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Abstract: Projected range equations, including nuclear and electronic losses
up to the third moment, are derived as a simple and accurate means to evaluate
projected ranges of energetic ions in solids. With the proposed expressions for
the nuclear stopping cross section and the third-moment of both nuclear and
electronic energy losses, good agreement is observed between the calculated
results and experimental data for the projected ranges of ions in both single-

and multi-component target materials.



1 Introduction

lon implantation techniques have been successfully applied to improve the
wear, corrosion, fatigue, and friction properties of materials, and to modify the
electrical and optical properties of materials [1] in recent years. Because the
properties of the implanted materials are strongly dependent on the implanted
ion distribution, an accurate knowledge of the projected ranges of energetic
ions in single- and even multi-component target materials is important. It is
the objective of this work to derive simple and more accurate projected range
equations to meet this need. Nuclear stopping cross section and third-moment
of both nuclear and electronic energy losses are also derived as a reliable means
to incorporate the new projected range equations. It should be noted that the
present work only applies to amorphous media and crystalline effects are not
included.

This paper addresses the topic in the following way. First, a brief de-
scription of models for both the nuclear and electronic energy losses is given
in Section 2. Section 3 is devoted to the derivation of the new projected
range equations. The calculated results and experimental data are compared
and discussed in Section 4. Finally, conclusions of this work are presented in

Section 5.

2 Energy loss

The slowing down of energetic ions in solids has been a subject of great

theoretical and experimental interest since the early twentieth century. In gen-



eral, the nature of ion-target interaction involves all the constituents of the
two interacting particles, i.e. electrons and nuclei. As suggested by Bohr [2],
the energy loss of ions in a solid can be treated separately by the so-called nu-
clear energy loss and electronic energy loss processes. The relative importance
of these two processes depends upon the instantaneous energy of the incident

ion as well as the atomic number of those two interacting particles.

2.1 Nuclear energy loss

The nuclear energy loss is defined as the transfer of energy from an ion
to the target atom due to an elastic collision under the influence of Coulomb
fields, which are partially screened by the existing electrons. This process
gives a discrete energy transfer and the amount of the energy transferred is
dependent on the scattering angle during the collision. Based on the laws
of energy conservation and angular momentum conservation, the scattering
angle 0 in the center-of-mass system between these two interacting particles

can be derived as

To dr
0=m—2 1
r-2p [ e M
co r

where E¢, is the incident energy in the center-of-mass system, p is the im-

pact parameter, 7, is the distance of the closest approach, and V(r) is the
interatomic potential.

In essence, V(r) is represented by




where a is the characteristic screening length and @ is the screening func-
tion. Tabulations of a and ® can be found in the literature [3-5]. Among
these expressions, the so-called universal screening function and the universal
screening length [5] are adopted in this work because of their accuracy and

wide acceptance. The expressions of ®, and ay are respectively given by

Dy(z) = 0.1818¢732% 4 0.5099¢0-94232 1 0 280204028« 3)

+ 0.02817¢~0-2016z

0.8854a,
(20 1 70%3)

ay

where a, is the Bohr radius, Z1 and Z9 are the atomic numbers of the incident
ion and the target atom, and z is equal to r/a.

Defining the reduced energy € and the reduced impact parameter b by the

forms
aF.,
— _~~co 4
b = 2
a

Equation 1 can be written in a more convenient expression as

z d
o=m—2b[" T, (5)
4
0 J1-z2e(l)—p2,
where z, is the root of the function in the denominator of Equation 5. Because
there exists a singularity at z = 2, in the integration term of Equation 5, it
is difficult to numerically integrate Equation 5. To get around this problem,
several methods have been proposed [6-9]. Among these methods, the method
suggested by Everhart [6] is used in this work because of its capability of cal-

culation for any interatomic potential. The integration term can be therefore
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Figure 1. Scattering angle for universal potential.

rearranged as

Zo dz
I=nh+h = | 6
L 0 \/1—£®(5) — b2z ©
1 1
dz,
./ \/1 Z<I>( — 242 \/1 — b2 2]
where the first integral I; gives an analytic solution of

1L . 1—b2zg
I=>=- —Z 7
1 6[2 sin (1+b223)]’ ( )

and the routine DO1AJF [10] based on the Gauss 10-point and Kronrod 21-
point rules, is used in this work to perform numerical evaluation of the second
integral Io.

