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A MODEL FOR COMPUTING RADIATION TRANSPORT

IN NON-LTE PLASMAS

J.J. MacFarlane, P. Wang, and G.A. Moses

ABSTRACT

We describe a model based on escape probability techniques to compute radiative
transfer in non-LTE plasmas. Atomic rate equations are solved self-consistently with
the radiation field for multilevel atomic systems. The frequency- and angle-averaging
techniques employed allow for computationally efficient solutions, making the model
suitable for coupling with radiation-hydrodynamics codes. We present comparisons of
escape probability results with exact solutions for 2-level atomic systems, and present

preliminary results for multilevel isothermal, isochoric Al and Ne plasmas.

1. INTRODUCTION

When a plasma is in local thermodynamic equilibrium (LTE), its properties (e.g.,
internal energy, opacity) depend only on the local temperature and density [1]. All atomic
processes, whether collisional or radiative, are in detailed balance; i.e., the rate at which
each process occurs is exactly balanced by the rate of its inverse process. Collisional
processes occur with sufficient frequency that Maxwellian velocity distributions exist for
atoms, ions, and electrons. Ionization and excitation populations are prescribed by
the well-known Saha equation and Boltzmann statistics, respectively. In addition, the
same absolute temperature, T', defines the velocity and population distributions. Only
the radiation field may be different than its thermodynamic equilibrium (T.E.) value of
By(T) (By = Planck function).

The conditions that define local thermodynamic equilibrium have often been

invoked — either in whole or in part — in theoretical studies of laboratory or
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astrophysical plasmas in order to facilitate solutions to problems. For example, most
radiation-hydrodynamics codes that are used to study rapidly changing plasmas use
internal energies and opacities that depend only on the local temperature and density,
and thus are independent of the radiation field. This greatly reduces the computational
time required for problems for two reasons. First the level populations and opacities are
solved independently of the radiative transfer equation. Second, the plasma properties
can be calculated ahead of time and stored in two-dimensional (T, p) tables. If a plasma
is optically thick, however, so that the populations are affected by photoexcitation and
photoionization processes, significant departures from LTE can occur. In such cases,
reliable determinations of plasma conditions require more detailed non-LTE analysis.
This is particularly true when attempting to diagnose conditions in laboratory plasmas.

During the past decade, several studies [2-4] have shown that high-temperature,
moderate-to-high density (n ~ 1016 — 1022 cm"3) laboratory plasmas can be far from
LTE. For instance, Duston and Davis [3] have shown that the radiative properties of
plasmas which are optically thick to line radiation are not well-described by either
“coronal” or LTE plasmas. This results from the fact that line radiation — particularly
that of line cores — is absorbed before it escapes the plasma. This affects both the
total intensity of line radiation escaping a plasma and the observed line shapes. More
recently, similar conclusions have been reached for inertial confinement fusion (ICF)
target chamber plasmas in the density range n ~ 1016 — 1018 ¢ =3 [5].

The fact that the radiation field can significantly affect the properties of a plasma
severely complicates the problem of modelling — and hence developing a better
understanding of — laboratory plasmas. This is because the opacities are altered by
the photon-induced redistribution of the level populations, which in turn affects the
radiation field. Because of this feedback mechanism, the atomic rate equations and
radiation field must be evaluated self-consistently. The problem becomes particularly

cumbersome when high-Z (Z = atomic number) materials are involved because of the
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large number of ionization and excitation levels that must be considered. For these
reasons, radiation-hydrodynamics calculations have often neglected the influence of the
radiation field on the level populations.

To develop a better understanding of non-LTE plasmas and allow for more reliable
simulations of rapidly changing plasmas, Apruzese and his co-workers at the U.S.
Naval Research Laboratory proposed a non-LTE radiation transport model based on an
escape probability formalism [2,6,7,8]. In this model, an angle- and frequency-averaging
technique is used which allows the simultaneous, yet computationally efficient, solution
of the radiation field and atomic rate equations. Frequency-averaged escape probability
integrals for bound-bound and bound-free profiles are computed and fitted to simple
analytic expressions. =~ The model has been extended to cylindrical and spherical
geometries by introducing a “mean diffusivity angle,” along which the zone-to-zone
escape probability is evaluated. Results from this model have been shown to compare
very favorably with exact solutions for problems involving a variety of geometries and line
profiles.

Because the angle- and frequency-averaging methods employed in this model allow
rapid solution of the radiation and atomic rate equations, it can be incorporated inside
hydrodynamics codes to study rapidly changing plasmas, such as those created by intense
ion or laser beams. With the support of Kernforschungszentrum Karlsruhe (KfK), we are
currently developing a similar model at Wisconsin to study ICF fusion-related plasmas;
e.g., light ion-produced laboratory plasmas, high-yield target chamber plasmas, and
Z-pinch plasma channel formation. We wish to emphasize that the computer coding for
the radiative transfer model is being developed in a modular fashion so that it can be
easily combined with currently existing radiation-hydrodynamics codes.

