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Abstract

A Monte Carlo code for studying the transport of neutral helium atoms near
divertor or limiter target plates has been developed. The model is one-dimensional
and includes electron impact ionization and elastic scattering by plasma ions. The
thermal and streaming motion of the ions along the magnetic field, which can be at
an angle to the target plate, is included. The total and differential elastic scattering
cross-sections have been calculated classically using an ab initio calculation of the
interatomic potential. Results show significant effects of elastic collisions below about
10 eV, causing a substantial fraction of the helium atoms to be reflected back to
the target plate. This effect can be beneficial for the pumping of helium from the

discharge chamber.



1 Introduction

Helium exhaust is an important problem in the design of magnetic fusion reactors.
a particles are produced as a result of the D-T fusion reaction and have to be removed
from the system, otherwise the burning fuel will be diluted and the fusion reactivity will be
decreased. o particles recombine on a divertor plate or a limiter target and form neutral
helium atoms.

Helium atoms generally have a longer mean free path than the neutral hydrogenic
species, and therefore penetrate further into the main plasma. This effect can cause helium
de-enrichment and make the pumping of helium gas a harder task. As an example, consider
Fig. 1 which shows a divertor configuration proposed previously for use in the TIBER-II
tokamak. Hydrogenic ions (D" and T") as well as o particles following the magnetic field
lines in the scrape-off layer hit the divertor plate and get neutralized. If the striking point
is inside one of the holes along the plate, the resulting neutral particle is scattered outside
the system and can be driven to the pump duct as shown in Fig. 1-b (particle a), otherwise
the particle gets scattered towards the plasma (particle b). In the case of hydrogenic
species, due to the charge exchange process between the ion and the neutral particle, the
latter can return back to the divertor plate where it has a chance to go through one of the
holes and into the pump duct. A critical issue for this target plate concept is the pumping
of helium. For ixelium, since we are treating a low temperature regime (below about 40
eV), the proton-helium charge exchange reaction can be neglected as compared to electron
impact ionization and, although charge exchange of helium with Het and He?' ions is
considerable in the low temperature range, the low density of these ions, as compared
to the main plasma density, makes this reaction negligible. Therefore, considering these

interactions only, neutral helium has little chance to be backscattered towards the plate
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Figure 1: (a) TIBER-II’s previously proposed divertor with its flat vented plates (from
LLNL/TIBER 86-25). (b) Recycling at the plate.



unless it gets ionized and returns in the form of an ion. Another interaction which may
cause backscattering of the neutral helium to the divertor plate is the elastic scattering
of neutral helium by hydrogenic ions. If sufficient backscattering of helium atoms to the
plate can be obtained, then pumping of the helium from the system can be accomplished.

Potters and Goedheer [1,2] were the only ones to consider the elastic scattering process
when treating the problem of neutral helium transport in plasma. Their work is based on
a numerical solution of the Boltzmann equation and is restricted to only one-dimensional
problems. Since the solution of the Boltzmann equation using the exact form of the elastic
collision operator is a rather difficult task, they considered this problem using a simple
model (BGK model) in which collisions cause the neutral helium distribution function
to relax towards the Maxwellian distribution function at the local temperature, with a
relaxation time 7y, assumed to be independent of velocity. In other works [3,4,5,6], the
Monte Carlo method has been used to study helium atom transport, but the process of
elastic scattering with ions has not been considered.

In this report, we consider helium transport in the low temperature plasma edge region.
We assume that the neutral heliwin undergoes either electron impact ionization or elastic
scattering on the background ions. A one-dimensional transport code, 1IDIET, based on
Monte Carlo techniques, has been written to simulate helium atom transport. This allows
us to consider the elastic scattering process in a more accurate way and to include the
finite flow velocity of the ions with which the helium is colliding. The IDHET code treats
only one-dimensional problems but the use of the Monte Carlo method makes possible its
extension to two-dimensional cases.

In the next section, cross sections for the reactions considered between the helium atoms
and the plasma are presented. Section 3 contains the model for wall reflection, while a

description of the Monte Carlo simulation is given in section 4. Finally, in section 5,



numerical applications of the code 1IDHET and the discussion of the results obtained are

mcluded.

