statement of the conservation of photons and is given in the

following form [62] ;

(%% + Q . V)I(r,t, ﬁ’ y) = s(r,t, Q, 1/) - O'(I‘,t,ﬁ, V)I(l',t, Q, V)

oo ! 'y !/ A, A A, !
+/ dv / A Loy = v, @ -, Q0
0 4 v
where [ is specific intensity, s is thermal emissivity, ¢ is total cross section
(absorption + outscattering), integral term is inscattering and € is the solid

angle.

Another way of writing the transfer equation is given by Mihalas [63] as
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following

(%éa-t- + Q : V)I(r’t’ Q’ V) = n(r’t’ Q, V) - X(r’ t’Q7 V)I(r7 t, Q’ V) (3'4)

where 7 and x are called emissivity and extinction coefficients and are given
as

n = n'(thermal) + n°(inscattering)

and

X = k(true absorption) + os(outscattering).

For application of z-pinch plasmas, scattering is just a process in which the
photons’ direction is changed (Thomson scattering), its frequency remains
the same [63]. Therefore n° is totally neglected and o5 is taken as just
scattering in the same energy group.

For a multigroup representation, the transfer equation can be written as

16 -« A s _ ) .
(Ea + Q- V)Iy(r,t,Q) = 74(r,t,Q) By — x4(r,t,Q)Ig(r,¢,)
where v A
o ngg-l dvn(r,t,Q,v)
o = f,%q__l dvB(v)
o f:gg_l dvx(r,t,Q, v)I(r,t,Q,v)
Xo = f;;q_l dvI(r,t,Q,v)
and

14 A
I, E/ I dvi(r,t,Q,v)
Vg_l
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and

Vg
By E/y

g_lduB(u)— / (=) - (3.5)

Yg-1 € (1—-¢€ *T)
Here B(v) is the Planck function.

In applications, in order for the transfer equation to be solved, these group
constants should be given beforehand. Mihalas gives formulas for emissivity
and opacity in the following form [64]

=L TAE T ne = (CE )0 1albn ()
E j nm>n Imjk .

hy
- b
+ Z [nnjk _n;jke B ]anf(V)
n>n’
hv

+nenj+1,kaff(u)(1 - e—;EBJ )} + o5
= Ky +0sy (Opacity)

and

+nenjpipadf(v)e FBT ) (3.6)

where g¢’s are statistical weights for atomic levels, n’s are number densities
and a’s are cross sections for bound-bound, bound-free, free-free cases. The

second term inside each of the square brackets in the opacity expression
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is the contribution from stimulated (induced) emission to the absorption.
Notice that these expressions involve no approximation (such as local ther-
modynamic equilibrium (LTE)) and in the high density limit (i.e LTE) they
justify the well-known Kirchoff-Planck relation n, = x,B,. Furthermore,
these formulas are given for a fluid (rest) frame and should be modified if
lab-frame formulas are needed. This modification is due to the Doppler Shift
| Av |= vZ in the frequencies. Nevertheless this shift is negligible for non-
relativistic radiation hydrodynamics such as in the z-pinch plasma channels
where the plasma (fluid) velocity u is much smaller than ¢ and therefore these
formulas can be used in lab-frame channel calculations.

The group constants 7j; and Y4 in Eq.3.5, in fact, could be named as
Planck and Rosseland group opacities, as found in the literature, if the specific
intensity I (r,fl,u) profile in the integrals is approximated by the Planck
function B(v) or its derivative with respect to temperature. Even though
this is assuming an LTE profile for I (r,Q,u), the degree of approximation
decreases when one uses many frequency groups.

For the plasmas used in the z-pinch plasma channels for LIB fusion, a
computer code by Peterson and Moses [65] calculates the Planck and Rosse-
land group opacities for about 20 frequency groups. However because it
assumes an LTE approximation (7, = «,By) and we try not to fall into this
limit, we could use a more recent opacity calculation code by MacFarlane

[66], expressing the group constants with the following formulas
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v

_ fll;_l dvmy

Mg = —og 5
f,f:_l dv

and Y
fV;—l dv

ny—l dy Ky+0osy

Xg

(3.7)

where o is due to Thomson electron scattering and plasma waves.

These group constants are dependent on the plasma properties (plasma
density and temperature) and therefore they couple the plasma and radiation
equations. One would have to recalculate these constants for each time step
of simulation. For such a non-linear problem a better way of providing the
group constants 7y and ¥4 would be trying to use the specific intensity I itself
in the integrals as shown in Eq.3.5. If an implicit scheme is used, then this
may require the value I"t1 (at time n + 1) in the integrand. Therefore, an
iterative procedure would be followed, which will start with an initial value
of group constants to solve the transfer equation and substitute back I for
recalculation of 7, and ¥4. The initial value for group constants could be
those given by Eq.3.7. On the other hand, with an explicit scheme, constants
(integrals over I ) could be evaluated more easily by using the value I" , which
is known in advance.

After solving for the specific intensity I(r, ¢, 0, v), one could evaluate the

radiation energy density ep, flux F and pressure tensor P by taking the
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moments;

1 & \
- Zggl[*" dQI,(r,t, )

G A A
rt)=Y AW QI (r, ¢, )
g=1

- 1 & A a .
B(r,t)==-% A 00 (rt, ) (3.8)

¢ =1
Another way of calculating e, F and P rather than carrying the transfer
equation solution further by Eq.3.8 is to take the moments of Eq.3.4. This

results in a zeroth moment

Oer

SE+V-F= / dv / dQn(r, t,Q, v) — x(r, ¢, 0, ) I(r,t, ), v)]

and a first moment

1 JF

[ @) N a a A
S5 +V-P= 2/ du[w dQn(r, 1,0, v) = x(r, 1,9, ) I(r,1, 0, ).

(3.9)
Notice that these are integro-differential equations and I(r,t,Q,v) in the
integral terms should be solved to get the complete solution for ep, F and
P. Mihalas, in his book [63], presents a method of solving these moments

equations.

3.1.3 Complete Set of Equations

The coupling terms between the magnetic field, radiation field and the plasma

are what have been left out so far and they are needed to complete the set
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of equations. The fluid equations coupled to the radiative transfer and MHD

equations become [67,62]

%+V-(pu)=0

0 1 = J,xB
-a-{(pu+67F)+Vp+V-(puu+P)= P

c

aat(ep+eR)+V (a+(ep+p)u+F)=Jp - E; + Seor. (3.10)
where ep, F and P are given by Eq.3.8 in terms of radiation specific intensity
I(r,t,Q,v). Jp - E; is equal to E/ - J/, the rate of Joulean dissipation, plus
u- (EP:—B), the rate at which the force gfLB does work [67]. Also, S,.. is
the collisional heating between beam ions and background electrons.

Notice that the problem is highly non-linear and time-dependent, there-
fore one may want to reduce the dimensionality of the equations to avoid the
complex situations. Since we only would like to investigate the radial motion

of the plasma, the equations are rather simplified as

5 T rgnlrew) =
Jp 1 8 r2B?
(pu + _EF) + + ———-(rp + P) —JbB ~ 5 8
0 10 10
at(ep + CR) -+ —‘a—-( (ep +P)U) + ——(r(q + F)) = JE + Seol (3.11)

where only the r component of vectors are present.
In addition to these, we can rewrite the magnetic and radiation field

equations in the radial direction (r); .

10B 0 ,ncl d . 10 J
2o " larranrB) + S5 (uB) = —5-(nds) (Eq.3.3)
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and
10 Ay p 0 A 10 R B _ R
zalg(r’ ¢, Q) + ;E(rlg(rst’ﬂ)) - ;%(glg(rvtvﬂ)) = 77ng - Xglg(r’ ¢ Q)

(3.12)
where we have replaced the streaming term [70] in the radiative transfer
equation by

1

. ) d
Q-VI, = %5;(7-19) ~ =5 (CIy). (3.13)

Here ; p, w and ¢ are angular variables as shown in Figure 3.1. Cylindrical
coordinates are complicated by the fact that even in one spatial dimension
two angular variables ¢ and w, are needed to describe the angular dependency
of specific intensity I. As shown in Figure 3.1, w is the angle between 7 and

1 and u and ( are given as
9 1
p=(1-¢*)2cosw

(=(1- ¢2)5 sinw. (3.14)

Conclusively, the problem of a radiating-magnetized plasma seems to be
non-linear and time-dependent. A numerical solution is required and the
chosen method should solve the whole set of equations simultaneously. The
equations (Eq.3.11 and 3.12) are in the lab frame now and must be transferred
to the adaptive system before any attempt of discretization. The following
section will describe the adaptive mesh system and present thc transforma-

tion for the whole set of equations.




Figure 3.1: Cylindrical space-angle coordinate system
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3.2 Adaptive Mesh System

The governing equations in the previous section were written on a laboratory
frame and if they were discretized the way they are, then they would be
evaluated on a fixed mesh system which is called eulerian. However, as an
alternative one can work on lagrangian or more generally adaptive systems.
Eulerian and lagrangian schemes are indeed special cases of adaptive schemes.
When mesh points are fixed in space it is eulerian, when they move with the
fluid speed then it is lagrangian. Therefore in an adaptive scheme, mesh
points move arbitrarily. However, we should keep track of mesh points and
their motion when the governing solution is sought. For the purpose of the
current work, the mesh points motion will be following specified gradients
of the solution to provide greater resolution where the solution varies the
fastest.

In order to transfer the governing equations (Eq. 3.11 and 3.12) from
(r,t) to an adaptive system (,7), we can use a variable transformation as

follows

and thus
9 _00r oot
dr  Ordr  Otor’
g 00r 00t

5 9ro¢ Do
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We choose & 3— =1 and thus & % = 0. That leaves us with

9_906_ 9
9t or  Tor
9 9

o_1
37'—7' o€

or in another representation ;

[t =1{lr =[]

[ = e (319
Here, r¢ and rr are the mesh metric (jacobian) and speed that will appear
with the unknowns in the transferred equations. In order to solve the set of
transferred equations, which are given in section 3.2.2, we have to estimate
these mesh quantities somehow in advance. Therefore, a mesh generation
technique will be followed to find the point distribution for each time step.

This technique will be discussed in the next section.

3.2.1 Adaptive Mesh Generation

The physical equations of the system include the mesh metric z¢ and speed z,
when they are transferred to the adaptive frame. This is obtained in section
3.2.2. In order for these equations to be solved we have to estimate the
grid metric and grid speed. The information required about these quantities
could be sought for the time n+1 as well as for the time n. However, before

any attempt to solve physical equations at time n+1, we let the mesh points
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move from time n to n+1 depending on the values and gradients of some
chosen physical variables at time n. This procedure of determining the mesh
distribution at time n+1 in terms of information given at the time n is an
ezplicit procedure. Recall that Eq.2.4 in the previous chapter was the explicit
equation for determining the mesh distribution with the given weight function

W. We rewrite it here for convenience as

. Lwds
Jws =g(x)(-fﬂ—‘]‘v@—) (Eq.2.4)

We call this procedure “explicit” because all the quantities on the right hand
side are given at time n and the weight function W on the left hand side is
also defined at time n with the exception of the integral’s upper limit x being
given at time n+1. Here; é(z) is simply a function whose value is chosen
to be equal to the mesh number. The second term on the right hand side
represents the average WAz for each mesh cell.

After z™t1 is calculated, the mesh edge velocity could be found by dif-
ferencing the old and new values of z with respect to time. The formula for
this, -, will be given later in another section. The mesh metric ¢ is simply
the difference in the space locations during the time step from t, to ¢p4;.

Therefore, knowing z¢ and z beforehand, the physical equations can
be evaluated without any difficulty. However, one has to determine what
the weight function should be before any attempt. Many forms of weight

function can be postulated. The one that we have chosen for this research is
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the following {20]
W=1+4aq|As |+8a| Azz | +ap | Bz | +8p | Bee | (3.16)

where A and B are some normalized physical quantity such as velocity, pres-
sure, mass, density, momentum density and temperature. Also Az, Azz, Bz,
and By, are the first and second derivatives of A and B with respect to
the spatial coordinate z. The a’s and B’s are determined by the formulas
in Eq.2.5 and 2.6 provided R’s are given. Recall that R is the fraction of
mesh points that the user would like to reserve for chosen gradients of A or
B. Notice that Eq.3.16 enables one to construct W out of two variables, A
and B, which means one can adapt more than one function. That obviously

enhances the power of solving multigradient problems accurately.

3.2.2 Equations on Adaptive Mesh System

We will transfer our equations from the physical space (r,t) to the computa-
tional space (¢,7) by applying Eq.3.15 to Eq.3.11 and 3.12.

Continuity Equation :

dp 10
5t + ;E(rpu) = 0.

Multiply this equation by r and apply the transformation
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or r[pls + [rpu]r = 0, and subsequently

r([plr — rrlplr) + ;lf-[rpu]g =0.

Now, take out the terms in the bracket and apply Eq.3.15 on r derivative

rr 1 _
rlplr — 7‘;2[/’]5 + ;‘g["ﬂu]f = 0.

Multiplied by r¢ ; it becomes rr¢lplr — rrr(ple + [rpule = 0. Here;

rrelple = [rreplr — plrrels

and
rrelple = [rreple — plrrele (3.17)

We claim that r¢, = r.¢ and therefore
[rrelr = [rr,—]e. ' (3.18)

This identity is important to remember when discretizing the equations. Be-
cause numerically that equality should be satisfied for a particular computa-
tional cell in order for conservation laws still to hold.