Below we provide a description of our non-LTE radiative transfer model. In Section 2,
the escape probability model is described in detail. We also include a short discussion of

the physical basis for the model, and comparison of model results with exact solutions
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for 2-level atomic systems. In Section 3, we present preliminary results for multilevel
atomic systems, and comparisons to other calculations. We conclude in Section 4 with a
summary of the status of the model/code development, and discuss features that need to

be added to the model in the future.

2. OVERVIEW OF ESCAPE PROBABILITY RADIATIVE TRANSFER MODEL
A. Physical Basis

In optically thick non-LTE plasmas, the atomic rate equations must be solved
self-consistently with the radiation field because the level populations — and therefore
opacities — can be significantly altered through photoexcitation and photoionization
processes. Any model that does not account for this coupling can lead to inaccurate
results for both energetics and diagnoses of plasma conditions.

A physical understanding of this situation can more readily be attained by
considering the case of a 2-level atom. Let ny and n; denote the population densities of
the upper and lower states, respectively. The rate at which the upper level is populated

at a location r within the plasma is [1]:

dny(r
dt

) = i @)Cute) + Buu [ duduteras

(1
~ mu(©[Cu®) + Aut + Bt [ v Tu(e)i]

where A,; is the Einstein spontaneous transition probability, Cj, is the collisional
excitation rate, Cy; is the collisional deexcitation rate, B;, and B,; are the Einstein
photoexcitation and stimulated emission coefficients, ¢, is the normalized line profile
(f $vdv = 1), and J, is the mean intensity of the radiation field. In the escape
probability model, we assume the atomic transition rates are much faster than the rate of

change of the plasma conditions, so that dn,/dt = dn;/dt = 0.

The spontaneous emission term in Eq. (1) depends only on the atomic properties of



the plasma. The collisional terms depend on the local temperature and density (T(r) and
n(r)) and the atomic properties. The photoexcitation and stimulated emission terms,
however, depend in addition on the radiation field, which is a non-local entity. Thus, the
level populations at r depend on the conditions in other parts of the plasma.
The radiation field throughout a plasma can be determined by solving the radiation
transport equation:
101,

oo PRV =mm (2)

where 7, is the emission coefficient, x, is the extinction coefficient, c is the speed of light,
and n is the unit vector representing the direction of propagation. The mean intensity J,

in Eq. (2) is the average of the specific intensity, I, over solid angle:

To(x) = & }{ L(x,8)dw. (3)

The major difficulty associated with non-LTE radiation transport is that Eqs. (1) and
(2) must be evaluated self-consistently. Since we are here concerned with developing a
model that can be used within radiation-hydrodynamics codes to study rapidly changing
plasmas, the techniques employed to evaluate these equations cannot require large
amounts of computer time. We shall now describe such a method based on probability of

escape techniques.

B. Escape Probabilities
The probability that a photon of frequency v will traverse an optical depth 7, before
being absorbed is [9]:

py=e€""". (4)

The optical depth can also be expressed in terms of the absorption coefficient s, and

propagation distance r:
Ty = /fc,,(r)dr. (5)
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The frequency-averaged probability that a photon emitted as a result of a downward

transition with an emission profile ¢g(v) is [10]:

j /0 ~ $(v) exp(—1,) dv, (6)

where ¢ is normalized such that [@g(v)dv = 1.

Given the above definitions, one can readily compute the escape probability for
Doppler and Lorentz line profiles. For lines, we shall assume complete redistribution
[1] of absorbed radiation so that the emission and absorption profiles are identical

(¢ = ¢4 = ¢). The normalized Doppler profile can be written as:

—p2
e~ 2

71’1/2AVD,

¢(z) = (7)

where

= (v—u,)/Avp,

Avp is the Doppler width, and v, is the line center frequency. For a Lorentz profile,

(8)

where

and T is the half-maximum intensity width. Writing 7, in Eq. (6) in terms of the
line center optical depth 7, the frequency-averaged escape probability for bound-bound

transitions is:
Pu(r) = | ~ 4(v) exp(—red(v)/do)dv )

where ¢o = ¢(v = 15). Equation (9) has been evaluated numerically for Doppler and
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Lorentz profiles, and the results have been fitted to analytic expressions [6]. Figure 1
shows both the exact (solid curves) and fitted (dashed curves) escape probabilities as a

function of line center optical depth. For Doppler profiles the fitted curves are:

1/(1 +0.65 7 + 0.2972), 7. < 5.18
Po(re) = { ‘ ¢ e (10)

0.5456//[r¢(In 7)!/?], e > 5.18.

