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CHAPTER 1
INTRODUCTION

Over the past thirty-five years, a considerable amount of work
has been devoted to the mechanical analysis of tubes conveying
fluids. The early investigations were primarily concerned with the
probiems encountered with the transport of oil in pipelines. A re-
view of the literature revealed that the majority of research was
concerned with the study of the transverse vibrations and stability
of simply supported, cantilevered or articulated pipes. In most
cases, the internal flow and/or variation in flow was the system
excitation. More recently, various nuclear fission reactor compo-
nents, such as heat-exchanger tubes, control rods and fuel pins, have
been studied for both axial flow and cross-flow vibratory problems.

However, in the study of inertial confinement fusion, reactor
chamber designs call for another application of tubes conveying
fluid. Here the first wall protection scheme involves an annular
bank of vertical tubes carrying liquid lithium-lead. Individual
tubes are braided from silicon carbide fibers producing a very long,
flexible component. The primary external loading on these tubes is
a planar impulsive pressure distribution applied at the repetition
rate of the driver. The investigation presented in this dissertation
examines the vibration and stability of these tubes to aid in the

development of the proposed reactor designs.



Three major issues of the design are separately addressed. The
first pertains to the fact that with the tubes in a vertical con-
figuration, the effect of gravity will result in an internal tension
variation. In order to avoid resonance problems due to synchroni-
zation with the repetition rate of the impulsive loadings, it is
necessary to determine accurate values for the natural frequencies.

Secondly, the dynamic response of the tubes to an externally
applied impulsive pressure is needed to guide in the tube placement
within the bank. The nonplanar response of strings, and more re-
cently beams, subjected to a strictly planar harmonic excitation is a
well-known phenomenon. Conditions under which the tube will begin to
whirl need to be outlined, along with amplitude-frequency relation-
ships for planar motion.

Finally, considering the fluid being pumped through the tubes,
the flow velocity may have a pulsating characteristic. Consequently,
this could result in parametric excitation of the tube. Regions of
instability for various flow velocities and pulsating amplification

factors need to be identified.



CHAPTER 2
LITERATURE SURVEY

2.1 AXIAL FLOW-INDUCED OSCILLATIONS

The vibration and stability of tubes conveying fluids has been
extensively studied for the last thirty-five years. However, the
first investigator of self-excited oscillations was Brillouin in
1885. His work remained unpublished until 1939 when one of his stu-
dents, Bourrieres [2.1], examined analytically and experimentally,
the flutter-type of instability associated with cantilevered pipes.

In the early 1950's, the bending vibrations observed on the
Trans-Arabian pipeline renewed interest in the subject. Ashley and
Haviland [2.2] derived the transverse equation of motion for a simply
supported pipe containing a flowing fluid. This was corrected by
Feodos'yev [2.3] and Housner [2.4] who independently predicted the
same critical flow velocity for which the pipe would buckle.
Niordson [2.5] derived the equation of motion of a simply supported
pipe from shell theory and determined the relationship between natu-
ral frequency and fluid velocity. This work was followed by Long
[2.6] who considered various support conditions in his experimental
and analytical work. His experimental results were inconclusive,
however, since the stiffness of the pipeline was too large for the
maximum fluid velocity available. Handelman [2.7]) determined the

character of the frequencies for various end conditions from the



structure of the differential equation of motion without determining
specific solutions.

Other investigations of the problem in the late 1950's were done
by Heinrich [2.8], Bolotin [2.9] and Hu and Tsoon [2.10]. Heinrich
was the first to include the effects of internal pressure on the
transverse vibrations of a pipe with zero stiffness. However, Hu and
Tsoon independently included hydrostatic pressure in their study of
the natural frequencies of simply supported, clamped and infinitely
long pipes.

In the next decade, work continued on describing the planar
vibrations of simply supported pipes. Movchan {2.11] determined the
critical velocity using Liapunov's method and proved Feodos'yev's
result was exact. Dodds and Runyan [2.12] experimentally verified
Housner's predictions on the effects of flow velocity on vibration
frequency. In addition, Li and DiMaggio [2.13] numerically calcu-
lated the eigenvalues of the problem, substantiating the results of
Niordson.

The effect of 1internal pressure on the equation of motion
received additional attention also. Stein and Tobriner [2.14] con-
sidered the special case of an elastically supported pipe of infinite
length conveying an ideal pressurized fluid. Naguleswaran and
Williams [2.15] investigated the combined effect of axial tension and
internal pressure on the natural frequency of pipes with both ends
supported. In a more recent study, Plaut and Huseyin [2.16] allowed

the axial load to be either tensile or compressive.



A general derivation of the equations of motion for pipe flow
including both lateral and longitudinal motion was completed by Roth
[2.17]. His analysis also included damping and restoring forces,
variable pipe cross section, compressibility of the fluid and time-
dependent 1internal pressure. Later, Thurman and Mote [2.18] pre-
sented the first nonlinear equations describing two-dimensional
motion. Using perturbation methods, they determined the fundamental
and second periods of transverse vibration for a simply supported
tube, emphasizing the effects of longitudinal inertia and nonlinear
tension. Although their analysis involved flow velocities below the
critical, they did observe that as the fluid velocity increased so
did the importance of the nonlinear terms.

Before the 1960's, buckling (divergence) had been the only flow-
induced instability studied, with the exception of Bourriéres. It
was Benjamin [2.19,2.20] in 1961, who investigated a system of artic-
ulated cantilevered pipes and found that both buckling and flutter
(oscillations with increasing amplitude) could occur in pipe segments
constrained to planar motion. He was also the first to observe that
fluid friction did not affect the motion of the pipe. In 1966,
Gregdry and Paidoussis [2.21,2.22] considered the case of a continu-
ous cantilevered pipe subjected to relatively high flow velocities.
They showed both theoretically and experimentally that for horizontal
tubular cantilevers the system is subject to flexural instability
only. Later, Paidoussis [2.23] found the same to be true for verti-

cal cantilevers. Previously, it had been assumed by Benjamin that



the dynamic behavior of a continuously flexible tube could be modeled
as an articulated system with an infinite number of degrees of free-
dom. Instead, it was found that the articulated system may exhibit
an entirely different oscillatory motion and therefore cannot serve
as a lumped-parameter model of a continuous system. This was further
verified by Paidoussis and Deksnis [2.24].

Additional studies were done on the stability of continuous
cantilevers to determine the effect of 1lumped masses [2.25,2.26],
forced vibrations [2.27] and velocity-dependent forces. Nemat-
Nasser, Prasad and Herrmann [2.28] found that internal and external
damping, as well as Coriolis forces, may have a destabilizing effect
in nonconservative continuous systems. The analogy between a
cantilever conveying fluid and a cantilever subjected to a follower
force was used by Herrmann and Nemat-Nasser [2.29] to show the same
results. Related work can be found in Refs. [2.30] and [2.31].

In the mid-1960's, other industrial applications of pipes con-
veying fluid produced papers that were of considerable interest. The
lateral motion of a deep-water drill string was analyzed by Graham,
Frost and Wilhoit [2.32]. Here the effect of the Coriolis acceler-
ation of the enclosed fluid was neglected when compared with the drag
forces involved. Greenwald and Dugundji [2.33] investigated the
instabilities of cantilevered propellant 1lines both experimentally
and theoretically. Also, the effects of initial tube curvature on
the motion of a completely flexible fuel line with a catenary geome-

try were studied by Svetlitskii [2.34].
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After 1970, flow-induced instabilities took on an even greater
importance with the applications to fuel rods and piping systems in
nuclear reactors. Work on improving the analytical solutions of
existing problems could be found [2.35-2.39], however most of the
research was extended to include more sophisticated structural models
and fluid flow patterns.

Paidoussis and Denise [2.40,2.41] were the first to observe that
shell-type oscillatory instabilities were possible in sufficiently
thin tubes. They found that both clamped and cantilevered pipes were
subject to instability by flutter in their second circumferential
mode. Weaver and Unny [2.42] independently determined similar re-
sults for simply supported cylinders. Further analytical investi-
gations were presented by Paidoussis [2.43-2.45].

The dynamic behavior of curved pipe-fluid systems received con-
siderable attention also. For this case, a dominant effect in the
tube response is the centrifugal force resulting from the fluid fol-
lowing a curved path. Unny, Martin and Dubey [2.46] and Chen [2.47-
2.50] derived the in-plane and out-of-plane equations of motions and
computed the critical flow velocities for various end conditions.
The effect of initial forces was analyzed by Hill and Davis [2.51],
and in a more extensive study, Doll and Mote [2.52] formulated the
longitudinal, torsional and both transverse equations of motion,
utilizing isoparametric finite elements in their natural frequency

calculations.



The influence of unsteady flow was found to be particularly im-
portant since periodic variations of the fluid velocity could cause
parametric resonance of the tube. Chen [2.53] was the first to in-
vestigate the stability of a simply supported pipe conveying a puls-
ating fluid whose flow velocity had a harmonic fluctuation about a
mean value. He determined the boundaries of the parametric insta-
bility regions and showed that combination resonances were also
possible. Further results were obtained by Chen and Rosenberg [2.54]
and Ginsberg [2.55]. Paidoussis and Issid [2.56] extended the study
to include stability maps for pinned, clamped and cantilevered pipes.
They reported that Chen [2.53] had previously neglected the axial
acceleration of the fluid induced by velocity perturbations which
could result in underestimating instability zones. Later, they
attempted to verify their conclusions experimentally [2.57] and found
them to be in good qualitative agreement. In a more recent study,
Paidoussis and Sundararajan [2.58] examined both parametric and
combination resonances for clamped and cantilevered tubes by using
Bolotin's method and a numerical Floquet analysis. A check on their
work was provided by Ariaratnam and Sri Namachchivaya [2.59] by using
the method of averaging. A comparable analysis for articulated pipes
was presented by Bohn and Herrmann [2.60].

Numerous nonlinear investigations were done to further predict
oscillatory behavior near critical velocities. Holmes [2.61,2.62]
considered first-order structural nonlinearities in his computations

to prove that simply supported pipes cannot sustain flutter insta-



bilities. Ch'ng and Dowell [2.63] used Hamilton's principle to
derive the differential equation of motion that included nonlinear
tension and curvature effects. They calculated the amplitude of
1imit cycle oscillations of cantilevered tubes and the divergence
characteristics of simply supported tubes for the case of steady
flow. Other nonlinear, planar motions with periodic flow were
studied for continuous cantilevers [2.64-2.66] and two-segmented
articulated tube systems [2.67,2.68].

In the past decade various experimental studies were conducted
to establish the correlation between theoretical models and physical
systems and to indicate areas for further considerations [2.69-2.73].
Another effort focused on verifying the transitions between the
instability modes of articulated tubes both experimentally and ana-
lytically. Bohn and Herrmann [2.74] examined a system of pipes that
was_a]]owed to oscillate in two different planes with the level of
"out-of-planeness" being one of the controlled parameters. They
found that for various steady flow rates, instability, either by
buckling or by flutter, depended upon that spatial parameter. In a
more recent study Edelstein and Chen [2.75] investigated the sta-
bility transitions from the case of a cantilevered tube to that of a
tube supported at both ends.

Subsequent research on the three-dimensional nonlinear motion of
articulated tubes was presented by Bajaj and Sethna [2.76,2.77].
They analyzed the equations of motion for bifurcating periodic solu-

tions near critical flow velocities. Lundgren, Sethna and Bajaj
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[2.78] considered the nonplanar, nonlinear motion of a vertical
continuous cantilevered tube having a nozzle at the free end. This
study was motivated by the engineering problems encountered when a
pipe ruptures (pipe whip). They determined the critical flow rates
at which instability occurred and obtained the stability boundaries
for both in-plane and out-of-plane motion. Their analysis did not,
however, include the effects of gravity, damping or pulsating flow.
In addition, the nonplanar, nonlinear studies of the motion of a

simply supported tube is absent in the literature.

2.2 NONPLANAR STRING OSCILLATIONS

Carrier [2.79,2.80] was recognized as the first to derive the
nonlinear equations of motion for large-amplitude planar oscillations
of an undamped string. He indicated how his analysis could be ex-
tended to nonplanar motion, but his primary interest was in deter-
mining the period of free vibrations. In 1948, Harrison [2.81] re-
ported the out-of-plane response of a wire to a strictly planar
excitation. In subsequent experiments, Lee [2.82] and Oplinger
[2.83] considered the planar forced vibrations of a string near
resonance and observed the phenomenon of mode jumping. They both
noted discrepancies when comparing their results with theory, which
could be attributed to the presence of nonplanar motion.

By the 1960's, it was a well-known fact that large-amplitude
oscillations of a forced string could become unstable and display a

component of vibration in a direction normal to the plane of the
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force. The general equations of motion that describe this "whirling"
or tubular response were derived by Murthy and Ramakrishna [2.84].
Miles [2.85] considered the stability of forced vibrations near reso-
nance while Anand [2.86] included the effect of viscous damping.

In all of the above studies, the longitudinal displacement of
the string had been neglected. Narasimha [2.87] investigated this
basic assumption and concluded that there definitely was a coupling
between the longitudinal and transverse modes of vibration. Anand
[2.88] rederived the equations of motion and considered the large-
amplitude free vibration of a damped string. Later, he outlined the
planar and nonplanar stability regions for forced vibrations [2.89].
Eller [2.90] found the theoretical results to be in good qualitative
agreement with experimental observations. Further analytical studies
were presented by Lee and Ames [2.91] and Anand [2.92].

More recently, Gough [2.93] returned to the nonlinear free vi-
brations of a damped string. He described the precession of the
orbital motion of the string and confirmed his results with experi-
mental measurements. Additional work on the nonplanar forced re-
sponse of a stretched string was completed by Miles [2.94]. His
analysis included a description of the bifurcation points as a

function of the damping parameter.

2.3 NONPLANAR BEAM OSCILLATIONS
A review of the literature revealed that only a limited amount

of research has been done on the whirling response of rods or beams.
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In 1971, Haight and King [2.95] studied the nonlinear oscillations of
a circular cantilevered rod. They observed analytically and experi-
mentally the elliptical path of the free end of the rod when the base
was subjected to a planar harmonic excitation. Hyer [2.96,2.97]
extended the study by investigating amplitude-frequency relationships
and stability characteristics. Ho, Scott and Eisley [2.98,2.99]
examined the free and forced nonlinear vibrations of a simply sup-
ported, axially restrained beam. They presented amplitude-frequency
plots and outlined stability regions for both in-plane and out-of-
plane motions. Finally, the effect of flexural-torsional coupling on
the nonplanar vibrations of beams with various support conditions was
considered by Crespo da Silva and Glynn [2.100,2.101].
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CHAPTER 3
PROBLEM FORMULATION

3.1 MODEL DESCRIPTION

The general configuration to be studied in this investigation is
shown in Fig. 3.1-1. It consists of a uniform tube of length & sup-
ported at each end. It has a cross-sectional area Ay, mass per unit
length m¢ and flexural rigidity EI. The internal fluid flows axially
with velocity ¢, cross-sectional flow area Af and mass per unit
length mc. The mean pressure within the tube is p, measured above
atmospheric.

In its undeformed (equilibrium) position the longitudinal axis
of the tube coincides with the x axis. With this vertical confiqu-
ration, gravity effects will be assessed. Free and forced response
of the tube is allowed in both the x-y and x-z planes along with
longitudinal deformations.

