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ABSTRACT

An adaptive grid algorithm has been developed for the
purpose of simulating highly nonlinear and unsteady 1-D
problems in computational fluid dynamics with high
gradient regions in one or more physical quantities. The
equidistribution principle was used to determine the
updated mesh location. Smoothing of the distribution and
minimum mesh size coantrol was included in the algorithm.
The method was tested against a simple propagating shock,
a shock tube, an interacting blast wave, and a radiation
hydrodynamic blast wave. The transformed governing equa-
tions for these problems were cast in a strong conserva-
tive form; a control volume formulation using first upwind
differencing was used to develop the difference
equations. This simple numerical method coupled with an
adaptive mesh resolved high gradient regions very well but
difficulties occurred with the simulation of both the

rarefaction fan and a shock region.
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1.0 INTRODUCTION

The application of finite difference numerical
methods to systems of partial differential equations has
reached a relatively high state of development in the past
twenty years. Significant advances have been made in
computer technology, numerical methods, and grid gener-
ation during this time. Direct numerical simulation, that
is obtaining information about physical phenomena which
are difficult or impractical to measure experimentally, is
& common place practice. However, the complexity of the
problems to be solved has also grown. The computer having
an infinite amount of memory with an infinitely fast cycle
time has yet to be built. Therefore the investigator,
with limited computer resources, is constantly faced with
the practical problem of how many grid points to use and
where to place them to achieve both accuracy and
reasonable execution times. Thus, interest has developed
in the past few years in developing techniques for con-
structing solution adaptive mesh systems; that is, mesh
Systems where the grid evolves as part of the solution to
the system of differential equations. Since the mesh is
adaptive, the grid point positioms are determined by some

measure of the quality of the numerical solution. The



computed results are in some sense “"better" than those
obtained on a uniform grid with the same number of points
(Lagrangian mesh systems will be discussed latter).
Adaptive mesh generation essentially addresses two,
sometimes conflicting, concerns: accuracy of the solution
and minimization of the number of mesh points. The reason
for the latter is obvious, as most matrix inversion tech-
niques scale directly by some power of the number of
points. The accuracy issue arises from the fact that the
more challenging simulation problems are unsteady in time
and have regions of high gradients of one or more
variables. Typical numerical methods are second order
accurate in the space variables. One would like to op-
timize the mesh point spacing at these high gradient
regions in order to accurately resolve them. Adaptive mesh
construction attempts to resolve this dilemma by cluster-
ing the grid points where needed to resolve éertain fea-
tures of the solution and also allow them to be displaced

in the space domain as the solution develops in time.

1.1 Model Problem

Problems with high gradient regions benefit the most
from adaptive mesh systems; many examples exist in
numerous applications. The present investigation is

concerned with the class of problems containing multiple



high gradient regions resulting from different quantities
(i.e., density, temperature, pressure) which one would
like to accurately resolve. Typical examples include
spark plug ignition, high temperature blast wavesl, and
laser or ion beam ablation of a surfacez. The first
situation has a pressure wave (shock) and a deflagration
wave which need to be resolved. The second has a blast
and thermal wave; the front needs to be finely meshed to
obtain the correct propagation speed for this precursor
shock problem®. The third has coupled density and tem-
perature gradients.

The model problem for the present work is the
laser/ion beam ablation of a surface. It is further
narrowed to consider situations typical for inertial
confinement fusion (ICF)4’5. In this application, a high
intensity beam is used to ablatively implode a target to
achieve extremely high densities and therefore obtain a
temperature sufficiently high to have a thermonuclear
burn. The incident beam is attenuated in the "corona"
region (low density plasma) of the ablated debris. The
beam penetrates the corona until the point where the
plasma frequency equals the beam frequency--defined as the
critical density. Then thermal conduction transports the
deposited energy from this poiﬁt to the target surface

where ablation takes place. Thus this problem possesses

re



two high gradient regions of importantance: the critical
density point (iaser beam energy) and the target ablation
front (density). This is an unsteady problem, as both
fronts propagate away from the surface as the solution
progresses. The efficliency of this process is determined
by the ablation rate; both gradient regions need to be
accurately resolved to determine it. Radiation
hydrodynamic effects are also important in this problem.
Thus the laser/ion beam ablation problem is a good one
with which to use an adaptive grid scheme.

Lagrangian grid schemes, developed from radiation
hydrodynamic simulations, have historically been used to
model this problem. In these methods the mass of each
computational cell is a constant and the cell propagates
at the fluid velocity (no mass flux across the cell face).
This technique adequately resolves the ablation gradient.
However, since the density decreases rapidly from the
surface, the meshes will be elongated in the region of the
critical density (typically 50 times larger). This will
tend to smear the temperature gradient in space and thus
will reduce the peak temperature. This appears not to be
a problem for long wavelength laser light, but becomes one
for shorter wavelenghts as the critical surface is closer

6

to the ablation surface~. Figure 1, from work done at

KMS7, illustrates this problem. Figure l.a was obtained
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using a standard lagrangian grid scheme while figure 1.b
used fixed subgridding or mesh refinement near the criti-
cal density surface to resolve this gradient. One will
note the reduced temperature and the effect of the pon-
deromotive force on the density profile for the case with
better resolution. This local mesh refinement scheme
required the user to have a priori knowledge about the
form of the solution; it is not a very robust technique.

Two dimensional modelling of the model problem with a
lagrangian mesh is very difficult. Emery8 gives numerical
simulations using an eulerian mesh; the flow field con-
talins vorticies generated from Rayleigh-Taylor
instabilities. A lagrangian mesh has severe difficulties
in simulating rotational fluid flow.

