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I. 1Introduction

In fusion neutronics calculations, there is a need for a calculational
method that is capable of determining the neutron flux for a three dimen-
tional design with an arbitrary geometrical configuration. Usually, one
is forced to rely on the Monte Carlo method, especially when the reactor
geometry is complicated.

The neutronics calculations br the blanket and shield in the present
study, were performed using the Monte Carlo program MORSEl’Z. The proper
operation of the program is checked against the flux calculations of the
standard blanket fusion reactor model3 using the transport code ANISN4
which employs the same cross section data sets as MORSE. All data used
for the performed calculations were taken from the ENDF/B files.

Section II of this paper is focused directly on the standard blanket
calculations. Section IITI is devoted to the neutronics calculations of
the unit cell and blanket and shield assembly of the Austin design. The
neutronics calculations of the UWMAK~I is the subject of section IV. A
conclusion from this study is presented in Section V. The final section

deals with the corrections which have been made to the MORSE program.

II. Standard Blanket

In order to check the proper operation of the MORSE code, the standard
blanket model shown in Figure 1 was considered as a sample problem. The
problem was run with 35 energy groups and P3 anisotropic scattering cross
sections. An isotropic source of 14.1 MeV neutrons uniformly distributed
throughout a central cylinder of 150 cm radius was employed and 1000 histories
were followed. A geometry of infinitely long concentric cylinders was con-
sidered for the blanket and an outside vacuum boundary condition was assumed.

A normalization factor of 4.43 x lO14 n/cmz/sec on the first wall was used.



The flux distribution versus region number from MORSE is shown in
Figure 2, while the flux distribution versus interval number from
ANISN is shown in Figure 3. 1In general, both calculations are in
good agreement within the statistical error of the MORSE results.

III. Austin Design

The fusion reactor design shown in Figure 4 is represented for
neutronics calculations by the blanket and shield assembly shown in
Figure 5.

A. The Unit Cell

The blanket is composed of a large number of unit cells to
moderate neutrons, breed tritium, and remove heatS. A schematic view
of the unit cell is shown in Figure 6.

The purpose of carrying out Monte Carlo calculations for the unit
cell, is to study the effect of the first wall curvature and homogeni-
zation on the flux distribution. Two problems based on the possible
representations of the first wall, have been considered. In the first
problem, the first wall has a cylindrical shape which is the actual
case. In the second problem, the first wall is considered as a slab
(Figure 7) with the same amount of material as the former case. The
latter case has been used, with a homogeneous medium of regions I, II,
VI and VII, for a discrete ordinates calculation for the blanket.

For each problem, the histories of 1000 source neutrons were
followed, 46 energy groups (Table I), and P3 scattering anisotropy
were used, and vacuum boundary conditions were assumed outside region

X. The flux distributions in the different regions are summarized in



Table II. The results in all regions are in good agreement within the
statistical error. Only in region X is the discrepancy between the two
cases slightly larger than the statistical error and it is expected
that can be removed by running more histories. The first wall flux is
slightly lower in Case 1. This results from the fact that the thinner
areas of a wall of variable projected thickness transmit more particles
than are stopped by extra material in the thicker areas.

The flux spectrum in regions I, II and V are shown in Figures
8, 9, and 10 respectively. The solid lines represent case 1 and the
dashed lines represent case 2. Figure 10 shows that in case 2 the high
flux is primarily due to neutrons having energies slightly lower than
the source energy as a result of the extra thermalization of the source
neutrons by the thicker first wall. That leads to a slight decrease
in the high energy neutrons, which produce Li7(n,n'T)a reactions in
regions I and II as shown in Figures 8 and 9 respectively. This reduction
yields a low tritium production from Li7 in case 2.

The tritium production for cases 1 and 2 are listed in Table III.
Comparing with ANISN6, one finds good agreement between the three
results within the statistical error.

A major conclusion which emerges from the unit cell results is
that slab geometry is a good representation for the first wall from
the neutronics point of view. Thus, to reduce the computation cost,
the neutronics calculations for the unit cell of new designs can be
performed by the discrete ordinates method without introducing

appreciable error to the results.



B - The Blanket and Shield Calculations

The blanket and shield assembly shown in Figure 5 is infin-
itely long in the direction perpendicular to the page. Due to
problem symmetry about the horizontal mid plane, only the upper
half of the blanket and shield were considered with an albedo
reflecting boundary at the mid plane. Homogenized mixtures for
the blanket and shield are based on the composition of the unit
cell (Figure 6) and shield. Schematic representation of the shield
is shown in Figure 11.

