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TETHER DYNAMICS AND VIBRATION ANALYSIS

R. L. Enge]stad* and E. G. Lovell
Fusion Technology Institute
University of Wisconsin-Madison

Abstract

An assessment 1is made of the effects of
tension gradients on the free vibrations of
tethers. A perturbation procedure is developed in
general terms, Specific cases considered include
centrifugal loading and distributions from gravity
gradients. Results indicate that such gradients
can significantly alter natural frequencies, with
changes nearly independent of wave number.
Distortions in mode shapes also occur but are less
severe. Node points and maximum amplitudes are
shifted in the direction of decreasing tension.

Equations of motion are presented for flow-
induced vibrations din tethers used for fluid
transfer, such as propellants and coolants,
Response curves are obtained by numerical
integration, It has been found that if the flow
has a pulsating characteristic, large amplitude
displacements are 1likely to develop over a wide
range of system parameters.

I. Introduction

Mechanical vibrations can naturally occur in
tether systems designed for a variety of applica-
tions. One of the most important influences on
vibrations of such flexible members 1is internal
tension, which may change considerably because of
large unsupported lengths. An objective of this
work is to determine the effects of tension
gradients on free vibrations. This is a necessary
prerequisite for forced vibration analysis by
modal procedures.

Tethers may also function as fluid lines for
the transfer of propellants, contaminated liquids,
coolants, etc. It is important to be able to
determine the dynamic response and identify the
influence of factors such as fluid velocity,
fluctuating flow, tether stiffness and effective
tension. These issues are considered in the work
which follows.

II. Tension Gradient Effects on the Free
Vibrations of Tethers

For basic problems in which the tension T and
mass per unit length p are functions of the axial
coordinate, x, the equation of motion for the
transverse displacement component v is
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where t and @ denote time and tether rotational

speed, respectively. For small axial gradients,

the following substitutions are made for T and p:
T(x) = Tol1 + &(x)] (2)

poll + e(x)] . (3)

p(x)
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The form of the solution used for a typical modal
component can be expressed as

vn(x,t) = [Vn(x) + mZn ame(x)]exp(iwnt) (4)
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Here V (x) and w_are solutions to the gradient-
free problem, i.e.,

Vp(x) = sin nnx/2 n=12,... (6)

* 2 2

wn2 = ME(an) /pol -0 (7)
where Mc represents a concentrated end mass. The

coefficTents 3y and b, are small order terms and
facilitate the development of the perturbation
solution, These expressions are now substituted
into the equation of motion, (1):
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The equation for first order perturbation terms is
obtained by deleting the right side of (8):
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Series coefficients a;, and b, can be determined
from the following expressions:
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where
() = -0 2(1+ Qe BV (e /T, (1)
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ko =g Vo(x) dx . (12)

Centrifugal Tension Gradient

Consider an idealized example in which the

axial gradient results from rotation only. The
origin of coordinates is at the center of rota-
tion, the length is 2 and an end mass Mg has
negligible relative displacement (as in  some

simple constellations). The mass per unit length

is also constant. Thus
e(x) =0
T(x) = To[1 + 6(x)]
= MEznz[l + po(z2 - x2)/2MEz] . (13)
The perturbation parameters foliow from (10):
ay = 2MT(-1)m+”mn(m2+n2)/
(1+92/w*2)MEn2(m+n)z(m-n)z(mz-nz) (14)
by = (Mp/3Mg) (1-3/4n%42) (15)
where Mp is the tether mass. From (15), the
frequency change will be nearly the same for all
modes. The percentage difference can be sub-
stantial, as shown 1in Fig. 1. Modifications in

mode shapes are not as large. From Figs. 2-4, it
can be seen that maximum amplitudes and node
points are shifted in the direction of decreasing
tension,

Gravity Gradient Tension Distribution

In this example, the model consists of a
tether aligned with the local vertical having a
lower end mass M; at ry and an upper end mass My
at rp, Force equilibrium for the system requires

92[M2r2 + erl + MT(r2 + rl)/2]
= GHLM, /e + My /el 4 Me/ Py, (16)

constant of the
the internal

where GM 1is the gravitational
earth. At a generic position r,
tether tension is
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T(r) = o (r? - ¢%)/2

+GMML(1/r) - 1/r) /e 4 Fy (17)
where Fl is the force difference acting on Ml’
_ 2 2
Fp = GMM,/r] - Myra® . (18)
The modification in mode shapes  and

frequencies will have the same form as given in
(4) and (5). However, the axial coordinate x will
originate at mass Ml’ i.e.,

X =r-r. (19)

Frequency correction coefficients depend upon all
system parameters:

(Mp/2M,)

2 2
b = —T et (1 - (&/ry)(2/3 + 1/n%4P)
noQq - rfnz/em) 1

+ (/e 2172 + 3/n%nd))
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For cases 1in which er?/GM << 1, this can be

simplified:

by = (M/2MDLL = (2/r))(2/3 + 1/nPe?)