1.2 Adaptive Grids

A numerical simulation of a problem requires three
distinct parts: stating the governing equations, choosing
a method to solve the discretized equations, and finally
determining the placement of the observer points (mesh
points). As was Jjust illustrated, the grid can play a
very important role in determining the accuracy (quality)
of the solution even though the same governing equations
and numerical methods were used. Thus a numerical method

might have a high formal accuracy (with respect to a



30 fine zones
H .

ST T e

electron temperature™~--

-
T -
-
-

0.0

0.04 0.08 Radius (mm)

.24

Figure 1.b Simulation with lagrangian mesh and

local mesh refinement.




Taylor series expansion), but the actual solution might be
meaningless. The computational grid is just as important
as the other two parts of the problem. A good grid
scheme, however, will not always overcome deficiencies in
the numérical method. It is important that all three
phases of the problem be coordinated so that the results
of the numerical simulation are meaningful.

Finite difference methods for the solution of partial
differential equations originally used either eulerian or
lagrangian coordinate systems. An eulerian system (iner-
tial or laboratory frame system) is one in which the grid
points, observers of the solution, remain fixed in some
space coordinate system. Fluid passes freely through the
computational meshes. This is a natural grid system for
matching experimental data since transducers usually
remain statlionary. Grid points could be placed at thesg
probe points and the numerical results could be compared
directly with the experimental data. In a lagrangian
system, the grid points move with the local velocity of
the fluid. Each computational cell can be thought of as
having a given quantity of material which remains fixed
throughout the simulation. Therefore, unlike the eulerian
grid which remains fixed in time, the lagrangian grid

undergoes constant deformation.



Each of these systems has inherent advantages and
disadvantages, dependent upon the physical problem to be
solved. Table 1 compares these for both systems. The
main strength of the eulerian mesh system is that it is
robust; i1t can model many complex problems given a suffi-
cient number of mesh points. The lagrangian mesh is
perfect for strong shocks and blast waves; the high pres-
sure gradients pose no difficulty. Since the present
ﬁodel problem has multiple gradient regions, a mesh having
attributes of both systems would be desired. .

Eulerian and lagrangian mesh systems can be viewed as
special cases of the general set of adaptive systems.

This relationship can best be illustrated by the following
problem. We consider the first-order wave equation of

u. + C Ux = 0 (1.1)

t
where U(t,x) is the unknown dependent variable, Ut and Ux
are the partial derivatives with respect to time and space
respectively, and C is a constant wave speed. We let the
transformation relating the physical domain (x,t) and the

computational domain ((,r) be written as

T =t (1.2)
£ = £(x,%)
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Table 1
Eulerian and Lagrangian Grid Systems

strengths veakness
EULERIAN - fixed points in space - smear strong
for data comparison discontinuities

(blast waves)
- complex geometries

- dissipation
- easy programming

- multi-material
- time asymptotic and transport
transient analysis

- rotational flows
- 1instability growth

- robust

LAGRANGIAN- multi-material transport - multi-dimensional

grid distortion
- blast wave modelling
- rezone schemes
- moving front problems required
(velocity driven)
- interpolation
- transient analysis required for
only mesh skewing
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Transforming the wave equation into computational coor-

dinates yields

U+ (c - xr)UE -0 (1.3)
T
where xs is the grid metric (Jacobian) and X, is the grid
speed. The coordinate system transformations can be found
in Appendix A. Ve now examine this equation to determine
the eulerian and lagrangian systems subsets. First, if
the grid speed is set to zero, the result is simply an
eulerian mesh in a stretched coordinate system. It is
interesting to note that the wave speed is now C/xE and is
thus mesh dependent. If the grid speed is set to the wave
speed (xr = C), the result is a lagrangian mesh system.
And in the general adaptive case, the effective wave sSpeed
is both space (mesh) and time dependent in the computa-
tional domain.

In conclusion, it has been demonstrated that eulerian
and lagrangian mesh systems are only special cases of the
adaptive grid system. Local grid refinement and periodic
rezoning are only ad hoc patches to either the eulerian or
lagrangian systems to enable them to solve more compli-
cated problems. Adaptive grid systems provide a sSys-
tematic approach to determine the ‘best’ time dependent

mesh for a problem. Thus, the direct numerical simulation
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of complex problems can be attempted where the lack of
information about the solution prevents a priori grid

modeling.

1.3 Problem Statement

The present investigation is concerned with developing
an efficient numerical technique to simulate one-
dimensional unsteady problems with sharp gradlients. The
first goal of this work is to develop a simple procedure
for generating an adaptive mesh and to then couple the
translating grid points to the system of governing partial
differential equations. The Navier-Stokes equations will
be used ;nstead of the simpler nonlinear Burger's equation
based on the experience of Laxgz procedures which work
for the simple equation might not work for the full set of
equations. The equations will be cast in a strong con-
servative formlo. Computational efficiency and robustness
are prime attributes which are desired for the method;
code vectorization will be achieved whenever possible.

The second goal is to evaluate the method with a set
of simple problems which capture the salient features of
the model problem; the present work is limited to develop-
ing and demonstrating the metho§. The intent of the
present investigation 1s to develop a methodology for

simulating a variety of problems rather than just one
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particular application. Four test problems have been
chosen for this task:

l1--Inviscid shock wave,

2—--Shock tube,

3--Interacting blast waves, and

4--Radiation hydrodynamic blast wave.
The first three problems model a single ideal gas while
the last one models a high temperature absorbing and
emitting real gas with the two temperature diffusion

approximation.
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2.0 LITERATURE REVIEVW

The problem under investigation 1s one of numerical
simulation. As was stated in the introduction, there are
three facets to the problem: governing equations, mesh
generation, and numerical methods. The present literature
review will be presented along those general lines: model
problem, adaptive mesh systems, and numerical methods for

systems of partial differential equationms.