The main purpose in carrying out these calculations has been
to study: 1) the effect of source representation on the flux dis-
tribution, 2) the effect of the divertor slots on tritium breeding,
and 3) the leakage of neutrons through the divertor slots.

Throughout the calculations, 46 neutron energy groups and
P3 scattering anisotropy have been used. The histories of 4000
source neutrons were followed and vacuum boundary conditions were
assumed outside the shield.

The plasma is considered as an isotropic source of 14.1 MeV
neutrons. Three different source representations were chosen based
on combinations between plasma spatial shapes and density distri-
butions:

1) Actual plasma shape with uniform density distribution

2) Circular plasma shape with uniform density distribution

3) Circular plasma shape with parabolic density distribution.

The flux distributions for the three cases are given in Table
IV. The leakage probability from the slots as well as from the
boundaries of the shield are given in Table V. Tritium production

from Li7(n,n'T)u and Li6(n,T)u reactions, by region, are summarized



in Table VI (reaction rates are normalized to one source neutron).
The flux per unit energy is plotted versus energy for blanket and
first wall regions (Figures 12 to 18) for the three cases.

The results for the flux distribution in the three cases are
generally in good agreement within the statistical error. This means
that the results do not depend to a great extent on the source dis-
tribution and a simple representation of the source is adequate for
our calculations.

In general, the flux spectrum in the blanket and first wall
regions are in good agreement for the three cases, and only in some
of the low energy groups are there slight discrepancies.

Table VI shows the agreement (within statistical error) in the
reaction rates for the three cases. The tritium breeding is not
sensitive to the source representation and, even in the presence of
the slots, it is more than adequate. Comparing with discrete ordinate
calculations,6 one will find discrepancies of up to 9% with a lower
breeding ratio obtained in the Monte Carlo calculatiomns. These
discrepancies are due to differences in the calculated Li7(n,n'T)a
reaction rates which are induced by high energy neutrons. In Monte
Carlo calculations, a homogenous mixture is used in the blanket. The
uniformly distributed graphite in this case softens the spectrum con-
siderably and a reduced Li7(n,n'T)a reaction rate results.

The leakage from the slots is higher in case 1 than in cases
2 and 3 as would be expected. Almost all escapes from the slots occur
from slot 1 and only a very few low energy neutrons escape from slot 2.
It is concluded that neutron escape from the slots is small and a

few centimeters of stainless steel suffices to protect the regions

behind them.



1Ve UWMAK-I Blanket and Shield Calculations

In order to study the leakage of neutrons from the vacuum
openings, the UWMAK-I blanket and shield have been represented for
neutronics calculations by the configuration shown in Figure 19.

An albedo reflecting boundary is placed at the mid plane while
vacuum boundary conditions are considered outside the shield. The
height of the system is based on a unit of the twelve sectors of the
torus which contains one vacuum opening.

The calculations have been carried out with 46 energy groups,
P3 scattering anisotropy and histories of 4000 source neutrons uni-
formly distributed throughout the actual plasma shape. Homogenized
mixtures for the shield and blanket are used. Schematic represen—
tations are shown in Figure 20 for the shield and the blanket on
both sides of the plasma.

The results for the flux distribution in the various regions
as well as the tritium production in the blanket, are summarized
in Table VII. The leakage probability and energy leakage from the
vacuum opening are found to be 0.3635% and 0.23761{10_3 Mev/Mev respec—-
tively, while the leakage probability from the shield boundaries is
0.2115%.

In conclusion, the leakage of the neutrons from the vacuum open-
ings is negligible and the part of the blanket represented by region

X provides good protection.



V. Conclusion

It is useful to summarize in several points the results of the
Monte Carlo calculations for the Univ. of Wisconsin fusion reactor
blanket and shield:

1.) A simple representation of the neutron source is adequate for

the neutronics calculations.

2.) The flux spectrum in the different regions is not sensitive

to the source representation. As a result, any reaction

rate with a certain source distribution can be calculated
using the flux spectrum of another source distribution with
no need of repeating the calculations and without introducing
appreciable error to the results.

3.) The slots have no effect on the tritium breeding.