In the problem formulation, various assumptions have been made
concerning both the tube and the fluid. They include:

1. The effects of rotary inertia and shear deformation
of the tube are neglected.

2. Nominal dimensions of the tube do not change signifi-
cantly with internal pressure or displacements.

3. External drag forces are neglected.

4. The fluid is viscous and incompressible.
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Fig. 3.1-1. Tube Geometry and Coordinate System.
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5. Secondary flow effects and radial variations in the
flow velocity are neglected.
6. Only the mechanical response of the tube is con-
sidered; thermal effects are not assessed.
3.2 DERIVATION OF THE EQUATIONS OF MOTION
An energy approach has been used to derive the equations of
‘motion for the system. Hamilton's principle can be expressed in the
form
t t,
s (K-U)dt+[ oW __dt=0 (3.2-1)
nc
t t
1 1
where K and U represent the kinetic and potential energies, and Wie
accounts for the work done by nonconservative forces.
The kinetic energy associated with the motion of the tube is

given by

L
=1 N2 | AVN2 | (W2
Ktube =2 ™ jo [Ge)™ + Gg)™ + )] ox (3.2-2)
where u, v and w are the displacement components in the x, y and z
directions, respectively.
For the fluid, the magnitude of the flow velocity ¢ may have a
harmonic component to 1include the possibility of pulsating flow,

i.e.,

c = co(l + u cos at) (3.2-3)
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where Co is the mean velocity, u is the amplification factor and @2 is
the forcing frequency. The velocity components of the fluid flow can
be described using Fig. 3.1-1, which shows the direction of ¢ tangent
to the deformed tube centerline. Thus, the kinetic energy due to the

flowing fluid can be expressed as

1 au 2 v avy2
Kewwig =2 M | [Ge+e)+ G +ea)
(3.2-4)
aw AW 2
+ (at +C S;J ] dx .

It should be noted that nonlinear inertia effects from the fluid have
not been included.

The potential energy of the system consists of the elastic ener-
gy stored in tension and the elastic strain energy due to bending.

The contribution from the axial load is

Utension = ?l_~ f T dx (3.2-5)
where T is the absolute tension in the tube. In general, this
tension 1is comprised of a number of components including a static
pretensile load T, and the weight of the tube and fluid which results
in a linear axial variation. Also, since the lower end of the tube
is not free and the fluid is allowed to discharge into a pool, there
will be an additional tensile term equal to pAi(2v - 1) for a thin

tube. In order to take into account the possibility of large
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amplitude motion, nonlinear tension effects can be included by
considering higher order terms in the expression for the tube

extension. Thus, the tension can be written as

T =T, - pA(L - 2) + (m + m)g(z - x) + EA (ds = dx) (3.2-6)
where
el (O N C R (3.2-7)
eGP G002 R G - 7 GGV’
Pl @uZanz, Lanzanz L@yl L (22?2
-5 G0

The strain energy due to bending is given by

2 2
3V W
U - 1 J_Q. [[ o 3X2 ]2 + = 3X2 ]2] dx

(3.2-8)

Using a binomial expansion, Eq. (3.2-8) becomes
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2
_1 3°v,2 avy2 av,4
Usending = E‘IO {E1 (a 5) (1 -3 (5)°+6 (5 - -]
x
) (3.2-9)
3 W2 W2 aw~4
+ El (axi] [1-3(5)7+6(5) - ---1ax.

The work done by nonconservative damping forces can be expressed

as
to
ft f I ko l3g ou dx + 3{ §v dx + at sw dx| dt
1 (3.2-10)
where «, is considered to be an equivalent damping coefficient that

includes both internal structural damping and viscous damping due to
the friction of the tube with the surrounding medium. It should be
noted that Kg Can be adjusted to comply with the conditions of the

problem.

Finally, substituting into Eq. (3.2-1) and employing variational

calculus, the three-dimensional equations of motion are

*
2 T (m, + m)g
u ac au f t u
3t T Kot - AL + (me +m)gl - 55

1 avi2 1 awy2 1 2.1 2
-3 @7 -5 @+ 5 BDEN° + 5 GG - EA

-2 (e - THE Y7+ L @7 - AHEY - EHEYE)) - 0

(3.2-11)



(me +m,) i%% + 2mec %;%E + mfcz 3;% +mg %%-%% + g %1 - %; 7 %%
s (EA - TH[RY - (@924 1 (AY2 4 2 (2] 3Y | g =
- 361 (292 % - 12E1 (%)(%i—%)(i—i—%) - 3EI (:%)3 - 0
(3.2-12)
Cen - T 7] G g G730 e
- 31 (342 % - 12EI (%)(z—i-‘g-)(%) - 31 (3-})3 = 0
(3.2-13)
where T =T - pA(L - 29) + (me + m)g(s - x) . (3.2-14)

-These equations are presented in general form with the order of the
nonlinear terms high enough to cover a wider range of potential
problems. When different categories of problems are analyzed,
simplifications will reduce the complexity of the equations, e.g.,
negligible flexural stiffness, axial displacements which are much
smaller than lateral and transverse components, etc.

For planar analysis, Eq. (3.2-12) can be linearized to decouple

the lateral and longitudinal displacements
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2 2
a3 Vv a Vv 3C Vv Vv 3
(me + m) 2t2 * e Tt t M ot ax t Ko 3t ~ 3x o

4
271 3 3
“pAf(l“Z“)+(mf+mt)g(z~x)-mfc]3;‘:-}+ElaT}4’=o.

(3.2-15)

Such reductions will be further developed for particular free and
forced response cases.
3.3 FORCING FUNCTION

The primary external loading to be considered is a dynamic
pressure pulse applied to one side of the tube. Chapter 6 deals with
the response of a tube to an impulse applied uniformly over the
length. However, Chapter 7 examines the results of pulsating flow

which produces a parametric excitation of the tube.



30

CHAPTER 4
TENSION GRADIENT EFFECTS

4.1 GOVERNING EQUATION

In order to determine the basic modal characteristics of a com-
pletely flexible tube, the planar equation of motion is considered.
In the work which follows, the tension gradient is assessed in the
development of an exact solution for the natural frequencies and mode
shapes of a flexible tube with steady fluid flow.

Equation (3.2-15) can be reduced to

Al Ty - PRA(L - 29) + (me + m)g(s - x) - mfczl av)

9 (4.1-1)
av av
-k, ==-(m. +m) —5=0.
o at f t atz
where the Coriolis acceleration of the fluid is also neglected. The
equation of motion may be expressed in dimensionless terms by de-

fining the following dimensionless quantities:

- _V
V= —
)

2
To - pAf(l - 2v) + (mf + mt)g(n - x) - meC

(mf + mt)gz

E:

T = /Zg't.

(4.1-2)
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Substitution into Eq. (4.1-1) yields

—_ — 2—
? av v [l _
3_E{£ E} - KE—'B—T'?—O (4.1-3)

s /L (4.1-4)

Equation (4.1-3) can be reduced to an ordinary differential equation

by assuming a harmonic solution of the form

V(£.7) = Re{e(£)Xe 7 (4.1-5)

where ¢(t) is a complex function and w is the dimensionless frequen-

cy. Substitution of Eq. (4.1-5) into (4.1-3) gives
(4.1-6)

g (e 90 L @ @) e -0

The solution to Eq. (4.1-6) involves Bessel functions of the first

and second kind of zero order [4.1], namely
#(g) = AJ,(A/E) + BY (a/E) (4.1-7)
x = (8G? - iw))/2 . (4.1-8)

where
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For a general solution, A and B must be complex constants.

A closer look at the argument of Jy and Y, indicates

—2

WE = {&(T - X) - aida(T - X))1/2 (4.1-9)

where the dimensionless tension and frequency are given by

2
Ty - pAf(l - 2v) + (me + mt)gz - meC

T = 4.1-
(mf + mt)gz ( 10)

u - /g- o . (4.1-11)

Finally, the complete solution to Eq. (4.1-3) can be expressed

as a superposition of an infinite set of the normal modes of the

tube, i.e.,

_ ® _ iwn'r
V(gr) = Re{ ) en(e)Xe ") (4.1-12)
n:
which also includes the complex constant
_ 1'an
X =Xe (4.1-13)

where X, and a, are determined by initial conditions. Here on (&)
represents the eigenfunctions of the tube which must satisfy the

boundary conditions of the problem. For this case
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v(E,t) = o,(8) =0 at x =0and x = ¢ . (4.1-14)

Equation (4.1-14) can then be used to determine the dimensionless
frequencies Zﬁ and complex constants A, and B, of Eq. (4.1-7).

For convenience, Eq. (4.1-12) has been rewritten so it contains
only the real part. Complex terms can be broken up into their real

and imaginary parts by letting

p-4
!

= ARn + ’iAIn
B, = Bpy + 1By,
(4.1-15)

Jo(A/E) = 3 p(x /E) + 13,1 (x /E)

Yo(r/B) = Y o (A, /8) + iY ;(x /E)

where R and I represent the real and imaginary parts, respectively.

Also, let
Xe " =Xe . (4.1-16)

Equations (4.1-15) and (4.1-16) are substituted into (4.1-7) and

(4.1-12). After simplifying and retaining the real part only
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v(g,7) = n§1 XolARndor(An?8) = Appdo1(3y/8) + Bp ¥ o (1 /E)
= BraYor(An/B)] cos (wyr - ap) - X [Agndor(a/E)
+ Ador(Ag78) + B Yo (0/8) + B ¥ p(x/B) ]
x sin (Ghr - a) (4.1-17)

which is the general solution to Eq. (4.1-3).
To determine natural frequencies and mode shapes, the eigen-
functions ¢,(g) are required to satisfy the boundary conditions given

in £Eq. (4.1-14). This results in the following set of equations

ARnJoR(*n/EI) - AInJoI(*n/EI) + BRnYoR(*n/EI)
- BrnYor(n/Ey) = 0

ARnJoI(xn/EI) + AInJoR(*n/EI) + BRnYoI(*n/EI)

+ BrpYor(2y/%Ey) = 0

' (4.1-18)
ARnJoR(ln/E;) - AInJoI(xn/EE) + BRnYoR(*n/EE)

- BInYoI(knJEE) =0

ARnJoI(*n/E;) + AInJoR(*n/E;) + BRnYoI(xn/EE)
+ BInYoR(*n/EE) =0
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where g1 and £ have been used to represent ¢ evaluated at x = 0 and
X = %, respectively. For a nontrivial solution to (4.1-18) the n
determinants of the terms multiplying the A's and B's must equal

zero, i.e.,

JoR(ln/EI) 'Jol(xn/gz) YoR(xn/gI) 'Yol(kn/gz)
JoI(*n/EI) JoR(anEI) YoI(*n/EI) YoR(kn/EI)

=0
Jor(An'E5)  ~do1(0’Ey)  YorOAER)  —Yor(A/Ey)
JoI(xn/E;) JoR(An/EE) YoI(xn/EE) YoR(xn/E;) (4.1-19)

where n = 1, 2, 3, ..., «. The solution procedure, then, involves
choosing a value of w, calculating the afgument given by Eq. (4.1-9)
and corresponding Bessel function, and finally checking the value of
the determinant. After w is found, the relative values of the com-
plex constants A and B can be determined from (4.1-18). This pro-
cedure is repeated until the number of modes identified is sufficient
to completely describe the tube motion.
4.2 NUMERICAL RESULTS

An analysis was performed to determine natural frequencies and
mode shapes for the special case of zero damping. Setting the damp-
ing parameter, «, to zero in Eq. (4.1-9), eliminates the imaginary
term of the argument. With the restriction T > 1.0, Jo and Y, are
assured to be real. Consequently, the equations in (4.1-18) will

uncouple giving the following two sets of equations
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ARndoR(An7E1) + BppYor(r, V&) =
ARnJoR()‘n/E_z) + BRnYoR()‘n /E;) =0

t
o

(4.2-1)

i
o

AInJoR(*n/EI) + BInYoR(ln/gI) =
AInJoR(Xn/EE) + BInYoR(Xn/EE) =0.

From the above, it is obvious that

Ajn = AIn (4.2-2)

BRn = Bin
and the necessary condition for a nontrivial solution is
JOR()‘n'/E_l)YOR(An'/E_Z) = YOR()‘njg_l)JoR(ln/E—z) =0 . (4'2—3)

Therefore, Eq. (4.2-3) is used to define the natural frequencies of
the system.

Along the same lines, the eigenfunctions describing the mode
shapes can be simplified to:

Jo (A7)
00(8) = Co13,(0/8) - =Ry (3 /R)] (4.2-4)

Yo S
where C, is an arbitrary constant and can be incorporated into X, in

(4.1-16).
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Equations (4.2-3) and (4.2-4) have been programmed to cover a
range .of tensions, T. Accuracy problems arise when solving these
equations since the arguments of the Bessel functions given in (4.1-
9) can become "relatively" large. Therefore, to eliminate the possi-
bility of round-off errors, calculations were done on a Cray com-
puter. Function subroutines from IMSL were used to calculate Jy's

and Y,'s. These allowed arguments in the following ranges

Function Range of Argument
3 << 1.3 x 108
Y, 2.9 x 1073 t0 1.3 x 108

where both single and double precision are supported. Also, the
method of bisection, based on the use of sign changes to detect a
zero, was used to determine the roots of (4.2-3).

The first ten natural frequencies computed are shown in Fig.
4.2-1. Tabular values to three decimal places corresponding to these
curves are given in Table 4.2-1. Calculations were performed let-
ting T approach 1 since Y,(0) is negatively infinite. Figures 4.2-2
through 4.2-11 show the first ten mode shapes for dimensionless ten-
sions of 1.1, 2.0 and 3.0. Again, Tables 4.2-2 through 4.2-4 show
the tabulated values of these mode shapes. For convenience, each has
been individually normalized. As shown by the graphs, asymmetry is
significant with the lower tensions. Figure 4.2-12 shows the shifts

of the maximum amplitude and zero crossing for modes 1 and 2 due to
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the nonlinear effects of the tension. Consequently, as T becomes

much greater than the weight, the natural frequencies and mode shapes

will approach that of a classic string.
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Table 4.2-1.

1.199
1.209
1.399
1.408
1.508
1.600
1.768
1.800
1.99%
2.0908
2.100
2.208
2.300
2.499
2.500
2.600
2.788
2.800
2.9909
3.000
3.100
3.200
3.309
3.408
3.509
3.600
3.708
3.800
3.900
4.008
4.1008
4.200
4.308
4.408
4.508
4.600
4.700
4.809
4.9089
5.908

2.198
2.400
2.634
2.838
3.0823
3.194
3.354
3.505
3.649
3.786
3.919
4.846
4.169
4.288
4.404
4.516
4.626
4.733
4.837
4.940
5.040
5.138
5.234
5.328
5.429
5.611
5.601
5.689
5.775
5.861
5.945
6.0828
6.199
6.190
6.279
6.348
6.426
6.502
6.578
6.653

Natural Frequencies of Heavy Tubes
( w, N = 1,2,3,...,10.)