2.1 Model Problem Simulation
As was mentioned earlier, lagrangian mesh systems have
been historically used to simulate the present model

problem. The LASNEX code from LLNL'! and PED-IV from

Wisconsinl2 are just two typical examples. Both use
standard lagrangian hydrodynamiés to advance the flow
solution in time. ©Neither employ any automatic mesh
subgridding or rezoning based on the solution gradients.
That is, the mesh polnt movement is determined solely by
the fluld velocity irrespective of other structures in the
solution. They also both have the same modelling dif-
ficultles as was experienced with the KMS code, discussed
earlier7, due to the lack of mesh resolution qt the criti-

cal density plane.
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NRL has developed an eulerian based radiation

hydrodynamics code, CASTOR>®

)14

, usling the flux corrected
transport (FCT algorithm to overcome some of the dif-
ficulties of the eulerian mesh for blast wave problems(see’
Table 1). The FCT method will be discussed in a later
section. They have since developed a new version with an
adaptive mesh or ‘sliding eulerian zones' as they refer to

it (PasT2D}9).

They have divided the spatial domain into
several regions based on the physical ablation processes,
with each region having its own adaptive grid. A diffu-
sion equation was used to control the mesh point
movement. This is a highly problem dependent procedure
and appears to not be very robust.

The NRL group has reported differences in modelling
the ablation of thin targets using short wavelength light
when compared with LASNExls. It appears that LASNEX
solutions approached the FAST2D results only when many
lagrangian mesh points were used. A major penalty was
paid in computational time due to both the reduced mesh
size in the solid region and the increased number of mesh
points. Recall that as the foil ablates, the mesh will
naturally elongate due to the density reduction. This
will smear the otherwise sharp critical demsity plane.

As mentioned earlier, KMS has developed a lagrangian

code with a predetermined local subgridding7. This al-
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lowed them to capture the detailed features of the criti-
cal density region. Unfortunately, the process requires
a priorli knowledge of where this region will be located.
A true adaptive method uses the curreant time solution to
determine the mesh point locatioms.

Combined eulerian and lagrangian schemes have also

been usedle’lv.

The strategy of these codes is to first
establish a fixed mesh (eulerian) and then integrate the
governing partial differential equations in a lagrangian
sense. At the completion of each time step, the results
are interpolated back to the original mesh locations. An
intelligent choice for the original grid must be made to

capture localized gradiemts.

2.2 Adaptive Mesh Systems

In a recent paper, Thompson18

reviewved the current
work in adaptive grid generation. Only the most important
ideas of adaptive griding and their references will be
summarized here.

The majority of the current work has been focused on
obtaining a grid system for a steady-state problem. That
is, the initial mesh point distribution has been perturbed

as the solution achieves a steady-state nature; the local

mesh velocity will tend to zero at this time.
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First, we recall the one-dimensional first-order wave

equation in computational coordinates developed earlier

Xz

U+ (c - xr)tr~E -0 (2.1)

The metric, xE, represents the ratio of arc lengths in the
physical and computational planes and the grid speed, x.,
provides the dynamic coupling of the moving grid with the
evolving solution of the differential equation. Any
method for constructing an adaptive grid must provide a
technique for estimating these terms since they explicitly
appear in the transformed equations. Exceptions to this
are time asymptotic (steady-state) problems; the grid
speed need not be tightly coupled to the solution. In
fact, as the solution converges, the grid speed will
naturally go to zero. Since the problems under considera-
tion are unsteady in time, this will not be a considera-
tion.

Adaptive grid methods can be divided into two
categories. In the first one, some set of rules relating
the grid points in the physical and computational domain
is used to establish new physical grid point locations at
the end of each time step based on the physical
variables. The grid speed is then simply estimated for

the next integration by using a backward difference on the
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new and old grid locations. Either implicitly coupling
the determination of the metric and the solution of the
PDEs, or using an explicit procedure, has been tried. The
second class of schemes relies upon directly establishing
the grid speed by some rule. Then the grid speed is
integrated along with the differential equation and the
new grid polnt positions are established; the metrics are
computed by evaluating the ratio of arc lengths in the
physical and computational domains. A lagrangian scheme
would be of the second class as the fluid velocity is the
mesh velocity; typically no stretching is done and the
problem is solved in the physical domain.

There are advantages and disadvantages to both
approaches. Methods which directly gemerate the new
coordinates (class 1) are conceptually easy to apply and
grid clustering is generally easily controlled. The use
of a backward time difference to determine the grid speed
is only first order accurate. A major limitation of these
grid point location schemes is that they may be difficult
to extend to multidimensional problems. Conversely,
techniques which directly determine grid speed from some
grid speed law (class 2) are easily applied in multidimen-
sional applications because grid point location is deter-
mined by a simple integration. The major disadvantage

with these techniques is in formulating the physical laws
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which determine the grid speed. Also, mesh point control
or clustering is a difficulty.

The philosophy of Andersonlg

1s appropriate here:
“Ideas used in construction of adaptive grid techniques
are limited only by one’'s imagination, and any scheme that
works in the sense of providing a better solution is a

good one".

2.2.1 Equidistribution Schemes Thompson<C states that

numerous studies on ODEs have shown that the solution
error can be reduced by distributing the grid points so
that some positive weight function, W(x), is equally
distributed over the field, i.se.,

Axi Wi = constant. (2.2)

This same strategy can be applied to the numerical solu-
tion of partial differential equations. Now recall that a
grid transformation is being used which maps X to £. And
since it is convenient to define the grid points in the ¢
plane by successive integer values of ¢ (A: = 1 and

§pax = N, the number of grid points), then

Ax = x Af = xE. Thus, the equidistribution statement

3
becomes



20

x, W = constant. (2.3)

Now this weight function W can be taken as either a func-
tion of ¢ or x. If it is a function of £, then eq. 2.3 is

21

the Euler equation for the minimization of the integral

I = OJ’N W(E)xgd'é : (2.4)

And if W is taken as a function of x, the corresponding
integral 1is

I = fN[Wx)xg]? ag (2.5)

Equation 2.4 can be lnterpreted as representing the
energy of a system of springs, with spring constants W(%),
spanning each grid interval. The grid point distribution
resulting from the equidistribution principle represents
the equilibrium state of the spring system. The varia-
tional problem for equation 2.5 is the least-squares
minimization over the grid of the cumulative grid point
spacing welghted by the weight function. = Thus this ap-
proach obtalns a smooth grid point distribution.