2 Plasma-Neutral Helium Interactions

The electron impact ionization rate coefficients for helium are obtained from the formu-
lation of Bell et al. [7]. The rate coefficients < o - v >, (cross section at a given energy
multiplied by electron velocity v at the same energy, and averaged over a Maxwellian
velocity distribution of the electrons) are plotted in Fig. 2.

Because of the lack of data on the elastic scattering of neutral helium by hydrogenic
ions, we calculated the needed cross sections using a classical model. Assume a spherically
symmetric potential, V(r), with a long range attraction, an attractive well and a short-
range repulsion. From elementary considerations of energy and momentum conservation

one obtains [8,9,10] an explicit expression for the classical deflection function, ¥,

oo d
x(b,g) =7 —2b/rm rvl - }:; my (1)

sug° T

where b is the impact parameter, p is the reduced mass, g is the initial relative speed of

the colliding particles and rp,, the distance of closest approach in the encounter, is the

V(rm) b\?
1— 22— [—] =0
2Hg Tm

The deflection function x is positive for net repulsive and negative for net attractive tra-

outermost zero of

jectories. The observable scattering angle in the center of mass system is
©=|x| with 0<O<m

Let 0(0©, E) be the differential elastic scattering cross section where E is the center of

mass energy, £ = jug®. o(O, E) is expressible directly in terms of the deflection function
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Figure 2: Electron impact ionization rate coeflicients for helium[7].




by the relation

b, |db
O,F) = | —
o(6,8) Zsin@ dx

i

(2)

’
1

where the summation is over the various values of b giving rise to the same value of ©.

The total elastic scattering cross section, o, is defined as

o,(E) = 2w /m a(0, E)sin © d6. (3)

0
For the form of V(r), we utilize the results of ab initio calculations by Wolniewicz [11] in
which he calculated adiabatic values for the intermolecular potential of the molecular ion
HeH". Helbig, Millis and Todd [12] have fit these calculations to the following analytical

function

% :2—1[ T lz(i_g)]_ v
ViR) =21+ 2+ (5 - 3 [+ 5+ (5 + 2

where U, the difference between the ground-state energies of He and Li*, equals 4.37311
hartrees (1 hartree = 27.2097 eV), a, the polarizability of He, equals 1.3835 bohr (1 bohr
= 0.52917 x 107® c¢m), A = 0.442, B = 0.505, and C = 0.451.

This form of V(r) is plotted in Fig. 3. Differential elastic scattering cross sections at
different values of E have been calculated and some of them have been compared to the
results of Helbig et al. [12]. In Fig. 4, the classical deflection function is plotted versus the
impact parameter for £ = 5.79567 eV. Fig. 5 shows the corresponding classical differential
elastic scattering cross section versus ©. As shown in the figure, our curve is in good
agreement with the Helbig et al. results. The total elastic scattering cross section is
presented in Fig. 6 versus the helium kinetic energy in a frame with the proton at rest and

in I'ig. 7 versus the helium-proton relative speed, g.

The elastic scattering rate coefficient < o - v >, is given by
<ov>= [alg) 5~ V| f(V) 7, (4)
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Figure 3: Wolniewicz potential versus proton-helium atom separation distance.
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where o,(g) is the elastic scattering cross section as a function of the relative speed g,
g = |9, — V|, U, is the velocity of the neutral helium particle, V is the ion velocity and
fi(V) is the ion distribution function.

Since numerical integration of Eq. (4) at each flight of the tracked particle is out of the
question, an approximate solution has been introduced [4]. The relative speed g has been
substituted with an average speed g* which is in some way representative of the velocity

population. In particular, to simplify the calculations, let
g* =< g2 >1/2,

with
<g’>= /g2 (V) dV.
For f;(V) equal to a shifted Maxwellian,
7 mpr 1/2 ’: mgyg 7 = 2]
(VY — | — 22 — — 5
V) (27rkTi) T AR (5)

where mpy is the mass of the hydrogenic ion, 7; and @ are the ion temperature and the ion

flow velocity respectively, we have [4]

LTS 12
7= [ 2L jaap]

my

Eq. (4) is then Written as

*

<o-v>,=0,(9%) g%

3 Wall Interactions

In this section, the modelling of the interactions of ions and neutrals with divertor or

limiter target plates will be described. In a steady state condition, plasma ions hitting a

13



wall or a plate are neutralized and return back to the plasma as a result of mainly two
processes: backscattering and re-emission.

