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This work is intended to pull together some of the expressions for
diffusion coefficients based on various theories which are currently in vogue
for toroidal magnetic confinement systems. Perhaps no aspect of plasma physics
is less understood nor more important to controlled fusion than the diffusion
process. Experimental confirmation of most diffusion processes is meagre at
best. It is hoped that this work will simplify the task of sifting and win-
nowing through the Russian}and international conferencgfiiterature and assist
in the calculation of diffusion rates for fusion reactors or as a comparison
with experimental data on smaller devices. Expressions are both in exact
form and with coefficients numerically calculated suitable for scaling studies.
MKS units will be used throughout. Any corrections that are found will be
welcomed by the author. It is hoped that this will simplify the task of com-
parison for future delvers into the plasma state at Wisconsin.

1. Bohm diffusion (DB) is used most often as a comparison to measure
relative scaling of other diffusion processes. The C-stellarator exhibited

diffusion which agrees closely with the Bohm formula.

DB (m2/s) = kT (joules)/16 eB (Tesla) (1)

where K is Boltzmann's constant, T is the temperature in °K, e is the electron

charge, and B is the magnetic flux density in Tesla.

D (m2/s) = 6.25x1072T (eV)/B (Tesla) . (2)

2. Classical free diffusion follows from the random walk argument of
particles on the average moving an electron gyroradius step size (pe) each

collision period (v _.).
ei

D, =p2 v , (3)



It is convenient for scaling purposes to normalize this to the Bohm relation

which gives

- 1
DCl/DB = 1.6%10 “ei/wc (4)

where w, = eB/m, the electron gyrofrequency. Numerically, this becomes
= -16 - : '
Do, /Py = 2.64 x10718 (n(cm3) in A)/B(T) (T(ew))3/2 . (5)

3. Neoclassical Diffusion: In this regime the effects of toroidicity
and helical field windings or field ripple are included in the analysis. For
systems with low aspect ratio (a/R < < 1), we assume that the magnitude of the

magnetic field along a field line can be written as
B = Bo(l—et cosb-e, (r) cos? (6~ag) ) (6)

where ¢ measures the distance along the magnetic axis, 6 is the poloidal angle
around the axis, % 1s 1/2 the number of helical windings around the poloidal
direction, eh(r) < < 1 is the minor radius dependent perturbation due to the
helical windings, and €, < < 1 is the inverse aspect ratio (a/R).

We will assume that for the case of an axisymmetric tokamak (eh > 0)
all are familiar with the Pfirsch-Schliter, transition, and banana regimes
of neoclassical theory and the refinements of Rosenbluth, Hazeltine, and
Hinton and concentrate on the regime most applicable to fusion studies, the
banana regime (realizing full well that during start-up one might have to
pass through the other regimes). Banana diffusion occurs in a axisymmetric
toroidal system where the effective collision frequency for scattering trapped
particles out of the helical mirrors is small compared to the bounce time for
particles trapped in the mirrors. This requires Vogf @ vei/et < Wy where Wy

L
is the bounce time, wb o Vt(2et)?/R d, Vt is the electron thermal velocity, R



the major radius, and g = r BT/R Bp > 1 is the safety factor. When this con-
dition is obtained, i.e., when vei < (et)3/2 Vt/R g one obtains banana diffu-
sion due to the trapped particles which have an enhancement factor ngt—3/2

over free classical diffusion.

- 2 .2 3/8
DNC Vei Pe 4 /at (7)
thus
- 1 2 3/2
DNC/DB 1.6x10 Vo9 /wc €t (8)
D /D = 2.64 x10"!'8(n(cm=3) nA ¢2)/BTT) (T(ev))"3‘2<gé3‘2 . (9

NC' B

4. In non-axisymmetric systems other particle motions are possible.

In particular, in stellarators where € < < € < < 1 we have the possibility
of superbanana diffusion. This occurs for a very special class of particles
whose banana orbits drift radially and are localized in the poloidal angle (so-
called trapped bananas). The slowly drifting guiding center of the trapped
banana generates the superbanana which has a net diffusion rate greater than
that for a banana orbit in a comparable axisymmetric system. To obtain this
condition, one requires that the effective collision frequency for scattering
trapped banana orbits be small compared to the bounce frequency for the super-

banana orbit. This requires that

%  3/2 2
v, <v_ = B
i v3 KT &, &t /eBr

where r is the minor radius. The superbanana diffusion coefficient becomes

1

§4
2 KT/\)3 £, ¢ eB (10)

D = ;
A% € h

SB ei "t

and

1
- 1 2 . %
DSB/DB 1.6x10 Voy T gy eB/kT ¢ (11)



which obtains a maximum when vei = v3 of

1

2,0 2 (12)

_ 1
DSB/DB = 1.6%x10 £ h

t

which is Bohm-like except for geometrical factors.
5. If a radial electric field exists in the device the EXB drift ve-
locity and frequency must be taken into account, modifying the previous analysis.
_ _ 2 . . . . .
== > =
Let wE Er/reB, when W wh eHKT/eBr y Which is satisfied if reEr/ehKT > 1.