The weight function taken as a function of x is some-
what easier to implement since 1t is easier to associate W
with a physical property gradient. The first approach,
with W as a function of ¢, is more useful if a uniform

value of WAx is fixed; for example, if the weight function
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is taken to be representative of truncation error and
limits are imposed on this error.

Now eq. 2.3 can be ihtegrated to obtain

x )
of Wdx

E(x) = N
LW 2.6
of dx | ( )

wvhere the physical domain is taken to be from O to L and
the computational domain contains N meshes. Rearranging

equation 2.6 slightly, we obtain

N (2.7)

x - I
S Hax' = E(x) (o de)
’
An explicit adaptive grid generation technique can be
developed from this equation. At the beginning of each
time step, the weight function can be determined from the
physical variables. The second quantity on the right hand
side of the equation is simply the average AxW for each
mesh: the constant in equation 2.3. The first term, £(x),
is Just the set of integers since A has been previously
defined as unity. Thus, all that is required is to per-
form the integral on the left hand side for the new value

of x at time n+l. The grid metric, x
(xn+1

g is then just

- x®) and the grid speed is determined from a simple

backward difference on the x location. These were the two



(This page is intentionally blank.)

22



23

variables which were added to the set of problem unknowns
when the PDEs were transformed to the computational
space. Now the PDEs can be integrated for the next time
step physical variables, the new weight functions deter-
mined, and the process repeated until the end time is
achieved.

The strategy of explicit adaptive grid comstruction
has now been reduced to determining the appropriate welght
functions W(x). Various candidate functions will be given

in the following section.

2.2.2 V¥Yeight Functions The majority of the published

literature have considered a single dependent variable, U.
The effect of the weight function is to reduce the
point spacing x where V¥ is large and increase it when W is

small; therefore, the weight function should be some
measure of the solution variation. The simplest choice
would be the solution gradient

¥ =-U,. (2.8)
Equation 2.3 then reduces to

UE = constant. (2.9)
The grid point distribution would then be adjusted so that
the same change in the solution occurs over each grid
interval. This is illustrated in fig. 2.1 (taken from
ref. 20). This choice for the weight function has the
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disadvantage of making the spacing infinitely large where
the solution is constant.

A similar function is

W=yl + Ui (2.10)

This is an ﬁrc length welghting function. ©Now eq. 2.3
reduces to

Ss = constant ) (2.11)
with S defined as the arc length. The grid point dis-
tribution is now such that the same increment in arc
length on the solution curve occurs over each grid
interval. PFigure 2.2 (taken from ref. 20) illustrates
this feature. Unlike the previous choice, this weight
function yields uniform épacing where the solution is
constant. But, the point concentration in the high
gradient region is now reduced. A possible modification

of eq. 2.10 to increase this grid point clustering could
be

W =v1l +a2U2

x (2.12)

where a controls the relative weighting of the gradient.
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u{x)

Figure 2.1 sSolution gradient weighting.

lu

Figure 2.2 Aarc length weighting
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All of the weight functions mentioned have the disad-
vantage that regions near solution extrema, that is where
Ux = 0, are treated similar to constant regions.

Figure 2.3 (taken from ref. 20) illustrates this effect;
there is insufficlent point clustering at the solution
extrema. Thus, the previously mentioned weight functions
concentrate points only near gradients and not extrema.

Concentration of points near solution extrema could be
achlieved by incorporating some effect of the second

derivative, Uxx’ into the weight function. Thompsonzo

suggested using the curvature of the solution curve:

Uxx
K =
3/2
(l + UZ) (2.13)
X
He proposed a weight function of the form:
2 .
¥W=1+a"IKI . (2.14)
22,23
Eiseman has proposed the following similar weight

function:

W= (1+ 8%k|) V1 + a®u? (2.15)

Mesh point concentration near extrema is emphasized by

large § and near high gradients by large values of a.



Figure 2.3 Solution extrema example
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Dwyer24—26

the following simple form:

has had success with a weight function of

¥=1=+ alle + BIUxxl . (2.186)

He has developed a strategy for determining a and g which
essentially allows a specified fraction of points to be
assigned to each function variation. 1If Ra is defined as
the percentage of grid.points to be assigned to the first
derivative, then

X
a I maxlU l dx
— QO X
Rg = —x (2.17)

max
of ™ (1 + alul + slu_|) ax

A similar expression can be given for the second deriva-
tive control, Rﬁ. The time dependent problem proceeds
with Ra and R‘3 held constant and used to determine the
solution varying a and f. Dwyer suggests performing this
procedure with each time step to prevent point location
osclillations due to rapid changés in the second deriva-

tive.

2.2.3 Grid Speed Schemes We recall from equation 2.1
that using adaptive grid schemes introduces two unknowns:
the grid speed and grid metric. The previous section
presented models for determining the grid metric; the grid

speed would be determined from a simple backward
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difference. Grid speed schemes do the opposite; the grid
speed 1s modeled and the grid metric or points are deter-
mined by simple integration.