The curve fits for a Lorentz profile are:

1/(1+ 0.5857 ), 7 < 5.18
Pe(re) = (11)

1/(x )12, 70 > 5.18.

Equations (10) and (11) are continuous at 7, = 5.18, and differ from the exact solutions
by a maximum of 4% for Doppler profiles and 8% for Lorentz profiles.

The relative contributions from the line wings to the frequency-averaged escape
probability increase as the optical depth increases. This is illustrated in Figure 2, where
the frequency-dependent escape probabilities for Doppler and Lorentz profiles are plotted
as a function of the scaled frequency for several values of the line center optical depth.
Note that as the optical depth increases, the fraction of line core photons escaping the
plasma from that depth decreases dramatically. On the other hand, the wing photons can
escape because the optical depths in the wings are significantly lower. Note also that
radiation escapes more readily from the wings of Lorentz profiles compared to Doppler
profiles. This is because Lorentz profiles emit a larger fraction of their radiation from the
wings, where reabsorption is less important than in the core.

For bound-free transitions, we use hydrogenic emission and absorption profiles to

compute the escape probabilities. The emission profile can be written as [11]

exp(—hv/kTe)
v E1(hv [kTe)’

¢E(v) = v > v, (12)
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Frequency-averaged bound-bound escape probabilities for Doppler
and Lorentz line profiles.  Exact solutions (solid curves) are
compared with fitted (dashed) curves.
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Figure 2(a). Doppler profile escape probability as a function of scaled
frequency for line center optical depths of 0.01, 1, 10, and 100.
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and the absorption profile is

qu‘(l/) = ¢o(1/1/1/)3, v > . (13)

The quantity v is the photoionization cutoff frequency, ¢o = ¢(v = v1), Te is the
electron temperature, FEj(z) represents the first exponential integral, h is Planck’s
constant, and k is Boltzmann’s constant. The bound-free frequency-averaged escape

probability is then:

1

P(70) = Fi(ae)

0
/1 dy v~ exp{—aoy — Toy™3}, (14)

where y = (v/v1), ap = (hv1/kTe), and 7o is the optical depth at the cutoff frequency vy.

Equation (14) has been evaluated numerically for a variety of 7, and a,. Results are
shown in Figure 3 (solid curves). Also shown are the curve fits (dashed curves) to the
numerical results, which are accurate to within 40% for the range of a, and 7, shown.
It is seen that for a constant optical depth, the probability of escape increases as the
electron temperature increases. This occurs because as the temperature — and hence the
mean thermal speed of electrons — increases, the photons emitted by recombinations
tend to have energies farther above the threshold energy (KE(e™) — h(v — v1)). Thus,
as the photon energies become higher, the probability of photoabsorption decreases, and

the escape probability increases.

C. Coupling Coefficients

Solution of the atomic rate equations requires information on the (non-local)
radiation field. For instance, the photoexcitation rate at one location in the plasma can
depend on the conditions in other regions of the plasma. In the context of the escape

probability model, the number of photoexcitations that occur in zone a per unit time can
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at the photonionization edge.

Frequency-averaged bound-free escape probabilities vs. optical depth
values of ao = hv /kTe.

Curve labels correspond to different
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be written as

N,
dNa z
prale > AuN;Q® (13)
e=1

where Q°? is the probability a photon emitted in zone e is absorbed in zone a. We
shall refer to the set of Q’s as “coupling coefficients.” The quantity N¢ is the total
number of excited state atoms in zone e. Thus, the product NE A, is the total number of
photons per unit time originating in zone e.

We shall now discuss methods for evaluating coupling coefficients in planar,
cylindrical, and spherical geometries. Consider first the 1-D planar geometry shown
in Figure 4. The distance traversed as a photon travels from point 1 to point 2 is
z12/p, where y = cos 8 and 8 is the angle between the direction of propagation and the
normal to the slab surface. In this geometry, the angle- and frequency-averaged escape

probability, P, can be computed directly:

1
Po(re) = /0 Pu(re/w)dp, (16)

where P, is the frequency-averaged escape probability described above. The probability
a photon emitted in zone e traverses a depth 7p between zones e and a, and is then
absorbed in zone a is

1 [

Q% = 7 /| [Pe(TB + T) — Pe(TB + Ta + 7)]dr. (17)
Note that 7e, 7g, and 74 are the optical depths in the direction normal to the slab surface.
The first term within the integral represents the probability a photon will get to the
nearer surface of zone a without being absorbed, while the second term represents the
probability the photon is absorbed before exitting the surface farther from zone e. The
coupling coefficients are rapidly determined from analytic expressions — Eqs. (10), (11),
(16), and (17).
13
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Figure 4. Schematic illustration of photon transport in planar geometries.
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Results for a 2-level atom can be compared with exact solutions. Assuming

steady-state conditions, the 2-level rate equation in the escape probability model becomes

(see Eq. (1)):

dNi .. Mp o . .
dt“ =N} Ch,+ Y Au N Q7' — N} (Ay + Cip) =0, (18)
=1

where ¢ and j refer to the zone indices. The level populations for each of the Np zones
are determined simultaneously by solving an Np X Np matrix.