+ (a/rP(1/2 + 3ntad)] (21)

It can be seen that the modification to the square
of each natural frequency is essentially the same,
i.e., one half of the ratio of tether mass to end
mass. Numerical results are presented in Table 1.

Similarly the ampliitude coefficients are
obtained from (10a), i.e.,

an = 22 I/nz(m2 - n2)(1 + Qz/m:z)

Table 1, Percent Change in Natural Frequencies
for Varijous Tether Length and Mass Ratios

n !L/r‘1 MT/M1=0.4 0.8 1.2

1 0.005 9.515 18.334 26.754
5 0.005 9.519 18.343 26.766
1 0.010 9.446 18.205 26.566
5 0.010 9.459 18,229 26.601
1 0.015 9.480 18.269 26.660
5 0.015 9.489 18.285 26.683
where
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L(n-m)22-21(-1)™" + 2
1 Th-m)
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(n+m)

. (22)

As with the preceding example, moderate distortion
of the mode shapes will result for a wide range of
numerical values of the parameters in (22).

I1II. Flow-Induced Vibrations

The model wused consists of a completely
flexible uniform tether of length &, cross-
sectional area AT and mass per unit length pg.
The fluid velocity is ¢, cross-sectional flow area
AF and mass per unit length pc. Gravity gradient
and rotational effects are not included in the
model. It is also assumed that nominal tube
dimensions do not significantly change with
pressurization and motion. The fluid is
considered viscous and incompressible.

The wundeformed centeriine of the tether
coincides with the x axis. Free and forced
response of the tether is aliowed in both the x-y
and X=2 planes along with longitudinal
deformations. An effective axial force Tgf
includes the induced axial Toad from interna
pressure. Nonlinear tension effects are accounted
for by including higher order terms in the tether
extension expression.

Equations of motion were developed using
Hamiltons's principle and general variational
calculus procedures. These equations follow for
the axial, transverse and lateral directions:

*This group of terms is zero if m and n are both
odd or both even,
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where E is the elastic modulus of the tether, Ko
is the damping coefficient, and u, v and w are the
displacement components in the x, y and z
directions, respectively.

By neglecting longitudinal inertia, (23) can
be combined with (24) and (25) to eliminate the
axial displacement component, u:

2
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The companion equation in the z direction can be
obtained by interchanging w and v. These partial
differential equations are reduced to ordinary
differential equations by Galerkin's method. The
form of the solution is a summation of linear
modes, i.e.,

nmx
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Thus the corresponding equation of motion is
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where (rin) is odd, otherwise the two series in
(27) are zero. The fluid velocity is denoted by
c. In the case of flow with a pulsating compo-
nent, the representation is

c = co(l + p cos at) . (28)
For numerical purposes, dimensionless variables
are defined as follows:
Ve, We=wi, Teat (29)
2 _ 2,22 2
wr = (TEFF - cho)" r /(OF + DT)Q . (30)

Computational Results

Tether dynamic response for multiple modes
was determined by a Runge-Kutta integration
routine., Approximately 6000 time steps per cycle
were used. For both examples the harmonic
coefficient (u) was 0.40, damping was 1% and the
length was 100 m. In the first case, shown in
Fig. 5, a fluid velocity of 1 m/s is low enough
that steady state motion ‘characterizes the
response, However, as seen from Fig, 6, an
increase in speed to 5 m/s causes an unstable
response with midspan displacements growing
exponentially. Generally the nature of the time
histories is quite sensitive to changes in system
parameters,

IV. CONCLUSIONS

A perturbation procedure has been outlined
for use 1in the vibration analysis of tethers
having mass or tension gradients. When applied to
the cases of tension variations from rotation or

gravity gradients, it has been shown that
vibration frequencies can be significantly
changed. Asymmetries occur in mode shapes

characterized by shifts in locations of maximum
values and node points toward low tension regions.
Equations of motion have also been developed for
flow-induced vibrations of tethers. Results
indicate that if the velocity has a harmonic
variation, lTarge amplitude motion is possible over
a wide range of physical parameters.
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