4.268
4.834
5.294
5.697
6.063
6.482
6.728
7.921
7.308
7.582
7.845
8.999
8.344
8.582
8.813
9.038
9.287
9.479
9.679
9.883
19.083
19.279
18.470
18.659
19.844
11.026
11.204
11.3890
11.583
11.724
11.892
12.0857
12.221
12.382
12.541
12.698
12.863
13.806
13.168
13.307

3

6.419

7.261

7.948

8.5651

9.108%

9.608
19.984
18.53%
19.964
11.375
11.779
12.1598
12.5818
12.87S
13.221
13.568
13.886
14.28087
14.529
14.826
15.125
15.419
15.796
1656.989
16.266
16.539
16.897
17.871
17.331
17.586
17.838
18.887
18.332
18.574
18.812
19.048
19.2808
19.51¢
19.737
19.962

4

8.566

9.686
18.601
11.405
12.135
12.812
13.447
14.648
14.629
15.167
15.694
16.281
16.692
17.167
17.629
18.078
18.516
18.943
19.3680
19.768
20.1867
29.859
28.942
21.319
21.689
22.852
22.4189
22.761
23.108
23.449
23.785
24.116
24.443
24.765
25.083
25.397
25.797
26.014
26.316
26.616

5

18.712
12.111
13.253
14.257
16,1798
16.016
16.819
17.561
18.276
18.960
19.618
20,252
28.865
21.459
22.837
22.598
23.145%
23.679
24.289
24.719
25.209
25.699
26.178
26.649
27.111
27.566
28.012
28.452
28.885
29.311
29,731
38.145
38.554
30.956
31.364
31.746
32,134
32.517
32.896
33.278

40



1.190
1.29009
1.392
1.400
1.500
1.600
1.798
1.800
1.900
2.9980
2.198
2.2908
2.309
2.408
2.59008
2.608
2.788
2.800
2.900
3.009
3.188
3.208
3.309
3.499
3.509
3.600
3.708
3.809
3.909
4.000
4.180
4.288
4.309
4.400
4.500
4.689
4.709
4.808
4.989
5.9088

Table 4.2-1.

6

12.858
14.535
15.905
17.118
18.208
19.229
20,172
21.873
21.931
22.782
23.542
24,303
25.0839
25.752
26.444
27.118
27.774
28.415
29.941
29.652
30.251
30.838
31.414
31.979
32.534
33.9879
33.615
34.143
34.662
35.174
35.678
36.174
36.664
37.148
37.625
38.096
38.561
39.821
39.475
39.924

7

15.883
16.959
18.5587
19.962
21.240
22,424
23.835
24.586
25.587
26.545
27.466
28.354
29,212
30.044
39.852
31.638
32.404
33.151
33.881
34.595
35.294
35.978
36.659
37.3929
37.956
38.592
39.218
39.833
49.439
41.0836
41.624
42.204
42.775
43.339
43.896
44.445
44.988
45.524
46.054
46.578

Continued.

8

17.148
19.382
21.208
22.815
24.275
25.628
26.897
28.998
29.242
38.337
31.389
32.4904
33.385
34.336
35.2869
36.158
37.033
37.887
38.721
39.537
49.336
41.118
41.886
42.639
43.379
44.105
44.829
45.524
46.216
46.898
47.578
48.233
48.886
49.531
58.167
58.795
51.415
52.0828
52.633
563.232

9

19.293
21.806
23.864
25.667
27.318
28.832
30.269
31.611
32.898
34.129
36.313
36.455
37.559
38.628
39.667
40.677
41.662
42.623
43.561
44.479
45.377
46.258
47.121
47.969
48.891
49.619
50.423
51.214
§1.993
52.764
53.516
54.262
54,997
55.722
56.438
§7.144
57.842
68.531
59.213
59.886

19

21.438
24.229
26.511
28.519
30.344
32.936
33.622
35.123
36.553
37.922
39.237
49.50%5
41,732
42.922
44.074
45.197
46.291
47 .359
48.491
49.421
59.419
51.398
52.387
§3.299
54.223
§6.132
56.926
66.905
57.77%9
58.623
59.463
60.291
61.108
61.913
62.708
63.494
64.269
65.035
65.792
66.5449

41
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x/1

9.008
8.025
8.850
9.875
2.199
g.125
9.158
#.175
8.200
9.225
8.250
2.275
2.380
#.325
2.350
#.375
g.400
#.425
2.450
8.475
5.500
9.525
9.559
#.575
2.600
7.625
#.652
8.675
9.708
8.725
#.750
8.775
#.800
g.825
£.858
£.875
9.999
#.925
9.950
#.975
1.000

Table 4.2-2.

p.o09
B.841
#.882
#.125
#.168
#.211
B.258
g.398
2.345
#.399
7.435
P.488
$.525
#.569
#.613
#.656
#.698
#.738
8.777
#.815
B.849
#.882
g.911
#.938
#.968
#.978
£2.991
#.999
1.080
2.994
#.988
#.958
B.924
8.879
g.821
£.746
#.6563
#.538
#.396
g.221
2.988

0.909
8.871
#.143
#.215
9.286
#.356
#.423
#.487
8.547
p.602
f.65%
#.699
#.723
#.746
8.758
#.759
g.748
#.725
#.688
#.637
#.573
f.494
9.493
g.298
#.182
8.855
~-8.879
-9.220
-9.362
-8.504
-9#.639
-9.762
-9.868
~9.948
-9.996
-1.808
~-9.982
-#.839
~g.651
-8.375
9.0080

p.889
2.181
2.2082
2.300
£.393
g.478
#.552
#.614
2.659
#.687
2.696
#.683
£.648
#.591
#2.512
g.413
#.296
2.163
2.818
-9.132
-9.283
~%.428
-9.568
-9.672
~-9.755
-9.8082
-9.808
~8.767
-9.675
-9.533
-9.344
-g.1158
2.142
g.408
#.659
2.866
#.992
1.009
g.852
9.521
0.0080

Normalized Mode Shapes
T =1.100

9.06908
g.132
g.261
§.382
a.489
B.576
9.637
2.669
#.669
8.634
#.565
#.462
9.331
#.176
2.906
-8.17%
-9.342
-9.497
-0.623
-9.718
-0.748
-B.729
-0.659
-9.513
-8.323
-8.094
9.187
g.496
#.624
p.784
2.856
g.818
£.659
#.382
2.014
-9.394
-9.765
-1.0090
-5.993
-9.662
g.008

o.0020
2.186
7.3084
Q9.436
2.549
g.607
2.631
P.608
2.537
0.421
g.267
g.885
-2.118
-9.309
-9.469
-9.598
-g.672
-9.679
-g.614
-0.477
-8.289
~0.041
g.214
#.452
#.639
#.743
#.738
#.613
B.376
8.856
-8.297
-3.613
-g.815
-9.835
-9.634
-9.226
g.3082
9.783
1.080
#.753
p.068
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x/1

9.900
8.925
g.858
9.875
g.100
g.125
g.159
g.175
9.200
#.225
g.259
9.275
9.300
#.325
§.359
#.375
g.400
#.425
g.450
#.475
#.500
#.525
8.558
#.575
9.600
#.625
9.650
#.675
9.709
8.725
8.759
8.775
9.800
7.825
9.859
8.875
9.909
#.925
#.958
8.975
1.008

Table 4.2-2.

g.089
g.192
8.379
g.516
g.612
P.648
#.616
#.516
#.355
g.149
-g.081
-8.308
~g.582
-9.638
-9.692
-9.653
-f.518
-0.382
-9.831
2.255
g.518@
#.687
8.747
#.669
9.455
#.135
-9.231
-8.564
-9.777
-8.881
-g.604
-8.213
8.277
8.718
g.911
B2.749
p.221
-8.488
-1.00%
-§.688
p.800

g.008
g.228
f.432
2.583
p.657
P.640
#.831
7.348
8.992
-9.177
-9.425
-f.618
-9.696
-P.663
-9.508
-9.253
g.060
#.372
g.618
g.739
2.698
2.492
g.156
-9.234
-9.580
-9.779
-f.758
-0.498
-9.958
f.428
#.786
#.851
B.553
-9.829
-0.646
-0.958
~9.793
#.876
#.897
1.00808
2.988

Continued.

9.000
0.244
#.451
8.585
9.617
0.537
#.354
g.838
-g.184
~0.436
-8.685
~-9.647
-@.548
-8.320
-9.009
g.314
2.569
g.683
2.617
2.375
8.913
~9.367
~2.646
-9.723
-9.552
-9.171
P.294
2.666
8.772
2.533
B.0928
-9.538
-9.835
~-8.650
-9.821
#.681
#.9086
g.341
-2.644
-1.089
2.008

9

2.009
9.263
B.478
f.588
9.571
g.421
p.168
-9.132
-9.497
-9.585
~B.614
-B.477
-8.293
#.138
f.449
9.632
f.620
9.404
B.942
-9.347
-9.624
-9.673
-9.455
-9.938
f.414
#.698
#.660
8.284
-9.265
-9.695
-9.728
-8.291
2.389
a.814
#.615
-8.155
-9.844
-P.665
9.373
1.000
2.000

19

g.089
g.287
#.505
#.591
#.516
#.292
-9.822
-9.338
-9.558
~-f.608
-9.463
-9.159
g.208
#.512
#.639
#.529
8.218
~0.205
-9.549
-9.667
-9.489
-9.0874
#.393
g.680
g.616
B.204
-9.348
-9.712
-8.628
~-9.1083
2.539
#.783
#.389
-%.391
~9.841
-9.413
9.549
9.869
-£.989
-1.908
p.298
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x/1

g.209
g.825
8.958
8.875
#.190
#.125
£.150
#.175
8.208
g.225
§.250
#.275
#.399
8.325
#.359
8.375
8.498
#.425
9.459
9.475
7.508
8.525
8.558
#.575
#.699
#.625
8.658
#.675
8.708
#.725
8.758
8.775
#.889
8.825
#.859
#.875
8.908
8.925
8.958
8.975
1.008

Table 4.2-3.

9,009
8.062
g.125
g.188
g.251
g.313
8.375
g.436
9.496
#.553
9.609
9.663
g.714
g.762
9.806
2.847
9.884
g.916
£.943
#.966
#.983
8.994
1.000
g.999
9.993
9.979
#.959
9.932
#.898
#.858
g.818
9.756
9.6395
9.627
g.553
g.473
#.388
8.297
9.202
8.103
0.998

g.0080
#g.119
g.238
2.353
9.464
2.567
g.660
0.742
g.811
f.864
g.908%
g.918
g.918
#.897
2.857
9.798
#.728
8.625
2.513
9.388
g.252
2.187
-0.043
-#.194
-8.343
~-9.486
~0.619
-9.737
-9.838
-8.917
-8.972
-1.008
-9.999
-8.967
~9.986
-g.814
-#.694
-0.548
~-9.381
-g.196
b.008

2.09908
g.176
g.346
2.504
#.644
8.757
2.839
2.886
#.854
9.861
#.789
#.679
2.536
#.365
2.174
-0.929
-9.233
-9.429
-0.6086
-8.754
-9.864
-8.929
~8.944
~8.987
-g.817
-8.679
~8.497
-9.283
-9.947
g.197
g.432
£.645
g.818
#.948
1.900
£.998
2.9098
#.758
B.547
0.288
B.209

Normalized Mode Shapes
T = 2.000

2.089
#.231
B.447
9.634
B.77%
g.868
o.888
2.831
2.717
2.544
#.324
g.974
-9.185
-9.432
-9.646
-9.807
~-9.893
-g.912
-2.841
-8.691
-0.474
-9.208
g.984
8.371
#.627
g.822
#.935
g.951
9.863
f.678
g.414
g.696
-9.239
-9.583
-8.805
-9.962
-1.088
-@.908
-9.692
-8.376
0.009

2.9880
g.288
#.546
g.746
g.861
2.876
o.787
g.641
#.339
g.831
-B.285
-9.569
-8.783
-0.897
-9.893
-0.768
-#.535
-0.224
g.124
g.459
2.733
g.902
2.936
9.827
2.586
g.248
-9.137
-8.587
-2.797
-8.956
-9.951
-9.775
-2.454
-9.843
g.386
g.748
B.97%
1.808
#.823
g.466
9.0909
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x/1

2.00%9
2.825
2.858
2.875
g.189
#.125
g.150
2.17%
a.208
#.225
2.258
2.275
2.3098
9.325
2.3%8
2.375
2.408
f.425
2.459
B.475
2.509
g.825
2.558
2.575
2.608
2.625
B.658
#.675
B.7089
8.725
2.758

" B.775

o.808
#.82%5
2.850
8.875
2.908
#.925
#.958
£.975
1.008

Table 4.2-3.

2,908
#.339
#.627
#.816
g.871
2.779
#.583
9.228
-8.142
-9.491
-§.756
-g.887
-9.854
-9.669
-8.336
f.857
8.445
g.758
#.907
g.879
2.665
g.387
-0.12%
-8.536
-9.833
-9.946
-9.84%
-8.533
-8.892
g.380
g.766
#.963
A.912
g.618
#.158
-8.379
-8.796
-1.000
-9.912
-9.545
g.008

2.008
g.431
2.718
g.879
g.844
#.615
f.241
-9.195
-9.599
-9.848
-9.9982
-8.733
-8.377
2.089
@.523
9.835
g.929
Q.772
2.4098
-8.089
-8.561
-9.878
-0.943
-8.727
-9.287
g.259
8.717
9.963
2.899
#.535
-9.916
-9.573
-9.938
-9.974
~9.653
~-9.08%
#.535
9.954
1.808
9.638
B.089

Continued.

o.030
#.439
#.757
0.860
9.713
#.351
-9.120
-9.561
~9.835
-9.8580
-9.596
~g.146
p.357
B.758
2.895
2.738
g.323
-9.212
-9.679
-0.997
-9.805
-9.399
f.164
fg.674
g.926
9.812
#.365
-9.241
-0.756
~9.955%
~-9.739
~8.189
B.458
B.904
9.939
#2.506
-8.177
-9.785
-1.008
-8.690
9.000

B.o99
g.489
#.848
8.837
2.557
p.966
-9.456
~g.819
-9.854
-8.563
-9.843
2.501
2.847
£.845
2.487
-9.085
-8.629
-9.9982
-9.776
-9.295
9.339
#.809
g.91#%
9.579
-8.956
~8.665
-0.944
-8.737
-8.137
9.548
f.944
g.819
8.224
-#.512
-8.958
-8.832
-9.188
£.588
1.009
2.7680
2.289

19

2.908
#.545
7.856
#.789
7.365
-g.231
-8.727
-9.888
-9.629
-9.063
2.541
g.885
#.789
7.298
-9.366
-9.839
-g.872
~@.435
g.246
2.801
2.911
f.509
-9.299
-9.805
~-9.925
-9.479
2.273
f.864
#.997
9.354
-g.446
-9.,955
-9.809
-8.885
#.713
1.0088
#.538
-9.348
-9.977
-9.833
2.000
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x/1

9.998
2.825
2.959
2.0875
p.12%
2.128
g.159
2.175
B.229
2.225
9.259
9.275
g.309
7.325
7.358
2.375
p.A00
P.425
f.459
f.475
2.500
g.525
#.550
#.578
9.699
9.625
Q.650
#.675
8.798
9.725
B.750
#.775
g.80%
2.825
8.859
#.875
2.9088
8.928
2.959
8.975
1.008