It is often useful to write the rate equations in terms of the source function S, and a
“quenching parameter” Pg. This allows the rate equation to be written in a more general
form, and eliminates the need for computing rate coefficients for a particular transition,

temperature, and density. The quenching parameter is defined by [12]

Pn = Cul
Q= — e—a\—1"
Cul + Aul(l € )

(19)

where a = hv, kT, and hv, is the transition energy. Substituting Eq. (19) into (18), the

rate equation becomes:

N, = N [1 + j—l(ea + P{Q(ea - 1))]
u
Np (20)
- ggl—Pé(ea -1) Znﬁ Q°°,
u e=1

where P, = lj—;gg and g; and g, represent the statistical weights of the lower and upper

levels, respectively. The source function can be written as [1]:
Sy = mu/ky = nu Ay/(n By — nu Byp), (21)
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where 7, and &, represent the emissivity and absorption coefficient, respectively. Using
the relation between the upward and downward collisional rates, Cj, = Cyi(gu/g1)e™2,

the source function for an isothermal (o = constant) plasma is:

S, =B,Py |1—-(1—Pp)> Q" <F‘;) : (22)
j=1 u

Equations (21) and (22) specify the unique solution of the source function for a given Py
and total line center optical depth.

Apruzese et al. [2] and Apruzese [6] showed that the source function — and therefore
population distributions — determined using the escape probability model compare quite
favorably with exact solutions. We have also compared results from our calculations
with the exact solution for several cases. Figures 5(a) through 5(c) show results for
several values of P and total optical depth. The dashed curves represent the exact
solutions [12]. Note that for both Doppler and Lorentz profiles, the accuracy of the
escape probability model is quite good over a wide range of parameters. Using 75 mesh
points, typical errors are ~ 10 - 20%, with a maximum of about 25%. This suggests
that errors introduced in using angle- and frequency-averaging escape probabilities using
a reasonable number of mesh points is ~ a few tens of percent. This degree of error is
comparable to the level of uncertainty associated with the atomic rate coefficients, and is
significantly less than errors introduced by neglecting the effects of the radiation field on
the level populations (see comparisons with diffusion results below).

The results in Figure 5 can be understood as follows. When Py < 1, the
spontaneous emission rate is much greater than the collisional deexcitation rate. Thus,
when a photon is absorbed, it is usually reemitted by a spontaneous emission and travels
another mean-free-path before being reabsorbed. This process can happen many times

before the photon either escapes the plasma or is destroyed. “Destruction” occurs when
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Figure 5(a). Ratio of source function to Planck function for 2-level atoms
with Doppler profiles in planar slab. Values of the quenching
parameter are Pp = 10~4 (top) and Py = 1078 (bottom). The
total slab optical depth is 2.82 X 103. Escape probability results
(solid curves) are in good agreement with exact solutions (dashed
curves).
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Figure 5(b). Same as Fig. 5(a), but with optical depths of 2.82 X 107 (top)
and 28.2 (bottom). Py = 10~ for all curves.
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Figure 5(c). Same as Fig. 5(a), but for Lorentz profiles. Total slab optical
depths are 1.59 X 107 (top), 1.59 x 10°, 1.59 X 103, and 1.59 x 10}
(bottom). Pg = 10~ for all curves.
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the energy of the photon is deposited in the plasma thermal energy budget, either as a
result of a collisional deexcitation or an absorption by the continuum. As the optical
depth increases, the probability a photon will be destroyed before it escapes increases.
Figures 5(b) and 5(c) show that for a given quenching parameter the source function
approaches B, at large optical depths. This “thermalization depth” is A ~ P5 ! for
a Doppler profile and A ~ Pa 2 for a Lorentz profile [12]. At smaller optical depths,
photons are able to escape at the plasma boundaries, and S, becomes less than B,.
When the total optical depth is much less than the thermalization depth, photons from

throughout the slab can escape, and the plasma is “effectively thin.”

Figure 5(a) shows
that for a given total optical depth, the source function departs more from LTE (where
S = B) as the quenching parameter decreases. This occurs because the probability of a
destructive collisional deexcitation is smaller, and photons can more readily scatter out

through the plasma.

For the 2-level atom, the ratio of the upper to lower population in zone i given by:

(ﬂ)i _ Y ( __(5,/By) ) . (23)
Ny a1 \(5,/By) + (e* — 1)

Thus, as S, /B; decreases near the edge of the slab, the relative population for the excited

level decreases. Note that as S, — B, in Eq. (23), the relative populations are given by
Boltzmann statistics.