_”7-29

Anderson has been the major contributor in

developing grid speed models; his work has been primarily
concerned with time asymptotic problems. An early model
vas based on obtaining a steady grid equation by differen-
tiating the equidistribution equation 2.3 with respect to
the computational space coordinate. The follo@ing grid
speed equation was then postulated:

Xg W
W

x. =C [xgs +

] (2.18)

where C is a constant and W is some weight function. This
cholce forced the grid to have a zero speed when the
steady grid equation was satisfied. In principle this
approach was successful, but Anderson found that solving
the parabolic equation to be computationally intensive in
real applications. Also, this model was limited to time
asymptotic problems.

Anderson has also proposed an ‘attraction model’. The
basis for this model is that decreased mesh spacing will
reduce the solution error. The idea behind this model is
Similar to that of determining the net potential at a

space location from a set of discrete point potentials.
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This scheme also proved to be unsatisfactory for unsteady
time problems. In his recent work, Anderson has shifted
to either equidistribution methods or variational methods
(discussed in section 2.5). ‘

Lagrangian methods are of the class of grid speed
schemes. The grid speed is simply taken as the local
fluid velocity.

2.2.4 Qther Methods Winkler, et al.>0’'3! nave developed
an adaptive grid scheme for unsteady radiation
hydrodynamic problems. They chose to proceed directly
with the‘construetion of differential operators to obtain
their grid distribution, based on physical insight rather
than on the formalism of the Euler-lLagrange equations and
the equidistribution principle. Since they compute the
mesh spacing directly, they had to consider mesh overlap-
ping and point distribution smoothness problems. Also, it
is not clear whether the PDEs were in conservative fornm
and included the grid tramslation terms or whether inter-
polation has been used to obtain the physical variables at
the nev mesh locations. They employed a parabolic diffu—
sion equation to transport the grid points at each new
time step. The robust character of their method is

questioned.
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2.2.5 Multidimensional Methods Dwyer~* °® nas used his

equidistribution scheme for two-dimensional simulations by
adapting along only one axis. That is, only gradients
along one grid coordinate are adaptively resolved. Dwyer
believes that many 2-D problems can be modeled by this
procedure if a judicious choice of the grid is madesz. He
has presented solutions for flow around cylinders where
the solution is adapted along the ra&ial axis. The an-
gular axes distribution remains fixed in the problem.

This resulted in a simple and efficient scheme which did
not have the grid skewing problem which might have oc-
curred if the adaption took place along both axes. To
implement this method, the equations need only have been
modified to consider the arc leagth, s, rather than the
physical coordinate (x or y) for the derivatives and
integration limits. For example, equation 2.7 would

become

s OILst
of Was' = &(s) (2.19)
where it has been assumed that adaption would be along the
£ axis in the computational system of (£,7). The welght
function ¥ is now a function of s (e.g., Uy instead of
Ux)'

Dwyer has also modelled 2-D problems with two
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gradients: a developing velocity front and a thermal burn
wvave. He used a separate mesh for each adapted variable
and interpolated the solutions between the grids. He has
privately admitted to mass conservation problems with the
calculationssz.

Anderson28 has attempted to use the equidistribution
principle to adapt along both axes of a 2-D problem (using
a method similar to Dwyer’'s). He reports severe grid
distortion in unsteady problems.

Eiseman~°

has tried to use ADI-like techniques to
iterate for the adaptive mesh locations on a 2-D grid. He
first adapts along one coordinate axis and then the other,
iterating back-and-forth until the mesh points have
converged. He has only tried tpe scheme on simple test
cases; he also reports problems with grid distortion and

skewing.

Brackbil199

has applied the full variational approach
to 2-D transient problems with good success. The basis
for his method is the Thompsonzo static grid generation
method; smoothness 1s guaranteed by using a Laplace
system. The grid orthogonality and local weights (an
extension of equidistribution principle to 2-D) are also
considered. VWe first consider a computational space of ¢

and n. The global smoothness is measured by the integral
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; 2
IS = /[VS + V‘nz] dv (2.20)
D
the orthogonality by
Is = /[VE - vn]? 534y (2.21)
D
and the local weights by
Ty = fw Jdv (2.22)
D

where J is the Jacobian and W is the weight function

W(x,y). The result is that the integral I, given as

I = Is + a Io +Db1I (2.23)

w »

must be minimized to obtain an optimal grid. This is an

extremely complicated and computationally intensive

19

method It has often been more expensive to generate the

time varying grid than it has been to solve the physical

34

problem on the grid This method attempts to generate

the ‘perfect’ grid.

2.3 HNumerical Methods

No attempt has been made to review the entire body of
literature on finite difference numerical methods used to
solve systems of PDEs. Scores of methods exist: first,
second, third, fourth, and higher formal orders of

19,35,36 37

accuracy Dwyer has suggested that mesh adap-
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tion allows most numerical methods to work better (a
statement about convergent finite-difference schemes) and
that simpler ones work best. Dwyer and Anderson have used
simple first-order upwind differencing and a single step

of MacCormack’'s method°o %1

24-29

in their adaptive grid
studies The large dissipative qualities of the
upwind scheme are minimized with grid adaption; the grid
speed near high gradient regions (shocks) will be close to
the fluid velocity. The adaptive system is then similar
to a lagrangian system in these regioms.

42

Woodward and Colella™ have compared several methods

for solving strong shock (blast wave) problems. The best

performer was their own method48

», which essentially is a
lagrangian scheme limited to inviscid flow (they use the
method of characteristics to determine local fluxes).

Pure eulerian schemes (MacCormack method) achieved similar
accuracy with many more grid points. Flux corrected

transport (FCT) methodsl®

» with fewer mesh points, ob-
tained comparable accuracy with the MacCormack methods but
required almost twice the computer time. The FCT methods
blend low-order and high-order fluxes in an attempt to
resolve sharp discontinuities without oscillations.
Adaptive grid schemes simply add more points to these

regions.