The calculated scattering angle versus reduced impact parameter for var-
ious values of reduced energy is shown in Figure 1. As can be seen, the
scattering angle decreases with the increase of both the reduced energy and

the reduced impact parameter.



Nuclear stopping cross section

The nuclear stopping cross section Sp, which is related to the average

energy transfer Ty, in a collision, is given by

b2
Sn(B) = [ Tdo = na®AE S sin? gd(bQ), (8)

where A is the energy transfer factor 44/(1 + A)? and A is the atomic mass
ratio of target atom to incident ion. Using the formulation of Lindhard et

al. [11], the reduced nuclear stopping sy, is defined as

sn(e) = E—;A—ESH(E). 9)

Following the lead of Biersack [12], the expression of the maximum impact

parameter pmaz can be simply approximated by the form [12]
ngna:c = N_2/3, (10)

where NV is the number density of the target material. It is recognized that
the binary collision approximation will break down at extremely low energies
(less than about 30 €V) [13]. However, neglecting that contribution to the
range below 30 eV should have little effect.

Because of the difficulty in integrating Equation 8, many authors [14-17]
have tried to evaluate the reduced nuclear stopping in an analytical way, es-
pecially with pjpe, approaching infinity. Ziegler et al. [17] approximated sy
for the universal potential by the form

0.5In(1+1.1383¢)
£+0.013210-21226 1.0.19593£0-5 = (1)

DAlne e > 30.

sn(e) =
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Figure 2. Reduced nuclear stopping for universal potential.

Shown in Figure 2 is a comparison of Equations 9 and 11 for the universal
potential with various values of byqz. As can be seen, the exact solution
of the reduced nuclear stopping is quite dependent on bpaz. In general, the
approximate expression shows significant deviation when the reduced energy is
less than about 1072 (e.g., 14 keV for bismuth in silicon or 210 eV for carbon
in iron) and this deviation becomes more serious as bpqgz gets smaller. To
avoid errors that may come from the analytical approximation, especially in
the low energy region where the low energy heavy ion implantation or surface
modification of light materials is of interest, an exact treatment of s, for

£ <1072 is used in this work.
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Figure 3. Reduced nuclear straggling for universal potential.
Straggling of nuclear energy loss

The straggling of nuclear energy loss, {0, can be evaluated in the same

way as that of the nuclear stopping cross section. That is,
2 2,22 Yoz . 40 09
Qn(E) = /Tnda = nma’A°E /0 sin §d(b ). (12)

The reduced nuclear straggling is defined as
g2

razazgz n(E) (13)

wn(e) =

In the analytical evaluation of wy, for the universal potential, Ziegler et al. [17]

proposed the expression

1

wn(€) = +0.197¢~1.6991 4 6,584 —1.0494"

(14)

A comparison of Equations 13 and 14 for the universal potential is il-

lustrated in Figure 3. As shown, the exact solution of the reduced nuclear



straggling exhibits only a weak dependence on the values of bz, and the
results of the approximate expression agree quite well with those of the exact
solution. Hence, Equation 14 is used in this work because of its simplicity and

savings in computer calculation time.

Third-moment of nuclear energy loss

The third-moment of nuclear energy loss, K, can be written as

b?'
Kn(E) = /nga = 7ra2A3E3/0 e Sin6g (b2), (15)

and the reduced nuclear third-moment, 5, is defined as
3

= — g Ka(E). (16)

kn(€)

Because there is no approximate form of k, suggested, an analytical expression
of Ky, 1s derived in this work. Based on the approximate expression of s, given

by Lindhard et al. [11], the reduced nuclear third-moment can be written as

() = 5 D), a7)

£

where ¢ is equal to €2 sin? /2 and the function f(t1/2) is approximated by [14]
FEY2) = xet2=m)y 4 aalmye /e (18)

To fit Equation 17 for the exact solution for the universal potential, in this
work, a choice of the fitting parameters A, m, and ¢ is proposed to be 1.7,
0.311, and 0.588, respectively. As can be seen in Figure 4, Equation 17 shows
a very good approximation to the exact solution for the universal potential.

Furthermore, it can also be seen that xy is almost independent of bynqy.
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Figure 4. Reduced nuclear third-moment for universal potential.
2.2 Electronic energy loss

The electronic energy loss is defined as the energy loss of ions by excitation
and ionization of the target medium. This process gives a continuous energy

loss and the change of the direction of interacting particles is negligible.