Now, the first two terms in the continuity equation above can be simplified

upon relation in Eq.3.17 as ;
rrelplr — rrelple = [rreplr — [rrrple.
Finally, we arrive at

[rreplr + [rp(u —rr)le = 0. (3.19)
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Momentum Equation :

d 1 dp 10, 4 1 0 r2B?
gz(pu + -(;;F) + . + ;E(rpu +rP)= —JbB - —787'( oy ) or
1,r2B2

rlpu + —-F]r +r[plr + [rpu® +7P); = -JbB ===l

8r

The same discussion for the continuity equation holds here, therefore we find

[rre(pu + S5 Pl + [rpu(u = ro)le = [rregle

1,r2B?
+rlple + [Pl = =SB + ~[—

le =0. (3.20)
Energy Equation :

0 10 10

pilep T er) + —5-(r(ep +p)u) + —==(r(g + F)) = JE + S, or

rlep + eglt + [r(ep + P)ulr + [r(¢ + F)lr = rJE + 1S,y

Applying the transformation, we find

[rre(ep + er)lr + [rep(u — rr)le — [rrreg)e

+[rpule + [r(g + F)lg = rre(JE + Seor.)- (3.21)
Magnetic Diffusion Equation :

10B 0 ,ncl o 10 0 _
2-5?_5(47rr0r( rB)) + 2 cor o (uB) + E(an) -

After the transformation to the adaptive system, we have

il - L

r 47rrr

1B, - e PBle + S uBle + lndle = 0 or



WWh—wma ﬂi?wmk+hmkﬂwm—o

The terms in the bracket can be combined as
T'E[B]r - TT[B]£ = [TEB]T - [T'TB]€ - B[TE]T + B[?"r]é‘

= [rfB]T - [TTB]E, because 'I‘&.’. = 7'1_6.

Therefore, we obtain
1 1 nc 1
z["fB]r + 'C'[B(u —ro)le — [EE[T'BM& + [nJple = 0.
Radiation Transfer Equation :

'c‘gly + —'8‘;(7'151) (Clg) = flgBy — Xglg
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(3.22)

where Iy represents Iy4(r,t, Q) and By represents group Planck function.

The transformation from (r,t) to (¢,7) will give the following

1 1
'c‘["g]glr - 'C'[TTTIQJE + plrlgle = re[Clgly — rre(figBy — XgIg) = 0. (3.23)

General form of Fluid Equations

For the sake of other possible applications that may stem from the current

work, we will cast the ordinary fluid equations in Eq.3.1 into three coordinate

systems :
Continuity

[zgz®ple + [ p(u — 1)) =0,
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Momentum
[ogz® pulr + [efpu(u — o) + 20 [ple = 0,

Energy
[wga’elr + [ee(u — zr)l¢ + [ (pu + @) = 0 (3.24)
where § = 0,1,2 for plane, cylindrical and spherical coordinates.

It is important to recognize that for curvilinear geometries the identity
[x‘s:vf]r = [:c'sxr]é

must be preserved in the difference equations. That is, when differenced
equations are solved on the discretized coordinates, care should be taken to
provide this identity relation which also introduces a formula to calculate the
grid speed while the grid points move from z" to z"+!. This formula will be

given in the next section.

3.3 Methods to Solve Discretized Equations

The transferred equations on the adaptive frame and the ones on the lab
frame are equivalent when r = 0. Both sets of equations include some
undifferentiated terms and are not in strongly conservative form. Therefore
they should be given care when discretized.

There are two paths to discretize the given equations: the differential

approach and the control volume approach. In the differential approach, the



61

equations are considered to be PDEs and it follows a pure mathematical
tack, and the physical significance of the variables can be lost. In the control
volume approach, the conservation nature of the equations is preserved and
for the adaptive mesh the control volume approach is the only viable approach
if conservation of the physical quantities is to be achieved [20]. The reason
is that the mesh dilates and translates each time step, thus the relative fluid
and mesh velocities at the cell edges and at the center are different. Care
should be given to distinguish the cell edge and center velocities, which is
done in the control volume approach.

Most control volume schemes define the location of density, pressure, and
energy at the center of the mesh while defining the location of the velocities
at the mesh edge as shown in Figure 3.2. The procedure followed here to
discretize the equations of continuity, momentum and energy is based on
Bartel’s adaptive scheme [20] for the ordinary fluid equations in the cartesian
coordinates. The general form of fluid equations on other geometries were
given in Eq.3.24 and they will be discussed here again.

Under the control volume approach, the identity equation
[a:‘sxf]r = [xémr]g

would be discretized as follows

(:1:‘5:1: )'-H'1 - (m‘sz I
§/i — i _ (.7‘63:7-)?_'_% —(w‘swr)?_%

where indices 7 and ¢ F é represent the i th cell’s center and edge values. ¢



i-1 i i+

a) Cell edge oriented

i-1 i i+

b) Cell center oriented

Figure 3.2: Control Volume approach.
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is chosen to be the successive number of mesh points as explained in section
2.2. Therefore A€ is equal to 1. In order for this differencing equation to

conserve the involved quantities, the cell edge velocities should be given as

follows sl mtl 5
(@byrHamH —an | (o5
(zr) 1 = i M) (3.25)
iF3 (20)" 1 A7
1;7

Before discretizing the fluid equations in Eq.3.24, or in Eq.3.19 through
3.24, we should make a note that these equations may not be able to de-
tect the possible shocks in the fluid properly, therefore we should present a
scheme that handles the shocks automatically, wherever and whenever they
arise. The mechanism to overcome these difficulties is to introduce into the
difference equations an artificial dissipative (viscosity) process that gives the
correct jump but smears the jump (shock) over a few mesh points. The
particular method to use here is von Neumann-Richtmyer artificial viscosity

method [68] that replaces the fluid pressure by

p=>p+@Q

where Q = p(cAz)? | %—Z |. Here cis a constant and u is the fluid velocity.
As c is increased, the stable CFL number is reduced for a fixed mesh. The
CFL (Courant-Friedrichs-Lewy) number is the ratio of the fluid velocity to

the characteristic mesh velocity, %%
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3.3.1 Discretized Fluid Equations

Continuity Equation :

[rreplr + [rp(u — 1)l = 0.

An explicit control volume scheme for that would give the following

6 _ n __ (.0 _ n
(Térgp)?-H _ (7'67'6,0)? A (r’p(u TT))i+% (r®p(u 7'7'))1-_%

At AE =0.

Because ¢ is under our control we choose it to be the number of mesh points,
say £ = 1 for the first mesh and 2,3,...N for the rest. From this A¢ becomes
unity (Az; = 1). In order to evaluate the cell edge (¢ F %) values of physical
variables we apply a first-order upwind (donor cell) scheme [69]. This scheme
simply equates the edge value with one of the neighboring cell center values

depending upon the sign of the edge velocity Uizl That is,
2

Piv1/2 =Pi tf uip179 20 and piLis9 =piy1 1f vy <0

and

pi-1/2 = Pi-1 tf u;_19 20 and p;_y9=p; ifu;_1/9<0.

The differencing formula to find p?t!

; is then

1
PPt = e {(Prep) P = AT {(rPp (o = 1)y 0 = (0w = 7o)y 03}

(r‘srf)z
(3.26)
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Notice that the mesh distribution (r?, r¢,7r) on the right hand side at time n
and n + 1 is known before the partial differential equation is solved for p""’1
The method of determining the mesh distribution was discussed earlier in
section 3.2.1.

Momentum equation :

The same discussion for the continuity equation applies for the momen-

tum equation except that the discretization on the pressure term should not

be done by the upwind scheme, but rather be discretized [69] as

[p] - Pi4+1 — Di—1 — Pi+1 — Pi—1
A+ A 2

The differenced momentum equation for the radiating-magnetized plasma is

then
Alrrelou+ )P = (rreCou + )0)
H(rpu(u —rr))iy /9 — (rou(u - rr))?_1/2}
F_, F . _ p?.{.l Pz_l z 1
_{(Trr—f)i+1/2 - (TTTEQ'),'_VQ} + r,({——————} + {—“})
("cf) (BB + = (2B 1 )p — (2B  p} =0, (3:20)

Again, the upwind scheme is used to evaluate the cell edge values. As a
last step u"'*'1 is found provided that all values at time n and F at time
n 4 1 are known. Ideally, the plasma equations and the auxiliary radiation
field equation are to be solved simultaneously but because of the explicit

scheme being used here, one can solve the radiation field for time n + 1 upon
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plasma properties at time n and then further solve the plasma equations.
The magnetic field B in the fluid equation appears to be at time n, therefore
B" is known in advance.

Energy Equation :

Recall that the energy equation for the radiating-magnetized plasma was

[rre(ep + er)lr + [rep(u — rr)le — [rrrerle

+[rpule + [r(q + F)l¢ —rre[JE + Seq1] = 0.
The differenced form will be

= (rrelep + )P = (rre(ep + ep)T)

+{(rep(u = rr))i4 179 — (rep(u —r7))i_1 9}
—{(rrreR)iy17a — (rrrer)iq o} + {(rpw)ii 0 — (rpu)i_y jo}

+{(r(a+ F)i1ye — (r(@+ F)ilyja} = ()P (JE + Sea )7 = 0. (3:28)

n+l . . .
;7" in terms of the values given partially at

This equation is solved for (ep)
time n and at time n + 1(r¢, 7, eR).

Magnetic Diffusion Equation :

For a discharge current in the axial direction (Z) and thus a magnetic

field in the azimuthal direction (4), the adaptive magnetic field equation we

found was

2lreBle + L{B(u —role ~ [ Blele + sl = 0
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Because the timescale for magnetic field diffusion is very short compared to
other events in the plasma and because we know about the values of B at the
innermost (r = 0) and outermost (r = rmqz) boundaries for time n + 1, the
diffusion equation above is solved rather differently from density, momentum
and energy equations. The assumption is to use an implicit scheme provided
that we know everything in the equation (except B) at the time n + 1. That
is, in fact, possible by deferring the solution of B after density, momentum
and energy are solved at time n + 1. Therefore, in the differenced form, it

becomes

S ACeBIH = (rgB)P) + (Bl = ro)) )y = (Bu = )}~

ne 1

ntl nc 1 1 1 =
Ar g PR — G B o} + {0 )y = ()70} = 0

{(

where
_ BijArizy + Biz14Ar;
Bl:Fl/z - Ar; + A"i:Fl

and ([rB])iy1/2 = (rB)it1 — (rB)i and ([rB]);_1/9 = (rB); — (rB)i_1.

Reorganizing the terms, we get

Bn+1{___ Arzn+1 (u — )n+1 —( nc),'H_l rlp—+11 }
CAr"+1 + Arn+1 i—1/2 47 z—l/2r?+1 _ r?;f—ll
+1 1
+Bn+1{ Arzn+1 ( ) + ( nc)n+1 rzn+
CAT"+1 +Ar"+1 z+1/2 Aq’i+1/2 n_:—ll 17}+1
1 Ar"+1 n c r?"H-l
+1 N¢\n+1 i n+1

T c Ar"+1 + Ar"+1 (u— )i—1/2 + (47r)i“1/2 r?"'l — r?_ cAT( re)i )
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1 +1
n+1{ A,'JH- (u )n+1 ( nce )n+1 ?+1 }
z+1 ¢ Ar n+1 +Ar:l_;_"11 TI/i41/2 T \gp’i+1/2 n_:—ll ln+1

1
= -CA—T(rEB)?. (3.29)
or more concisely
a; BM + ¢; BM! +d; B = o7 (3.30)
where i =2,.m — 1.
Eq. 3.30 is a tridiagonal system with
21
B! =0 and BY' = =4 (3.31)
€ T"maz
Here I, is the discharge current and rp,qz is the channel radius.
The solution found by the so-called Thomas algorithm [73] is
B?'H = e,+1B 1 + fix1 1=12,.,m—1.
Here €41 = ——3i_ and f;11 = (si—9if;) where ¢ = 2,3,..,m. The
i+1 aiei+ci i+1 = ase; +C T Ly Py eny T

values of eg and fg are found from the boundary condition of B in Eq.3.31.
These conditions are consistent if eg = f9 = 0.
Current Density and Electric Field :

We know that

10,

C C
J= VB J;= === (rB). (3.32)

This is the expression to find J, in terms of B(r,t). The magnetic field

has been calculated at the cell centers, but the current density J will be
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calculated at the cell edges as

¢c 1 (rB)}y—(rB)}
dmriiye T T

c 1 _BR-(BE,

Ar o1 7 n
dmriye TN

n —_
i+1/2 =

(3.33)

Jilie =

Now, we can also calculate the electri¢ fields in the fluid and lab frame:

Ef=nJ and (Ef)?rpl/Q = (nJ)?=F1/2’ (3.34)

and
1
(EI)?q:l/2 = (Ef)?qzl/2 - 'c'(uB)?qzl/Q (3'35)

Then, the heat term (EJ)7 in Eq.3.28 will be given as
1

Radiation Transfer Equation :
We have previously derived the multigroup radiation transfer equation

and transferred it into the adaptive mesh system as shown below

1 1
[rrelgle — =[rrrlgle + plrlgle —r¢[Clglw — rre(g By — XgIy) = 0.

The numerical solution of this equation is more complicated than that of the
continuity, momentum, energy and magnetic field because of the degree of
discretization it requires. Even though it describes the radiation transport
in only the radial direction, by assuming symmetry in azimuthal and axial

directions, it includes surprisingly two angular variables ( and u besides the
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radial component r. Therefore more care must be taken in indexing the
discrete directions so that the angular differencing formulas can be applied
in a consistent manner.