The literature has shown that the MacCormack scheme is
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robust, easily adapted and veotorizable44. MacCormack’s
method is a predictor-corrector version of the Lax-
Wendroff method45. In the past years, MacCormack has come
full circle in philosophy for his method. It was
originally an explicit scheme for the full Navier-Stokes
equations. Later, a method of increasing the step size
was lmplemented but was limited to inviscid regions
(through the use of characteristic equations). The code
converged time asymptotic problems much faster (on a
scalar computer) but its range of applicability was
limited. This new method also lost its full vectorizable
performance. MacCormack then switched to an alternating
bi-diagonal method to obtain an implicit scheme but still
retain the explicit method’'s degree of vectorization. 1In
his latest perturbation*l, MacCormack has returned to a
variant of his original explicit code because it handles
various boundary conditions in a more consistent manner
than did his implicit version. Implicit methods have no
inherent advantage over explicit methods if time accurate
solutions (unsteady time) are desiredée; both must be
effectively limited to the Courant time step for accuracy
(implicit schemes) or stability (explicit schemes)
Tequirements. The latest MacCormack method is rather

general and robust; it can be easily modified to include

flux splitting, implicit solvers, multigrid convergence
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schemes, and Newton iteration for steady state solutioms.
The MacCormack schemes are very flexible schemes46.

The artifical diffusion characteristics of first
upwind differencing schemes are being addressed by second

47 has

order or quadratic upwind schemes (QUD). Leonard
developed such & method. Essentlially, the upwind
gradients are determined assﬁming a quadratic rather than
a linear profile for the dependent variables. These

methods have the same formal accuracy as does MacCormack's

method.
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3.0 METHODOLOGY

There are three different areas which must be coupled
together before successful numerical simulations can be
achiequ; the physical equations (PDEs), the adaptive
mesh, and the numerical method. Each of these will be

discussed in the following sectionms.

3.1 Model Equations

The first three test problems involve a single ideal
gas; the quier-Stokes equationé were used with a gamma
law equation of state. The last test problem simulated
the propogation of a radiation hydrodynamics blast wave.
The fluid was modeled by the Navier-Stokes equations and
the radiation field by a single temperature diffusion

approximation.

5.1.1 Navier-Stokes Equations The Navier-Stokes equa-

tions have been derived in countless publications for the
past century so the results will only be stated here (for
example, see ref. 48 for a complete derivation).

The equations, written in one-dimensional conservation
vector form (cartesian coordinates), are:

Uf + Px = 0 (3.1)
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transformation to an adaptive system remains in a conserv-

ative form.

3.1.2 Radiation Hydrodynamics A two temperature diffu-
sion model was used to simulate the radiation hydrodynamic
blast wave problem. In this model, the fluid was modeled
by the Euler equations (inviscid Navier-Stokes equations)
and the radiation field with a diffusion equation. This
was the same technique which the author previously used to
Simulate two-dimensional problems on a fixed eulerian

meshsl. The equations are quite Similar to the Navier-

Stokes equations presented abovesz. The continuity eéua—
tion is identical and the momentum equation is omnly
modified to include the radiation pressure (assumed to be
one-third of the radiation field energy density). The
major difference is found in the enmergy equation: there

are now two. They are as follows:

*
[e]t + [ue + uP - up u

x ~ ka]x + 2 =0 (3.5)

and

[er]t + [uer + uP, - q]x -2 =0 (3.6)
where é and P are the energy deansity and pressure of the
fluid and e, and Pr are the radiation energy density and

pressure. £ is the net energy exchange between the fluid
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and the radiation field from absorption and emission (Note
that this quantity is a source or sink term for the trans-
fer of energy between the two equations). The q term is a
flux-limited equivalent diffusion term used to model the
radiation field as a diffusion equation’>. Detailed

descriptions of these. terms can be found in reference 53.

3.2 Adaptive Mesh Generation

The present investigation used an explicit adaptive
mesh generation technique to determine the mesh metric and
velocity. Recall that equation. 2.7 was the explicit
equation for determining the mesh point distribution given

the weight function. We restate it here for convenience,
[L
Rrde! = § o’/ Wdx
of Wdx £(x) (——-ﬁ——) (3.7)

The procedure is explicit since all the quantities on the
right hand side are known at time n and the weight func-
tion on the left side is also defined at time n. There-
fore, the only unknown is the upper limit, x, on the left
hand integral, which is the new mesh spacing at time n+l.

Numerical experience with discontinuities has indi-
cated that a simple trapezoid integration scheme is

preferred to an Euler method. The use of a linear in-
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tegration function prevented discontinuous function
values. The weight function was defined as a cell center
quantity while the mesh location, x, was at the cell
edge. £(x) is simply a function whose value is equal to
the mesh; that is, for the first mesh its value is 1, the
second its value is 2 and so on until at the last mesh its
value is N. The second term on the right hand side repre-
sents the average WAx per each mesh cell. The upper
integral limit, x, is then numerically determined to
satisfy this equation. This loop was the only one in the
computer program which resisted efforts to vectorize. The
adequacy of this explicit procedure was one of the goals
of this investigation and was evaluated via unsteady flow
numerical experiments.

After this loop had been performed, the mesh edge
velocity could be calculated via a first order backward
difference:

n+1

x = (x -x®) / At (3.8)

T

wvhere At is the computational time step. The mesh metric
is simply the difference in the‘space locations during the
time step. The PDEs can now be integrated in time to
obtain the new values and the process repeated.

The key part of this explicit procedure is the deter-
mination of the weight function. The following section
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will describe this portion of the method. Analytical
functions will be used to illustrate specific features of
the method. That is, the PDEs have been replaced with
simple functions; therefore, the test is essentially a

steady-state one.