Electronic stopping cross section

Based on the comparison of the velocity of ions with that of the orbital
electrons in the target atoms, the electronic stopping cross section is usually
divided into three energy regions: high, intermediate, and low energy. Numer-
ous expressions of the electronic stopping cross section have been investigated
theoretically and empirically. A literature survey of these investigations can
be found in References [17] and [18].

With the use of both a new concept of the effective charge proposed by
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Brandt and Kitagawa [19] and the local density approximation, Ziegler et
al. [17] suggested a semi-empirical expression for the electronic stopping cross
section Se. In this expression, ions are basically divided into three categories
according to their atomic numbers, i.e. hydrogen, helium, and heavy ions.
Because the average error of this expression is proposed [17] to be only 7.8%

when compared with experimental data, this expression is used in this work.

Straggling of electronic energy loss

For the straggling of electronic energy loss, Bohr [20] first suggested the

expression as

2mov? 9 72 Zget
0 p(E) = [T2do = [ 1} L, (19)
€

where m, is the electron mass. Since then, many expressions [21-24] have
been proposed to improve Equation 19. Based on the free-electron-gas model,

Bonderup and Hvelplund [24] suggested an analytical expression of the form

VF\2 h 2
Qe _ 1+[0.2(-E)% + ﬁ%z] In(3%) v >>vp (20)
Qe,B (1 + 13X2)——0,5(%?_)2 v <wvp,

where x2 is equal to €2/7hvp, while vp and w, are the Fermi velocity and the
plasma frequency of the target material, respectively. Equation 20 is used in
this work. The expression of }, p will include the relativistic effect [21], and
is given by

1-0.562
Qe = 47TZ%Z264(1—_’ﬂ—2ﬁ—), (21)

where 3 is equal to v/c and c is the speed of light.
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Figure 5. Straggling of electronic energy loss for H, Si, and Bi in Si.

A representation of the straggling of electronic energy loss for hydrogen,
silicon, and bismuth ions in silicon is displayed in Figure 5. As can be seen,
the heavier ion shows a larger straggling of electronic loss. In addition, the
straggling of electronic energy loss increases roughly proportionally to the
ion energy, especially at low energies, and approaches a constant as the ion

velocity becomes much greater than the Fermi velocity.

Third-moment of electronic energy loss

As present, there is no proposed analytical expression for the third-
moment of electronic energy loss, K.. The following equation, similar to

Bohr’s theory, is therefore derived in this work:

2mov 27rZ
— 37— oV 3
= /Te dd—/ T 'U2T2dTe. (22)
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Figure 6. Third-moment of electronic energy loss for H, Si, and Bi in Si.

To account for the relativistic effect, Equation 22 can be further written in

the form of

1/2 - 82/3
e

Plotted in Figure 6 is a demonstration of the third-moment of electronic

Ke(E) = 8nZ9Z3e*mov?( ). (23)

energy loss for hydrogen, silicon, and bismuth ions in silicon. As shown, the
heavier ion represents a larger value of the third-moment of electronic energy
loss. The third-moment of electronic energy loss also shows a linear increase

with the ion energy.

3 Projected range formulation

In this work, the projected range formulation is derived on the basis of the

backward type linearized Boltzmann equation in which the governing equation
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is given by [25]

nzn=lzm = N/daa:"zm —N/da///d:c*dy*dz* (24)
(z* cos ¢ — 2*sin @)™ (z* sin @ + 2* cos ¢)"po(E — T, z*, y*, 2%),

where T' = Ty, + Te, « is the coordinate along with the original direction of
the incident ions, and z is the lateral coordinate relative to 2. The deflection
angle ¢ is given by

sin 8
tng = T (25)

0 Ty

sing = (1+ A) 1A

The spatial moments of the projected range distribution p, are defined as

™ = /// M po(E, ¥, y*, 2% )dz*dy* dz*. (26)

To solve Equation 24, Biersack [25] used a Taylor series expansion of p,, cos @,
and sin ¢ up to the second moment. This procedure is extended to the third
moment in this work and the projected range equations can be derived as the

following third-order coupled differential equations:

K &322 O  AK, d%22

o5 a5 t O3 t IEs) I

AQn (1 —24)Kn, dZ

5ES T 8Els (4B}

ASn (1-24)0n (2-34)K,
~ 8E?2  16ES

NS {{ (27)

+1+

=1- N[5

Iz,

d22 +22)  Q d* (a2 422) K d3(2? +22)
NS dE 28 dE? +65 dE3 )

= 27,



2 Qd%? LK d322"]
dE  2S dE? ' 6S dE3
AS, (1-A)2Q, (1-A2K,

NS |

=Ml e e =)
AQn  (1-A)2Kn, d — —
T i JaE= )
AKp d?