In order to solve Eq.3.23, which is given above, we need to discretize the
angular variables as well as the spatial variable r. The method chosen for
angular discretization is called the Discrete Ordinate Method or briefly Sy
method and is a common practice for neutronics problems. Here, N is the
level of discretization.

Discretization of Radiation Transfer Equation

Recall from Figure 3.1 that the direction of photons are represented by
the solid angle direction ). The trace of this unit vector on the z direction
is ¢ and on the radial direction is 4. The { and p are the angular variables
that appear in the differential equation and are given in terms of ¢ and w as
in Eq.3.14. The relation between these angular variables can also be seen in

“Figure 3.1. To facilitate the angular discretization, we associate two indices
with each direction: {} — qu. The first index indicates the value ¢, with
61 <63 <63 < -+ <gy. The second index increases with the value of p
associated with ¢p. Hence for fixed ¢p, pp1 < prpo -+ < HpNp where Np varies
between 1 and N.

We choose a level-symmetric quadrature set [70] for discrete ¢ and u
values where the directions are enumerated pairs of £u;, &¢; for: = 1,..N/2.

Although full rotational symmetry is not required it is important to place
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the quadrature points on levels of constant ¢; about the z axis, because only
with such an arrangement is it possible to handle the derivative numerically
with respect to w in Eq.3.23 without the complication of differing values of
(; entering into the expression.

The numbering scheme for ¢, and pipq is illustrated schematically in Figure
3.3, where the ordinate points are projected on the u,¢ plane.

Because we assume symmetry in 6 and z directions (infinite cylinder), the
angular specific intensity I(r, Qp,) must obey mirror reflection with respect

to the plane perpendicular to the z axis. Thus we have

Ig(’l",ﬂ,() = Ig(T‘,,Lt, —C).

Therefore we need to solve only for the angular distribution in two octants
# <0,6>0and g >0,¢ >0. The total radiation intensity in terms of the

chosen quadrature set is given as

1
pq

where wpq is a weight number, not the angular variable w. The derivative
term with respect of w can be written in terms of angular differencing coef-

ficients « [70] as

_ ¢ p
—rel(Iglu = w_m(ag+1/2lg;p,q+l/2 ~-1/2lgp.a-1/2)-

Substituting this into Eq.3.23, we get

1 1
[rrelgpqle — ~[rrelyipgle + ppalrIgipgle
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Figure 3.3: Projection of an Sg quadrature set on the u,c plane using p,q

numbering in cylindrical coordinates [70] .
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+ wr_;(asﬂ/zlg;p,qﬂ/? = &b _1/9lyipg-172) = reiig By — Xglgipg) = 0.
(3.38)
To solve this differenced equation, one has to know the a’s. The crite-
ria for determining these angular coefficients is based on the fact that the
streaming operator (Q - VI) must vanish when the I is both uniform and

isotropic as it would be in a uniform infinite medium ;

"¢ (o -
tpalrIgle + @(aq+1/2I9 - 05_1/21_(,) =0, or

1
—( —af = 0.
(kpg + wpq( g+1/2 ~ %o172))ely
Then,
1 ,
ppg + —(f 0 —af - ) =0. (3.39)
pq Wpq g+1/2 q-1/2

We rewrite that as

where p=1,2,.N and ¢=1,2,..Np.
Similarly, to assume that the photon conservation holds in the discrete
ordinate (Sy) method we use the quadrature formula to integrate Eq.3.38

over angle. We obtain the zeroth moment of the transfer equation

[rreeg.rlr — [rrreg.rle + [rFgle — (79Qg:1 — Xglg)rre =0 (3.41)

with

Iy

il M

Z Wpqlgpg
Pq
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1
€R = 7 > wpglgipg
Pq

Fg =23 wpepipglypg and
P

N

1
Qg;1 = Zzwquy )
Pq

if and only if
N Np

pZ‘:l qz_:l(af1)+1/2lg;l’,q+1/2 - ap—l/QIg;p,q—l/Q) = 0. (342)

This condition along with the previous condition on «a, Eq.3.40, can be met

for arbitrary I only if
ofjp=0 p=12..N

Now multiply Eq.3.38 by ﬁ.cﬂl and integrate again over the angle to get

the first moment equation ;

1 TTe _
Zf([""ng]r - [TTnglf) + [rPg]g - '?{(Ungﬂ + XgFg) =0 (3.43)
where now

1
Py=— prqﬂpqﬂquy;pq,
4c Pd

1
Qg2 = Y Z Wpqpg By
Pq

Having determined the values ar’q’ +1/20 Ve must relate the I g:pa+1/2 values

to the center Ip, values. We define an angular diamond difference approxi-

mation such as

1 .
Tgipg = §(Iy;p,q+1/2 tlgpg-1/2) ip=12,.N and ¢=1,2,.Np.

(3.44)
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Solving this for I4.p g+1/2 and substituting into Eq.3.38 to eliminate Iypqs1/2

we get the following

1 1 27‘6
~[rrelgipglr = =[rrrlgipgle + Hpalrlgipgle + ;U;;;af,’+1/2fg;pq
r —_
- wﬁq (@172 T %172 lopa—1/2 = Te(lg By — Xglgipg) = 0. (3:45)

Now once Ig;p,l /2 is known, Eq.3.44 and 3.45 can be solved for increasing
g. A technique to evaluate Ig;p,l /2 is the step differencing approximation,
Igp,1/2 = Igip1-

Spatial discretization of Eq.3.45 will be followed by the same discussion
made for the density, momentum, energy and magnetic field equations. A
control volume approach will be used and a first order diamond differencing
method will be tried to evaluate the cell edge values of variables.

Now, if we apply an implicit scheme to discretize Eq.3.45 in time and

follow the control volume approach, we get the following ;

1 (rrely. )"H-l—("rl; )i 1
_{ £49;:p9 /4 > §°9:p4)i }—- Z { (T‘T‘rlg;pq)?jf/g - (TTTIg;pq)?j11/2 }

n+1

20711/
—w—(rffg;pq)i

1
+1tpq {(TI!J;P‘I)?:-I/? - (’"Ig?Pq)?jllﬂ 3+

(o 1p el i)
- =l (rflg;p,q—l/2)?+1 —( "5(77939 ~ Xg¢1g:pq) )?H =0.

Wpq
(3.46)

To go one step further, take the spatial diamond approximation

1
Tpgii = 5(Ipg,ix1/2 + Ipgi-1/2) (3.47)
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Then for ¢p > 0 and ppq < 0 we take

Ipq,i—1/2 = 2Ipg,i — Ipq,i+1/2

and Eq.3.46 becomes

(,r )n+1

+1 )]
i w;q (ag“/? + ag—1/2)I9;P,q—1/2,i

1
o {c—&:(’"rffg;pq)? +

1
Hypg,ir1/2 15((rmr)ip1ya + (rre)iiya) = wpe(rigaye +riciy2)}

rf)n+1 (f)n+1
AT + Wpq arg+1/2

+(rm) 0B}

+
w1, 20Ty

+ Xg(rre); - 2/.tpqrz"+11/2} 1 (3.48)

Similarly for ¢, > 0 and ppq > 0 we have

Tpg,i+1/2 = 2pg,i — Ipg,i—1/2
and hence Ipgit+1 /2 can be eliminated from Eq.3.46 to yield

1 rre | 2rg _ 2(rr1-)z-+1/2 1
I;;;q,i = {cAr t w_m“S+1/2 + XgTTe = e + 20pgTiv1/2}

1 1
{7 (rredy p0)i —1g:pg.i—1/2 {=(rre)iv1jot(rrr)icjatppg(rivajatrioyye}
r
+rrelyBy + (o gt A lgpa-rpi b (349)

where indices n+1 and ¢ are omitted. Equations 3.47 through 3.49 along with

the angular difference relationship

Ly q+1/2,i = 2Ipgi — Ipg-1/2,i (3.50)
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constitute the necessary equations for sweeping the space-angle mesh. Note
again one must first use either a starting direction equation or the step con-
dition
Toay2i = Ipi
to begin the sequence. Then we must solve for the negative upq first. If we
assume a vacuum boundary condition at the outside of the cylinder, then we
have
Limaz+1/2(—Hpqg) = 0.

We then start at the outer boundary and march inward for decreasing values
of i. Once the solution for negative ppq is found the boundary condition at
the center of the cylinder can be applied. If there is a reflective boundary
(symmetry around the axis) then the I values for positive pupy can be set
by the negative uyq direction I values which have been calculated by inward
marching.Then we solve for positive upq and increasing 7.

Because x4 includes the integrals of I at time n+1 one would like to
apply an iteration scheme for better solution by putting back the calculated
solution of I'in the group constants, X4, and solve again for I until it satisfies

the convergency criteria.
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3.4 Sample Problems

The adaptive Navier-Stokes hydro code written for slab geometry by Bar-
tel was modified and extended to all geometries by 1) deriving the required
expression for the mesh adaption (z¢ and zr) to satisfy the differenced equa-
tions, 2) putting the fluid equations into a general form. Secondly, all gov-
erning equations including the continuity, momentum, energy, magnetic field
and radiation field equations were put on the adaptive mesh for application
of z-pinch channels.

Among the equations included in the model, all except magnetic diffusion
and radiation transfer equations were solved by explicit schemes and also
an explicit procedure was followed to generate the mesh distribution. The
Equation of Sté,te tables were found by MIXERG and IONMIX computer
codes which were mentioned previously. Time step control was done by
setting the CFL number to a constant value. Since an explicit scheme was
used, this number, CFL, has a maximum of unity. The compressible flow

CFL number is typically defined [69] for a ﬁ);ed mesh system and it is
At

where a is the local sound speed. For an adaptive scheme we can define [20]

CFL number as follows

At
CFL = (] ucen | +a)A_x
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where u..;; = %(ur + u7) ; ur and u; are the right and left edge velocities.
A list of the major steps that the code follows to update the equations

on an adaptive mesh from time ¢, to ¢, is given below:

¢ Given Rq and Rg, the fraction of the mesh points to be used for the first
and second degree variation of the chosen adaptive function, calculate

a and B through Eq.2.5 and 2.6.

o Calculate the weight function W using updated values (time n) of the

chosen adaptive function.
o Compute new mesh points, r¢ and mesh speeds, zr by Eq.2.4 and 3.25.
o Solve the governing equations for time n + 1.
¢ Set up the new time step.

e Repeat steps.

3.4.1 Shock Tube

A common test problem for a hydro code is the shock tube problem by which
the code is examined against severe discontinuities. Hence, the following
section will present how the code treats such a problem. The problem is
studied in only one spatial dimension but in all geometries (slab, cylinder

and sphere.) The physical domain is divided into two regions of different
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pressures. The inner region has higher pressure and thus higher density. At
t = 07 the system is released and a shock is formed propagating outward.
Application of this problem has already been done by Bartel for Navier-Stokes
fluids in cartesian coordinates. Here, we will deal instead with eularian fluids,
but in all geometries.

In a shock problem like this there are three distinct regions that must be
caught; the shock wave, the contact discontinuity and the rarefaction wave.
Figure 3.4 shows the initial pressure distribution for the problem. A ratio
of 3 was used to set the pressures in two regions. The gas is assumed to
be initially isothermal. The initial density profile is also shown in Figure
3.5. These figures show the pressure and density profiles (for a slab) at other
times too. Here a donor cell (first upwind) method with 100 mesh points has
been used.

Using an adaptive system saves us many mesh points. A MacCormack
method with 1000 mesh points and a Leonard’s QUD method with 500 mesh
points and a donor cell (upwind) method with 500 mesh points on a fixed
mesh scheme were tried previously by Bartel and the results are shown in
Figures 3.6 through 3.8. These results are not good compared to the adaptive
results. Note that the donor cell on a fixed mesh system is the simplest and
the least accurate one. However, Figure 3.5 proves that even a first-order
donor cell method on an adaptive scheme is able to detect the three regions

of the problem mentioned before. A fewer number of mesh points have been
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used and the momentum density has been adapted. The reason that the
momentum density was chosen as the weight function is that its derivatives
capture not only the shock front and rarefaction but also the discontinuity
region. A value of CFL = 1 was used for this run.

The same shock problem on other geometries would be expected to be-
have the same qualitatively. An important difference between the curvilinear
geometries and the slab geometry is that in slab geometry the mass of a com-
putational cell is not proportional to the distance to the origin of the problem
whereas in cylindrical and spherical geometries the mass is proportional to
the distance r and r2. That difference, therefore, should show up in the
simulations of cylindrical and spherical cases. Figures 3.9 through 3.10 show
the density profiles for these cases with 200 mesh points and a CFL number
of 0.1. The adaption function was again chosen as momentum density with
R, = 0.35 and Rﬁ = 0.15.

As noticeable in the figures, the mass in the shock behind decreases
whereas it increases in front. In the slab case, it would be flat for both
regions. The curvature-like behavior of mass in the sphere looks the same as

2 versus r.

in the cylinder except that the degree of curvature is higher as r
The fluid motion can be viewed in all three cases by looking at the velocity
profiles given in Figures 3.11-13. There one can see the uniform profile of the

slab case and the nonuniform profile of the cylinder and sphere cases due to

the r dependency of the mass and therefore that of the fluid motion.
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3.4.2 Dynamics of Plasma Channels

The dynamics of plasma channels seems to involve a blast wave expansion of
the plasma. Thus, it is important to see how the ARMHD code predicts the
contact discontinuities resulting from that in the plasma. We will start with a
simple channel application here and defer the complete case to Chapter 5. A
simplification of a z-pinch plasma channel is a cylindrical plasma with neither
a magnetic field nor a radiation field. That means the discharge current is
zero and the interaction of the plasma with the radiation is neglected. In
addition to this simplification, ion beam injection can also be excluded. The
initial conditions of the channel are created with the laser initiation that
is aimed to create a conducting path along the axis of the channel. The
laser heats the gas and creates a plasma of ions and electrons. The initial
temperature profile due to laser heating could be taken as Gaussian with
a peak value of 0.8 eV [16]. The number density of the plasma is taken
uniform throughout the channel and its value is about 3.5 x 1018em=3. The
light ion beams considered for light ion fusion have power levels of tens of
terrawatts and particle energies of tens of MeV. For these parameters, typical
beam number densities are approximately 101%-1010¢m=3. To have current
neutralization and to avoid rapid growth of instabilities, the channel number
density must be approximately 1017 —1018¢m 3 [14]. And this is the density
range considered in our investigations.