Particles of energy Eq bombarding a surface of a solid at an angle of incidence, «, relative
to the surface normal, penetrate for a short distance into the solid and are backscattered
(predominantly) as neutrals to the surface with a probability Ry, which is a function of E,
and a. Ry is called the particle reflection coefficient and defined as the average number
of particles backscattered per incident particle. The reflected energy is expressed as a
fraction Rg(E,, @) of the incident energy. The coefficient Rg is called the energy reflection
coefficient. Therefore, the mean energy of the backscattered particles E(FE,,a) is a result
of these definitions

E(E,,«) = E, %%—3 (6)

Particle and energy reflection coefficients depend further on the solid material and the
incident particle.

In many publications, backscattering data are represented not as a function of the
incident energy but as a function of the reduced energy, €, introduced by Lindhard et
al. [13] and given by

my > 1
my +my A (22/3 + Z;/:i)l/2

0

e = 32.55 (

1
with E, in keV' and m,, Z;, my, Z, being the mass and nuclear charge of the incident
particles and target atoms. The use of ¢ instead of the actual energy E; allows one to
scale approximately the backscattering data for different ion-target combinations as long
as my >> my.

In our model, we adopted the forms of the reflection coeflicients used by Cupini et



al. [4]. These are given by

1 e<3x107*
Rn(e) = { 0.1885 — 0.2265 log,, ¢ I3x107t<e<7
0 e>"T

1 e<2x10™*

—0.25log,, € 2x 107 <e<0.1
RE(E) _ J E10
0.07 — 0.18log,, € 0l1<e<?2

0 E>2

\

For hydrogen and helium bombardment of Fe, Ni and stainless steel, the following formulas

have been adopted:
Ru(e) = [(1 + 3.2116€™3334)3/2 1 (1.3288¢%/2)%/2)72/3

Rg(e) = [(1 + 7.1172%35250)3/2  (5.2757¢%/2)3/2]2/3,
For helium incident on graphite walls, the following expressions have been used

0.459E;%3 E, <1000
274E;122 E, > 1000

0.313E; 047 E, <1000
Rg(E,) =
473 1478 E, > 1000
The coefficient Ry increases with the angle of incidence, «, and approaches 1 for grazing

incidence. To account for this, the following formula has been used
Rn(Eo,a) = [RN(E,) — 1]cosa + 1,

where Ry(FE,, a) is the particle reflection coeflicient for non-normal incidence, and Ry (E,)

is the particle reflection coefficient for normal incidence.
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Since there is a lack of agreement between theoretical and experimental data for the de-
pendence of the energy reflection coeflicient on the incidence angle [14,15], any dependence
of Rg on a has been neglected in our model.

Therefore, when a particle history reaches a wall the event of backscattering is chosen
with probability Ry and the energy of the reflected particle is determined from Eq. (6).
As for the angle of the emerging particle, its distribution is reasonably approximated by a
cosine law [14], together with a uniformly distributed azimuthal angle. Particles which are
not backscattered, slow down to thermal energies and are re-emitted with a speed chosen

from a speed Maxwellian distribution

_ MHe 3/2 2 MHe 2]
f(v) =4n <27rkTw) v exp [_2kva , (7)

where T, is the wall temperature and k is the Boltzmann constant. The angles of the

re-emitted particle are chosen as in the case of backscattering.

4 Monte Carlo Simulation

The geometry of the problem considered and the coordinates used are shown in Fig. 8.
The region of interest has a maximum width of Z,,,, and is divided into zones of uniform
plasma parameters. The plasma parameters, such as the electron temperature, 7., the
ion temperature, T;, the plasma density, n,, the ion flow velocity, a, and the sheath and

pre-sheath potential, ®, are kept constant during the Monte Carlo calculation.