Evaluation of the coupling coefficients in cylindrical and spherical geometries is more
difficult because Eq. (16) is not valid and angle-averaged escape probabilities cannot be
computed directly. For these geometries, it was found [6] that introducing a “mean

diffusivity angle,” 8 = cos™! f, for which

()= 7 ()
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leads to solutions that compare reasonably well with exact solutions. The meaning of
the mean diffusivity angle is clarified in Figure 6. The quantities 7, 74, and 7p again
represent the line center optical depths of the emitting and absorbing zones and the
depth between them, respectively. In this case, however, the optical depths are computed
along the ray defined by 8 and the midpoint of the emitting zone.

It can also be seen from Figure 6 that additional geometrical complications arise
when the absorbing zone is inside the emitting zone. To overcome this, while at the same

time improving computational efficiency, we take advantage of the reciprocity relation:
N'QY = NIQT, (25)

where N* and N7 are the total number of absorbing atoms in zones 7 and j, respectively.
(A proof of this relation is given in Ref. [6]). Thus, in cylindrical and spherical geometries

the coupling coefficients are given by:

Q= i /0 "[P(rp +7) = Po(rp + 70 + 7ldr, (26)
where P, is the non-angle-averaged escape probability. The Q¢® are calculated using Eq.
(26) only for the cases when the absorbing zone is at a larger radius than the emitting
zone. Otherwise, the reciprocity relation (Eq. (25)) is used.

It has been shown [6] that using z = 0.51 leads to solutions for 2-level atoms that
are accurate to within 25% for a wide range of total optical depths. In Figures 7 and
8, we compare results from our 2-level atom calculations with “exact” solutions for
Doppler profiles in cylindrical [13] and spherical [14] geometries (in the cylindrical case,
the “exact” curves correspond to results from Monte Carlo calculations). The spherical

case corresponds to a hollow sphere with an inner radius of R = 1 and outer radius

ranging from R = 3 to 300. The Planck function and absorption coefficient both decrease
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Figure 6. Schematic illustration of photon transport in cylindrical and
spherical geometries.
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Ratio of source function to Planck function for 2-level atoms with
Doppler profiles in cylindrical geometries. The Planck function
and absorption coefficient are assumed to be spatially uniform and
Py = 10~4 for all curves. The top, center, and bottom curves
correspond to total line center optical depths of 50, 5, and 0.5,
respectively, in the radial direction.
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Figure 8.
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Ratio of source function to Planck function for 2-level atoms with Doppler
profiles in spherical geometries. Both the Planck function and absorption
coefficient are assumed to decrease in the radial direction as r—2. The radius
of the inner boundary of the hollow sphere is R = 1 in each case. The radius
of the outer boundary is R = 3,30, and 300 for the top, center, and bottom
curves, respectively. In each case, the total optical depth is 564(= 103 / rl/ 2)
and Pg = 10~4.
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as r—2, while Pg = 10~4 for all cases. For the cylindrical case, B and k are held constant
throughout the plasma, and the total line center optical depth in the radial direction
was varied from 0.5 to 50. Again, the escape probability results are seen to be in good

agreement with results from exact calculations.

D. Rate Equations for Multilevel Atomic Systems
For multilevel atomic systems, the steady-state rate equation for level ¢ is:
dn; N N
—_ = —n; EVVU + Z njWi; = 0, (27)
dt —y e
J#i J#i
where Wj; and Wj; are the depopulating and populating rates between levels ¢ and j, and

N, represents the total number of levels in the system. For upward transitions (i < j):
Wij = BijJij + neCij + nevij + Bij, (28)
while for downward transitions (¢ > j):
Wi; = Aij + Bijj,-j + neDjj + nea;j + ngé,-j, (29)

where n, is the electron density and ,7,-]- = [ ¢ij(v)Jydy. The rate coefficients for the
various transitions are represented by:

A;; = spontaneous emission

B;; = stimulated absorption (¢ < j) or emission (i > j)

C;; = collisional excitation

D;; = collisional deexcitation

a;j = radiative plus dielectronic recombination

Bij = photoionization

24



7ij = collisional ionization
6;j = collisional recombination.

In the escape probability formalism, the stimulated absorption and emission rates are

written in terms of the coupling coefficients, so that:

N . .
—Aji Y1 5 QF, (8 <)

a T a b

n8 Bi: Ji: —n® Bi: Jis =
j Lji Jij — 1y Dij Jij N o
Aij Y nf Qs (1> 4)

(30)
where the superscripts e and a refer to the emitting and absorbing zones, respectively,

and Np is the number of spatial zones. Note that the coupling coefficients in Eq.

