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Abstract

Some results on the properties and solutions of the steady state
form of the neoclassical transport equations are presented for regimes
of interest to feasibility experiments and reactors. An analytical
solution is obtained for the special case dT/dr = 0. For %% # 0, an
analytic solution is found for the particle density, n(r), in terms of
the current, j(r), and the temperature, T(r). For a prescribed j(r),
a single differential equation remains to find the temperature profile.
The numerical results suggest that neoclassical scaling does not

admit self-sustained fusion plasma operation (n ~ 1014/cc, T ~ 10 keV)

except in plasmas of uninterestingly small sizes (IP <500 kA).



I. Introduction

The transport equations derived by Rosenbluth, Hazeltine and

(L (2)

Hinton follows much work, initiated by Galeev and Sagdeev

3
on the theory of collisional diffusion in axisymmetric toroidal
devices in the low collision frequency regime. These equations

(3-5)

have been used in computer codes to simulate the time and space

(1-D) evolution of current Tokamak discharges. In some codes(3’4),

a variety of atomic effects (ionization, charge-exchange, impurity
radiation, etc.) have been added to simulate experimental conditions
more properly. The steady state behavior of the neoclassical equations

(6)

without atomic effects has been recently studied by Wiley and Hinton
and by MacMahon and Ware(7). In the latter work, the equations were
solved numerically assuming the net particle flux is zero (the trapped
particle pinch effect balances the usual outward diffusion) and the
plasma is heated only by joule heating. Sigmar and Rutherford(s),
following up previous work by Bickerton, Connor, and Taylor(g), have
recently considered steady-state solutions of the mneoclassical equations
in which a seed current, possibly from neutral beams, allows the
equilibrium current to be the so called bootstrap current(g) There is
an externally generated heat input but no particle input.

In this paper, we consider the steady state profiles of density
and temperature in regimes suitable for feasibility experiments and
reactors. An external source of particles is assumed to maintain
the density while internal heating, as in a reacting plasma, maintains

the energy balance. For such large systems, neoclassical theory will

lead to long energy containment times compared to the electron-ion



rethermalization time so that one expects approximately equal electron

and ion temperatures. This has been found by MacMahon and Ware§7) and

(10)

in a study of neutral beam heating of

(1L

also by McAlees and Conn

Tokamaks using a mixture of neoclassical and pseudoclassical trans—

port equations. In section II, the basic equations are presented and

an analytic solution is developed for the case of a flat temperature

dT
dr

an analytic relation between n(r) and T(r). This leads, for an assumed

profile. 1In section III, the case where # 0 is analysed by developing
current profile, to an equation involving a linear second order
differential operator for the temperature profile. Numerical solutions
of this equation are presented for cases of interest. Finally, in

section IV, the interpretation of the results is presented along with

the connection to earlier work.

II. The Steady State Equations and an Analytic Solution

1
For Ti = Te’ the steady state neoclassical transport equations( )
are

1 d :

— —— = l

a4 @D =8 @ 1)

14 _

T4 @) =Sy - L) (2)

where the particle flux is

,
I = o) (—2.24n dn , .62n° dT 3

T >
T1/2 dr T3/2 dr
and the total heat flux is

2
_ & _ 32.3n° 4T _ 1/2 dn)
QT = Qi + Qe + 5I'T = c(x) ( _i;I7§—'E; 5.52nT I . (4)

We have taken the ion mass number as 2.5 to model a 50-50 D-T plasma



and have defined c(r) as

8/ ez/I;l_; 1nA? r 1/2
T3 ( 2 )(—R)
Be(r)

c(r)

using the same notation as in reference (1). In equation (1), the trapped

particle pinch effect is neglected assuming large poloidal beta(lz)

(Bp>l)
and the steady state is therefore maintained by a particle source, SP(r).
Equation (2) is obtained by adding the separate energy equations of
Reference 1 and using Ti = Te in the resulting equation. We have also
included terms for an energy source, SE(r), and an energy loss, LE(r),

to account for alpha heating, external heating, and radiation cooling.
Joule heating is negligible compared to alpha heating in a D-T plasma

at T ~ 10 keV. Equations (1)-(5) are not strictly valid over the entire
cross section of the plasma. For small r, one should use "plateau"
diffusion coefficients(z). For large devices, however, the transition
between "plateau" and "banana" diffusion occurs at such small values

of r (where the gradients are small) that little error is made using
"banana" diffusion coefficients for r>0. At the plasma edge, a

(13)

transition to the plateau or Pfirsch-Schluter regimes would take
place if the temperature becomes very low. However, in the analysis
to be presented, the boundary condition at the plasma edge, r = a,
is taken to be zero particle density, n(a) = 0. It will be shown
that in such a case, T(a) cannot be arbitrarily specified and in

fact remains relatively large. Thus, the plasma edge in this model

using only equations (1)-(4) remains in the banana regime.