The pulse of the laser is in the order of nanoseconds. The timescale for
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the deposition of the laser energy in the channel is much shorter than the
timescale of energy diffusion radially outward. Under these circumstances
and due to the temperature in Figure 3.14, a blast wave may be formed that
propagates radially outward. The blast wave is characterized by a sharp
density peak, Figure 3.15, that moves outward into the undisturbed ambient
gas at speeds somewhat greater than the upstream sound speed. The channel
expansion in the form of a blast wave will even exist in the case of a discharge
current but it may relatively slow down for the high current values. The
timescale for magnetic diffusion is small compared to the expansion of the
channel therefore the joule heating deposition timescale is short compared to
the energy diffusion. That nature will help to expand the channel further
but may do the opposite when the magnetic field is high enough to pinch the
channel.

The adaption function here is chosen to be the temperature and the mo-
mentum density because of their expected high gradients. For both functions
Ry and Rg have been chosen to be 0.3 and 0.1 respectively. Figures 3.14
through 3.15 show the temperature and density profiles for an argon plasma
with no discharge current. The number of mesh points and the CFL number
for these calculations are set respectively to 50 and 0.1. As expected earlier,
these results show a blast wave moving radially outward. A conservation
check was done during the simulations for mass and energy and it proved

that the numerical method is conservative at about 98 % for the mass and
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95 % for the energy.
The expression for the thermal conductivity of the plasma, &, that is used
in the simulations here is a theoretical expression developed for electrons’

interaction with stationary ions {75]. This expression of « is

T5/2

mé/2e4

K= 20(%)3/2 (Z +4) InA

where m, is the electron mass and InA is the Coulomb logarithm.

Ideally, the discharge current value and its rise time depend on what val-
ues are used for the capacitor bank, resistor and self inductor in the discharge
circuit. Therefore there should exist a set of circuit equations to solve for the
discharge current while the solution of other physical variables are sought.
Practically, one may try to avoid these sophistications for the moment and
use a user-defined current profile that is likely to occur in the channel. Such
a profile is shown in Figure 3.16. This is not what Freeman suggested as the
best profile for channel optimization, but rather is a simpler one.

Now, we would like to see how the channel’s behavior changes versus an
increase in the value of the current peak. Simulations in Figures 3.17 through
3.22 have been taken for the peak values of 10 kA, 50 kA and 90 kA with the
same adaptive parameters (mesh number, CFL number and R, and Rg) as
those used in the previous case. The magnetic field profiles in these figures
show that it diffrses into the channel in a short time (about nanoseconds).

The resistivity of the plasma is a strong function of the temperature and its
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dependency is shown in Figure 3.20. The relation that led to this kind of

dependency is an emprical formula [11] given as

0.4482
n =579 x 107 BFT(eV)-040 (sec) f kT > 0.42 €V,

0.4482
n =579 x 10719¢042=040 (sec) if kT < 0.42¢V.

However, a more realistic formula can be used such as the one given in Dresvin
[74] that counts for both the effects of Coulomb collisions and electron-atom

collisions ;
n = nw (weakly tonized) + np (fully ionized)

where 7p =5.799 x 10713 Z2(T) In A T-3/2 and

-1/2
__Me 0ea(T) 1/2
WS e

Here, oeq is the electron-atom collision cross section, Z is the ionic charge
state, and « is the degree of ionization of the plasma. When « falls below
0.001 nyy is dominant and when it is greater than 0.1 np is dominant. The
plasma is hot near the center and is surrounded by a cool region therefore the
center plasma is more conductive. This leads the discharge current to flow
mostly in the center of the plasma. The magnetic field profile would look like
that of a conducting wire where magnetic field is linear in the conducting
region and drops off as 1/r beyond that. The current density profile in the hot

region is, then expected to be uniform (flat) according the relation between
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the magnetic field B and current density J as in Eq.3.32. Figures 3.21 and
3.22 show typical profiles for B and J. It confirms the fact that J is almost
uniform inside a radius, r¢, and drops off to a negligible value after that.
The effect of current rise time should be the same because of the same
rise time for each case, but the amount of the joule heating, in each case,
added to the energy of the plasma is different and that causes different effects
on the channel. For the 10 kA case, the amount of joule heating is small and
the magnetic field created by the discharge is not high enough to pinch the
channel. The joule heating therefore helps the plasma expand more than
the case when there is no current. When the current value reaches 90 kA,
however, the blast wave starts fading and the plasma tends to slow down and
move toward the center. This mechanism can be seen in the velocity profile.
The eventual effect is the pinching of the channel. The pinching spoils the
flat profile of density inside the peak radius and increases the density in the
center. That by itself is not good in terms of the response that the beam
ions will get from the plasma. On the other hand, the magnetic field may be
required to be high to confine the beam jons. These are altogether competing
effects and should be thought about when designing an optimized channel.
The results for three different discharge current cases are qualitatively
consistent with our previous knowledge of the channels but still need to be
checked in terms of conservation laws. A conservation check on the mass

showed to be about 98 %. Because the total energy will not be conserved
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but rather increased due to the joule heating, no attempt was made to say
something about the energy mechanism here before any attempt to check
whether or not the magnetic flux and the current are conserved in the
calculations. If they are, that would insure the value of joule heating which
is eventually added to the energy of the plasma.

Conservation of Magnetic Flux and Current:

The magnetic flux conservation check provides an indication of how ac-
curately the magnetic diffusion is being solved. To get an expression for a
numerical check on magnetic flux we will integrate Eq.3.3 over space and

time. That is,

rmaz ;1 BB maz / nel 0 1
/0 dr' /dt / dr' /dta L= o(rB) = <uB — 14}

This indeed is Faraday’s Law and becomes

1 t
Z16(6) = 60)] = [ [Ei(rmaz,) - E(0,)] (3:51)

where ¢ = [(™** dr'B(r',t), E;= Ef - -:‘;uB . In finite difference

form,

1

~(8™F! - ¢0) = et
where entl = e + Atn(E?r:ala: Ezn=+11)

The current conservation check is a comparison between the discharge
current Iy and the current calculated by integrating the net current density

Jnet- In other words, the current conservation check compares the discharge
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current I}, as obtained either from the current equation solver or the user-
specified current, and the following one that is calculated through the current
density J!* as
rmaz imazx
I? =2r /0 Jnetr dr 221 3 JPrPASD, (3.52)
=1
These conservation checks were applied to the three cases mentioned ear-

lier. The conservation degree is nearly 100 %, which indicates that the mag-

netic diffusion equation has been solved correctly.
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Figure 3.14: Plasma temperature profiles at times 0.0, 2.0, 4.0, 6.0, 8.0, 10.0,

12.0 microseconds in the channel with no discharge current.
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Figure 3.15: Plasma density profiles at times 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0

microseconds in the channel with no discharge current.
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Figure 3.17: Plasma mass density profiles at times 0.0, 2.0, 4.0, 6.0, 8.0, 10.0,

12.0 microseconds for Iy mqz = 10 kA.
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Figure 3.19: Plasma mass density profiles at times 0.0, 2.0, 4.0, 6.0, 8.0, 10.0,

12.0 microseconds for Ig maz = 90 kA.
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Figure 3.20: Typical temperature dependency of resistivity of plasma used

in calculations.
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Chapter 4

Adaptive Method versus

Lagrangian Method

The adaptive mesh systems are not historically the original systems that were
used with finite difference methods. Either eulerian or lagrangian coordinate
systems were used. An eulerian (inertial or laboratory) one is that in which
the grid points remain fixed and a lagrangian one is that in which the grid
points move with the local velocity of the fluid. In lagrangian systems, each
computational cell can be considered as having a constant mass throughout
the simulation.

These two systems, indeed, can be viewed as special cases of the general

set of adaptive systems. In order to see this, consider the following simple

108
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wave equation;

ou . 9U _,
at " ‘oz -
or
U}t + U]z = 0 (4.1)

where U(z,t) is an unknown dependent variable, [U];; represents partial
derivatives. The constant c is just the wave speed in the laboratory frame.

Now if we transform z and ¢ to a computational domain (¢, 7) as

T=t
£= é(x,t) (4'2)
then the wave equation becomes
c—z
[V + (—)W)g =0. (4.3)
§
Here;
_d& (grid metric — jacobian)
Tg = T grid me Jacobian),
and
dz . .
Tr = == (grid velocity).

Now, we can examine Eq.4.3 to see whether we can reproduce the eulerian
and lagrangian special cases from it. If the grid speed, z, is zero then the
result is simply an eulerian mesh. If the grid speed is equal to the wave speed

Tr = c, then the result is a lagrangian mesh. It is obvious that eulerian and
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lagrangian mesh systems are only special cases of the adaptive grid system.
Some local grid refinement or periodic rezoning (ad hoc methods) can be
used with eulerian or lagrangian systems to solve complicated problems, but
adaptive grid systems provide a systematic approach to determining the best
time dependent mesh distribution for a problem.

For problems like plasma channels where gradients in different physi-
cal quantities must be resolved, we want to test whether the adaptive grid
method is better than the standard lagrangian approach. The following sec-

tion presents such a comparison for the plasma channels in the context of

the LIBRA reactor study.

4.1 Lagrangian Method

The fluid equations, Eq.3.1, that we have seen before are in eulerian form,
which means they view the flow from a fixed laboratory frame. A conven-
tional way to convert these equations into the lagrangian form is to replace
the time derivative (9/0t) with the fluid-frame time derivative -convective
derivative- (D/Dt) :

D 0

Di=- & +u-V
Therefore, the lagrangian derivative IDf is the time rate of change of p in

an element of the fluid moving with the fluid. The replacement of the eu-

lerian time derivative with the lagrangian derivative in Eq.3.1 results in the
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following :
Dp
i +p(V-u)=0

p%% +Vp=0. (4.4)

Note that the conversion of Eq.3.1 into the adaptive system, as is done in
Chapter 3, is a more general formulation than the lagrangian one. One could
derive the lagrangian equations Eq.4.4 as a special case from our adaptive
formulas by simply replacing the grid velocity r, with the fluid velocity u in
equations Eq.3.15, 3.19 and 3.20. The lagrangian derivative (D/Dt) would
correspond to (9/07) as

D

mz[]r'f'"[]r-

The continuity and momentum equations would be
[rreple =0,

[rrepulr + rlple = 0. (4.5)

Furthermore, in the conventional lagrangian formulation the spatial deriva-
tive is replaced by the mass since it simplifies the equations. Each fluid
element has constant mass with a zero flux of mass at the boundaries. This,
infact, means one equation (continuity) is eliminated from the system.
Alternatively, one can again do these kinds of simplifications when de-
riving the lagrangian equations from more general adaptive ones. The idea

of replacing the spatial variable r with mass in the conventional way can be
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seen to be equivalent to taking the adaptive variable £ equal to mass as

£=t(r)=m.

Since the mass of a cell (Am) with a volume rAr is

Am = prAr,
we find
rm = o= pr

which is in fact r¢ in our case because { is equivalent to m.

In brief, we see that the lagrangian formulation can be derived from the
more general adaptive formulation simply by choosing the adaptive variables
(7,€) as the lagrangian time and mass and restricting the grid velocity (rr)
to the fluid velocity (u). Thus taking rr = u and r¢ = pr, Eq.4.5 are written
as

[ constant |r = 0 (continuity)
[ulr + r[plm = 0 (momentum). (4.6)

The most relevant lagrangian hydrodynamics computer code to us, as
mentioned before, is the ZPINCH code. It uses the formulation that was
described above. In addition to the basic fluid-like equations for the plasma,
it also solves for the magnetic and radiation fields. The magnetic field is
calculated from the magnetic diffusion equation and the radiation field is

calculated from the radiation diffusion equation.
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ZPINCH is currently used in the design of LIBRA and LMF at UW-
Madison. It simulates the formation of plasma channels up to the time the
ion beam is injected. Through the simulations one can find an optimized set
of channel parameters (such as peak magnetic field, channel radius, discharge
current and so on) that is appropriate for the overall design.

The channel, as described before, is preionized with a 2 J laser to provide
a straight conducting path for the discharge current and the ion beam. The
latest simulations [1] were done for nitrogen and helium gases at a mass
density of 2.37 x 10—5:7%3' Channel formation for a discharge current history
of the type shown in Figure 4.1 was studied where a large main pulse follows a
smaller prepulse. A preionizing laser with a Gaussian radial intensity profile
was assumed. The double pulsed current history was first proposed several
years ago [10]. The results for nitrogen gas show that, even for the optimum
current history and laser profile, radiation transport prevents the formation
of nitrogen channels acceptable for the LIBRA reactor design. The required
azimuthal magnetic field to confine 30 MeV L:*3 jons at 0.5 cm radius is 27
kG, while the best simulation result with nitrogen is 18 kG if radiant heat
transfer is considered.