~5m i@~}

tives of E, d/dFE, by using the approximations of

T o E1/2,

2 x E,

722 « E,

coupled differential equations:

0 —240, K + (1 =3A)Kn. dT
NS [+ — 5 SE’S B
~ ASn  (1=24)Qn (2—3A4)Kn,_
=l1-Nog -%g  ~ " &
5.3
NS M = 27,

dE

14

As suggested by Biersack [25], the second and third derivative terms,

d?/dE? and d3/dE3, in Equation 27 can be simply reduced into first deriva-

(28)

where T is the projected range, (ﬁ — 52)1/ 2 represents the projected range
straggling, and (-2_2)1/ 2 denotes the projected range lateral straggling. With

these simplifications, Equation 27 can be expressed as the following first-order

(29)
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240, | (1 - A)’Ky. d2?

NS -5 25?5 V4B
A8 (1-4)%, (1-A)%K,, —~ —
=N e e @)

_[2,49" (1 - A)2K, -

ES T 2E2s

where S = S, + S, and with similar expressions for  and K. Due to the
fact that the term [I — 24Qp/ES + (1 — A)2Kp/2E%S] can be zero for some
ion-target combinations, a further investigation of Equations 28 and 29 is
needed. With the use of 22 « E in approximating the term [—2AQ,/ES +
(1 — A)2K,/2E%S] dz2/dE, the projected range equations for any ion-target
combination can be obtained as

N-2A0, K+ (1-3A)K,, dT

NS 1+ =55 SEZS Vi (30)
~ AS,  (1—24)0, (2-34)Kn.
=l-Nopg-~%m "~ ws &

d(z? +22)

NS —dl'j_ = 2.'13,

dz? AS, (1-A4)2%2, (1-A4)°%K,

_ _ _ 37
NS I5 =N 41E? 43 (2% =%
240, (1 -A)2Kn,,_ 22
~Tgg ~ g 1E-NSE)

To extend the application of Equation 30 for multi-component target ma-
terials, the so-called Bragg rule [26] is used. In Bragg’s formulation, the

electronic stopping cross section of a By, Cy material is simply expressed as

Se(BmCn) = mSe(B) + nSe(0), (31)
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where S (B) and Se(C) are the electronic stopping cross sections of the com-

ponents B and C, respectively. Define the following:
AlS, = ZA;'- £iSejs (32)
J
A = 3 A5fi %,
J
AK, = ZA;'. fiKejs
J

where the exponent ¢ = 0,1, and 2, f; is the atomic fraction of the 7P com-
ponent in the target material, and A; is equal to the atomic mass ratio of the
jth component to incident ion. An expression similar to that of Equation 32

is used for the nuclear energy loss.

4 Results and discussion

In Figure 7, the calculated projected range Rp and range straggling AR,
for heavy ions such as bismuth in silicon are depicted as functions of energy.
The experimental data [27-30] and the theoretical data from the well-known
Monte Carlo computer code TRIM [31] are also shown. As can be seen, this
work as well as TRIM show good agreement with experimental data at low
energies, but this work shows superior agreement at high energies.

Shown in Figures 8 and 9 are the comparisons of the calculated results
from this work with experimental data [32-38] for the projected range and
range straggling of medium ions such as boron and phosphorous in silicon.
The good agreement is obvious. For the implantation of light ions such as
helium and hydrogen in silicon, an inspection of Figures 10 and 11 shows

that the calculated results also compare well with experimental data [39-44].
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In addition, the calculated lateral straggling AR, for lead ions in silicon is
displayed along with experimental data [29] in Figure 12. As can be seen, the
calculated results agree very well with experimental data. A comparison of
the calculated results with experimental data for a compound substrate such
as silicon dioxide [45] has also been investigated. From Figures 13 and 14, it

can again be seen that the agreement is quite good.

5 Conclusions

It has been found that the use of the recently-derived projected range
equations, together with the nuclear and electronic energy losses up to the
third moment, leads to a simple and accurate means of evaluating the pro-

Jected ranges of energetic ions in either single-component target materials or
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multi-component target materials such as chemical compounds, alloys, mix-
tures, etc. In addition, it should be noted that the good correlation between
this work and experiment is obtained without resorting to any empirical cor-
rection factors.
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