4.1 Sampling of the Neutral Source Particle

The code allows the performance of two distinct calculations:

16
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o The first calculation assumes a monoenergetic source of neutral helium particles
placed at the target plate. It also assumes that the reflection at the plate is neglected,
t.e., when a helium atom leaving the plasma strikes the plate, it will be considered
lost from the system. This calculation allows us to obtain the probability for a helium
atom born at the target plate to be scattered by the plasma back to the plate because

of elastic scattering with plasma ions.

e In the second calculation, the neutral helium source is due to the neutralization of
the helium ions incident on the plate. These ions get reflected as neutral helium, as
described in section 3. In this case the reflection at the plate is taken into account,
t.e., helium atoms striking the plate are allowed either to get reflected back as in

section 3 or to escape from the system.

For the second type of calculation, the neutral source particle has its energy obtained as

follows:

e An « particle incident on the target plate has its velocity, 7;, chosen from a shifted

Maxwellian distribution

1/2
_ MEe MHe ,_ — 2]
;) = —_— e (V; — Qa y
@) <27rkT,-1) e’q’[ 2RI, )
where T}, is the edge ion temperature and @, is the edge ion flow velocity.

o Because the a particle is accelerated through the sheath and pre-sheath potential,

®, it will therefore have a total incident energy E, given by
! 2
E, = émgevi + 29,

and it is assumed to be incident normal to the plate.

18



o Using the reflection model described in section 3, the reflected helium atom will have

its velocity v, specified.

4.2 Sampling of the Collision

The path length estimator technique [16,17] is used to track the helium particle until a
collision point is obtained. As mentioned before, at the collision point the neutral he-
lium atom can either be ionized by electrons or elastically scattered by background ions.
Tonization is sampled by using the method of suppression of absorption [4,5,17].

The elastic scattering is treated as follows:

1. The target ion has its velocity, V, sampled from a shifted Maxwellian distribution

given by Eq.(5).

2. Since the collision problem is more easily treated when one particle is at rest, we
transform our problem to the frame where the target ion is at rest. In this frame,

frame no. 2, the helium atom will have a velocity v, given by
Up = Up — Va

and an energy obtained as

1
E, = = mg. vi.
g He Tr

3. A transformation to a center of mass (COM) frame is then performed with the

velocity of the center of mass obtained as Tgy = ﬁﬂf’":—}l

4. Since the scattering is anisotropic, the scattering angle in the COM frame, ©, will
be sampled using a method employed in the transport of neutrons [18]. This method

can be devised by tabulating, for specific incident energies, the (n+ 1) center-of-mass

19



angles that correspond to n equally probable intervals of the cumulative distribution

function, P;, where P; is given by

(cos ®); @ Er
}",-:271'/_1 -(T:(g-(L—E:)—zd(COSG) 1=0,1,2,...,n.

Here n is the number of equally likely intervals, set equal to 32 in our calculation,
o(0, E,) is the differential elastic scattering cross section and o,(E,) is the total
elastic scattering cross section. Our model contains such tables for 30 values of the
incident energy F,. The scattering angle, ©, is then determined by linear interpola-

tion between consecutive tables.

. The scattering angle in frame no. 2, 85, is then found from

14+ Acos®
(1 +2Acos © + A2)1/2’

cos By =

where A = my/mpy.. The speed of the emerging helium atom in frame no. 2, v., can

be calculated using

, (14 A% + 24 cos ©)/2

Ve = 1+ A

The direction cosines of the emerging helium atom in frame no. 2 result from the

following equations [19]

il |we,| < 0.999999,

sin f,
/
Why = —Wppp, COS P — Wryd] + Wy cOs Oy,
1- wr?z
sin
I
w, = 1—:— [Wryrz €OS @ + Wygd)] - wry cos B,
—w

' . .
w,, = —y/1—w?, sinb,cosp + cosbhw,,.