The radiation diffusion model used in ZPINCH predicts a radial expand-
ing temperature front which causes a geometric degradation of the magnetic
field by expanding the current profile over a larger area. The question of

whether this is what really happens depends upon the validity of the diffu-
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Table 4.1: Parameters for LIBRA Channels [1].

Number of beam channels 16 + 2
Number of return current channels 16 + 2
Channel length 6.6 m
Channel radius 0.5 cm
Beam ion 30 MeV Li*3
Confining azimuthal magnetic field 27 kG
Average channel mass density <Hx 10‘69 / em?®
Target chamber gas 3.55 x 1018¢cm =3 helium
Time delay between discharge

current pulses 1 microsecond
Laser beam diameter 4 mm

sion model and the opacities of the hot plasma.

The results that arose from the nitrogen simulations led to the choice
of a low atomic number gas (helium) that should radiate less and therefore
allow the formation of more acceptable channels. Results for the helium gas
predicted a magnetic field of 27 kG at about 0.5 cm radius, indicating the
feasibility of a channel to focus 30 MeV lithium ions onto a light ion beam

driven target for LIBRA.
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The point design for LIBRA channels has parameters outlined in Table
4.1. Studies following ZPINCH results indicate that this design is successful
due to the fact that helium gas does not radiate strongly when it is fully
ionized. The proposed discharge current is shown in Figure 4.1. This profile
leads to the magnetic field profiles of Figure 4.2. At a time around 1.7 usec,
the code predicts a magnetic field of 27 kG at 0.5 cm. The mass density
profiles in Figure 4.3 show pinching near the center of the channel.

A plot of mesh point position versus the time, Figure 4.4, shows us how
grid points change position during the simulation. In the lagrangian scheme,
because each cell has a constant mass, the cell boundaries elongate or shrink
(to keep the mass constant) in case of a decrease and increase in the mass
density p. So for equal mass zoning, the mesh points are more concentrated in
the regions where p is higher; grossly equivalent to adapting the mass density
p in the adaptive method. This plot shows the hydromotion of the plasma
indicating where the plasma is moving in the form of a cylindrical shock.
It also shows the pinching that we noticed in the density profiles. As the
discharge current approaches its maximum value, the center of the discharge
begins to pinch, while the edge of the discharge continues expanding as an
outward moving cylindrical shock. The peak magnetic field and the edge of
the discharge current remain inside the shock front, thus they are subject to
less resolution than the mass density peak.

The fact that the magnetic field and also temperature (Figure 4.5) gradi-
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ents stay behind the mass density peak, where most of the mesh points are
located, is an unwanted situation that raises questions about the degree of
accuracy and resolution in them. We need more accurate results because the
efficiency of beam transport depends on the temperature, magnetic field and
the channel radius. The temperature determines the growth rates of filamen-
tation and two-stream instabilities [77] and it also determines the magnitude
of the electric field associated with the beam-induced return current through
the electrical resistivity. The instabilities can degrade the quality of beam
transport and the induced electric field can deccelarate the beam ions. The
density, on the other hand, determines the degree of current neutralization
and collisional energy losses. The radius of the discharge and discharge cur-
rent determine the strength of the channel’s magnetic field which governs

how much beam power can be trapped in the channel.
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Figure 4.1: Double pulse discharge current history for the formation of

plasma channels for LIBRA [1].
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4.2 Adaptive Method

The governing equations for the z-pinch plasma simulation were developed
and put into the adaptive form in Chapter 3 and they will be restated here
for convenience:

Continuity Equation :

[rrgp],— + [rp(u —rr)le = 0. (4.7)

Momentum FEquation :

frre(u + g F)le + Irpu(u — o)l = [rregle
rr 7‘2 2
+rlple + [Pl - B+ 1) =0 (4.8)

Energy Fquation :

[rre(ep + er)lr + [rep(u —rr)le — [rrregle

+ [TPU]E +[r(g+ F)]E = rrf(']E + Seol.)- (4.9)
Magnetic Diffusion Equation :

“lreBlr + <[Blu—relle ~ LBl + i =0 (4.10)

4r TTE

Radiation Transfer Equation :

1 1
“lrrelly — —lrrelgle + plrlgle — rel¢lglo — rre(iigBy — XgIg) = 0. (4.11)
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Among these equations, continuity, momentum and energy are solved
with an explicit scheme whereas the magnetic diffusion and radiation transfer
are solved with an implicit scheme. The timestep, At, for the simulations is

calculated as
At = min(Atcrr, Atjh, Atye, Atre, Atrg)
where the CFL condition follows as
Atcpp
- —— L
CFL =(|u]+a) x, <1

and At;p, Atpe, Atre, Atrg are calculated from a constraint on the allowed
change in plasma energy (ep) due to joule heating, beam-collisional energy,

radiation emission and absorption for a given time step. That is, we assume
At; Aépi = 0.1ep.

where i represents the components above.

The differencing formulation done in earlier chapters describe the solution
at a mesh point in terms of the solutions at neighbooring points. Hence, in
order for the solutions to be stable and error-free (as much as possible), we do
not want any information to move more than one cell at a time step. This is a
stability condition for the explicitly solved continuity, momentum and energy
equations. For most of the simulations At is on the order of nanoseconds and
this is small compared to the timescale of hydromotion but large compared to

the magnetic diffusion and radiation transfer timescales. An attempt to work
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with smaller time steps would certainly make the simulations more costly and
lengthy. Therefore we have chosen to solve magnetic and radiation equations
with an implicit scheme that does not have any time constraint.

The heart-beating feature of the adaptive method, as we know by now,
is its ability to move the grid points wherever and however we want. The
procedure followed here is an explicit method which means the grid points are
explicitly (somehow independently) moved and located to the new positions
for the new time step before any physical equation is solved. The criteria
upon which to construct the new mesh distribution could be anything we
wish, but because we want to relate it to the high gradients of some desired
function, we would have to use those functions to do so. Even though the
mesh generation equation Eq.2.4 is solved explicitly, that does not restrict the
physical equations to be solved explicitly too. An implicitly solved equation
would couple itself to the mesh metric, z¢, and the mesh velocity, zr, at
the time step n+1 but because they are calculated in advance it makes no
trouble to use an implicit as well as an explicit scheme with the explicitly
generated adaptive mesh scheme.

Using an explicit mesh generation procedure in fact has a distinct ad-
vantage over an implicit approach (which couples the physical equations and
the mesh generation tightly). Because the mesh distribution is done on any
strategy, one could take into consideration the smoothness of the distribution

if desired. The scheme used in our code does take advantage of this and the
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smoothing is rather done on the weight function, W, which indeed results in
a smooth mesh distribution. Also there are other conditions to impose on
the grid movement. The size of the cells in the grid should change gradually
and rapid changes are to be avoided because they usually reduce accuracy
in the approximation of the derivatives and thus of the solutions. Secondly,
there has to be a limit on the minimum mesh spacing so that the stable time
step does not get smaller than what one could really afford. The procedure
in the present model does not limit the mesh spacing to an exact value, but
rather limits it approximately to a user-given value.

The weight function W used in the simulations has the form
W=1+40aq|Az | +Ba | Azz | +ap | Bz | +8p | Bez | (4.12)

where A and B are some normalized function for adaption such as wve-
locity, pressure, mass density, momentum density and temperature. Also
Az, Azz, Bz, and Bz are the first and second derivatives of A and B with
respect to the spatial coordinate z. The a’s and B’s are determined by the
formulas in Eq.2.5 and 2.6 provided R’s are given. Here, one is really free to
choose A and B as any function. The adaption of the chosen function will
mean that the mesh distribution at each time step is so constructed that the
error in the solution of the chosen function is reduced by some degree.

For the z-pinch plasma simulations, there are some functions of particul~r

interest. These are electrical resistivity, temperature and momentum. Elec-
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trical resistivity is of interest because of the sharp gradient between the hot
and cool plasma regions. A typical resistivity profile is shown in Figure 3.20.
The jump in the resistivity is where actually the channel radius and the peak
magnetic field are. The plasma goes from a highly conductive region to a
highly resistive region in a distance of several mesh points. It is important
to have as many mesh points as possible at this critical radius to help the
error go down in the magnetic field peak value. Secondly, temperature is of
special interest due to the expected temperature gradients at the inner radii
resulting from shock heating. Because the lagrangian code ZPINCH seems
not to put many mesh points where the temperature peak lies, it is also of
interest to adapt temperature in our simulations. Finally, momentum is a
good adaption function to follow the hydro motion. It can capture the shock
front, rarefaction fans and the contact discontinuites in the plasma. In most
cases, choosing only one function is not satisfactory (as in the lagrangian
case). Therefore, we have run simulations for multiple adaption to feature
the best out of the code.

The problem described in the previous section is tested here with different
adaptions to show how important the adaption might be. Results are given
in Figures 4.6 through 4.22 for the cases shown in Table 4.2. The number
of mesh points and the listed times are kept the same as those for ZPINCH
results to make reasonable comparisons. Here, it is most important to look

at the magnetic field profiles, Figures 4.6-10, for various adaptions. Table
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Table 4.2: Weight functions and their relative coefficients for adaption.

ADAPTION FUNCTION | Ry | Rg
Temperature 0.3 0.1
Resistivity 0.3 0.1
Momentum 0.3 0.1
Temperature 0.3]0.1
and

Momentum 0301
Resistivity 0.3 0.1
and

Momentum 0.3 0.1

Table 4.3: Results at 1.8 us vs. adaption function.

Adaption Function

Peak B-field (kG)

Channel radius (cm)

Temperature 35.0 0.5
Resistivity 33.0 0.57
Momentum 33.0 0.5
Temperature&Momentum 35.7 0.5
Resistivity&Momentum 33.5 0.45
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4.3 lists the magnetic field peak values and the channel radii at time 1.8us
for various adaption functions. The peak value and the channel radius for
that peak value are different for each case. The differences range from 5 %
to 10 % in magnetic field peak and from 5% to 15 % in the channel radius.
This is quite a difference to show how important the grid distribution can
be, inspite of the same numerical method (first order upwind differencing)
used for the calculations.

Which one of the adaptions do we trust? There is only one right answer
and in these complex problems we probably do not know which is right. We
can test by introducing more and less mesh points, changing the time step
and the adaption of the scheme and look at variations in the result. If it
is the hydro motion, probably momentum adaption would be helpful, if it
is the magnetic properties then resistivity and temperature would be more
appropriate. Nevertheless, the hydro and magnetic properties of the plasma
are coupled and the better treatment of one would do good for the other
too. Thus one may like to adapt both properties at the same time. Not to
our surprise, the developed code here is designed to adapt more than one
property.

A nice presentation of how the grid points move during the simulation
time is shown in Figures 4.18 through 4.22. Starting with a uniform distri-
bution, the mesh points reposition themselves to concentrate on the desir»d

locations. Comparing the distributions for temperature, resistivity and mo-
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mentum adaptions, we can see adapting only resistivity would not do a terrific
job other than putting a few more points around the channel radius. Most of
the events are happening inside the channel and we ought to consider that.
Momentum adaption drags the concentration point along with the expand-
ing plasma, thus leaving a rarefaction region with less points behind. The
temperature adaption on the other hand, spreads the points from the center
up to a moving edge with more or less the same intensity. Yet a combination
of the temperature and momentum produces a mesh distribution with the
smallest uniform mesh spacing (0.027 cm) throughout the channel, raising
the chance for a better resolution in the magnetic field peak as well as in
other quantities.

Almost all mass density profiles in Figures 4.11 through 4.15 show a
strong pinching effect on the plasma. The magnetic field created by the
discharge current is high enough to pinch the plasma. The pinching seems to
be severe and the high density at the center may cause a significant energy
loss for beam ions. For this reason, the density inside the channel is desired
to be uniform and low compared to the outer density (a factor of four on the

average). Therefore, the results raise some degree of concern in that regard.

The discharge current, Figure 4.16, in the channel flows through the hot
plasma and shows a flat profile with a sharp drop at the channel’s outer

surface. This is similar to a coaxial cable with a uniform current density and
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a linearly increasing magnetic field (Figures 4.6-10). At some time steps,
however, the current density losses its uniform profile and lets a drop occur
inside the channel. This could be understood by looking at the magnetic
diffusion equation that governs the behavior of the magnetic field and thus

of the current density.

1B 0 ,ncl 0

19
c ot 67'(47”'07'( rB))+ (uB) 0 (4.13)

The second term which involves the resistivity (10~ 1%sec) is negligible and
the behavior of the magnetic field is given by the convective term. The
magnetic flux through any loop moving with fluid velocity u is constant in
time and from that we say the B lines are frozen into the fluid and are carried
along with it. If the plasma experiences a compression or a rarefaction,
the magnetic field intensity similarly is increased or decreased. Indeed, the
pinching that pushes the plasma toward the center causes both compression
and rarefaction which can be seen in Figure 4.17. Thus, the bumps in the
magnetic profiles and the resultant drop in current density is due to the fact
that the plasma column experiences a magnetic pinching in the center.