Table 4.2-4,

9.009
2.968
9.137
9.205
9.273
g.349
9.4485
9.479
p.532
#.592
P.649
9.793
2.753
9.809
P.843
#.881
9.914
g.942
#.965
p.983
g.994
1.008
1.892
#.993
p.9809
2.960
#.934
p.982
#.863
f.819
g.768
#.711
2.649
#.582
p.519
9.433
#.353
P.268
#.181
p.991
D.928

2.900
#.133
7.264
9.399
2.519
9.629
8.717
g.800
g.867
#.915
9.943
7.951
#.937
g.992
f.846
2.779
#.675
7.564
0.437
9.329
#.153
p.092
-9.152
-9.303
-9.448
-9.583
-9.704
-9.808
-9.893
-9.954
-9.990
-1.000
-9.982
-9.937
-P.865
-9.767
-9.647
-9.505
-9.348
-9.178
p.oR8

T = 3.000

g.008
2.196
2.385
9.558
#.785
p.821
7.898
2.933
9,923
g.867
f.768
g.629
#.458
#.262
g.958
-9.166
-#.376
-9.567
-9.731
-9.856
-9.936
-@.966
-7.942
~-9.866
-3.738
-9.568
-9.363
-9.134
9.184
9.339
9.557
p.742
g.884
£.972
1.008
p.964
g.866
2.799
g.594
#.262
p.008

Normal ized Mode Shapes

g.0920
9.262
g.59%
p.798
2.854
#.9309
p.927
g.845
g.69%
g.473
#2.213
-9.269
-@.347
-9.596
-9.793
-9.919
-g.961
-9.914
-9.788
-9.569
-9.392
-9.893
8.299
9.575
2.796
2.938
9.986
9.932
£.780
9.544
2.247
-9.0980
-9.402
-9.683
-9.891
-1.800
~-9.996
-9.877
-@.653
-9.349
g.088

9.8089
g.325
p.619
g.829
2.926
#.911
2.77¢6
#.536
g.223
-9.123
~g.456
-9.729
-9.992
-9.9561
-g.866
-2.656
-9.349
.811
#.373
#.683
9.894
9.971
2.991
g.699
p.379
-g.912
-9.396
-9.729
-2.931
-9.99%
-9.886
-2.631
-9.267
f.148
2.541
9.844
1.009
9.978
9.777
2.431
2.008

56



x/1

2.9909
#.0925
9.859
g.875
2.1909
p.125
p.159
g.175
g.28%9
9.225
2.259%
9.275
g.300
#.325
g.350
g.375
g.409
D.425
f.459
g.475
0.508
#.525
#.550
9.575
g.600
9.625
p.6589
#.675
2.7909
2.725
2.750
2.775
9.82#9
g.825
#.859
2.875
p.909
9.925
2.950
B.975
1.908

Table 4.2-4.

2.088
2.389
2.694
7.882
2.999
#.765
2.475
9.993
-9.311
-9.658
~-9.879
-9.929
-9.794
~9.498
-2.099
9.324
9.684
9.9085
2.937
9.779
#.436
g.985
-9.432
-9.778
-9.953
-9.91%
-9.668
~0.264
2.206
9.632
g.912
8.976
2.803
9.431
-0.953
~9.528
-2.875
-1.009
-2.866
-9.502
g.208

P.009
P.446
#.785
#.931
£.845
£.543
9.1090
-g.372
-9.752
-9.937
~-8.877
-9.581
-g.127
£.366
#.763
#.953
p.877
#.553
#.969
-9.439
-9.825
-9.973
-9.834
~0.444
9.984
#.591
#.921
f.968
9.719
9.224
~9.339
-9.798
-1.009
-9.871
-9.449
g.131
g.672
9.986
g.956
9.586
p.o08

Continued.

p.o0Y
9.501
2.846
g.929
7.694
9.238
-9.308
-9.743
-9.938
-9.816
-9.413
£.137
9.644
p.928
g.884
#.523
-9.831
~-9.579
-9.918
-p.918
-9.%72
-9.006
f.568
9.927
g.927
f.561
~-f.034
~P.629
-f.960
-9.997
-9.477
9.159
#.734
#.999
9.832
g.298
-9.375
-P.886
~-1.099
-f.654
B.o28

B.000
#.547
9.877
2.854
g.481
-g.994
-%.634
-9.913
~-P.806
~-@.355
2.254
g.757
#.932
2.696
2.148
-9.473

- -9.883

-9.892
~-9.488
g.148
2.720
9.954
#.731
2.159
-9.518
-9.923
-9.878
-9.388
g.395
9.847
#.953
#.557
-9.148
~2.769
-9.98%
-9.661
#.035
g.718
1.000
2.798
p.208Q

19

p.000
P.606
2.917
2.775
#.243
-g.416
-9.868
-%.877
-@.431
9.243
2.795
9.929
#.565
-9.1908
-9.728
~g.951
~9.648
9.0922
#.685
#.962
2.686
7.008
-9.682
-9.972
-9.682
g.024
8.722
p.988%
9.629
-g.122
-9.843
-9.973
-9.512
7.291
g.999
g.921
9.398
-9.524
~1.909
~-9.778
2.008
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Fig. 4.2-12. Shifts in Locations of Maximum
Amplitude and Zero Crossings.
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4.3 COMPARISON OF RESULTS

The results from the exact solution can be verified to a limited
degree by a perturbation analysis developed for the response of flex-
ible tubes with small Tlinear variations in the axial tension.
Details of the derivation can be found in Appendix B.

The equations for natural frequencies and mode shapes are given

by
W2 = (T, + ) Pl m (4.3-1)
. 2W mn 1 1 . Max
e (x) = sin M2 - y [ + ] sin ==
n . nzTe m#n (mz - n2) (n - m)2 (n + m)2 .
(4.3-2)

where M and W represent the total mass and weight, respectively. The

effective tension has been expressed as
2
Te = (T0 - pAf(l - 2v) - meC ) . (4.3-3)

For the mode shapes, the shifts in positions of maximum ampli-
tude and crossing points are in good agreement. The differences be-
tween numerical values for frequencies from the two solutions are
small, particularly for small tension variations. This is shown, for
example, in Fig. 4.3-1 where a comparison is made for the fundamental
frequency. The results for higher modes are similar. Thus, for
cases characterized by significant tension variations, the exact

solution is of greater importance.
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CHAPTER 5
REDUCTION OF THE EQUATIONS OF MOTION

5.1 FLEXIBLE TUBE WITH CONSTANT TENSION

62

It was shown in Chapter 4 that the tension gradient due to

gravity can become insignificant if the tension is relatively large

compared with the weight. It was also determined that the error in

neglecting gravity could be further reduced if the effective tension

would include half of the weight. With this in mind, the equations

of motion (3.2-11) - (3.2-13) for a flexible tube can be reduced to

the following

2 2
3% ac au 3%y 3
(me +m) == + Mo 35 + %5 3¢ EAy —% - ox

{(EA
at ax

t

- T3 BY% 3 B2 - AYEY2 - (&2 < g

(5.1-

1)
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aw AW 2 37w 3C 3w v
(M + M)~ + 2MeC T + M 2+ M 3¢ ax * %o ot
ax
3t aw *yvpau _eauy2 1 avi2 1 cawy2y aw _
T oax (7 ax (EAt - T )[ax '(ax] 2 (ax) 2 (ax) ax 0
(5.1-3)
where the constant tension, T**, is given by
*k
T = T0 - pAf(l - 2v) + (mf + mt)g /2 . (5.1-4)
These equations can be rewritten as
2% P ac Ko au_ EAy 92y
atz (mf + mt) at (mf + mt) at (mf + mt) ax2
(EA, - T7)
t 3 1l (avy2 [ 1 (3wy2 3Uy avy2 3U, 3wy 2
e g ax (2 X 2 G - GG - GG =0
(5.1-5)
a%v . MC 32y . Me ac av o av
at2 (mf + mt) axat (mf + mt) at ax (mf + mt) )
*%k 2 %k
(me + mt) 3x (mf + mt) ax ‘ltax ax 2 ‘ax
1 (aw 2y avy _
+ 7 (a—x) a_X} =0 -

(5.1-6)
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22w . mec 2y Me 3C aw | o aw
atz (mf + mt) axat (mf + mt) at ax (mf + mt) at
*k 2 *k
o -mfc]BZW_(EAt-—T]a_{a_u_(ﬂ)2+l(ﬂ)2
(mf + mt) 3x ;(mf + mt) ax ‘lax ax 2 ‘ax
1 9w 2] aw
+§(—3—;) 3_)(} =0 .

(5.1-7)

5.2 LONGITUDINAL INERTIA NEGLECTED
If the wave speed of the longitudinal equation of motion is
compared with the wave speed of the transverse equations it can be

seen that for most practical applications

*k 2
EA (T - meC )
(mf + mt) >z (mf + mt) (5.2-1)

or

o 2
EA, >> (T - mc) . (5.2-2)

Therefore, the interaction between longitudinal and transverse modes
should be insignificant and longitudinal inertia can be neglected.

Equation (5.1-5) then becomes
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2
ac 3u *.03 (1 av,2
meat - BAc 2 (BA - T ) 5 17 G
1 (aw,2 AUy (3Vy2 Uy (3Wy2
+2 G - GG - GIGIT =0 (5.2-3)

However, from (5.2-1) it can also be concluded that EA, >> ™ so

(EA; - T**) = EA;. Consequently, Eq. (5.2-3) can be written as

52

ax

3 (1 (avy2 . 1 (awy2y _ Me ac
+ 7 G+ 5 G = TR, at (5.2-4)

[ o=

A%

where only terms up to the second order have been retained.

Integrating Eq. (5.2-4) and using the boundary conditions on

u(x,t) as

u(0,t) = u(e,t) =0 (5.2-5)
it follows that
w2 G2 GO
T e G D

(5.2-6)

Substituting (5.2-6) 1into the two transverse equations of motion,

(5.1-6) and 5.1-7), one obtains
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2
22y . 2mC 22y . Ko av (T - mec”) 22y
at2 (mf + mt) axat (mf + mt) at (mf + mt) axz
EA 2
t 3 v avy2 w2
2a(me + m) axz] I G + G ax
m ' 2
f L 3Cy\ (3 Vv
+ 3 - EHE) =0
(mf + mt) 2 at axz
(5.2-7)
*k 2
22 . 2mc 22 . o aw (T - mec”) 22
at2 (mf + mt) axat (mf + mt) at (mf + mt) ax2
EA 2 )
t 3w av,y2 w2
- =) T IGI° + 507 dx
22(mf + mt) axz o ax 3X
m 2
f 3 aC (3 W
oy - EEY = o
(mf + mt) 2 at axz
(5.2-8)

where cubic terms in v and w are kept.
5.3 GALERKIN'S PROCEDURE

To reduce the partial differential equations of motion to a
system of coupled ordinary differential equations, Galerkin's method
is used. Assuming a solution in the form of a summation of linear

modes, i.e.,

v(x,t) = nzl Vo(t) o, (x) nzl v, (t) sin ULES (5.3-1)

w(x,t) = nzl W, (t) o (x) nzl w (t) sin DnX (5.3-2)
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and using the orthogonality condition of the eigenfunctions on(x),

Eqs. (5.2-7) and (5.2-8) become

8mfc © rn . Ko r

Ve ¥ z(mf + mt) nzl (rZ_ n2) Y F (mf + mt) r

[T** - meZ) nzr‘z EAt 1r4r2 =, 2 9
+ 5 Ve t =3 v, yom (v + wo)
) (mf + mt) 4y (mf + mt) m=1
8m,_.C © 3
- f y 2rn 5= v, =0 r=1,2,3...
' l(mf + mt) n=1 (n° - r%)
(5.3-3)
8m_c o k. r
y f rn . 0 -
W W+ W
rooa(me +m) Ly (r2 _ nz) noo(me +m) Cr
(T** - mfcz] n2r? EA, a2 ® 5 5
+— W, + — W Yy m (v + W)
) (mf + mt) 4 (mf + mt) m=1
8m_ ¢ ® 3
f z ™n _
w =0 r=1,2,3...
z(mf + mt) n=1 (nZ _ r2) n
(5.3-4)

where (') = d/dt and (rtn) = odd.
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The problem may be expressed 1in dimensionless terms by

introducing the following quantities:

v =3 w=2¥ T = a =9
V=< W= t wlt Q ™
4
< 8meo _ Ko . EAt L
2(me + my)uy (me + My Juy 49.2(mf + mt)mlz
2 2
a='mfnco - mf'n C0
29,(mf + mt)“1 zz(mf + mt)wl2

(5.3-5)

where the natural frequencies of the system can be written in the

form

2 (T** - mfcoz) xlr?
w = 2 - (5.3"6)
L (mf + mt)

Also, the flow velocity ¢ has been represented as c = co(l + u CoS
gt) as first given in Eq. (3.2-3). Substituting Egs. (5.3-5) and
(3.2-3) into (5.3-3) and (5.3-4), one obtains the dimensionless

equations of motion
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Vi+a(l-ucosat) | ——V +brV
r no1 (r2 _ n2) r
2- = 2- ¢ 2 ~2, =2
+rov +crtv ) omt (v©+w)
r roo4 m m
@ 3
- = =T (rm)” -
+dua(sinat) §
n=1 (n2 - rz) n
_erf (2ucosat+y cos? at) V} =0 r=1,2,3 ...
(r £ n) = odd
(5.3-7)
wi+a(l-ucosat) § I w +brw
r n21 (r2 _ n2) n r
+ e W+ R w. o} n’ (th + Wﬁz)
m=1
3
+dyua(sinat) ér") 5 —n
n=1 (n° - r%)
el (2ucosat+y cos? at) W} =0 ? =+1,§,3 ¥
rtn) =o
(5.3-8)

with the prime denoting differentiation with respect to dimensionless
time t. It should be noted that for a symmetric loading condition on
the tube, usually only odd modes would be excited. However, because

of the presence of fluid, the series involving sums on n contain even
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modes. Therefore, the various modes of v (or w) are coupled through
the Coriolis acceleration term with coefficient a and the parametric
excitation term with coefficient d. Coupling between the two trans-
verse motions (v and w) is found only in the cubic nonlinear terms in

the summation on m.,
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CHAPTER 6
ICF APPLICATIONS

6.1 FIRST WALL PROTECTION SCHEME

A major problem in inertial confinement fusion (ICF) reactor
design is the protection of the first wall from x-rays, neutrons,
target debris and mechanical shock all resulting from target ignition
[6.1]. A new concept has been proposed for two types of conceptual
reactors, HIBALL and HIBALL-II (Heavy Ion Beams and Lithium/Lead)
[6.2,6.3] and LIBRA (Light Ion Beam Reactor Analysis) [6.4]. These
ICF reactors have been developed jointly by the University of
Wisconsin Fusion Technology Institute and the Kernforschungszentrum
Karlsruhe, FRG. Recently, Sandia National Laboratories has joined
in the LIBRA effort. Cross-sectional views of the reaction chambers
are shown in Figs. 6.1-1 and 6.1-2. In each, the cylindrical cavity
is protected by an annular bank of vertical tubes conveying liquid
Tithium/lead (Li;7Pbg3). Individual tubes, referred to as INPORTs
(Inhibited Flow/Porous Tube) [6.5] are braided from silicon carbide
fibers to produce a flexible porous component. The liquid metal
flows through the walls of the tube and forms a 1 mm thick film on
the exterior surface (Fig. 6.1-3). This external layer is sufficient
tovabsorb Xx-rays and debris from the target, whereas the internal

flow is used as a coolant and breeding material.
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Fig. 6.1-3.
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The SiC fibers used in the INPORTs are manufactured by Nippon
Carbon Co., Japan and are currently being distributed by Dow Corning
Co. Individual fibers are composed of approximately 500 filaments,
each approximately 13 um in diameter. Actual INPORT tubes have been
braided and tested by McDonnell-Douglas Corp. It was found that the
tubes could be rigidized and strengthened by using a chemical vapor
deposition (CVD) treatment. Additional tests to determine the ten-
sion and fatigue characteristics of the fibers were completed at the
University of Wisconsin. The results of all tests can be found in
Appendix A.