3.2.1 V¥elght Function As was previously discussed, many
forms of the weight function have been ﬁostulated. The
present ilnvestigation has chosen to extend Dwyer’'s weight
function (equation 2.18) to more than one conmtrol

variable. The following form was used
V=14% aalel + BalAzzl + a’b'Bx| + 5banl.(3.9)

The functions A and B represent some normalized physical
quantity such as velocity, pressure, or temperature. The
a's and f’'s are determined from relationships similar to.
equation 2.17; thus, there is a corresponding R for each a
and f. Ome could easily consider adding more terms as
needed.

Simple dentered differences on both the first and
Second derivative terms were used. Stablility questions
concerning the use of centered differences for a first
derivative term are not an issue since the weight function

only determines the mesh point movement, which is unre-
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lated to the solution of the governing PDES.

3.2.2 Smoothing the Mesh It is generally accepted that,
irrespective of which form of the weight function is used,
the mesh point distribution must be smoothed prior to time
step advancement with the PDEs. In this regard, an ex-
piicit adaptive approach has a distinct advantage over an

% ysed a control function which

implicit approach. Dwyer5
limits the change in the mesh size from one mesh to
another; interpolation must be used to obtain the new
physical properties since mesh points may be added or
deleted. w1nkler3° used a parabolic equation to control
the mesh movement and to achieve some degree of smooth-
ness.

The present work does not smooth the time n+l mesh
point distribution; rather, the weight function is
smoothed. Since the weight function was chosen to be a
function of x and not {, smoothing it will naturally
result in a smooth mesh point distribution. Also, the
logic for performing this step is very simple and robust;
the code is completely vectoringle. A simple 5-point

welghted average scheme has provided acceptable results in

the simple steady-state and the four unsteady test
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problems. It can be expressed as:

%
Wi - clwi_a + czwi_l + cswi +

Vie1 * ©Vi40

(3.10)
C2
where Gy, Cp, and C; are user defined constants and the i
subscripts are the mesh point locations. w* is the new
smoothed weight function distribution; W is defined from
equation 3.9. The following values of the c’'s were used
for all of the calculations in the present investigation:
cy = 0.083 (3.11)
c, = 0.166
¢z = 0.500.
They were chosen so that the center point had a weight of
1/2, the two nearest neighbor points had a combined weight
of 1/3, and the next two a combined weight of 1/6.

A sinmple test problem demonstrates the effect of this
smoothing algorithm. Consider the function shown in
figure 3.1; it is a simple discontinuity (ideal shock).
The adaptive mesh point distribption which would have been
obtained with 20 points and no smoothing is shown; the
distribution from utilizing the smoothing algorithm is
also shown. VWe can note that the mesh spacing in the
regions away from the discontinuity appear to be similar
for both distributions while the smooth distribution has a
more gradual change in the vicinity of the discontinuity.
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Discontinuity Comparison
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Figure 3.1 Mesh spacing for a simple discontimiity,
with and without smoothing.
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This difference is shown in figure 3.2, the mesh spacing
for the two distributions. Here it can be easily seen
that the smoothed case has a more gradual transition zone

from the constant function value to the discontinuity.

$.2.3 Minlmum Mesh Control A problem exists if the
weighting scheme Jjust describe ;s used to simulate a blast
wave in an ideal gas. The large discontinuity implies a
large gradient which results in a large local weight and,
from the equidistribution principle, a very small mesh
spacing. The stable time step would therefore be quite
small and the calculation would require large amounts of
computer resources. The obvious solution is to limit the

mesh spacing to a user input value. w1nkler30

incor-
porates some mesh spaeing control into his method;
however, it is done in an ad hoc manner.

The present investigation has chosen to modify the
local weights, W, as did the smoothing algorithm to limit
the mesh spacing. By changing the weights before equation
3.7 is solved, a smooth mesh spacing distribution is
obtained. The procedure was not designed to limit the
mesh spacing to an exact value, but rather the minimum
spacing will be approximately the limit value. The method

is simply that after the weight values have been calcu-

lated from equation 3.9, the average WAx is determined
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Discontinuity Comparison
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Figure 3.2 Mesh spacing for smoothed and nonsmoothed
simulation
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(the second term on the right hand side of equation 3.7).
Since a minimum Ax is specified, the maximum W can then be
Obtained. Finally, a simple loop through the weight
values using a vectorized compare statement results in an
| upper bound on the weight values. The smoothing algo-
rithm, previously described, is‘then performed. All of
the calculations presented, including the preceding
analytical discontinuity, used this minimum mesh control
logic.

3.2.4 §Steady-State Simulation A simple problem was
devised to test all of the preceding features of the mesh

spacing distribution algorithm. This problem consisted of
two functions and is shown in figure 3.3. The general
characteristics of the functions are similar to those of
the model problem: laser ablation of a surface where F1
Tepresents the density and F2 the temperature. A 500
point uniform mesh was used to obtain the figure.

As a comparison calculation, a 20 point uniform mesh
was calculated. Figure 3.4a shows the point distribution
as well as the function values superimposed on the 500
point curve. The points indicate the locations of the
mesh centers. Figure 3.4b shows the first derivative
values for the 20 and 500 point uniform meshes. It is

clear that although the function values do not differ
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Figure 3.4b Function derivatives for 20 pt fixed mesh
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significantly in figure 3.4&. the first derivative values
differ near regions of high gradlents. Since the govern-
ing PDEs consist mainly of gradients across a mesh, it 1s
important to be able to accurately determine this quan-
tity.
Figure 35.5a shows the point distribution and the

function values for a 20 point adaptive mesh calculation.
= 0.3,

ab
and Rﬁb = 0.1, where Raa is essentially the percentage of

The R values used were Raa = 0.3, Rﬁa = 0.1, R

grid points to be assigned to the first derivative of the
first function (see equation 2.17). These values were
typlical of the values used for the four unsteady test
problems. The clustering of the mesh points near the high
gradient regions can be clearly seen. Figure 3.5b shows
the first derivative values for this mesh distribution.
Comparing the adaptive and non-adaptive results (figure
3.4b), we can see that the adaptive mesh is a better
predictor of the second gradient regiom.