Otherwise,

P
w,, = sinf,cosep,

20



w,, = dsinf,,

W, = Wp;cosb,.
The azimuthal angle ¢ is sampled isotropically from

p =m(2¢ - 1),
where ¢ is a random number uniformly distributed between 0 and 1. d is given by

— sin <0
d= 4 P

sin ¢ ¢ > 0.
. Transforming back to our initial frame, we have the velocity of the scattered helium

atom as

v, = v,.+V,
] 1

= (v:'w:'m + ‘/l)é + (vrwry + ‘/’y)g + ('U:'w;'z + ‘/2)27

which can be written as

_ ] 1 ]
; A - -
V'p = Uy -+ Upy Y -+ VpoZ,

from which, the speed and the direction cosines of the scattered helium atom are

calculated by

o 2 L2 '271/2
Vp = (Upm + Upy + pz) ?
' 1/2 '
w. = [l - (&5)2] Yy
z T ' 2 211/2°
v, [v2 4+ v2] /
' 1/2 '
w, = [1 - (?pz )2] e
y ! 2 '271/2°
Yp [vpm + vpy]
1
' v
— pz
(.L)z = —’UT
P
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The scattered helium atom is then tracked until the particle either escapes from the system
or is ionized. A new particle is then launched at the plate and all the above steps are

repeated again.

5 Results

The 1DHET code allows the calculation of the neutral helium density distribution and the
helium current outgoing to the plate, which gives the number of helium particles scattered
back to the plate. One can also obtain the helium current escaping to the plasma side, the
number of helium particles escaping at the plate to the pump duct as well as the energy
spectrum of the neutral helium at the plate.

A parametric study has been performed to examine the dependence of the helium
current outgoing to the plate on the ion temperature and on the ion flow velocity. We
assume a hydrogen plasma with uniform and equal electron and ion temperatures in a
region of maximum width Z,,, = 7 cm. The plasma has a uniform density set equal to
1 x 10" cm™3. Ions and electrons follow magnetic field lines which are at an angle of 10°
to the target plate, which is taken to be iron. The sheath and pre-sheath potential, ®, is
assumed to be equal to 37,.

Two different calculations have been done. The first considers only the emission of
0.05 eV atoms at the plate and their reflection by elastic scattering with the ions. The
second calculation considers helium ions incident on the plate, their backscattering and
re-emission as atoms, and also backscattering or re-emission when helium atoms strike the
plate.

In the first case the atoms are emitted with an energy of 0.05 eV at the target plate.

Fig. 9 shows the neutral helium current scattered by the plasma back to the plate versus
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the plasma temperature. Since this current is normalized to 1 source particle/cm? s, it
represents the probability that a 0.05 eV atom born at the plate will be elastically scattered
by the ions back to the plate. As shown in Fig. 9, this probability increases as the ion
temperature decreases and becomes significant below 10 eV. The low reflection probability
of the plasma above 10 eV is because electron impact ionization rises rapidly with electron
temperature and becomes dominant above 10 eV.

The second calculation is for neutral helium atoms resulting from the neutralization
and reflection of & particles incident on the plate. Fig. 10 shows the helium atom current
reflected by the plasma by elastic scattering with ions versus the ion temperature. As
can be seen, the helium current follows the same behavior as in the first case, but the
helium current is somewhat lower in this case. This is because most of the neutral atoms
arising from the neutralization of « particles are more energetic than the 0.05 eV atoms
considered in the first case. These energetic particles penetrate further into the plasma
before being scattered or ionized. Those atoms which are scattered back toward the plate
by elastic scattering with ions have a greater probability of being ionized before returning
to the plate. Fig. 11 shows the dependence of the outgoing helium current on the ion flow
speed for a plasma temperature equal to 6 eV. As can be seen, the probability of an ion
returning to the plate is only weakly dependent on the ion flow speed. Hence the flow of

the ions toward the plate is not an important effect in these results.

6 Conclusion

Transport of neutral helium in the low temperature region near divertor or limiter target
plates has been studied using Monte Carlo techniques. Two different calculations have

been done. The first considers helium atoms born from a monoenergetic source placed at
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Figure 9: Neutral helium current to the plate versus temperature.
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