The INPORTs are elastically supported at the top and bottom
as shown by the preliminary design of Fig. 6.1-4. The compression
spring system allows tensile preloading of the tubes. In addition,
a modification of this support mechanism will be used which permits
end rotation, essentially as a ball-and-socket joint.

The first two rows of tubes are subjected to repetitive mechani-
cal shock loading during operation (Fig. 6.1-5). For the HIBALL and
HIBALL-IT reactors, a radial pressure impulse is imparted to the
INPORTs when the LiPb is vaporized by the target-generated x-rays.
This impulsive pressure has been estimated at 60 Pa-s. In the case
of LIBRA, the dynamic loading of the tubes is from the target blast
wave transmitted through the cavity gas. The overpressure, shown in
Fig. 6.1-6, is obtained from the University of Wisconsin simulation

code “CONRAD" [6.7]. Since the pulse width is small compared to the
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fundamental period of the tubes, the response of the INPORTs is vir-
tually the same as applying an impulse.

To avoid resonance problems due to synchronization with the
driver repetition rate, it is important to determine accurate values
for the natural frequencies of the INPORTs. It is also necessary to
examine the dynamic response of the tubes since they are relatively
close-packed and mechanical interference must be avoided.

6.2 INPORT MECHANICAL MODELING

The INPORTs are modeled as completely flexible tubes, neglecting
any shear or bending resistance. The spring support mechanism allows
for the control of axial tension in each unit. It is assumed that
the preloading will be substantial compared with the weight, conse-
quently a constant tension is used.

Viscous damping is included in the model and expressed as a
percent of critical damping. It is expected that the INPORTs will
naturally display a higher level of damping than metallic components.
Therefore, a level up to 20% has been used which complies with exper-
imental values found for electrical conductors and transmission lines
[6.8].

The flow velocity of the LiPb is considered constant, and in
addition, internal pressure and secondary effects of flow through the
tube wall are not considered at this time.

The shock transmission to the INPORT unit is taken as uniform
over the entire length without any time variation in the axial direc-

tion. It 1is also assumed that the tube reacts as a rigid surface
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component receiving the full intensity of the impulsive pressure.
A less conservative response would result if surface movement was
assessed.
6.3 PLANAR EQUATION OF MOTION

The planar response of the INPORTs has been considered first in
order to observe the Coriolis effects of the fluid and the effects of
the cubic nonlinear terms. For steady flow the corresponding dimen-

sionless equation of motion is given by

— - - R — 2 —
"+a ) n vi+brv +r°yv
r 31 (r2 _ nZ) n r
r=1,2,3...
+C vl ) m’ vs =0. (r £ n) = odd
m=1
(6.3-1)

where a, b and ¢ are given in (5.3-5). Consequently, the effect of
the Coriolis acceleration of the fluid can be seen by varying a, and
the nonlinear effects can be seen through c.

A computer code has been developed to numerically integrate Eq.
(6.3-1). A Runge-Kutta method was used with a 15 mode solution.
This yields 30 first order differential equations coupled through the
Coriolis and nonlinear terms.

As was previously stated, the primary driving force here is the

mechanical shock imparted to the tube after the ignition of the
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target (Fig. 6.1-5). This dynamic pressure pulse is applied sequen-
tially, and in a radial direction, at the repetition rate (Rep Rate)

of the reactor. Schematically, this is shown in Fig. 6.3-1.

i
P(t)

-t

— ty—

Fig. 6.3-1. Sequential Impulse Loading on the Tube.

If the positive v displacement direction is allowed to directly cor-
respond to the radial direction of the pulse, it follows that the

initial velocity given to the INPORT can be expressed as

I, (2R)

v (0) = DT (6.3-2)

where I is the area under an individual pressure pulse and R is the

p
radius of the tube. In dimensionless quantities Eq. (6.3-2) can be

written as
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I, (2R)

vi(0) = 9.(mf + mt)w1 .

(6.3-3)

Since the 1impulse is considered to be uniformly applied over the
length of the tube, the initial velocity can be represented in terms

of the Fourier series

3 Vﬁ (x,0)

|
ne~38

— I V(0 sin nax 1 A0 gy mmx | (6.3-9)

It is the coefficients of this series that are used as the initial
conditions for Vi, 73, 75, ... in the Runge-Kutta integration pro-
gram. At the end of the first shot (t = fimp
ments and velocities are used as the initial conditions just prior to

) the modal displace-

the application of the next pulse. Similarly, this is repeated for
each pulse sequentially.
6.4 PLANAR DISPLACEMENT HISTORIES - LINEAR

Specifically, a number of calculations were done for the LIBRA
design using the range of parameters given in Table 6.4-1. Modal
frequencies as dimensional quantities were determined for a tube
length of 6 m and are shown in Fig. 6.4-1. It can be seen that the
natural frequencies are moderately increased by higher mean tensions
and reduced as the fluid velocity increases. Repetition rates antic-
ipated in the LIBRA design are checked with graphs such as Fig. 6.4-1

to avoid any potential resonance problems.
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Fig. 6.4-1. [INPORT Natural Frequencies.

83



84

Table 6.4-1
LIBRA INPORT Parameters

Tube Diameter (cm) 3.0

Tube Length, & (m) 6.0 - 10.0
Tube Thickness (mm) 3.0

Mean Tension, T** (N) 1500 - 2500
LiPb Density (g/cmd) 9.44

SiC Density (g/cm3) 2.60

Flow Velocity, c, (m/s) 1.0 - 6.0
Damping (%) < 20

Rep Rate (Hz) 1.0 - 5.0
Impulse, Ip (Pa-s) 77.0

Midpoint displacement histories were calculated for a number of
different parameter sets. The numerical integration program executes
over 2000 time steps per cycle. Figures 6.4-2 through 6.4-4 show the
effect of the Rep Rate for the linear case (c = 0.0) when the follow-

ing parameters were chosen as constant:

Tube Diameter = 3.0 cm
Tube Length = 6.0 m
Mean Tension = 1500 N
Flow Velocity = 1 m/s
Damping = 20%
Impulse = 77 Pa-s
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With such a low flow velocity the coefficient a is very small (a =
0.162) and the Coriolis acceleration of the fluid will be insignifi-
cant. In each plot there is an initial transient response followed
by the steady state response. This first maximum peak can be con-
trolled in an actual "start-up" situation by gradually increasing the
yield of each consecutive target, thus giving a gradual rise in the
magnitude of the impulses. Consequently, it is the maximum steady
state displacement that is the most significant.

The effect of damping can also be seen in the response graphs.
For 20% critical damping the fundamental mode is dominant. In con-
trast to Fig. 6.4-2, Fig. 6.4-5 shows the results of 2% damping at a
Rep Rate of 2.0 Hz. There is a steady state repetitive displacement
pattern as shown by brackets A and B on the figure. Table 6.4-2

summarizes the mode contributions for two extreme damping levels.

Table 6.4-2

Modal Displacement Contributions

Damping = 0% Damping = 20%
vi: 83.3% vis 93.3%
vz:  9.2% vz 5.4%
vg:  3.3% vg:  0.9%
vye  1.7% ves  0.2%

Vg—Vls: < 2.5%

vg-Vig: < 0.2%
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As previously noted, it is the maximum steady state displacement
that is needed for determining tube placement within the reactor
cavity. Consequently, amplitude-frequency plots have been developed
for the 1linear case with the magnitude of the excitation remaining
fixed. Since the initial velocity (impulsive pressure) will scale
proportionally with the displacement, v'(0) was set at 0.10 for con-
venience. Figure 6.4-6 shows the “base" case (a = c = 0.0) with
various levels of damping. Over 100 data points per curve are needed
to accurately display the features of the response. Each data point
is obtained by starting the system from rest, then applying sequen-
tial impulses at a particular frequency until a steady state oscil-
lation occurs. Finally, the maximum displacement during steady
state motion is recorded. This may take up to 1000 shots as fimp
approaches zero. From Figure 6.4-6 it can be seen that the funda-
mental period is verified as 2x. Note that wj also shows peaks at

intervals of'fim = 2.09 since w3 = 2n/3.  Besides reducing the

p
amplitudes, damping shifts the peaks to the right of the vertical
through 2n. Overall, the amplitude-frequency results resemble the
response to forced harmonic excitation.

It should be noted here that conventional means of analytically
determining the displacement characteristics of a forced system are
inappropriate for this situation. Perturbation methods and the

method of harmonic balance, for example, are not amenable to the

application of sequential impulses. In addition, generally a number
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of modes are needed in the solution of the problem especially with
the presence of the Coriolis acceleration term. To show the effect
that the even modes have on the solution, the coefficient a was in-
creased in small increments and the corresponding amplitude-frequency
curves were plotted (Figs. 6.4-7 through 6.4-9). Specifically, as a
increases, the resonant peak shifts to the right and decreases in
amplitude. This can clearly be seen in Fig. 6.4-10 where only the
case of 2% critical damping is considered.

In summary, maximum steady state amplitudes for a very wide
range of excitation frequencies have been determined for the linear
problem. Additional results can be predicted by interpolating from
the response curves which are presented.

6.5 PLANAR DISPLACEMENT HISTORIES - NONLINEAR

If the Coriolis acceleration term in Eq. (6.3-1) is neglected,
any of the r equations are similar in form to the classic Duffing
equation (without a harmonic driving force). It 1is therefore ex-
pected that the nonlinear amplitude-frequency response will display
discontinuous jumps near resonant frequencies. (A detailed descrip-
tion of the jump phenomenon can be found in Appendix C).

Calculations were performed with a = 0 to determine maximum
response amplitudes as the impulse period was scanned and various
magnitudes of c were examined. With the original program, the system
was started from rest and sequential impulses were applied at a

particular frequency until steady state oscillations appeared. The



93

(0°0 =2 ‘0°1T = 0)

*asuodsay Aduanbauq-apny}duy cmnmfz Jdeuepd *L-v°9 "bi4
d
"1 pousd asinduyy

ool 08 09 oY 0¢ 00
T _ T T _ T T T _ T T T I T T _ T T T | o.o
-1 ¢0

% Ol l

% G §
% ¢ = Buidweq T 90
00=2 7 89

Ol=¢® ( ]
1 Ol

OL'0 = (0).A .

¢l

[dsiq uedspiy

A luswaoe



94

(0°0 =2 ‘0°¢ = ®)
*asuodsay Aousnbad4-apniiiduy uedspiy seueld °g-p°9 °bi4

“4  pouaq asinduy

O¢Cl ool 08 09 Ov 0¢

% O¢
% Ol

% G
o z = Buidweg

PIN

A luswaoe|dsi(] ueds

-u




95

(0°0 = 2 “0°¢ = @)
*asuodsay Adousnbauag-apniy(duy uedspiy Jeueld *6-p*9 *6i4

d
™1 pousd asindw
ozl 00l 08 09 % 0C 00
00
420 =
] Q.
H B
% Ol -
' o)
% g : 7
i H o0 T
% ¢ = Buidweq - o
@)
.3
00 =2 180 @
—~
oOg=¢ ]
] OF UA_
0L'0 = (0).A H

¢l



96

(0°0 = 2 ‘%z = bupdueq)
*asuodsay Aduanbaui-spny||duy uedspiy Jeue|d

“  pousy esindw
0z ool 08 09 oY

*01-°9 °6i4

4%

90

PIN

00 =8

00=2
0’0 = (0)A c |
% 0O'¢ = buidweq 4

A JUuswaoe|dsi(q] ueds

u




97

maximum peak was recorded and the process was repeated at another
frequency. Here it was necessary to develop a program that would
simulate an actual experimental procedure. In order to observe the
jump phenomenon the frequency of the excitation force must be gradu-
ally increased or decreased (see Appendix C). This was accomplished

by gradually varying E}m and keeping the magnitude of the impulsive

p
pressure fixed.

Figure 6.5-1 shows the results for a modest value of c. It can
be seen that for damping levels of 5, 10 and 20% the magnitude of
the impulse is not large enough to pass the critical point for which
Jumping occurs. However, at 2% damping there is a sizeable jump
associated with the fundamental frequency. The curves have a ten-
dency to bend to the left, with ¢ greater than zero, because the
period E}mp is plotted instead of 1its reciprocal (frequency). The
value of ¢ was then increased to 10 and 50. Figures 6.5-2 and 6.5-3
show the results again at 2% damping. On Fig. 6.5-3, data points
have been marked to show the response of the system if f}mp is no;
allowed to slowly increase or decrease - as was done for the linear
case.

To show how the nonlinear terms affect the general characteris-
tics of the displacement histories, Figs. 6.5-4 and 6.5-5 give the
results for ¢ = 0.0 and ¢ = 50.0, respectively. The magnitude of the

impuise and the Rep Rate are the same, but the Coriolis acceleration

has been neglected (a = 0.0). The maximum steady state amplitude for
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both the linear and nonlinear curves could have been predicted from
Figs. 6.4-6 and 6.5-3. It can be seen from the nonlinear amplitude-
frequency curve that for the pulse frequency used (Eimp
response is on the upper branch of the fundamental frequency jump.

= 4,35) the

Therefore, as shown by the displacement histories, the steady state
amplitudes are much larger for ¢ = 50.0.

Finally, the effect of the Coriolis acceleration terms can be
seen by including a value of a. Figure 6.5-6 shows an example of a =
3.0 with all other values remaining the same as for the nonlinear
case. All three displacement histories are the result of approxi-
mately 40 sequential impulses with thousands of data points plotted
for each. For the linear case, a steady state response is actually
reached in less than 40 shots. But for the nonlinear case with
Coriolis acceleration present (Fig. 6.5-6), it takes nearly 250 shots
before the response stabilizes. (For example, the actual steady
state peaks for Vﬁ are 0.05012, 0.02422 and 0.04347 consecutively.)

With the large number of variables involved in the planar case
alone, it is impossible to generate parametric amplitude-frequency
curves to cover the range of values for each variable. This is es-
pecially true with the nonlinear work, since the displacements will
not necessarily scale directly with the magnitude of the applied im-
pulse. In addition, with INPORT units being one of the major appli-
cations of the research work, the nonlinear coefficient ¢ could get

relatively large. It contains the value EA; as given by Eq. (5.3-5).
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Depending upon future experimental data (see Appendix A), ¢ could get
much Targer than 50. Therefore, for any ICF design application it
may be necessary to pinpoint a number of variables and consider
specific cases separately.
6.6 NONPLANAR DISPLACEMENT HISTORIES

The three dimensional motion of the tube with steady flow can be
addressed by considering Eqs. (5.3-7) and (5.3-8) with the pulsating

component set to zero.