For Tokamak plasmas bounded by a divertor with excellent particle
collection characteristics, one might expect that the appropriate
boundary condition at the plasma edge, r = a, is dT/dr = 0. As a

first case, we consider under what conditions equations (1) and (2)

possess solutions with dT/dr = 0 throughout the plasma. Assuming

dT
Ic - 0 in (3) and substituting into (1) gives
-2.2414d dn, _
T1/2 r dr (r c(r)n dr) - Sp(r)' (6)

., dT .
Setting i 0 in (4) and substituting into (2) gives

-s5.54 TH/2 L
r

S e a) =5 -L@m. @)
Divide (7) by (6) to obtain
5.54 ., _ Sg(r) - Ly (x)
2.24 Sp(r) :

(8)

Since T is independent of r, the right hand side of equation (7) must
also be independent of r. Thus, for uniform temperature, the particle
source function Sp(r) must have the same spatial dependence as the net
energy source SE(r)—LE(r). In a self-sustaining D~T reactor, the
energy source is alpha heating, which is a function of r through nz(r).
(We neglect here for simplicity alpha particles born near the plasma
edge which can be lost before slowing down.) Bremsstrahlung radiation
also varies as nz(r) so that SE(r) - LE(r) is proportional to nz(r).
Thus, Sp(r) must also be proportional to nz(r) if the temperature is

to be uniform. Under this condition, the density profile is determined

by the equation



dn2 ]

1
T dr

%; [r c(x) = - aznz(r) (9

where a? > 0 is an arbitrary constant. To obtain a solution to

equation (9), assume the toroidal current profile is uniform. Then

c(r)OCrDB/2 and equation (9) becomes
2
1d ,-1/2 dn", _ 2.2
 dr (r E;_) = -o'n" (r). (10)
) . 2 3/2
This can be transformed using vy = n (r), u=r , to
dzz 40® 1/3
2+—9—u y =20 (11)
du
. , . 1 . (14) .
which is a special form of Bessel's equation . Imposing the

boundary conditions, I'(0) = 0 and y(a) = nz(a) = 0, the solution is

2

n2(r) - o’ r.7/4

37 (YD (12)

r,. 3/4
Q;) J

where n = n(o), J_3/ is the Bessel function of index -3/7, a is the

/7

plasma radius and y = 1.7 is the first zero of J This solution

-3/7°

3)1/2

is shown in Figure 1 together with (1 - (r/a) , a simple and good fit.

ITI. General Density and Temperature Profiles

dT
dr

For the case # 0, it is possible to proceed part of the way
analytically. In particular, an analytic relationship between the
density and temperature profiles can be derived such that the remaining
equation for the temperature profile is much simplified, involving a

linear second order differential operator. To proceed, write equation

(3) as

2 2
. =2.24n dn |, .56n dT , .06n 4T
I=e (: 12 a3/ a2 ) ' (13)

By neglecting the last term in the brackets, a 10% correction to the

cross term contribution to the particle flux and an even smaller

dT

correction to I' if 5= ~ 0, as we shall find, the particle flux I' can



be written as a perfect derivative
d n2
I'=-1.12 c(x) a;("T—l‘/—é') . (14)

Therefore, eqn. (1) can now be integrated twice to obtain

n?(r) =0+ b(x)] T(r)M 2, (15)
where 2( )
-2, as
T(a)
and 1 a dr’ r'
- 1] Tt Tt
b(r) =715 aricay £ dr'' r Sp(r ). (17)

Substituting this relationship between n(r) and T(r) into equation

(4), one finds that QT depends linearly on T, namely,

dT db
QT = ~-33.7(D + b(x)) a‘r‘ - 2.76c()T H‘f . (18)

Thus, the left hand side of the energy conservation equation, (2),

will involve a linear second order differential operator on T and the
number of coupled differential equations to be solved has been reduced

by one. However, c(r) and b(r) depend on the plasma current profile,
j(r), and, in the general case, must be solved self consistently with

the neoclassical Ohm's law. In the case of a specified, though arbitrary
current profile, the linear, second order differential equation for T(r),
eqn. (2), can be solved numerically in a straight forward way. Thus, for
the remainder of this paper, we shall assume a constant current profile

and proceed to examine the implications of this model problem.