All of the bananas are then untrapped and superbananas do not occur. Maximum

estimates of the diffusion coefficients in this case become

7

= 2 o % '
DE/DB 16 e & KT/eErr (13)

which reduces the diffusion coefficient significantly below that for
superbananas.

6. Another approach to the diffusion process is pseudo-classical dif-
fusion based on a field fluctuation spectrum in the presence of density gradients
which provides a good fit to confinement times observed on most experimental

devices to date. The diffusion coefficient can be expressed as

= | g2 2/ o2 2
Dpe ((<EL‘4k" > én?/2n %) + 1) Doy (14)

where &n is the fluctuation density due to plasma noise and kl.and k" are the
wavenumbers of the fluctuations perpendicular and parallel to the magnetic
field. A saturation estimate on the diffusion rate gives the expression for

a tokamak of

- 2 = 2 )2 1
DPC C DClp C vei(mYL/eBg) (15)

where C2 = 1-10 and DClp is the classical diffusion coefficient expressed in

terms of the poloidal magnetic field 35. Thus

- 1 n2 42 2
DPC/DB 1.6x10* C% g vei/st O (16)



7. It is theorized that the nonequilibrium nature of a confined plasma
can give rise to instabilities which may cause anomolous transport of the plasma.
It may be possible that some microinstabilities cannot be stabilized. Due to
their short wavelengthy high frequency and relatively small amount of energy
driving them, it is expected that they will grow rapidly into the nonlinear
regime where their growth will be limited. For a tokamak, the drift waves are

caused by radial density gradients and a poloidal electric field Eé'

w*min = vti pi/r rp and w

are the minimum and maximum frequencies of the drift waves in the poloidal

—1
direction and rP = ((l/n)(dn/dr)) is the effective plasma radius. mein

k%minvD‘ is the minimum drift frequency due to magnetic field curvature. For

tokamaks the frequency ordering is typically such that

w_ . <w, ., < <@ .<<uwWw < < W
Dmin *min bi *max be

where the subscript b refers to the bounce frequency of the particles in the
mirrors formed by the helical magnetic field lines around the torus. For reactor
conditions, the (D) mode or dissipative trapped-ion mode is deemed to be the
most important. In this regime the effective collision frequency to remove
trapped particles from the mirrors is less than the ion bounce frequency and

1 1 i = < <L .
the drift wave is supported only by trapped particles (Veff Vei/et wbi)
Ifv,./e, w . < 0.4(m /M.)7/18 the mode is unstable and, using the strong tur-

ii” "t Tbi e’ i

bulence (assuming that wave fields strongly perturb the wave-particle resonance
and causes the instability to saturate) upper bound estimate of DAT = y/kl?

where EL = 1/r and Y is a linear growth rate yields

- 5/2 2
DAT (st) (KTi/eBrn) /vei (7

where r = ((l/n)(dn/dr))"1 .



Normalized to the Bohm form this yields
- 5/2 2
DAT/DB 16 € (KT/eB)/rn vei . (18)

As an exercise, for n = 101”/cm3, T = 10" eV, &nA = 20, B = 10 Tesla,

q2 = 10, rn2 = 10 mz, € = 0.1, €, = 0 for all cases except the superbanana
regime where eh = 0.1, e, = 0.01, we obtain
= 2 - -
DB 62.5 m“/s , DSB/DB 1.23%10 :
- -8 - -l
Dcl/DB 5.28%x10 ’ DPC/DB 5.28x10 ’ and
Dye/Pg = 1.67x107° D,p/Dg = Dissipative mode stable.
Thus a log scale would look as shown below.
w;Flassical qiginana —— Superbanana Bohm
. - .
. e \\\\v——-PSQFdO—ClSSSlcal
\\\‘ ..... . ! \\ E;_-rappe ion
~ R e,=1/3, R=6m
4\\\* i i A ?; \* *f t : )! ' log D/Dy
1078 1077 107® 1075 107% 1073 102 1071 1

It should be noted that the disspiative trapped—ion mode is stable under the
above conditions and one would need to have €t=l/3 (R=6m, a=2m) with other parameters

unchanged for it to become important.
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