Ve 1 (r?-nj z vi+br v (6.6-1)
+r?V 4Tl Y m; n’ (v 2+3?) =0 Er=t15§’z -

W+ 3 nzl E-Z”_‘—nz) wi+brw (6.6-2)
+ r2 W} + T rl W} mzl m? (th + th) =0 Er=t16§’3 -

As was previously noted, coupling between the two transverse motions
(v and w) is found only in the cubic nonlinear terms in the summation
on m. The Coriolis acceleration term with coefficient a couples the

various modes of each equation independently.
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With this in mind a preliminary analysis of Eqs. (6.6-1) and
(6.6-2) 1is considered to determine characteristics of the coupling.
Since the Coriolis terms are independent for each equation they have
been omitted. If Eq. (6.6-1) 1is then multiplied by W; and (6.6-2)

by Vi and the two equations are subtracted, the following is obtained

; W; - V} ; +b r( ; W; - V} ;] =0. (6.6-3)
However, this can be rewritten as
[V W - viowe]' = -br [Viw -V, wel . (6.6-4)
Integrating Eq. (6.6-4) yields
— = = = _ ..-brt
; Woo- Vo w; = Ce (6.6-5)

where the constant C can be determined from initial conditions.

If the initial conditions are such that C is zero then

- -

I|<l

(6.6-6)

£
£||1<|

[ ]
r r
and the result is coplanar motion of the tube. In other words, the

tube can have v and w displacement components but the magnitude of

the displacements will remain 1in the same ratio relative to each
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other and there would be no exchange of energy between the compo-
nents.  Therefore, the following sets of initial conditions would

result in coplanar motion:

Case I Case I1I Case III Case IV
wr(O) =0 vr(O) =0 v;(O) =0 vr(O) =0
and and and and
w;(O) =0 v;(O) =0 w;(O) =0 wr(O) =0

The previous calculations on the planar response of the INPORT
units due to sequential impulses assumed an impulse v'(0) only.
According to Eq. (6.6-5), this would still constitute coplanar
(planar) motion even with coupling terms present. Therefore, with
ICF reactor applications in mind, an obvious case to consider is an
initial displacement in the out-of-plane direction (w(0)) with the
impulsive loading remaining in-plane (v'(0)).

To develop a better understanding of the characteristics of
three-dimensional motion a single shot analysis 1is investigated
first. Consequently, the problem is virtually one of free vibration
with a specific set of initial conditions. Equations (6.6-1) and
(6.6-2) were programmed again using the Runge-Kutta method. With the
inclusion of the out-of-plane displacements, the solutions were

limited to 5 modes in both v and w , yielding 20 coupled first order



108

differential equations. (Five modes would be sufficient according to
the modal displacement contributions given in Table 6.4-2.)

To illustrate the effect of the coupling coefficient C, the
Coriolis acceleration 1is neglected and damping is set to zero.
Figure 6.6-1 shows the midspan displacement histories for both trans-
verse displacements with an initial velocity v'(0) = 0.10 and an
initial displacement w(0) = 0.05. For the small value of ¢ = 1.0
there is very little energy exchanged between v and w even with t
carried out for an extended length of time. On the contrary, Fig.
6.6-2 shows the interchange of energy between the two motions when C
is increased to 10.0. To illustrate the whirling motion associated
with this system, Fig. 6.6-3 shows v versus w for a time span of
approximately 0 <t < 450. This is the amount of time for the orbi-
tal axis to precess a full 360°. Denoting this precessional angle by
v, Fig. 6.6-3 then corresponds to 0° < ¢ < 360°. The oval-like shape
of the orbital path can be seen more clearly in Figs. 6.6-4 and 6.6-5
where the precessional angle has been limited to a quarter of a re-
volution, consecutively. It should be noted that the direction of
the precession is the opposite sense to the orbital motion.

Traditionally, the study of the nonplanar oscillatory response
of strings would include a single mode analysis only. If the present
system were analyzed with the fundamental mode, the envelopes of the
orbital path would be circular as shown in Fig. 6.6-6. The corres-
ponding orbital path can be seen as elliptical in Figs. 6.6-7 and

6.6-8. The characteristics of this response for a single mode are
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Nonplanar Midspan Orbital Path for Single Shot Analysis
with Fundamental Mode for 0° < ¢ < 360°.
10.0, Damping = 0%)

(a=0.0, c=
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in agreement with investigations of the nonlinear, nonplanar free
vibration of strings (Refs. [2.88] and [2.93]).

As a third example of the effect of the coupling
coefficient ¢, Fig. 6.6-9 shows the midspan displacement histories
with ¢ = 50.0. In this case, energy is readily exchanged between
the v and w components and the precessional rate has been sub-
stantially increased. The corresponding orbital path is shown in
Figs. 6.6-10 through 6.6-12. Overall, amplitudes are slightly less
than for ¢ = 10.0 but the envelopes of the orbital path are basically:
the same.

The nonplanar free vibration cases described thus far have not
included damping. With the planar analysis in Sections 6.4 and 6.5,
four damping levels were considered, i.e., 2, 5, 10, and 20%. In
Figs. 6.6-13 and 6.6-14 the nonplanar orbital response is shown for
these four damping values. With 2% damping it is evident that the
orbital motion begins to precess before it damps out. For the other
cases the precessional motion is not as evident because of the higher
damping.

Finally, the effect of the Coriolis acceleration of the fluid is
addressed considering the case where ¢ = 50.0. The Coriolis coeffi-
cient a is increased in small increments (1.0, 2.0, 3.0) and the
midspan displacement histories and orbital paths are shown for each
in Figs. 6.6-15 through 6.6-20. In general, for the examples shown,
it can be seen that as a increases, the displacement amplitudes tend

to decrease and the rate at which the orbital motion precesses
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decreases. Also, when a is present both even and odd modes con-
tribute to the response, resulting in a more irregular orbital path.
This is more obvious in Fig. 6.6-20 where C = 3.0.

To simulate the actual loading conditions from an ICF reactor,
the nonplanar response code was expanded to include sequential
impulses, or multiple shots. A1l calculations were done assuming
damping was present. In order to compare with the calculations done
in the planar analysis, a damping level of 2% was used along with ¢ =
10.0 and v'(0) = 0.10.

Three specific Rep Rates or impulse periods, Yim , were con-

p
sidered. With Yim = 3.0 and the Coriolis acceleration coefficient

p
set to zero, the midspan displacement histories have been plotted for
approximately 80 shots (Fig. 6.6-21). As was done for the free vi-
bration analysis, an initial displacement of w(0) = 0.05 was applied
to initiate the nonplanar motion. However, from Fig. 6.6-21 it can
be seen that the out-of-plane displacement eventually damps out and
the steady-state displacement consists of the in-plane component (V)
only. Figure 6.6-22 shows the corresponding “start-up" and steady
state orbital motions. It should be noted that the maximum amplitude
of v during steady state motion agrees with the planar analysis

(Fig. 6.5-2). For a larger value of t however, the response of

imp*®
the tube is no longer planar. Figures 6.6-23 and 6.6-24 show the

whirling motion associated with an impulsive pressure applied every

5 units of dimensionless time. Finally, at Fimp = 7.0 the response
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returns to a planar motion (Figs. 6.6-25 and 6.6-26) with the maximum
in-plane amplitude again corresponding to Fig. 6.5-2.

Consequently, the dynamic response of the tube is again dis-
playing characteristics similar to that of a string with a harmonic
excitation applied only in one plane. In other words, there are
critical values of the excitation frequency for which the planar
motion becomes unstable and the tube exhibits a whirling motion
[2.84, 6.9]. On the other hand, fluid effects can also become
important. Figure 6.6-27 shows the midspan displacement histories
for Timp = 5.0 when the Coriolis acceleration term has been included
(a = 1.0). It can be seen that the whirling motion shown in Figs.
6.6-23 and 6.6-24 for the same excitation frequency has now been
reduced to a planar oscillation only. In other words, the presence
of a relatively low fluid velocity can cause shifts in the amplitude-
frequency résponse.

With the number of variables involved, determining an entire set
of parametric design plots (as in Section 6.4) to cover a range of
values would not be practical. However, investigating a set of
parameters for a specific system would be a necessity in order to
predict whirling motion. Amplitude-frequency plots for both in-plane
and out-of-plane motions could be determined numerically as was done
for the nonlinear planar analysis. In order to obtain the entire
jump phenomena for the system, it would again be necessary to numeri-
cally simulate experimental procedure by slowly increasing and

decreasing timp'
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CHAPTER 7
FLOW-INDUCED VIBRATIONS

7.1 PARAMETRIC EXCITATION

One of the more common problems found in the piping of fluids is
the instability generated by flow-induced vibrations. For example,
the oscillatory response of a pipe to pumping pulsations can become
unstable. In the previous chapter, the investigations were concerned
with tubes conveying fluid flowing at a constant velocity, with an
externally applied excitation. However, it is also necessary to con-
sider the case of pulsating fluid. In Chapter 3, the equations of
motion were derived allowing the flow velocity to have a harmonic
fluctuation about a mean value, i.e., ¢ = ¢, (1 + u cos at). A
realistic characterization of the fluid velocity mﬁy require compo-
nents other than a purely harmonic one. However, this is still
regarded as the fundamental representation of periodic flow (Refs.
[2.53,2.54] and [2.56-2.58]). When this harmonic component is in-
cluded in the equations of motion the result is parametric excitation
of the system. Equations (5.3-7) and (5.3-8) are the complete non-
dimensional equations of motion. Various simplifications of these
are considered in order to analyze different categories of the
problem and identify parametric instabilities.
7.2 COPLANAR PARAMETRIC RESONANCE

One important case to consider is when the nonlinear coeffi-

cient ¢ is small enough to neglect. This would then decouple the
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v.and w equations and the resulting motion would be essentially

coplanar. Therefore, only Eq. (5.3-7) is used and is reproduced here

with ¢ = 0.
Vi+a (l-ucosat) §J —T0 V!
r n=1 (r2 _ n2) n
- _ - - 2 3 _
+br v o+l vetdua(sinat) } —-érﬂl—ﬁ— v
n=1 (n® - r
~er? 2ucos 7T+l cos? TE) V= 0
r=1,2,3 ... (7.2-1)
(r £ n) = odd

This can be written in matrix form as

(v} +a (1 -ucosat) [A] {v'} +Db [B] {v'}

+ [R] {¥} +d w2 (sina ) [D] {V}

- (2ucosat+ 1l cos? ) [E] (v} = 0 (7.2-2)
where {v} is the vector (Vl, Vo, ...}T; {B], [R] and [E] are diagonal
matrices determined from index coefficients, and [A] and [D] are

antisymmetric matrices determined from the summations on n which also

couple the system of equations.
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One procedure that can be used to compute the boundaries of
regions of parametric resonance for Eq. (7.2-2) is Bolotin's method
[7.1]. His stability criterion is based on the observation that
periodic solutions with periods P and 2P (P = 2x/q) separate regions
of unboundedly increasing solutions from regions of stability.

For the primary instability boundaries (with period of 2P),

a solution to the system of equations is sought in the form

@=L Uad sin 3t e ) cos K35 L (r2-9)

Equation (7.2-3) is then substituted into (7.2-2) and expanded.

kot kat

Consequently, the coefficients of cos 5 and sin 5 with the

same index k, can be equated to zero. This yields an infinite set of

algebraic equations which can be written in the form

ST EREE § SRR
.o [6;33] [(;31] [(;32] [(;34] s {st}
o [Gu] [Gu] [Gu] [Gu] - |) {au} |
coo [Gas] [Ga] [Gaz] [Gad] ... < {681} =1}
cor [Gas] [Ga] [Ga] [Gad] ... {Bs}
L oo .o .o cee .o seed L : y

(7.2-4)
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The boundary equation for the instability regions can be deter-
mined by setting the determinant of the coefficients of {ag} and {8}

to zero, i.e.,

det [Gy] = O. (7.2-5)

From Eq. (7.2-4) it can be seen that the [ij] matrix is of infinite
order, and thus the determinant is also. However, Bolotin showed
that this determinant belonged to the class of normal determinants,
which implies absolute convergence. For the k = 1 approximation, the

boundaries of the principal region of instability can be located by

=90 (7.2-6)

where

(60 = - & (1)« (R + 7o (€] - 142 [e)

(610) = - T (Al -5 F (8] -7 § (A + 3T w7 0]

(6] =32 (A +52 (8] -Tu 2 (Al + 1T w3 [0]
{622]=-§2[II+IR1-Eu[El-%Euz (€] (7.2-7)
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and [I] is the identity matrix. (To obtain better accuracy and
higher regions of instability it would be necessary to consider the
k = 3 approximation, which would include all of the terms shown in
Eq. (7.2-4).) The order of the square matrices and the column
matrices in Eq. (7.2-4) directly corresponds to the number of modes
included in the solution. For this case a 5 mode solution was con-
sidered which yjelds a 10 x 10 determinant for Eq. (7.2-6). The
nonzero components of this determinant are given in Appendix D.1.

To obtain secondary instabilities (boundaries of instability

having period P), the solution of the system of equations is

expressed as

{v} = .. 022 . [{ak} sin K—g;i + {8, } cos k g.f) (7.2-8)

where the index k is now evaluated at 0,2,4,... . Equation (7.2-8)
is again substituted into (7.2-2) and expanded. As was done for pri-
mary instabilities, coefficients with the same index k are collected
yielding another set of equations as in (7.2-4), but with a vector
{cee s ags ags ags Bgs Boy By, ...}T. Hence, to determine secondary
instability regions the determinant of the coefficiepts of [ak] and
{8} is again set to zero. For the k=2 approximation, all the sub-

matrices shown in Eq. (7.2-4) are included in the calculations, i.e.,



where

[Gss]  [Gs1] [Gss] [Gaa
[Gis] [Gu] [Gia] [Gig
[G2s] [Ga] [G2] [Gas
[Ga] [Gu] [Ga] [Gas

[633) = - @ (1] + [R] - § 47 [€]
(65,1 = [0]

[65,] =@ w7 [0]

(63,] = -27 [A] -5 2 [8]

(615] = u [E]

(6,1 = [R] - 5 &% [E]

]
]
]
]
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(7.2-9)
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(631 = - 33w (Al + 337 (0]
(6511 = [0]

[655] = [R] - 347 [€]

(654] = - % u [E]

(6431 =22 [A] +B 7 [8]

(641) = [0]

(642 = - 2% w [€]

(64 = -3 2 (1] + [R] - 377 [g]

(7.2-10)

and [0] represents the zero matrix. For a 5 mode solution the deter-
minant in Eq. (7.2-9) is 20 x 20. The nonzero components of this
determinant are given in Appendix D.2.
7.3 NUMERICAL CALCULATIONS

A computer code was developed to solve Egs. (7.2-6) and (7.2-9)
in the u-2 parameter space. With the large number of variables
involved in this system it is not possible to show the effect of

all parameters on stability. For this reason the tube and fluid
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parameters used in the ICF examples in Chapter 6 have also been

considered here. Specifically,

Tube Diameter = 3.0 cm
Tube Length = 6.0m

Tube Thickness = 3.0 mm
Mean Tension = 1500 N
LiPb Density = 9.44 g/cm3
SiC Density = 2.60 g/cm’

With these parameters fixed, the effect of the fluid velocity and
damping on the system is obtained. For the case of zero damping,
Fig. 7.3-1 shows the regions of principal and secondary instability
for flow velocities of 6, 8 and 10 m/s, respectively. Boundaries
were determined by numerically solving for the zeros of the deter-
minants, i.e., scanning @ at a specific value of y and refining the
solution by the method of bisection. Figure 7.3-1 shows that the
principal regions of instability are substantially wider than the
secondary regions. Also, as the fluid velocity increases, the width
of the instability regions also increases. It should be noted that
for ICF applications there should be 1ittle or no problem with para-
metric resonance if the flow velocities are kept at 6 m/s or less and
the pumping amplification factors are kept low. Figure 7.3-2 shows
the effect of dissipation on the same system as Fig. 7.3-1 (with a
flow velocity of 10 m/s). Damping reduces the size of the regions of
instability such that for small values of u, parametric resonance is

not possible. Moreover, there is a more pronounced effect on the
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Fluid Velocity: 10 m/s
Damping: 2 % a= 2.183
5% d= 1347
B 10 % e= 0.816
I 20 %
i
_ ?
. P DU R SR NN AT R TR A NS T TN H R R S WY SO
0.0 0.1 0.2 0.3 04 0.5

Ampilification Factor u

Fig. 7.3-2. The Effect of Damping on Primary and Secondary

Instability Regions.
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secondary regions, i.e., for damping > 10% secondary parametric
resonance will never occur for p less than 0.5.