(30) contain corrections for stimulated emission. In practice, this is accomplished by

ea

evaluating the Qf J

using optical depths which include stimulated emission effects. For

example, the line center optical depth for the transition ! — u in zone a is:

8 = (Ar)* - [nf — (g1/gu) n3] &% (v = vo), (31)

where a(v = v,) is the absorption cross-section at the line center.

Equation (27) represents a set of N X Np coupled rate equations. For each spatial
zone, there are NJ, — 1 independent equations. To prevent trivial solutions (all n; = 0),

the conservation of mass equation for each zone is used:

Ny,
Ntot = Znia (32)
i=1

where nyot is the total number density of particles in a given zone.

At present, the coupled set of rate equations is solved using the LINPACK linear

algebra package [15]. The overall method of solution is as follows:

1. Make initial guess for population distributions.
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Compute coupling coefficients for transitions of interest.
Compute coeflicients for grand [(Ny - Np) X (Ny, « Np)] matrix.

Solve grand matrix for level populations.

A T

If new populations are consistent with those used to compute coupling
coefficients, calculation is complete; otherwise go back to step 2.

The above iteration procedure is called A-iteration because it computes the radiation
field using populations from the previous iteration step. Up to this point, the above
solution procedure has worked satisfactorily for the rather simple problems we have
examined. We expect somewhat more refined techniques, such as those discussed in Ref.
[8], can be used to accelerate convergence. In addition, it may be worthwhile to explore
using iterative techniques that have recently been developed to accelerate convergence in

studies concerning radiation transport in astrophysical plasmas [16-18].

E. Radiative Power Emitted by a Plasma

To predict the radiative flux at a detector, the intensity of radiation escaping the
entire plasma must be computed. To do this, we compute the escape probability for each
zone and transition using the coupling coefficients that have been previously calculated
for determining the level populations. The probability a photon emitted in zone e will

escape the entire plasma is:

Np
PEj;=1-) Qf, (33)

a=1
where the subscript ¢j refers to the transition states. The total bound-bound power is
then given by:
Np
Py = Z Z Nf Ajj PEfj AE;, (34)
i>j e=1
where N7 is the population of level ¢ (upper state) in zone e, A;; is the spontaneous decay

rate, and AE;; is the transition energy. For bound-free emission, the total power escaping
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the plasma is:
Np
Py = Y Nf (a*); n¢ PES; AEY;, (35)
i>j e=1

where (a*)® is the radiative recombination rate in zone e, n¢ is the electron density in
zone e, and AE;-"J- is the ionization potential. Using the above expressions, the escape
probability model will be able to predict high resolution spectra from laboratory plasma

experiments.

3. SAMPLE RESULTS FOR ISOTHERMAL, ISOCHORIC PLASMAS

We have performed calculations using our non-LTE radiative transfer model for 2
classes of problems: Al plasmas with densities ~ 1019 — 1023 ¢cm=3 and Ne plasmas with
densities ~ 1016 — 1018 ¢cm™3. For the Al calculations, we selected conditions such that
we can compare our results directly with previously published results. This allows us to
assess the reliability of our computer code. For the Ne calculations, we have selected
conditions that are relevant to ICF target chamber plasmas (e.g., Z-pinch plasma channel
formation for ion beam transport and microfireballs created by ICF target explosions).
The primary objectives of this set of calculations was to test our model over an extended
density range and in spherical geometries, and to get a preliminary assessment of the
importance of non-LTE effects in target chamber plasmas.

We shall examine the results from our Al calculations in somewhat greater detail than
the Ne calculations, and they will be compared with previously published calculations.
Much of the discussion of the Al results also applies to the Ne results. Other than the
nuclear charge, the major difference between the two sets of calculations is that the Ne
plasmas considered are several orders of magnitude lower in density and larger in size.
The optical depths of the Al and Ne plasmas span a similar range.

For the multilevel calculations described in this section, we have used atomic
data computed using a combination of Hartree-Fock and semiclassical methods. We

shall only briefly summarize these methods here, as a detailed description will be
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presented elsewhere [19]. Hartree-Fock methods are used to compute energy levels,
oscillator strengths, and photoionization and radiative recombination rates. Collisional
excitation and deexcitation rates and collisional ionization and recombination rates are
calculated using a combination of semiclassical impact parameter, Born-Oppenheimer,
and distorted wave models [20,21]. Dielectronic recombination rates are computed using
the Burgess-Mertz model [22] in conjunction with Hartree-Fock energies and oscillator
strengths. Forbidden and spin flip transition rates are determined from distorted wave
calculations [21]. Because the escape probability radiation transport model will be
a powerful tool for diagnosing time-dependent conditions in non-LTE plasmas, it is
important that reliable atomic physics data be used.