4.) a) The neutron leakage from any well protected opening is

very small and can be neglected.
b) A fewcentimeters of structural material suffices to protect

the regions behind any opening.
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Table I

Neutron 46 Energy Group Structure in ev

Group Limits

Group E (Top) E (Low) E(Mid Point)
1 1.4918 (+7)* 1.3499 (+7) 1.4208 (+7)
2 1.3499 (+7) 1.2214 (+7) 1.2856 (+7)
3 1.2214 (+7) 1.1052 (+7) 1.1633 (+7)
4 1.1052 (+7) 1.0000 (+7) 1.0526 (+7)
5 1.0000 (+7) 9.0484 (+6) 9.5242 (+6)
6 9.0484 (+6) 8.1873 (+6) 8.6178 (+6)
7 8.1873 (+6) 7.4082 (+6) 7.7979 (+6)
8 7.4082 (+6) 6.7032 (+6) 7.0557 (+6)
9 6.7032 (+6) 6.0653 (+6) 6.3843 (+6)

10 6.0653 (+6) 5.4881 (+6) 5.7787 (+6)
11 5.4881 (+6) 4.9659 (+6) 5.2270 (+6)
12 4.9659 (+6) 4.4933 (+6) 4.7296 (+6)
13 4.4933 (+6) 4.0657 (+6) 4.2795 (+6)
14 4.0657 (+6) 3.6788 (+6) 3.8722 (+6)
15 3.6788 (+6) 3.3287 (+6) 3.5038 (+6)
16 3.3287 (+6) 3.0119 (+6) 3.1703 (+6)
17 3.0119 (+6) 2.7253 (+6) 2.8686 (+6)
18 2.7253 (+6) 2.4660 (+6) 2.5956 (+6)
19 2.4660 (+6) 1.8268 (+6) 2.1251 (+6)
20 1.8268 (+6) 1.3534 (+6) 1.5743 (+6)
21 1.3534 (+6) 1.0026 (+6) 1.1663 (+6)
22 1.0026 (+6) 7.4274 (+5) 8.6401 (+5)
23 7.4274 (+5) 5.5023 (+5) 6.4008 (+5)
24 5.5023 (+5) 4.,0762 (+5) 4.7418 (+5)
25 4.0762 (+5) 3.0197 (+5) 3.5128 (+5)
26 3.0917 (+5) 2.2371 (+5) 2.6024 (+5)
27 2.2371 (+5) 1.6573 (+5) 1.9279 (+5)
28 1.6573 (+5) 1.2277 (+5) 1.4282 (+5)
29 1.2277 (+5) 6.7379 (+4) 9.8803 (+4)
30 6.7379 (+4) 3.1828 (+4) 4.6671 (+4)
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Table I (continued)

Group Limits

Group E(Top) E (Low) E(Mid Point)
31 3.1828 (+4) 1.5034 (+4) 2.2046 (+4)
32 1.5034 (+4) 7.1017 (+3) 1.0414 (+4)
33 7.1017 (+3) 3.3546 (+3) 4.9191 (+3)
34 3.3546 (+3) 1.5846 (+3) 2.3236 (+3)
35 1.5846 (43) 7.4852 (+2) 1.0976 (+3)
36 7.4852 (+2) 3.5358 (+2) 5.1847 (+2)
37 3.5358 (+2) 1.6702 (+2) 2.4491 (+2)
38 1.6702 (+2) 7.8893 (+1) 1.1569 (+2)
39 7.8893 (+1) 3.7267 (+1) 5.4647 (+1)
40 3.7267 (+1) 1.7603 (+1) 2.5813 (+1)
41 1.7603 (+1) 8.3153 (+0) 1.2193 (+1)
42 8.3153 (+0) 3.9279 (+0) 5.7597 (+0)
43 3.9279 (+0) 1.8554 (+0) 2.7207 (+0)
44 1.8554 (+0) 8.7643 (-1) 1.2852 (+0)
45 8.7643 (-1) 4,1399 (-1) 6.0707 (-1)
46 4.1399 (-1) 2.200 (-2) 2.1800 (-1)

* (+ n) represents (lOin)
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Table II