To illustrate the parametric instabilities of the tube for the
different regions, displacement histories have been determined by
using the Runge-Kutta method to numerically integrate the equation
of motion, Eq. (7.2-1). Using the specific system parameters given
in Fig. 7.3-2 (with damping at 2%), a five mode solution was again
considered. Figure 7.3-3 shows the response of the tube when the
excitation frequency a falls within the primary instability region (u
= 0.3, 2 = 1.9). If the frequency 2 is dropped to 0.8 with u re-
maining the same, the system is now within the stabile region and the
response is shown in Fig. 7.3-4. The initial perturbation in this
figure is due to a very small impulse given to start the tube in
motion. For 2% damping this initial energy is eventually dissipated.
Finally with @ = 0.8, the amplification factor u is increased to
0.5 and the system's parameter point falls within the secondary
instability boundaries. Figure 7.3-5 shows the corresponding tube
response with the same initial velocity as the preceding case. It
should be noted that the response for the secondary zones grows much
slower than for the primary zones. (The displacement amplitude scale
in Fig. 7.3-5 is an order of magnitude less than that used in Fig.
7.3-3 and the time scale has been increased by a factor of 3.)

7.4 REFERENCES

[7.1] Bolotin, V.V., Dynamic Stability of Elastic Systems, Holden-
Day, Inc., San Francisco, 1964.
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CHAPTER 8
SUMMARY AND CONCLUSIONS

The vibration and dynamic stability of completely flexible tubes
conveying fluid has been investigated to aid in the development of
proposed inertia confinement reactor designs. The primary external
loading condition included a mechanical impulsive pressure applied
sequentially at the repetition rate of the reactor. Parametric
excitation due to a pulsating component associated with the internal
flow velocity was also considered.

In order to avoid resonance problems due to synchronization with
the repetition rate of the driver, natural frequencies were deter-
mined for tubes with both variable and constant tension. It was
found that tension gradients could produce strong asymmetries in the
mode shapes and shifts in the numerical values of the natural fre-
quencies. However, the results from a perturbation analysis showed
that for an effective tension substantially larger than the weight,
the tension gradient could be replaced by a mean value equal to the
effective tension plus half the weight.

The dynamic response of the tube to planar impulsive pressures
displayed characteristics similar to that of a classic string with
a planar harmonic forcing function. For the planar analysis,
amplitude-frequency relationships were determined for a range of
parameters including the effects of damping and the Coriolis acceler-

ation of the fluid. Discontinuities in the amplitude response curves
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were identified for nonlinear oscillations. Actual experimental
procedures were numerically simulated to illustrate the entire range
of jump phenomena. The conditions under which whirling motion began
were also identified. The orbital and precessional response of the
tube for free vibrations was investigated again emphasizing fluid
effects. An analysis of the sequentially applied planar impulses
showed that nonplanar oscillations of the tube were possible.
However, three-dimensional motion was definitely dependent upon the
frequency of the forcing function and fluid interaction. Parametric
design curves outlining in-plane and out-of-plane amp1itude-frequency
responses were left for future research.

Finally, in the case of a harmonically varying flow velocity,
stability maps were computed by Bolotin's method. It was found that
increasing the flow velocity also increased the regions of insta-
bility, whereas damping reduced them. For the relatively low fluid
velocity used in ICF applications, parametric excitation of the tube
is not expected. However, it should be pointed out that the flow-
induced vibration analysis presented here, also provides a tool for
examininé the stability of any flexible tubular component conveying
liquid, i.e., propellant lines. In fact, the most recent application

of this method involves space tethers used for fluid transport.
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APPENDIX A
STRENGTH AND FATIGUE ANALYSIS OF SILICON CARBIDE

A.1 FIBER CHARACTERISTICS

Since silicon carbide fiber has been proposed as the primary
material for the INPORT units, it is important to identify static and
dynamic mechanical strength characteristics. The fiber used is
“NICALON®", manufactured by a polymer pyrolysis process by Nippon
Carbon Co., Japan, and distributed by Dow Corning Co. It is composed
of ultrafine 8-SiC crystals with excess carbon and is able to retain
its strength at high temperatures. Typical properties of a single

filament, as published by Dow [A.1], are shown in Table A.1-1.

Table A.1-1
NICALON® SiC Fiber Properties

Filament Diameter 10 ~ 15 um
Cross Section Round
Filaments/Yarn 500

Density 2.55 g/cm’
Tensile Strength 2480 ~ 3240 MPa
Tensile Modulus 179 ~ 200 GPa

Strain to Failure . 1.5% Average
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Since fiber bundle or yarn data was not available tensile and
fatigue tests were carried out on a MTS T5002 universal testing
machine equipped with a 100 N load cell. Special load grips designed
for fibrous and stranded materials were used and are shown in Fig.
A.1-1. Cords are wound around stationary cylinders and the ends are
clamped at the top and bottom.

Tensile tests were run on ten specimens with the overall failure
characterized by a "brooming" effect. Figure A.1-2 shows half of a
specimen photographed on a 20 x 20/inch grid background. Such a re-
sult might lead one to expect predominately sequential fiber failure
and a definite knee on the stress-strain diagrams. However, this is
not the case; the dominant failure mode is simultaneous fracture of
the majority of fibers. Quantitative results of the tension tests
are given in Table A.1-2. The average tensile strength and modulus
were approximately 50% of those reported for single filaments, a
result attributable to nonuniform load sharing by individual fila-
ments in the yarn.

A scanning electron microscope (SEM) was used to photograph
fracture surfaces and also verify the uniformity of the fibers. In
Fig. A.1-3 a yarn which has failed in tension is shown at a magni-
fication factor of 130. In Fig. A.1-4 the magnification has been
increased to 3600 to measure the diameter of untested filaments.
A mean diameter of 12.6 um was obtained by scanning along a number of
filaments. Fracture surfaces were found to be clean breaks on planes

normal to the filament axes as shown in Figs. A.1-5 and A.1-6. The
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Fig. A.1-1. Tensile failure of SiC fibers.

Fig. A.1-2. Specimen after testing, on 20x20/inch grid.
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Fig. A.1-3. Static tensile fracture of SiC fibers
(Bar scale = 100 um).

Fig. A.1-4. SEM photograph of single fiber (Bar scale = 10 um).
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20KV X1008 @011  16.80 XUNMS

Fig. A.1-5. Sem micrograph of filament tensile failure.

20KV X4000 0010 1.80 ¥UWNMS

Fig. A.1-6. SEM micrograph of filament tensile failure.
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Table A.1-2

SiC Fiber Tension Test Data

Filament Diameter 12.6 um
Filaments/Yarn 500

Cross Sectional Area 6.23 x 1078 n?
Specimen Gage Length 0.15 m

Strain Rate 1.67 x 1074 m/s
Maximum Load (average) 84.4 N

Failure Stress (average) 1346 MPa
Elastic Modulus (average) 90.04 GPa

dark central circular area in Fig. A.1-6 may be the result of a penny
crack which originated and subsequently propagated across the
filament.

The same apparatus was used for cyclic testing of the fibers
with the maximum load frequency at 0.25 Hz and the gage length
remaining at 0.15 m. The load state consisted of a tensile mean
stress (o) and a cyclic alternating stress (o,). The various
combinations were such as to produce a maximum value less than the
fracture stress (o¢) and a minimum greater than zero. In Fig. A.1-7,
alternating stress as a fraction of fracture stress is plotted as a
function of the number of cycles to failure. It should be noted that
the curve for om/af equal to 40% terminates at a value of oa/of equal

to 40%. Curves for mean stresses of 50% and 60% have been extended
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to the simple tension data corresponding to Ne = 0.5. Similarly
maximum tensile stress can be plotted as a function of the number of
cycles to failure as shown in Fig. A.1-8. The results indicate the
possibility of an endurance limit but additional high cycle tests are
needed. The development of graphs such as Fig. A.1-9 are useful for
design purposes. Rays are shown for different ratios of oa/om, the
largest acceptable value being 1.0. In using such curves, for
example, a point stressed to state "A" could sustain 102 cycles but
not 103.

SEM micrographs were also taken of fatigued fibers. Figure A.l-
10 is typical, characterized by a more complex or rougher fracture
surface than static tension. A small percentage of fibers failed on
inclined surfaces in more complex patterns. Figure A.1-11 shows a
scalloped curved surface,usua]]yvassociated with progressive cyclic

failure.
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Fig. A.1-10. Fatigue fiber fracture at 18,600 cycles for om/of =
' 40%, ca/of = 20%.

2BKU X3088 8812 10.68U XUWNS

Fig. A.1-11. Fatigue fiber fracture at 13,700 cycles for op/os =
40%, og/of = 20%.
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A.2 INPORT TESTING

McDonnell Douglas Corp., St. Louis, MO, fabricated seven braided
SiC tubes and tested six to failure in static tension. Tubes were
made with and without axial tows and, in addition, some INPORTs
received a SiC chemical vapor deposition (CVD) treatment. Tests were
carried out at two temperatures, 350 and 550°C, with the results
summarized in Table A.2-1 [A.2]. It can be seen that the CVD process
substantially increased the tensile strength. This improved the load
sharing capability of the fibers but produced a brittle tube. The
axial cords in untreated tubes failed prematurely since they carried
the total tensile load.

Results of the INPORT tests show that second generation designs
need to incorporate a greater number of axial cords with provisions
to insure load sharing. Also, for all applications a larger number
of filaments per tow is necessary. (It should be noted that from a
manufacturing standpoint it is technically possible to produce fiber
yarns with thousands of filaments, as is the case with THORNEL® car-
bon fibers [A.3].) For example, if an INPORT unit (untreated) was
fabricated with approximately 50 axial tows and 1000 filaments per
tow, a failure load of 2000 N could be possible. This estimate is

based upon the load sharing efficiency of 22% shown by the McDonnell

Douglas tests.



Table A.2-1

INPORT Tension Data

168

Braided Tube Thickness 0.38 mm
SiC/CVD Tube Thickness 0.69 mm
Mandrel Diameter 2.86 cm
Braiding Angle 30°

No. of Braiding Tows 48

No. of Filaments/Tow 500

No. of Axial Tows 0 and 9

Failure Load (N)

Test Axial Untreated CvD
Temperature Tows INPORTs INPORTs
350°C 0 e 690
350°C 9 - 1108
550°C 0 334 578
550°C 9 165 1103
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APPENDIX B
PERTURBATION ANALYSIS

A perturbation analysis is developed for the equation of motion
of a completely flexible tube which has small gradients in axial ten-
sion and density. The purpose of the work is to provide a limited
verification of the eigenvalue problem results previously obtained in
exact form for the planar case with a linear tension gradient.

The relevant equation of motion (4.1-1) has been presented and

is simply reproduced here in undamped form:

%? {[To = PA(l - 2v) + (me + m)g(e - x) - mch] g—;}

5 (8-1)
v
- (mg+m)=—=0.
f t at2
For small axial gradients, the following replacements are made for

the effective tension and total mass per unit length
. 2

(To - PA(1 - 2v) + (mg + m)g(s - x) - mc”) Te[l + 8(x)] (B-2)
(mf + mt) + M[1 + e(x)] . (B-3)

This problem is generalized slightly with &§(x) and e(x), but

restricted by requiring both functions to have very small amplitudes.
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The form of the solution used for a typical modal component can

be expressed as

v (x,t) = [Vn(x) + mz ame(x)] exp(iu t) (B-4)
#n

2 *2

wo = 6y (1 + bn) . (B-5)
*

Here V_(x) and w, represent solutions to the gradient-free problem.

The coefficients a, and b, are small order terms and facilitate the

development of the perturbation solution. These equations can be

substituted directly into (B-1) giving

T (1 + s ()] [V + T g vl
(8-6)
+ oML+ e[V +Tav]=0

where ( )' = 3a/ax. This is now expanded
*2 t (
(TeVp + Mo V) + T T Ve + T [s(x)V) ]!

+ Mw:Z Pav + Mw:z[e(x) +b ] v, = -Te[z §(x) a V']

- MaZ[(1+b)e(x)] T av . (B-7)
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If only first order perturbation terms are to be retained, quantities

on the right side of (B-7) are neglected; the first pair of terms on

the left side is identically zero. Thus,
T [6(x)V! ] + Mu-2[e(x) + b_]V (B-8)
e n n ni’n

] *9
+3 a [TV +Ms V] =0.
men Al te'm nom
The expression for determining the series coefficients, ans 1s
obtained from (B-8) by taking the product with Vp(x), (p # n), and

integrating over the length

')
a, = {T, fo [s(x)ve]'v dx (B-9)
'}
+ Mol fo e(x)V V. dx}/k M(w 2 - w'?)

*2 2 2
where Vi(x) = -w “V_(x)M/T_ and k_ = fo [Vm(x)] dx .

Using the same procedure, an expression for b, can be developed

by multiplying (B-8) by V(x)

L

* |2
b, = ~(To/Mk u?) Io [s(VE]'Y, dx - (1/k) [ e()V2dx . (B-10)

0

When e(x) and &§(x) are specified, ap and b, can be calculated from

(B-9) and (B-10).
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The preceding analysis is now specialized for the problem in
which the mass per unit length is constant and the tension varies
linearly. The axial coordinate, x, originates at the top with
the positive direction downward, coincident with gravity as in Fig.

3.1-1:
MI1 + e(x)] =M; e(x) =0 (B-11)
Toll +8(x)] = T, + W(1 - x/a) . (B-12)

Here W denotes the total tube weight, assumed to be considerably less
than the pretension Te. The zero gradient mode shapes and frequen-
cies are

Vn(x) = sin nax/s w:Z = nzuzTe/Mzz . (B-13)

The modified frequencies from the perturbation solution are obtained

by using (B-12) in (B-5)

b, = W/2T, (B-14)
Wk = (T, + W2)nPal/me? (B-15)

Although the formula for calculating b, is lengthy, the result is

rather straightforward. It should be noted that b, is independent
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of n and the effect upon the frequencies is equivalent to replacing
the non-uniform tension distribution by its mean value.