Let us first consider the case of an optically thick Al planar plasma with a uniform
density of n = 1 x 1019 cm™3 and uniform temperature of T' = 600 eV. At this density
and temperature, the Al is predominantly in the H-like (Al XIII) and He-like (Al XII)
ionization stages. The level structure for this calculation, which is similar to that used by
Apruzese et al. [2], is shown in Figure 9. In all, 3 ionization stages were considered with a
total of 14 energy levels. The number of spatial zones was Np = 10, and the total slab
thickness was 0.15 cm. For this and other calculations in this section, photoionization
effects have been neglected. Previous calculations [3] indicate that photoionization has
little effect on the level population at these densities.

Even when the temperature and density are uniform throughout a plasma, the level
populations can vary substantially with position because of the non-uniform radiation
field. This is shown in Figure 10, where the populations for the Al XII and Al XIII stages
are shown as a function of distance from the slab center (solid curves). Note that for
some levels (e.g., 1s 2p 1P (Al XII) and n = 2 (Al XIII)) the excited state populations
decrease by a factor of up to 4 to 7 near the plasma boundary. This occurs because of the
lack of radiation incident on the outer boundaries of the plasma. There is a relatively

small gradient in the population of the 1s 2p 1S level for Al XII because the transition
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Figure 9. Level structure for the atomic states of Al XII and Al XIII.
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to/from the ground state involves a change in the spin state.

Also shown in Figure 10 are the populations for an optically thin Al plasma at the
same density and temperature (dashed lines). In this case, the photoexcitation rates
are assumed to be zero and the populations are independent of the radiation field.
Comparison of the optically thin and optically thick results shows that the radiation field
can significantly alter the populations of the excited states. For instance, the 1s 2p 1P (Al
XII) and n = 2 (Al XIII) populations are roughly 2 orders of magnitude higher near the
slab center for the optically thick case.

Figure 11 shows the total line power coefficients (A = Pyy/nenior) for optically
thin Al plasmas as a function of electron temperature for densities ranging from 1013
to 1021 ions/cm3. At low densities (“coronal” regime; n < 10!° cm—3), the power
coefficient becomes independent of density because the collisional deexcitation and
recombination rates become much smaller than their radiative counterparts. As the
density increases, the excited state populations decline due to the increased importance of
collisionally-induced downward transitions. Oscillations in the line power coefficient curve
results from the electronic shell structure of the ions.

Reabsorption effects in optically thick plasmas can be seen in Figure 12. Here, the
total line power for an Al plasma cylinder with n = 1 x 1019 ions/cm3 is plotted as a
function of electron temperature. The line profiles in this calculation were assumed
to be Voigt profiles. As the radius of the cylinder is increased from 0 (optically thin
case) to 5000 pm, the total line power decreases by as much as an order of magnitude.
This is because line center optical depths become large (up to ~ several hundred for
R = 5000 pym) and photons emitted from within the plasma interior are “destroyed”
before they can escape.

To assess the reliability of our radiative transfer computer code, we have compared
the Al plasma results with previously published results. Figures 13, 14, and 15 show

results from Refs. [2] and [3], which were obtained using a similar escape probability
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radiative transfer model. These results can be compared with those in Figures 10
through 12. In each case, the results from the different two calculations are in good
agreement. Discrepancies between the two calculations are typically ~ a factor of a few
in absolute power density. These are due primarily to differences in the atomic data
used. This can be seen by comparing the results from optically thin calculations in which
radiative transfer effects are neglected. For instance, the line power coefficient for Al at
T =100 eV and n = 1019 cm™3 is 8.0 x 10~28 watts cm3 in our calculations (Fig. 11),
versus about 2.5 X 10~27 in the calculations by Duston and Davis [3] (Fig. 14). We
feel our results may in fact be more reliable because they are based on more detailed
atomic physics models, while the calculations of Ref. [3] used rate coefficients based on
simpler (e.g., hydrogenic ion) models. (Duston and Davis pointed out the shortcomings
of this data-and emphasized this importance of using reliable atomic physics data in a
subsequent paper [23].) Similar differences appear in the population distributions (Fig. 10
vs. Fig. 13) and the power densities for optically thick plasmas (Fig. 12 vs. Fig. 15).
Note, however, that the qualitative features of the two sets of results are quite similar.
For instance, the relative positions of the level populations with respect to one another
and the population gradients agree rather well. Also, the importance of reabsorption
of line radiation at temperatures below about 300 eV is apparent in both calculations
(Figs. 12 and 15). We feel the good overall agreement between our results and those from
previous calculations indicates that our radiative transfer model is working reliably.