The radiation field in the channel is as high as 1013erg/(cm?.sec) at
the center and drops gradually to its half value at the channel radius. This
indicates that most of the radiation leaves the channel as soon as it is emitted
confirming the fact that the mean free path of the photons is comparable with

the channel dimensions and many photons escape the channel before they
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make a collision. The effect of this energy loss through the radiation may
or may not play a significant role in the formation of an optimized channel
which is deferred to an oncoming discussion. |

An outcome of the simulations shown so far would point out that we
should adapt two functions for better results. Choosing the momentum as the
standard one, one might like to add either the temperature or the resistivity
next. Due to the fact that a temperature-momentum adaption keeps the point
concentration high all over the inner region of the channel, we have decided
to do the rest of the simulations with that adaption. The simulation results
for this case are given in Figures 4.10, 4.15 and 4.22. These results again are
only for channel formation and do not include the injection of the ion beam.
However, in the next chapter, when we seek an optimized channel for LIBRA
designs we will include the beam in the channel and see how much energy

indeed can be transported to the target.
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4.3 Remarks on Comparison

As stated in the previous sections, the lagrangian code ZPINCH and the
adaptive code we have written for radiating magnetized plasmas were run
for a channel formation problem in the LIBRA design. Using the power of
the adaptive code, we have tried different adaption functions and noticed
the importance of the adaption in such calculations. Viewing the lagrangian
scheme as a special case of the adaptive scheme just as each one of three cases
of adaptive runs (temperature, resistivity and momentum), we should judge
on the difference in the methods not the codes as a whole. The clear distinc-
tion between the ZPINCH and the adaptive code is mostly the adaption, the
radiation model and ion beam injection. When we add the ion beam in the
channel though, we can no longer make any assessment on the differences
between the two approaches. For that reason the test problem mentioned in
this chapter considers no beam in the channel and therefore we shall only
examine the adaption and the radiation models in both. The supplementary
data (EOS and Opacity tables) was taken from the same computer code,
IONMIX [66], but the form of opacities used in ZPINCH and ARMHD is
not the same. We have used the emission and absorption group constants
in Eq.3.7, whereas ZPINCH uses so-called Planck and Rossland opacities.
The physical models and the method to produce the data from IONMIX,

however, is the same.
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Table 4.4: A comparison between ZPINCH and ARMHD at 1.8 us for helium

channels.

Code Peak B-field (kG) A x (cm) Channel radius (cm)

around Bpeg

ZPINCH 27.5 0.04 0.65

ARMHD 35.7 0.027 0.5

The comparison of magnetic field profiles in Figures 4.2 and 4.6-10 yield
a significant difference in the range of 30-35 %. Table 4.4 also makes a com-
parison at time 1.8 us. The difference is important here because the mass
density profiles in Figure 4.3 and Figures 4.11-15 show a severe pinching
with the adaptive code compared to a harmless pinching shown by ZPINCH.
Pinching is not good because it destroys the stability of the channel and
causes more energy loss of beam ions. As far as adaption goes, the adaptive
code that we use put a lot more points where the magnetic field gradient
lies. Table 4.4 gives the minimum mesh spacing around the magnetic peak
and it is two times lower for ARMHD with the same number of mesh points
(50) as used in ZPINCH. The deficiency of a lagrangian scheme for such a
multigradient problem, in other words the limited power of only being able
to follow the mass gradient, is obvious here. In addition to adaption, part of

the difference may be caused by the distinction between the radiation mod-
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els. ZPINCH, as mentioned before, uses a radiation diffusion approximation
which assumes that a photon makes many collisions before leaving the chan-
nel. This assumption is noted shaky by Watrous [14] in his ZPINCH work.
The diffusion approximation assumes that the radiation intensity is nearly
isotropic and this would not be true near a source of radiation where infact
the intensity is highly anisotropic. Because the mean free path of photons
for most of the channel gases (argon, nitrogen and hydrogen) is comparable
with the channel radius, the degree of anisotropy should be high all over the
channel. One consequence of the diffusion approximation is as Watrous calls
[14] a radiatively driven ezpansion (RDE) of the channel. Photons emitted in
the hot plasma may very well be absorbed in the cool plasma if one assumes
diffusion. The absorption in the cool region causes the channel to expand and
the expansion degrades the magnetic field bringing the peak to lower values
which infact could partially count for some of the magnetic field degradation
in the ZPINCH results shown here. The channel radius is larger by 30 %
than that of our results indicating that the difference in radiation models
may have some degree of influence on the results.

In order to cancel the differences due to the radiation models we suggest
to make a comparison for a channel with the radiation artifically removed. A
simulation in that nature has been actually done before with ZPINCH for the
nitrogen gas with a preionizing laser of 1 mm half-width to see the effect of

the radition field [1]. The magnetic field profiles for a nitrogen channel with
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Table 4.5: A comparison for nitrogen channels by ZPINCH and ARMHD at

time 1.8us.

Code Peak B-field (kG) | Ax | Channel radius (cm)

ZPINCH 24.5 0.028 0.83

ARMHD 32.5 0.018 0.5

the same mass density and discharge current as helium are shown in Figure
4.23 and 4.24 by ZPINCH and ARMHD respectively. Also a comparison
in the B-field peak values, Az -mesh spacing around the peak value, and
channel radius at time 1.8us is given in Table 4.5. An illustration of the mesh
distribution resulting from the ARMHD simulations for nitrogen is given in
Figures 4.25 and 4.26. It is obvious that the distribution is high in the channel
and low outside the channel, which is what we need. On the other hand, the
mesh distribution by ZPINCH, Figure 4.27, shows a high concentration far
from the magnetic field peak, either in front of it for an expanding channel or
behind it for a pinched channel. Although the numerical method used with
ZPINCH has a higher order of accuracy (second order) compared to what is
used with ARMHD (first order), the finer mesh spacing with ARMHD gives
better credit to our results indicating that we possess more accurate results.
Also the conservation checks for energy, mass, magnetic flux and discharge

current are highly satisfactory (97 — 99%) implying the performance of its
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conservative model equations and scheme. The typical energy conservation
with ZPINCH is about 90 — 94%.

An important outcome of the adaptive scheme, along with the new physics
embodied in the computational model, is that the required magnetic field of
27 kG can be obtained for helium channels with less discharge current. Thus,
the channel can be formed with a 30-40 % less discharge voltage, possibly
reducing the breakdown between the discharge and the reactor chamber.
Another outcome is that the reasons to change the channel gas from argon
to nitrogen and to helium may have to be reconsidered in the future channel
designs because of the fact that argon and nitrogen showed high magnetic
fields here as opposed to the low values obtained earlier with ZPINCH. The
difference due to the grid scheme proved to be significant as in the case of the
nitrogen channel but further investigations on the differences due to radiation
models should be studied too. The next chapter will in fact present such a

case.
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Figure 4.23: Magnetic Field profiles for nitrogen channel by ZPINCH.
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Chapter 5

Applications to LIBRA

The plasma channels for LIBRA must be consistent with both beam prop-
agation parameters and the reactor chamber and diode design as specified
in Table 1.1. Earlier studies of different cavity gases (argon, nitrogen, he-
lium) indicated that the lower Z helium was most suitable for plasma channel
formation.

Magnetohydrodynamic simulations using the multigroup diffusion ap-
proximation for radiative transfer indicated that the radiation had a great
effect on the channel dynamics. Watrous noted that radiation diffusion from
the hot channel center to the surrounding cold gas led to a premature ex-
pansion of the channel plasma with the required peak magnetic fields being
unattainable. Watrous [14] observed this expansion in the channel for argon

and nitrogen gases. This led Peterson to later conclude that helium was

159
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the preferred cavity gas because it radiated so much less than the higher
Z gases [78]. In this section we reexamine this issue and present what our
radiation model predicts about the channel dynamics. The model is applied
to argon and helium which are considered to be at opposite extremes of ra-
diative properties. Both gases are considered to have the same mass density
(2.37x107%g/cm3) and a series of simulations is done to learn the differences
in hydrodynamics, magnetohydrodynamics and radiation hydrodynamics of
these two gases. To present the differences we will start with simple hy-
drodynamics, then move to magnetohydrodynamics and finally to radiation
magnetohydrodynamics.

The idea of starting from the simplest situation and moving up to the
rather realistic and thus complex case is to identify the various events af-
fecting the channel dynamics. This will basically give us an understanding
of how to control the competing effects in the system to come up with an
optimized channel. A picture of what simulations and assumptions are
done along the way for an understanding of the magnetic and radiative ef-
fects on channel creation for LIBRA is given here in Table 5.1. The adaption
functions are chosen as temperature and momentum and the relative weight
coefficients Ro and Rg are 0.3 and 0.1 respectively. Those simulations and

their outcome will be presented in the following sections.
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Table 5.1: A list of MHD and RMHD simulations for LIBRA channels.

Simulations with ARMHD
for LIBRA

Adaption: temperature&momentum
# of mesh points = 50, CFL = 0.1

v

w/o0 discharge current
(HYDRO)

!

" w/ discharge current

w/0 radiation
(MHD)

!

w/ discharge current
w/ radiation

(RHMD)

!

w/ discharge current
w/ radiation
w/ beam injection
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Table 5.2: A hydrodynamic comparison of argon and helium at 1.8us.

Gas Channel Channel front Temperature

type | radius (cm) | velocity (cm/sec) | at center (eV)

Argon 0.5 5.6 x 104 0.63

Helium 0.8 1.5 x 10° 0.4

5.1 MHD Simulations of Plasma Channels

Argon’s atomic weight (40g/mol) is ten times higher than that of helium
(4g/mol). Therefore, working with the same mass density to preserve con-
sistency we let the number densities be 3.5 x 1017e¢m ™3 for argon and 3.5 x
1018¢m =3 for helium. The simulations specified in the first two steps in Table
5.1 are done here for argon and helium. A comparison of pure hydrodynamic
properties resulting from the first set of simulations is given in Table 5.2.
Also Figures 5.1 and 5.2 show the mass density profiles at various times to
better illustrate the hydro motion.

Due to the difference in number densities, helium has a higher initial
pressure and this ends up making helium channels expand faster. Whether
this difference is going to be effective.in the RMHD picture is yet to be seen.

When the discharge current is applied to the plasma, it heats up the

channel through ohmic heating. The ohmic heating forces the channel to
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expand. The balance between the gas pressure gradient and the magnetic
force is what directs the expansion or pinching. When the discharge current
rise time is short, the ohmic heating rate is high. If the time at which
the plasma turns this ohmic heating into expansion is long, because the
magnetic field is already diffused in to its full scale it will cause pinching.
For a discharge current shown in Figure 4.1 both argon and helium feel the
pinching as seen in Figures 5.3 and 5.4. However, for the discharge current
in Figure 3.16 which has a longer rise time, the argon gas feels no pinching
at all.

The main goal of comparing the gas types for channel formation here is
to investigate their responses to the radiation field. The results mentioned
above are provided to make clear how argon and helium act with the arti-
ficial removal of radiation. The outcome is presented with Table 5.3. The
argon gas is slower in response to the magnetic force, and thus is subject to
pinching for most of the time as seen in Figure 5.3. The rarefaction behind
the pinching point causes the area of current flow to become wider. From
the table and mass density profiles we also notice that the channel radius
grows faster in the presence of the magnetic field compared to the rate at
which it expands without it. Therefore the argon channel with a discharge
current in it has a greater radius when compared to the helium channel, de-
spite the fact the situation was the reverse for the pure hydrodynamic case.

Because the magnetic field at the channel radius goes as (21;/cr), its value is
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Table 5.3: Argon and helium channels at time 1.8ys with and without dis-

charge current.

Gas type | Discharge | Channel | Peak B-Field
current | radius (cm) (kG)
Argon No 0.5 0.0
| Yes 0.7 28.0
Helium No 0.8 0.0
Yes 0.5 35.0

lower for larger distances. At time 1.8 microseconds, right before the beam
injection, it rises up to 28 kG at r, = 0.7cm for argon, whereas it is 35 kG
at r¢ = 0.5c¢m for helium. A detailed illustration of the magnetic field at
various times is given in Figure 5.5-6. This clearly makes helium the better

choice for channel designs.

5.2 RMHD Simulations of Plasma Channels

As opposed to the classical diffusion approximation of the radiation field, we
have chosen to work with the photon transport equation Eq.3.12. A discrete
ordinate Sy method is used to numerically solve this equation. The angular

dependence is exact to an extent defined by the number of angles N in the
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method: the more angles used, the better the results. For linear angular
dependency this equation turns to a diffusion equation.

In fact, the basic assumption underlying the diffusion, or Eddington, de-
scription of radiation transfer is that the specific intensity I(r, v,$2,t) can be
represented by the first two terms in a spherical harmonic expansion. That

is, it is assumed that -
10,0, ) = —Io(r, 1, 8) + —Q Ty (r, 1, ) (5.1)
r,v,ie, —4ﬂ'0 » Vs in 1L, v, .
where Iy and I are found by integrating Eq.5.1 over angle
Ip= / dQ(r,v,2,t) = cep
47

I AW QI(r,v,,1)

Using the assumed form of [, the divergence of the pressure tensor, Eq.3.8,

may be found as
1

V-P=
3

Ve R
The first moment equation, Eq.3.9, then becomes

10F 1 1 foo
67—5{ + gVeR = 2/0 dV</47r dﬂﬂ[n(l‘,t,n,l/) —X(r,t,ﬂ,u)l(r,t,ﬂ,u)].

(5.2)
It is further assumed that a high collisional rate sets the properties of the
matter in such a way as to establish a local thermodynamic equilibrium

(LTE) by which the emission can be written as n(v) = 5.(v)I(v,T) where
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ne(v) = k(v)(1 — e~m/kT) with & being the absorption coefficient. The

moment equation becomes

10F 1 1
T3¢ + §V6R = E(TIe - x)F.

and therefore

c 1 JF
F=—-—o Vep+ ——e o,
3 —x) 7 (g —x) 0t

Ignoring the second term on the right, we get Fick’s law

(&

P = 3=

Veg = —DVeg (5.3)

where D is the diffusion coefficient.