The perturbation coefficients for the mode shapes are now
determined from (B-9) with &(x) given by (B-12) and e(x) equal to

Zero

2 _mnW 1 1
= - B-16
m uz(mz - n2)Te [(n - m)2 i (n + m)2] ( )

where m#n and mtn = odd. With this, the modified mode shapes can be

expressed as

vo(x) + ) a_V_(x) (B-17)
m#n
=sin X - g ) — + ] sin B
n Te m#n (M~ - n°) (n - m) (n + m)
For example, the shape for the fundamental mode is
. X W . 21X
sin & - T (0.1501 sin <22 (B-18)

+0.0082 sin 2 + 0,0021 sin &X 4 ..} .

The exact gravity-gradient solutions for vibration frequencies
and mode shapes previously obtained and the results from the pertur-
bation analysis are, to a limited degree, complementary. A compari-

son of the fundamental frequencies for both solutions is made and the
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results are shown in Fig. 4.3-1. In summary, it has been shown that
for an error of less than 5%, the tension gradient can be replaced by

a constant tension of Te + W/2 up to W =2 Te'
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APPENDIX C
JUMP PHENOMENA IN NONLINEAR SYSTEMS

One of the classic equations in the theory of nonlinear systems

is Duffing's equation

i%% + k %% + ng + hS = Fo COS wt . (C-1)
A phenomenon that appears in systems such as this is the discontinu-
ous jumps in the response amplitude as the frequency w is varied
smoothly. For example, Fig. C-1 shows the form of the response
curves as h changes from positive to negative. The value |Aj| repre-
sents the absolute value of the amplitude. Therefore, it can be seen
from the figure that |Aj| is single-valued for h=0, but for h < 0 or
h > 0 there are frequencies for which |A,| has three possible values.

Figure C-2 explains in detail the jump phenomenon associated
with the nonlinear resonance response for h > 0. An initial value
of w is chosen to correspond to the point A on the figure. Then the
amplitude F, of the forcing function is held constant while w is
slowly increased. The value of [Aj| will follow the curve past point
B to peak C. However, if w is further increased |Aj| will jump dis-
continuously to point D and continue along the curve to E. Now as w
is slowly decreased from point E the amplitude |Aj[ will again jump

discontinuously at F to B, after which it continues on the upper

branch to point A. The portion of the curve between F and C, denoted
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Fig. C-1. Amplitude-Frequency Response for Duffing's Equation.
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The Jump Phenomenon for h > 0.

Fig. C-2.
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by the dotted 1ine, is never traversed and is considered to be un-
stable. Therefore, there is a range of frequencies, between the two
Jjumps for which lAOI is stable on either the upper or lower branch.
The value that |Ao| actually takes depends upon the previous history
of the system.

This phenomenon has been observed experimentally by a number
of investigators. For example, Lee and Oplinger, Refs. [2.82] and
[2.83], were the first to study the nonlinear characteristics of a
string excited near resonance. By gradually increasing and decreas-
ing the frequency of the driving force, they identified discontin-

uities in amplitude response curves similar to Fig. C-2.
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APPENDIX D
DETERMINANTS FOR LOCATING INSTABILITY BOUNDARIES

D.1 PRIMARY INSTABILITY REGIONS

The k = 1 approximation for obtaining the primary regions of
parametric instability results in Eq. (7.2-6). For a 5 mode solution
the determinant is of order 10. Nonzero components of that determi-
nant from the computer program listing are given below. (Bars have
been omitted from the constants a, b, d and e and Greek letters have

been typed out.)

gmat(1,1)=(-omega*¥2-2 #mu**2%e.l *mu*eil )/,
gmat(1,6)=(-omega¥*b)/2.
gmat(1,7)=(omega*(421.*mu*a+5460. *mu*d+842. *a)) /2526 .
gmat(1,9)=(omega*(8.*mu*a+415. *mu*d+16.%a))/120.
gmat(2,2)=(-omega**2-8, ¥mu**2%c+16. *mu*e+16.) /4.
gmat(2,6)=(omega*(-421. *mu*a-5460.*¥mu*d-842 .%a)) /2526 .
gmat(2,7)=-omega¥b
gmat(2,8)=(omega*(18.*¥mu*a+2101.*mu*d+36.%a))/60.
gmat(2,10)=(omega*(355. *mu*a+115101.%mu*d+710.%a))/2982.
gmat(3,3)=(-omega**2-18.*¥mu**2%ec+36.*mu*e+36.)/4.
gmat(3,7)=(omega*(-18.*mu*a-2101. *mu*d-36.%a))/60.
gmat(3,8)=(-3.%omega*b)/2.
gmat(3,9)=(omega*(9.*mu*a+4202. ¥mu*d+18.%a))/21.
gmat(l,lU)=(-omega**2-32, *mu**2%e+ 6l  *mu*e+6l, ) /4,
gmat(H4,6)=(omega*(-8.*mu*a-415, ¥mu*d-16.%a))/120.
gmat(4,8)=(omega*(-9.*mu*a-4202. ¥mu*d-18.%a))/21.
gmat(4,9)=-2. ¥omega*b
gmat(4,10)=(omega*(10.*mu*a+12969.%mu*d+20.%a))/18.
gmat(5,5)=(-omega**2-50, ¥mu**2%e+ 100. ¥mu*e+100. ) /4.
gmat(5,7)=(omega*(-355. ¥mu*a-115101.*mu*d-710.%a) )/2982.
gmat(5,9)=(omega*(-10.*mu*a-12969.%mu*d-20.%a))/18.
gmat(5,10)=(-5. *omega¥*pb)/2.

gmat(6,1)=(omega¥*b)/2.
gmat(6,2)=(omega*(421.*¥mu*a+5460. *mu*d-8U2.*a))/2526.
gmat(6,4)=(omega*(8.*mu*a+415. ¥mu*d-16.%a))/120.
gmat(6,6)=(-omega*¥*2-2 *mu%*2%c_L ¥mu*e li ) /4.
gmat(7,1)=(omega*(-421. ¥mu*a-5460 . ¥mu*d+842 .%a) ) /2526 .
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gmat(7,2)=omega*b

gmat(7,3)=(omega*(18. *mu*a+2101.*mu*d-36.%a))/60.
gmat(7,5)=(omega*(355.*mu*a+115101. ¥mu*d-710.%a))/2982.
gmat(7,7)=(-omega**2-8, ¥mu*¥2%e-16, ¥mu¥e+16.) /4.
gmat(8,2)=(omega*(-18.*mu*a-2101. *mu*d+36.%a))/60.
gmat(8,3)=(3.*omega*b)/2.
gmat(8,4)=(omega*(9.*mu*ra+4202. ¥mu*d-18.%a))/21.
gmat(8,8)=(-omega**2-18,¥mu**2%ec-36, *mu*e+36.)/4.
gmat(9, 1)=(omega*(-8. *mu*a-415. *mu*d+16.%a) )/ 120.
gmat(9,3)=(omega*(-9. *mu*a-4202 . ¥mu*d+18.%a))/21.
gmat(9,4)=2.%omega¥*b
gmat(9,5)=(omega*(10. ¥mu*a+12969. *mu*d-20.%a))/18.
gmat(9,9)=(-omega**2-32 ¥mu**2¥e_6l4  *mu*e+64. ) /4.
gmat(10,2)=(omega*(-355.*mu*a-115101. *mu*d+710.%a))/2982.
gmat(10,U4)=(omega*(-10. *mu*a-12969. *mu*d+20.%a))/18.
gmat(10,5)=(5.%omega¥*b) /2.
gmat(10,10)=(-omega¥**2-50, ¥ mu**¥2%e-100. *mu*e+100. ) /4.

SECONDARY INSTABILITY REGIONS

The k=2 approximation for obtaining the secondary regions of

parametric instability results in Eq. (7.2-9). For a 5 mode solution

the determinant is of order 20. Nonzero components of that determi-

nant from the computer program listing are given below. (Bars have

been omitted from the constants a, b, d and e and Greek letters have

been typed out.)

gmat(1,1)=(-U. *¥omega*¥*2-c*¥mu**2+4 ) /4,
gmat(1,12)=(1820. *omega¥*mu*d) /421.
gmat(1,14)=(83. *¥omega*mu¥*d)/12.
gmat(1,16)=-omega*b
gmat(1,17)=(2.%omega*a)/3.
gmat(1,19)=(4.%omega*a)/15.
gmat(2,2)=-omega*¥2-c*¥mu**2+4 ,
gmat(2,11)=(-1820.%omega*mu*d)/421.
gmat(2,13)=(2101. *omega*mu¥*d) /30.
gmat(2,15)=(5481. %omega*mu¥*d)/71.
gmat(2,16)=(-2.%omega*a)/3.
gmat(2,17)=-2,%omega¥*b

gmat(2,18)=(6.%omega*a) /5.
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gmat(2,20)=(10.*omega*a)/21.
gmat(3,3)=(-4.*omega**2-9.*e*mu**2+36.)/4.
gmat(3,12)=(-2101.*omega*mu*d)/30.

gmat(3, 14)= (8404 . *omega*mu*d) /21,
gmat(3,17)=(-6.%omega%*a)/5.

gmat(3,18)=-3.*omega*b

gmat(3,19)=(12.%omega*a)/7.

gmat(l,4)=-omega**2-4 *e¥my*%2, 16
gmat(4,11)=(-83.%omega*mu*d)/12.
gmat(4,13)=(-8404 . ¥omega*mu*d)/21.

gmat(l,15)=1441 *omega*mu*d

gmat(l,16)=(-4. %omega*a)/15.
gmat(4,18)=(-12.%omega*a)/7.

gmat(4,19)=-4 *omega¥h

gmat(4,20)=(20.*%omega*a)/9.
gmat(5,5)=(-4.*%omega**2-25 *e*mu**24100.) /4.
gmat(5,12)=(-5481.*%omega*mu*d)/71.

gmat(5, 14)=-1441, *omega *mu*d
gmat(5,17)=(-10.%omega*a)/21.
gmat(5,19)=(-20.%omega*a) /9.

gmat(5,20)=-5.*%omega*b

gmat(6,1)=e*mu

gmat(6,6)=(-e*mu**2+2,)/2.
gmat(6,17):(421.*omega*mu*a+2730.*omega*mu*d)/1263.
gmat(6,19):(16.*omega*mu*a+415.*omega*mu*d)/120.
gmat(7,2)=l, *e¥yy

gmat(7,7)=2.%(-e*mu**2+2,)
gmat(7,16):(-421.*omega*mu*a—2730.*omega*mu*d)/1263.
gmat(?,18):(36.*omega*mu*a+2101.*omega*mu*d)/60.
gmat(?,20):(710.*omega*mu*a+115101.*omega*mu*d)/2982.
gmat(8,3)=9.%e*my

gmat(8,8)=(9.*(-e*mu**2+2,))/2.
gmat(8,17):(—36.*omega*mu*a-2101.*omega*mu*d)/60.
gmat(8,19):(2.*(9.*omega*mu*a+2101.*omega*mu*d))/21.
gmat(9,4)=16. %e*my

gmat(9,9)=8.%(-e¥mu*%2.2, )
gmat(9,16):(-16.*omega*mu*a-u15.*omega*mu*d)/120.
gmat(9,18):(2.*(—9.*omega*mu*a-2101.*omega*mu*d))/21.
gmat(9,20)=(20.*omega*mu*a+12969.*omega*mu*d)/18.
gmat(10,5)=25,%e¥*mu
gmat(10,10)=(25.%(~e*mu**2+2_ ))/2.
gmat(10,17):(-710.*omega*mu*a-115101.*omega*mu*d)/2982.
gmat(10,19):(-20.*omega*mu*a—12969.*omega*mu*d)/18.
gmat(11,2):(421.*omega*mu*a+2730.*omega*mu*d)/1263.
gmat(11,M):(16.*omega*mu*a+415.*omega*mu*d)/120.
gmat(11,11)=(-e*mu*%¥2+2,)/2.

gmat(11,16)=-e*mu
gmat(12,1):(-421.*omega*mu*a-2730.*omega*mu*d)/1263.
gmat(12,3):(36.*omega*mu*a+2101.*omega*mu*d)/ﬁo.
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gmat(12,5)=(710.%omega*mu*a+115101. ¥*omega*mu*d) /2982.
gmat(12,12)=2.%(-e¥*mu**2.2,)

gmat(12,17)=-4, %e*mu
gmat(13,2)=(-36.%omega*mu*a-2101. *omega*mu*d) /60.
gmat(13,U4)=(2.%(9.*%omega*mu*a+2101. ¥omega*mu*d) )/21.
gmat(13,13)=(9.¥(-e*mu**2+2,))/2.
gmat(13,18)=-9. *¥e*mu
gmat(14,1)=(-16.%omega*mu*a-415, *¥omega¥*mu*d)/120.
gmat(14,3)=(2.%(-9. *omega*mu*a-2101.*omega*mu*d))/21.
gmat(14,5)=(20.%omega*mu*a+12969. ¥*omega *mu*d)/18.
gmat(14,14) =8 ¥(-e*mu**2+2,)

gmat(14,19)=-16.%e*mu

gmat(15,2)=(-710. *¥omega*mu*a-115101.*%omega*mu*d)/2982.
gmat(15,4)=(-20.%omega*mu*a-12969.*omega*mu*d)/18.
gmat(15,15)=(25.%(-e*mu¥**2+2,))/2,
gmat(15,20)=-25.%e*mu

gmat(16,1)=mu*b

gmat(16,2)=(-2.*mu*a)/3.

gmat(16,4)=(-4. *mu*a)/15.

gmat(16,11)=-2.%e*mu
gmat(16,16)=(-U . *¥omega*¥2-3, *e¥mu**2+4, ) /4,
gmat(17,1)=(2.*¥mu*a)/3.

gmat(17,2)=2. *mu¥*b

gmat(17,3)=(-6.%mu*a)/5.
gmat(17,5)=(-10.%mu*a)/21,

gmat(17,12)=-8. *e*mu

gmat(17,17)=-omega**¥2-3 %e¥mu%*2+4
gmat(18,2)=(6.*mu*a)/5.

gmat(18,3)=3. ¥mu¥b

gmat(18,4)=(-12.%¥mu*a)/7.

gmat(18,13)=-18.%e¥mu
gmat(18,18)=(-4 . %omega**2-27, ¥e*mu*¥2+36. ) /4,
gmat(19,1)=(4.*mu*a)/ 15,

gmat(19,3)=(12.*%mu*a)/7.

gmat{19,4)=4, *¥mu¥*p

gmat(19,5)=(-20.%mu*a)/9.

gmat(19,14)=-32.%e¥mu

gmat(19,19)=-omega¥**2-12, *e¥mu**2+16.
gmat(20,2)=(10.*%mu*a) /21,

gmat(20,4)=(20.*%mu*a)/9.

gmat(20,5)=5. *mu*b

gmat(20,15)=-50.%e¥*mu
gmat(20,20)=(-4.%omega**2-75, ¥e*mu**2.+100.) /4 .