As an example of interest for a D-T burning plasma, consider alpha
heating for the energy source, SE(r), and bremsstrahlung radiation for

LE(r). Then

1 1/2
SE(r) - LE(r) =% (D + b(x))T

>
<0 vy 1Qy

-f T(r) [D+ b(n)] (19)



where <OfV>D_T is the fusion reaction rate, Qa is 3520 KeV and

~37 . . -
f=4.8x10 when n is in cm 3 and T is in kev. The equation for

T(r) becomes

-33.7

- %; {r c(r) [D+ b(x)] %% + .0815 r c(r)'%% T}

= [D+ b()] [ /T <ogv> - £1] : (20)

Equation (20) has been solved assuming a uniform particle source,
SP, a uniform toroidal current density, and zero density at the plasma

edge, n(a) = 0. Using x = r/a, equation (17) for b(x) gives

2
S, 2 7/2
b(x) = T T8hd (1 -x ) (21)
where
8/2m ezmellzlnA
d = (22)
3 A1/2B2

e(a)

and A is the torus aspect ratio. Equation (20) thus becomes

5/2 1 7/2
a1 ) 379 7T+ - (1 - x'"7) ar
dx2 7/2 ax
1 -x
3/2 Q
_.573 x T = -1785 & x/% [ -2 /T <o_v> -.048 T] (23)
1 - X7/2 ) :

which depends on a single parameter, §, given by

.04 T2VA

§ = 1nA

. (24)

Here, I is the plasma current in MA, and Qq and T and
measured in keV. Therefore, for a given aspect ratio machine, the
plasma temperature essentially will depend only on the plasma current,

remembering that a uniform current profile has been assumed.



Equation (23) possesses a regular singular point at x = 1, which
arises from n(l) = 0, and can be made to have a regular singular point

at x = 0 by a change of variable. At x = 1, one solution is well-behaved

and the other is divergent. At x = 0, one solution possesses QT = 0,
the other does not. (Rather than QT(O) = (0, the boundary condition at
r = 0 is sometimes incorrectly assumed to be %%-= 0at r=0. We
have in fact found numerically many solutions with zero derivative at
r = 0 but, of course, only one with QT(O) = 0,) A numerical solution
to equation (23) which has the property QT(O) = 0 and is well-behaved
at x = 1 is shown in Figure 2. It is interesting to note that, because
of the singular behavior at x = 1, only one solution is admissible.
Since n(a) = 0, it is not possible to arbitrarily choose the edge
temperature. Rather, T(a) is determined by connecting the well-be-
haved solution at the edge to the solution satisfying QT = 0 at the
origin. Once T(r) is known, the density profile is determined from
equation (15). This is also shown in Figure 2 together with the pre-
viously derived analytic solution, equation (12). Since the temperature
profile is effectively flat, equation (12) agrees with the numerical
solution except near the edge.
IV. Discussion

The solution in Figure 2 for § = .931 x 10--3 has a centerline
temperature of 11 keV, a temperature of reactor interest. Assuming
other parameters of reactor interest, such as a safety factor, q(a),
of 2.5, poloidal Bp = 2, and toroidal field strength, B¢, equal to
50 kG, the center line density is lO14 per cm3. However, for
A = 3 and 1nA ~ 18, this value of § corresponds to a plasma current

of only 500 kA and a plasma minor radius of just 15 cm. Thus,

neoclassical theory admits interesting reactor grade plasmas only in



10

uninterestingly small systems. The reasons are clear and have been
discussed previously by several authors using space-independent modelsgls’l6)
Essentially, the only way to achieve a plasma energy equilibrium at
temperatures in the 10 to 15 keV range, assuming hydrogenic bremsstrahlung
losses, is to have high particle leakage rates and high conduction
losses. This has been achieved here essentially by reducing the plasma
radius, since the confinement time varies as a2 or, equivalently, as
Iz. Parenthetically, even at 500 kA, this equilibrium could not be
maintained since such a current is insufficient to contain the alpha
orbits.(l7)

It is of interest to determine how anomolous the transport coef-
ficients must be, relative to the neoclassical values, to achieve plasmas
of interesting size at 1014 per cm3 density and 11 keV. Enhancing the

collision frequency by a factor, Sc’ will scale all the transport

coefficients. The effect is to alter § such that

_ 204 T20m) /A
S, InA ’

For a plasma characterized by Bp = 2, gq(a) = 2.5, B¢ = 50 kG, A = 3,

n = lOlé/cc, and T = 11 keV, a 5 MA discharge requires SC = 100 and a

10 MA discharge means SC = 400. One would conclude therefore, that
neoclassical scaling is two to three orders of magnitude better than is
desirable in a fusion reactor. While this conclusion is based on the
simplified model considered herin, it is consistent with numerical results

(4)

obtained using the full set of neoclassical equations.
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Figure Captions

Figure 1 - Analytic solution for the density profile when
dT/dr = 0 and current profile is constant.

Figure 2 - Temperature and density profiles found by solving
eqn. (23) and using the analytic relationship, eqn. (15)
between n(r) and T(r). Assumptions are that j(r) and
Sp(r) are uniform in space.



1 2an31yg

X
2l o'l 80 90 £'0 20 0
_ T 1T T T T T T T 0
= —zo
B vo
0
- oo VY
(X)u
- —s0
= o'l
_ | | | _ _ | | _ |




T(x)/To

n(x)/n,

14

1.0

.04 12(MAVVA _

3

i n A
— 'lz)=ll KeV

93| xI0~3

Figure 2