Using this relation in the zeroth moment equation, Eq.3.9, we find

0
S — V- DVeg = (ne — Xe)er: (5.4)

This is a diffusion equation and a common place approximation to what is

known as the energy equation, Eq.3.9,

QgTR-+V-F=17—cxeR (5.5)

as used in ARMHD. Note that Eq.5.5 above is not explicitly solved in
ARMHD. The radiation energy density ep is calculated from specific in-
tensity I(v,S2) by using Eq.3.8.

Numerical solutions always bring along some error due to discretization.

The solution of the model equations (PDEs) here involves discretization
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of 1) continuum functions (finite differencing), 2) direction angles (ordinate
discretizing), and 3) opacities (group averaging). The error involved in dis-
cretization is numeric as opposed to the error with non-numeric approxima-
tions such as the diffusion approximation. The best possible answer is usually
achieved if one uses as many number as possible for angles, mesh points and
opacity groups. There is a limit to this set by either the cost or the capacity
of the computer machinery. At the stage of our code development so far we
have generally used six angles, fifty mesh points and twenty opacity groups.
An average run time for that on a CRAY X-MP /48 is about five minutes.
Runs with larger numbers (especially in mesh points and group numbers) are
tried but only if needed.

Regarding RHD, the concern is rather about how accurately the emission
and extinction are modelled in the equations. A typical emission and extinc-
tion profile for argon gas is shown in Figures 5.7-8. Note that lines (peaks)
are too narrow to allow a good group averaging over the whole spectrum.
Probably one needs more than twenty groups! One way of getting away with
this is to divide the radiation transport problem into two parts. That is, the
lines are taken out of the spectrum to allow a reasonable group averaging
on the continuum part. The group averaged opacities are then used with
the radiation transport equation to solve for the continuum intensity. The
lines, on the other hand are handled with so-called line transport methods

and this is added to the continuum part to come up with a total result for




174

1010
10 °
108

107

10 °
103

10*

10 ° VM u\

10 2 \JUJ

10

Absorption (1/cm)

10 =1 r 1 1 | N 1|l| | 1 1 1 ILIII 1 T 1 1SR TY‘
1 10 10 ? 10°
Photon Energy (eV)

Figure 5.7: Absbrption coeflicient vs. photon energy for a plasma of 90 %

Ar and 10 % Li. Temperature is 5 €V and density is 3 x 1017cm ™3 [66].



175

— — —
o o ©
o ("] a

(@)
~

o
o

(-
FS

Emission (1/cm)
o

(@]
w

&
-
—

RN

10-1| i 1 LR 1 | LR i I T 1T T RTT]

10 10 ¢ 10°
Photon Energy (eV)

Figure 5.8: Emission coefficient vs. photon energy for a plasma of 90 % Ar

and 10 % Li. Temperature is 5 eV and density is 3 x 1017cm =3 [66).



176

the radiation field.-

Any line transport method will require an extensive studying and is be-
yond what we have developed here. In fact, there is an ongoing effort now
by MacFarlane [79] in that area to be combined with what we have devel-
oped for the continuum part. Therefore the primary goal here is to treat the
continuum radiation transport as well as possible and leave the lines out for
a better approach if not satisfied with the group averaging that considers the
lines as well.

As mentioned before, argon and helium are studied for posssible differ-
ences in their RHD nature. The channel simulation described in the previ-
ous section is repeated here with the radiation field included. The opacities
are initially handled with 20 groups over the continuum spectrum (lines ex-
cluded). Figures 5.9 through 5.14 illustrate the results for argon and helium.
Note that the radiation emitted at the center of the plasma leaves the channel
without being significantly absorbed. In other words, both argon and helium
seem to be transparent to the radiation and thus the radiation has no effects
on the channel dynamics. That would also mean the plasma is optically thin
and the radiation is highly anisotropic, violating the validity of the diffusion
approximation in the region.

Whether this is the right answer, indicating that RHD is not important
for z-pinch plasma channels, can not be said before investigating further.

Knowing that we have excluded the lines in the opacity calculations, we
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should get back to that point and run the same case with the lines included.
Figures 5.15 through 5.20 illustrate the results again for 20 groups. Both
emission and extinction (absorption) profiles show higher values this time just
simply because of the line inclusion. They are highly temperature dependent.
The radiation field is much higher at the center again due to high line emission
and it drops rather sharply at the channel edge. The main reason for that
drop is the high absorption caused by the temperature drop.

The degree to which the reabsorption at the channel edge plays an impor-
tant role varies for helium and argon. It causes a far more significant heating
for argon that responds in turn with a further expansion in the channel.
That, of course, leads to a degradation in the peak magnetic field. Helium
radiates about ten times less than argon and thus has fewer lines to make a
difference between a calculation with and without lines.

The inclusion of lines resulted in a high degree of absorption and therefore
introduced a diffusion-like phenomena of radiation transfer which should not
be taken without suspicion. The same problem should be indeed run for
more opacity groups, particularly with argon gas. Figures 5.21 through 5.22
illustrate the results for 80 groups. By introducing more groups we canceled
to a degree the overestimation of lines as was for the 20-group case. The
indication with 80-group results is that there seems to be a shift toward the
continuum results. That trend could be taken seriously to see the borderline

between ignoring and not ignoring the lines. A possible effort, at least for
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Table 5.4: Simulation results vs the number of opacity groups (argon).

Case # of opacity | Peak B-Field | Channel Temperature
groups value (kG) | radius (cm) | at center (eV)
continuum
0 20 26.5 0.75 9.0
1 80 26.5 0.75 9.0
cont.+ lines
2 160 22.6 0.84 7.0
3 80 21.3 0.94 6.4
4 20 18.5 1.08 4.8

the time being, is shown in Figures 5.23 through 5.25 for which the number
of opacity groups is 160.

The increase in the number of opacity groups is making a difference in
the results. This is especially true when lines are accounted for and it should
be tested for the continuum case too. Therefore the continuum run has
been repeated for 80 groups too. Table 5.4 compares the channel radius and
its magnetic field at a time of 1.8 microseconds for 20, 80 and 160 group
opacity based cases. The expansion in channel radius is attributed to the
reabsorption at the channel edge of radiation emitted from the inner region.

Case 4 as mentioned before presents a diffusion-like transport of the radiation
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which is obviously far from the real answer. The radiation field drops fast
in the channel up to the channel edge as shown in Figure 5.20. A rather
different profile is observed with case 2 which is similar to case 1 indicating
that the correct description of the phenomena occuring in the channel is

not a diffusion but rather an anisotropic transport event.

The exact answer to these simulations as far as RHD is concerned may
require many more groups and therefore will not be further searched sim-
ply because argon is not a main concern for the moment and also the self-
consistent line transport study is underway now by colleagues. This will
eventually provide a benchmark calculation to determine the viability of in-
cluding lines in the multigroup formalism. Simulations with more groups is
possible but will require far more computer time (hours) than is reasonable

to spend on this problem.

5.3 Beam Propagation and Energy Losses

5.3.1 Current Neutralization

A transport channel is required to current neutralize the beam so that the
beam is protected from a number of damaging instabilities, in particular the
filamentation instability [42]. In other words, the beam’s own magnetic field
should be neutralized so that it does not cause pinching to itself. The idea of

creating the transport channel with an ionized medium (plasma) is basically
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to provide such a neutralization. Whether neutralization occurs depends
on a number of plasma and beam parameters such as magnetic skin depth
of plasma (A) and beam radius (a). An analytical approach by Lovelace
and Sudan [80] which basically uses the generalized ohm’s law along with
Faraday’s and Ampere’s laws concludes with a criteria of Ag/a < 1 for
current neutralization. Here Ap = c¢/wp is the electromagnetic skin depth.
The injection of the beam into a plasma is accompanied by a return current
that grows up to the beam current value,that is J, ~ —Jy, if this criteria
is met. Another way of checking if the neutralization occurs is to test
the magnetic diffusion equation given earlier as Eq.3.3. Notice that the
term on the right, -(%(an), enters the equation as a source term for the
magnetic field. It is apparent that this term would be negligible for a highly
conducting media with small 7 and thus A. Due to the dependency of n on
the temperature, this requires high temperatures (at least several eVs) in
the plasma channel prior to the beam injection. The plasma in the channel
starts with a low temperature around 0.8 eV and is heated later through the
discharge current. For slow rising currents, as in Figure 3.16 the argon gas is
not heated enough, therefore a beam injection of 3.2kA/ em? Li*3 jons at 1
microsecond causes a jump in the magnetic flux and field as seen in Figures
5.26-27. The plasma current in Figure 5.28 consists of the return current
and the discharge current as Jp = Jr + Jq. It follows from this that J, is

about 2.6 kA /cm? and cannot cancel the 50% jump in the magnetic flux and
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field. However, artificially lowering the resistivity (n — n/10) decreases the
distance into which the beam magnetic field penetrates. The return current
increases to 3.0 kA/cm? allowing no magnetic flux through the channel due
to the beam. The magnetic field shows no signs of increase either, as seen in
Figure 5.29.

Fortunately, for LIBRA designs, the plasma is hot enough (5-10eV) to
allow low resistivity (10'15sec) before the beam is shot. Thus, there seems
to be no problems with current neutralization as will be shown in the next

section.

5.3.2 Radiation Loss

In section 5.1 we presented channel formation simulations for both argon and
helium plasmas. Current .LIBRA designs assume helium gas in the channel
and require a beam of 30 MeV Li*3 ions to carry a power of tens of TWs.
The duration of the ion beam is 40 nanoseconds with increasing voltage. This
is called ramping and is used to allow beam bunching in the channel so that
a pulse of less duration and thus of higher power is created at the target.
The typical energy and power flow in the LIBRA beam propagation sys-
tem is shown in Figure 5.30. A model by Colombant, et al [47] can be used

here to represent the transported beam as described in this figure:

Jy=Jpo(t) s <yren
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Jy = Jpo(1 — rL)/(l -v); yrep <1 <71ep and 0.1 <y <0.35.

ch

and for beam duration 7, Jyg = Jpn(1 + £)/2. Ion energy €, increases in
time like Jy, reaching €, at ¢ = 7. This energy ramp permits beam power
multiplication by axial bunching during transport.

The time to shoot the beam into the channel is chosen to be 1.8 mi-
croseconds. The channel radius is 0.5 cm and the magnetic field is 36 kG at
this moment (Figure 5.31). Even though this magnetic value is higher than
the required value (27 kG), we will use it and delay the issue of a better
optimized channel to a later discussion. Profiles for beam, plasma and net
current densities Jy, Jp, Jnet are shown in Figures 5.32-34. The beam current
density peaks at 0.56 M A/ em?. The plasma current density, at the time of
beam injection, reverses the sign and reaches 0.44M A/ em? in the opposite
direction. The discharge current is small compared to the return current and
therefore J, ~ J,. The return current is then J, ~ —J, although its am-
plitude should have been closer to Jj for a full neutralization. Nevertheless,
the temperature in the channel center is 7.5 eV and therefore the resistivity
is low enough (10_15360) to keep the beam current from causing an increase
in the magnetic flux and field.

The ion beam deposits energy in the plasma in three ways : joule heat-
ing by return current, work done by inductive electric fields and collisional
heating through beam ion collisions with background plasma. The results

indicate that the joule heating elevates the plasma temperature by 50%,
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whereas the inductive field work and collisional energy gain count for a lot
less. An account for the collisional energy, return current joule heating and
inductive field work from the beam point of view is given in the next section
to clarify the loss better.

The elevated temperature and the Lorentz force acting on the channel
by the return current push the gas mass radially outward to velocities of
108¢m/ sec, causing an expansion that overcomes the pinching effects caused
earlier by the magnetic force. The beam injection adds no significant radi-
ation loss to what is already lost without it. Consequently, the radiation
loss and its effects are almost trivial for helium, confirming the idea that it

radiates less under current circumstances of plasma channel designs.

5.3.3 Collisional Loss

The plasma channels must be capable of confining the minimum required
amount of ion beam power. The power loss that the beam suffers through
the collisions with plasma ions and electrons is an important issue. The
plasma energy equation in Chapter 3 involves a collisional heat source S,
that needs to be calculated in the simulations. 4Within the framework of the
plasma kinetic theory, the energy loss rate for a beam particle o, with energy

€ = (ma/2)v2, through collisions with a background gas 3 is

Lo (5.6)
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Here v is the collision frequency given as

af/f _ oMa o a/By _ ., (.2/BY1,2/8
Ve —2[(mﬂ¢(w ) = (=% )]y,

where 5 9
«/f _ 47reaeﬁ)\aﬂnﬂ
oo T T o3
[ 2lfs §

Lo/ _ M8V _ Mgva _ va
QkTﬁ mﬁv% %’

¥(z) = %/oz dt 1127, (a) =

il
dz’
Also A\ypg = lnAag is the Coulomb logarithm and eq = Zae,eg = Zge.
Due to the ratio mq/mg, the energy loss rate is the greatest for collision
of beam ions with discharge electrons. Also note that 30 MeV ions are fast

compared to the background electrons implying that z > 1. For =z > 1,
¥(z) and ¢/(z) are easily expanded as [81]

P(z)=1- 2\/\/_- 1 toz )

2 -
7;“56

Utilizing only the lowest order of these expansions, we find

a/ﬂ 2\/— —z)]ua/ﬂ

Therefore the energy loss rate € is
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2 7,2
;= _Mayr 2 —va /vy afB
€= ——-vg 2[ (1 r(vg e Nvg'". (5.7)
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and the total energy loss rate per volume is ny - ¢ where ny is beam number
density. This energy is a gain for the plasma and in fact is what we have

written as S in the plasma energy equation in Chapter 3. Thus,
SCOI = —Nqg €. (58)

LIBRA designs, as mentioned before, require 30 MeV Li*3 particles
transported in helium gas for 6.6 meters. As the power flow diagram in
Figure 5.30 shows, the beam carries a current of ~ 300 kA at the channel
entrance corresponding to a beam number density of 1015 per em3. For such
conditions, the energy loss per cm in the channel is 0.01 % but is higher
for higher plasma densities. It amounts to 10 % for ny = 3.5 x 1022¢m=3.