We have also compared our results with multigroup radiation diffusion calculations.
Figure 16 shows the power density (scaled to the optically thin value to mitigate
differences in atomic data) for an Al cylindrical plasma with a radius ranging from 50 to
5000 pym. In each case the plasma has a uniform temperature of 100 eV and density
of 1019 ions/cm®. The multigroup diffusion power densities (dotted curve) are about a
factor of 2 and 4 higher than the non-LTE escape probability results for plasma radii

of 50 and 5000 pm, respectively. This suggests that radiation diffusion calculations,
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which do not consider the influence of the radiation field on the atomic populations, can
significantly overestimate the radiation flux escaping the plasma. Also shown are the
scaled power densities from Ref. [3], which are seen to be in good agreement with our
calculations.

We have performed a similar set of calculations for spherical Ne plasmas at lower
densities. The plasmas were again optically thick because the plasma volumes were much
larger than those in the Al calculations. The conditions considered in these calculations
are similar to those expected for ICF Z-pinch plasma channels (used for transporting an
ion beam from the diode to the target) and target chamber microfireballs.

Results from the Ne calculations are shown in Figs. 17 through 21. The major
conclusions are as follows:

1. The total line power density is significantly lower than the optically thin power
densities at T < 100 eV and R > 1 cm (Fig. 20). This suggests that reabsorption of
line radiation may be very important in ICF target chamber plasmas (both Z-pinches
and microfireballs). This is especially significant because bound-bound transitions are
the dominant contributor to the total plasma emission rate at these densities.

2. The power densities predicted by the non-LTE escape probability model are
significantly lower (as much as an order of magnitude) than those predicted from
multigroup radiation diffusion methods (Fig. 21). This suggests that diffusion models
underestimate the effects of reabsorption of line radiation for plasma conditions
expected for ICF target chambers.

These conclusions, though preliminary, may have important implications for
transporting light ion beams to ICF targets. For example, in the LIBRA design study
[24], a background gas of He was used because it was predicted that higher-Z gases
would not produce sufficiently strong magnetic fields to confine the ion beam. This
conclusion was based on radiation-magnetohydrodynamics calculations which predicted

that radiatively-driven expansion (RDE) in higher-Z plasma channels leads to weaker
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magnetic fields. Radiation was transported in these calculations using a multigroup
radiation diffusion model. However, our escape probability calculations now suggest
that reabsorption of line radiation may significantly reduce RDE effects and result in
stronger magnetic fields for high-Z gases. It would be advantageous to use higher-Z
gases to transport ion beams to the target because the gas would provide significantly
greater protection for the chamber walls and INPORT tubes from the target x-rays.
Our non-LTE results also suggest that the radiative flux from microfireballs will also be
lower than predicted from radiation diffusion models. This would reduce the heat flux
and the potentially damaging thermal stresses on the first wall in many target chamber
designs. Thus, line reabsorption may provide a very beneficial protection mechanism for

ICF target chambers.

4. SUMMARY AND FUTURE DIRECTIONS

We have presented a detailed description of an escape probability radiative transfer
model that can be used to simulate the radiative properties of non-LTE plasmas.
The major features of the model are: (1) multilevel atomic rate equations are
solved self-consistently with the radiation field; (2) escape factors are used to predict
high-resolution spectra escaping from a plasma, thus providing a powerful diagnostic
capability for laboratory plasmas; and (3) the method for solving the coupled rate
equations is computationally efficient, so that the model can be incorporated into
radiation-hydrodynamics codes to study time-dependent conditions of rapidly changing
plasmas.

Results of our calculations have been compared with a variety of other calculations.
Comparisons with exact solutions for 2-level atoms have shown that the angle- and
frequency-averaging techniques employed to provide a high degree of computational
efficiency lead to only a modest sacrifice in accuracy. We have also compared our results
for multilevel plasmas with previously published calculations which used very similar

methods and found good agreement. Finally, major differences were found between
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results from our escape probability model and multigroup radiation diffusion calculations.
We argue that for some plasma conditions, multigroup diffusion models can overestimate
the radiative flux escaping a non-LTE plasma by more than an order of magnitude.
Currently, our escape probability code can be used to study isothermal, isochoric,
multilevel plasmas in planar, cylindrical, and spherical geometries. There are
several features we would like to add to the model before it is coupled to

radiation-hydrodynamics codes. These are:

(1) Include temperature and density gradient effects in computing the escape
probabilities and coupling coefficients.

(2) Include effects of Doppler shifting (i.e., velocity gradients). This is because as plasmas
expand, Doppler shifting of lines can reduce the amount of reabsorbed radiation.

(3) Improve convergence rate and robustness of ’solutions. Apruzese et al. [8] have
employed methods to accelerate convergence of solutions. In addition, it may prove
fruitful to explore, using numerical techniques that have recently been developed,
non-LTE radiative transfer in astrophysical plasmas [16-18].

(4) Include cross-coupling effects between different transitions; e.g., allow for attenuation
of line photons by photoabsorptions (such as Auger ionizations in a cooler part of a

plasma).

When completed, the model will be ready to be coupled with existing radiation-
hydrodynamics codes.
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