Flux Distribution

ase
Region 1 2
1 1.3165 + .0148 1.3268 + .0193
2 2.4945 + .0793 2.6137 + .0876
3 (5.3874 + .228)10* (4.5662 + .23)10 "
4 (5.4497 + .665)10 2 (6.1263 + .65)10 2
5 2.8606 + .138 3.0198 + .131
6 1.2968 + .0367 1.3245 + .0289
7 1.3017 + .0308 1.3102 + .027
8 (7.8974 + .427)107% (7.3825 + .378)10 ©
9 (1.5367 + .244)10 * (1.2462 + .2068)10
10 (2.3535 + .459)10"2 (1.2471 + .346)107°




14

Table III

Tritium Production

Case Curved 1st Wall Straight 1st Wall
T
T7 T6 T7 T6
1 .3955 + ,01536 .8693 + ,01129 .3585 + ,01278 .8719 =+ .0112
2 .08615 + ,004552 .05014 £ ,001693 .07896 + .005536 .05425 + ,00233
4 .003275 + .,001622 .1065 * .008144 .006818 + . 002424 L1111 * .009036
Total |0.48494 £+ .0161 1.026 = .014 0.44427 = ,0141 1.0372 £ .0145
T6 + T7 1.51094 = .02135 1.48147 *+,02031
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Table IV

Flux Distribution

Region Case 1 Case 2 Case 3
1 (2.8414 * .0834) = 107’ (2.8791 + .0590) x 1077 | (2.8736 * .0659) x 10~/
2 (3.4624 + .0855) x 107/ (3.3525 + .0728) x 10~/ (3.4499 + .0529) x 107’
3 (1.8359 * .0813) x 107/ (1.7866 * .0711) x 1077 | (1.8319 * .0924) x 10/
4 (3.2047 * .0649) x 107/ (3.2513 % .0709) x 1077 | (3.1890 * .0738) x 107’
5 (1.3723 *+ .2192) x 1072 (2.010 + .2935) x 1070 | (1.7795 * .2328) x 1072
6 (4.4195 * .5606) x 10~ (3.3977 * .4294) x 1070 | (3.9859 * .6803) x 107°
7 (3.4036 + .5117) x 1072 (2.4764 + .4076) x 1070 | (3.5645 + .5428) x 107
8 (1.9801 * .3968) x 10°° (2.1283 + .5150) x 10°° (1.9102 + .3778) x 10°°
9 (3.5961 + .4345) x 1072 (3.3218 £ .3705) x 1072 | (3.3485 £ .3550) x 102
10 (1.3591 * .1744) x 107° (1.1478 + .0439) x 10°° | (1.2254 * .0910) x 10°°
11 (1.1736 + .0358) x 10°° (1.1956 + .0323) 1070 (1.1974 * .0339) x 1070
12 (1.1344 + .0360) x 10°° (1.1950 + .0620) x 10°° | (1.1994 * .0977) x 107°
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Table V

Summary of Leakage Probabilities

case

Leakage 1 2 3
Leakage Prob. . 3 ]

from slots 0.248% 0.222% 0.231%
Energy Leakage -3 -3 -3
from slots (Mev/Mev) 0.325 = 10 0.186 x 10 0.145 x 10
Leakage prob. from 0.234 0.151% 0.172%

the shield boundaries:
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Table VII

Flux Distribution and Tritium Production

Tritium Production
Region Flux Distribution
T7 T6
1 (6.2459 + .3074) x 1077 — _—
2 (5.6657 + .2589) x 107’ — .
3 (5.2111 + .4841) x 10~ ' — —_
4 (5.1676 *+ .3379) x 10~/ —_ o
5 (4.2472 + .1895) x 10/ — —_
6 (5.4715 + .2508) x 10’ — o
7 (2.4221 + .0903) x 107’ .07463 * .00539 L2164 + .0067
8 (2.2797 + .0512) x 10/ .06184 + .00287 .2090 + .0048
9 (1.8053 + .0935) x 107/ .02882 + .00240 .1000 + .0053
10 (2.5486 + .0833) x 10~/ .02103 + .00130 .0847 + .0022
11 (1.4320 % .0550) x 107/ .03511 + .00273 .1272 + .0047
12 (1.7801 *+ .0530) x 10/ .07373 + .00324 .2072 + .0066
13 (1.4845 + .2449) x 10°° — -
14 (1.2874 + .1460) x 10°° — —
15 (1.4504 + .1345) x 1075 - -_—
16 (6.1927 + .9480) x 107 ° — —
Total = 1.23967 + .01511
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FIG.2- FLUX DISTRIBUTION - MORSE
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