Therefore both current neutralization and collisional energy loss do not seem

to be a major concern for current LIBRA channel designs.

5.3.4 Ohmic and Inductive Losses

Another major part of the energy loss for ion beams is considered to be due to
the return current [77]. The return current is produced by the beam current
in the plasma and whatever energy is gained through the return current by
the plasma is taken out of the beam energy pool. The return current J is
included in our model equations in Chapter 3 as part of the plasma current
Jp which follows
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Note that the electromagnetic energy term in the plasma energy equation
Eq.3.10 is E - J where E and J are measured in the laboratory frame. This

term counts for the Joulean dissipation E' - J’, plus an additional work term
1
u-(peE+zJ x B)

due to the inductive electric fields. Here p. (space charge) may be neglected

in the plasma. So, altogether again, we write
’oy 1
E-J=E-J +u-(-C-J><B).

or

E-J=[E’—-1—(uxB)]-J.

Here J' = J — peu is the plasma current density in the fluid frame and is
taken as equal to J. The laboratory and fluid frame electric fields E, E’ are
the same as E;, E given in Chapter 3 with E = E - %u x B.

So, the energy loss consists of the ohmic term and the inductive term.
It is clear that the inductive term depends on the radial hydromotion of
the plasma and the azimuthal magnetic field. It becomes significant for an
expanding channel (high radial velocity u) that leaves behind a low density
rarefaction region in the channel where the beam is injected. A relatively
expanding channel is achievable with less plasma density and it is a desir-
able situation fromn. the collisional energy loss point of view. Because of the

inverted dependence on the plasma density of the collisional and inductive
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terms, there is an optimum channel density that plasma channel designers
usually worry about [77] for efficient beam transport.

The simulations done with helium gas for LIBRA here do not indicate
a large energy loss for the beam due either to the inductive electric field
or to the ohmic heat. The plasma channel with an average radial veloc-
ity of 106cm/sec is not expanding very fast. With a plasma current of
—0.4 MA/em? and a magnetic field of ~ 20 kG the inductive and ohmic
losses are about 1J/cm and 10J/cm. For a channel with the total length
of 6 meters as for LIBRA, a linear relation yields these losses as 600 and
6000 Joules, fairly small compared to the total beam energy of ~ 10%Joules.
Therefore the loss throughout the channel is about 6 % and if put together

with the collisional losses in Section 5.3.3, the total loss comes up to 15 %.

5.4 An Optimized Channel

The discharge current used in our LIBRA simulations was illustrated before
in Figure 4.1. The main goal for using a prepulse is to reduce the pinching
effect of the second (main) pulse. The tendency for the channel to pinch
instead of expand presents difficulties in meeting the density requirement.
The usual expanding channels achieve a density reduction between 4 to 10
on axis, thereby reducing the collisional energy losses within the channel

while still providing a high enough neutral background gas density in the
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reactor chamber to attenuate the soft x-rays produced by the ICF target.
The main discharge current pulse is usually high enéugh to pinch the
plasma and this problem is overcome, as Freeman explains [10], by using
the "two-stage” drive for current, being a reference for LIBRA designs. The
first pulse is aimed to heat the central region and the channel expands after
that, if there is time, At, for it before the main pulse comes along. As
mentioned earlier, there are competing events in the channel dynamics. If
one wants an expanding channel, he/she should allow sometime (several us)
to pass between the pulses. On the other hand, the magnetic field peak
value decreases for expanding channels, B, « %, resulting in a relation as
Be x Zkl_t Thus, a smaller At may be wanted for higher magnetic fields.
Seeking a high enough magnetic field (27 kG) at ro = 0.5 cm has been
the primary goal for current LIBRA channel designs. The difficulties led
to a time delay, At, of zero. Fortunately, the chosen gas (helium) is good
at expanding due to its high pressure which lessens the pinching caused by
the magnetic force. Simulations for LIBRA with ARMHD were presented
before in Sections 5.1 and 5.2. The magnetic field prior to beam injection at
re = 0.5 cm is 35 kG for helium. This value is higher than what is needed to
confine the ions from the LIBRA diode design. An immediate question is if
we could meet the requirement with less current. The answer is yes and the

simulation presented in Figure 5.35 with 70 kA discharge current seems to

be showing that. Obtaining the requirement with lower discharge voltage is
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certainly significant for reactor applications since there is less risk involved
in the breakdown of the high voltage to the reactor chamber [82].

One drawback with helium is that it is not as effective as argon and
nitrogen at attenuating the X-rays coming from the target explosion. It is
therefore worth looking for an alternative channel for LIBRA with argon and
nitrogen. Previous ARMHD code simulations with argon show magnetic field
values of 22-26.5 kG at channel radii of 0.7-0.85 cm. An improvement could
be made to acheive the 27 kG at 0.5 cm by increasing the discharge current.
One problem with argon, though, is that it goes through pinching at times
before beam injection. This problem exists with helium too but it does not
cause a significant density increase in the center region. The pinching for
argon is worse, causing problems with the density requirement. This is all
due to the zero time delay factor and could be eliminated by changing the
current profile and rising times completely. Nevertheless, we will not do that
here and instead will put the effort in checking the possibility for nitrogen
channels. Just as helium and argon, nitrogen suffers too from the pinching
but it seems to be much less compared to argon. It is much easier to improve
the conditions for a nitrogen channel: we get a magnetic field of 30 kG at
radius 0.5 cm.

As opposed to early LIBRA calculations done with ZPINCH [78], simula-
tions we have done here prove both argon and nitrogen acceptable for creat-

ing high enough magnetic fields. One important fact that led to this is that,
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by using a more accurate model, ARMHD corrected the overestimations
done by ZPINCH regarding the radial radiative transfer in the channel. To
overcome the problem of pinching for nitrogen, we suggest lowering the first
pulse. As mentioned earlier, the first pulse has been originally considered to
heat up the channel for a following expansion, and the higher this pulse is the
more the channel expands. Nevertheless, the situation here, for a time delay
of zero, turns out to be the other way around: there is no time for the channel
to expand, and the higher the first pulse is the higher the magnetic field is
due to that pulse, resulting in a channel to be pinched more easily with the
following main pulse. Not surprisingly, simulations with a 0.5 kA first and 90
kA main pulse reduces the pinching effects to where the nitrogen stands as a
candidate for channels. The results are illustrated in Figures 5.36-37. They
are done by working with two different opacity group calculations, 20-group
continuum and 160-group continuum+lines, to see how much line transport
is important for nitrogen. A comparison for magnetic field, channel radius
and axis temperature is given in Table 5.5. These results also indicate to us
that lines play a non-trivial role for nitrogen.

The beam injection of ~ 400 kA brings high current neutralization
and relatively insignificant collisional energy losses of 0.004%, return current
losses of 0.02 % per cm for nitrogen channels. In LIBRA designs, again the
linear relation yields a total energy loss of 14 % for nitrogen channels.

In conclusion, we have been able to create the required helium channels
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Table 5.5: Simulation results vs the number of opacity groups (nitrogen).

Case # of opacity | Peak B-Field | Channel Temperature
groups value (kG) | radius (cm) | at center (eV)
continuum
0 20 31 0.56 9.3
cont.+ lines
1 160 27.5 0.58 8.2

with 30 % less discharge current. The same channel conditions can be created
with nitrogen gas, giving an alternative to helium. Argon channels give high
magnetic fields but also introduce problems for density requirements which
may be overcome with some effort. Overall, there seems to be no serius
problem with beam energy losses and current neutralization for any of these

gases within the frame of ARMHD model.



Chapter 6

Conclusion

A computational model has been developed to study z-pinch plasma channels
and ion beam propagation in the magnetohydrodynamic approximation. It
has proven to be very robust so far, although it may require relatively small
time steps for some highly unsteady problems because of the stability con-
dition for the explicitly solved equations. Some of the model’s best features

are :

e Adaptive Gridding: The grid points follow high gradients that occur
in the solution of PDEs for the purpose of better resolution (accuracy)
and minimizing the number of mesh points. The redistribution of mesh
points is not like a local grid refinement nor a periodic rezoning as used
in ad hoc ways with eulerian and lagrangian schemes. It is quite general

and set up for multigradient problems.

221
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e Diverse Applicability : It can be used for one dimensional compre-
sible flow in planar, cylindrical and spherical geometries. In addition
to the z-pinch plasma problem, it could be applied to microfireball

simulations in ICF target chambers.

¢ RHD Capability : The model equations include radiative transfer
coupled to the plasma and the solution for the radiation field is found by
a radiation transfer equation using a multigroup discrete ordinate Sy
method. Opacities are obtained from an atomic physics code IONMIX
(66].

¢ MHD Capabilty : Single-fluid MHD equations and ion beam injec-
tion physics is used to model the magnetic properties of the plasma

which is subject to a discharge current and beam injection in the axial

direction.

e Fast response time : The code is mostly vectorized and it takes

several minutes to run the simulations described in early chapters on a

CRAY X-MP/48 supercomputer.

The applications of our computational model ARMHD to the Light Ion

Beam Fusion Reactor study LIBRA has produced the following results :

e Adaptive gridding has given us a finer mesh distribution where needed
in the channel to resolve the magnetic field profile, when compared to

a lagrangian scheme using the same number of mesh points.
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e The correct description of the radiation transfer phenomena in the
channel is not diffusion but rather anisotropic transport. Thus, ARMHD
treats the thin plasma more accurately than the commonly used diffu-

sion approximation.

e Multigroup radiation transfer methods are highly dependent on the
group structure defined for opacity group averaging. Lines in the ab-
sorption and emission spectrums are so narrow that they require many
numbers of groups (hundreds) to allow a good averaging over the whole
spectrum. A coarse group structure leads to overestimated absorption
and emission coefficients. On the other hand, using many points re-
quires a lot of computing time for the time-dependent solution of the
radiation field by the multigroup Sy method. Simulations with 160
opacity groups required roughly 40 minutes on the CRAY X-MP/48
computer. The outcome is such that the line transport in the thin
channel plasma is important and should be treated well. Overestima-
tion of absorption and emission coeflicients leads to a net transfer of
energy from the channel center to the cold surrounding gas and there-
fore creates a premature expansion, called a radiation driven expansion
(RDE). This is identical to the RDE phenomena seen with diffusion cal-
culations. More accurate results require more groups, meaning higher
cost. Therefore a new way to avoid the difficulties of group averaging

with the lines should be studied. One way of doing this, as MacFarlane
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and Moses suggested, is that the line transport can be done separately
to be combined later with the multigroup Sy treatment of continuum

transport for the total answer.

Argon and nitrogen channels are feasible for LIBRA in terms of ob-
taining the required magnetic field to confine the ion beam. These
gases were ruled out in favor of helium by early calculations using a
radiative diffusion model. Further improvements can be made for ar-
gon by changing the timing of the discharge current pulses to satisfy
the density requirement too. Nitrogen, on the other hand, is as good
as helium as a candidate for efficient beam transport in LIBRA. One
drawback with helium is that it is not as effective as argon and nitrogen

at attenuating the X-rays coming from the target explosion.

Beam energy losses for both helium and nitrogen are about 15 %. Most
of this loss is due to collisons with the background plasma and ohmic
heating by the return current. The loss through inductive electric fields
seems less because the channel dynamics leads to either a slow expan-

sion or a pinching which do not let high inductive fields be created.

The magnetic flux due to the beam current, ~ 0.5M A, of 30 MeV
lithium ions gets cancelled successfully by the return current produced

in the highly conductive plasma.
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The idea behind creating the ARMHD computer code for the z-pinch
plasma and ion beam propagation research was basically due to the desire to
achieve more accuracy in such a non-linear and unsteady problem. Although
many questions have been answered, effort is still needed to further improve
both the numerics and physics of the computational model. Below is the list

of points for further development in these areas.

¢ The multigroup radiation transfer depends on the number of groups.
As an alternative to using many groups, which raises the cost of the
computations, a separate treatment of lines could be done to associate
later with the multigroup treatment of the continuum radiation. This

issue has already been taken up by colleagues at UW-Madison [83].

¢ The magnetohydrodynamics equations used in ARMHD are for single-
fluid plasmas in which ions and electrons are not distinguished. A
more elaborate investigation perhaps requires the distinction be made
for ions and electrons. The electrons and ions would then have different
sets of equations for continuity, momentum and energy. A simplifying
alternative is to assume the ions and electrons move together as a fluid
(i.e. no charge separation) but that they are allowed to have differ-
ent temperatures.Thus, further study in developing the two-fluid MHD

equations is necessary.
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e The simplicity of the donor cell differencing method has helped create
a scheme without much difficulty. The donor cell differencing is first
order accurate but as Bartel states [20] it works well with the adap-
tive gridding. It is better than second order accurate MacCormack and
Leonard’s methods for test problems. Nevertheless, it is known to be a
diffusive scheme [18], so much that it does not really need an artificial
viscosity term to smear out the shock fronts. Although it is successful
in capturing the high gradient regions, shocks and contact discontinu-
ities, it may be questioned for its performance in mild gradient regions,
such as rarefaction fans. Therefore there is need for research and im-
provement to be done on the numerical method as accuracy issues are

raised.
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