Figure 3.6a shows the point distribution and function
values for a 50 point adaptive mesh calculation. The R
values were the same as for the 20 point calculation; the
minimum mesh spacling was reduced from 0.1 to 0.05. Here
the mesh clustering at the gradient regioms is clearly
shown. Figure 3.68b shows that the first derivative 1is

predicted much better than the 20 point adaptive
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calculation. The differences are not quantitatively
given, for example by a least-squares error estimate,
since these calculations only represent simple test
problems. In an actual numerical simulation, centered
differencing of the first derivative would not be used.

Figure 3.7 shows the mesh spacing for the 20 and 50
point adaptive calculations. Recall that the minimum
value of the 50 point calculation was reduced from 0.1 to
0.08. 'One can note that the mesh clustering at the two
high gradient regions is relatively smooth. Also, the 50
point calculation not only clustered more points at the
high gradient regions, but the ﬁaximum mesh spacing was
also reduced. This is a useful feature for prbblems which
have both high and mild gradient regions (e.g. the shock
tube test problem).

The weight function values, with the smoothing and
ninimum Ax algorithms, for the 50 point calculation are
shown in figure 3.8. The smoothing algorithm has rounded
the high gradient regions. The locations of the maximum
and minimum values of this plot and the corresponding mesh
spacing shown in figure 3.7 are reversed since WAx is a
constant for each mesh.

Since this adaptive procedure explicitly solves equa-
tion 3.6 for the mesh spacing, several lterations are

needed to achieve a converged solution. Figure 3.9 shows
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50 pt adaptive mesh
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a
points can be made from this plot. The first is that it

a_ and ﬁa as a function on the number of iteratiomns. Two

is important that the adaptive procedure be iterated at
the start of a simulation to achieve a converged mesh
distribution. Otherwise, the mesh movement will not be
tracking the time varylng solution. No iteration was
performed in the four test problems after time O+. The
second polnt to bé observed is the slight wiggle in the a
curve. This oscillation was smoothed out in the unsteady
test problems by linearly time averaging the a’'s and

g's.

3.3 HNumerical Method

The previous sections described the governing partial
differential equations and a procedure for generating an
adaptive mesh. The present sectlion will describe the
coupling of these two parts of the numerical simulation
problem. First, the transformation of the PDEs from a
fixed grid to an adaptive grid will be described and then

various numerical procedures for solving these equations

will be examined.

3.3.1 Adaptive Equations Only the transformation of the
momentum equation from a fixed coordinate system to an

adaptive system will be shown; the continuity and energy
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equations are only minor perturbations from it.
The momentum equation can be written in a strong

conservative formlo from the vector equations 3.1 as
[pul, + [pu® + P - y'u l_=-o0 (3.12)
pul, + [pu” + R . .

We now use the same transformations relating the physical
domain (x,t) and the computational domain (f,r) as was

used earlier,

T =t (3.13)
£ = 8(x,t)

Transforming the momentum equation into computational
coordinates (see Appendix A for details) and retaining the

strong conservation form yields:

[pux,] + [puu + P - pux, - pu,/x,1, =0 . (3.14)

§/ Ty
It is noted that the time conserved quantity has been
changed from pu in equation 3.11 to puxE in equation
3.14. Also, an additional convective term, pux_, has
appeared 1n the spatial derivative. This represents the
convective momentum flux due to the motion of the mesh.
The pu2 term in equation 3.12 was intentionally rewritten
as puu to illustrate that it represents the convective
momentum flux due to the motion of the fluid through a

fixed mesh. We now can slightly rewrite equation 3.14 as
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[puxslr + [puCu - xT) + P - "*ui/xili =0 .(3.15)

Now the velocity of the convective momentum flux is ex-
plicitly shown as the relative velocity between the fluid
and the mesh. Recall that in a pure eulerian coordinate
system x = 0; in a lagrangian system x =1 and there is
no convective momentunm flux..

There are two paths which one can take to formulate
the numerical approximations of these equations: the
differential approach or the control volume approach.
Typically the differential approach has been usedlg. In
this methodology, equation 3.15 is considered to be a PDE
and not as a comnservation equation. The development of
the difference equations follows a pure mathematical tack;
the physical significance of the variables has been lost.
In the control volume approach, the conservation nature of
the equations is retained. For a typical eulerian mesh
system, both approaches usually arrive at the same set of
discrete equations. However, for the adaptive mesh, the
control volume approach is the only viable approach if
conservation of the physical quantities is to be
achieved. Thls is because the mesh dilates and translates
each time step; the relative fluid and mesh velocities at
the left mesh edge differ from the right mesh edge

veloclities and the cell center velocity. The distinction
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between a cell edge and a cell centered velocity is very
important.

The different velocities can be more easily il-
lustrated if we first write a reduced momentum equation,

neglecting the pressure and viscous terms:
[(pu)oxE]T + [(pu)e(ue.— xr)]E = 0. (3.16)

The subscript ¢ indicates a cell centered quantity while
the subscript e indicates a cell edge quantity. The form
of this equation leads quite naturally to a control volume
formulation of the difference equations.

Ve see from equation 3.16 that quantities need to be
defined both at the mesh edge as well as the mesh center.
Most control volume computer codes define the locations of
the density, pressure and energy variables to be at the
center of the mesh. The location of the velocity can be
at the mesh edge (staggered mesh), shown in figure 3.10Db,
or at the cell center, shown in figure 3.10a. The present
investigation defined the velocity at the cell center.

Therefore the velocity at the cell edge, u must be

o’
determined from the cell center values. Investigators
typically choose a weighted average of u, based on the
mesh spacing; that is, a simple average when the mesh
spacings are equal. This was also done in the present

work. The location of the grid velocity, x., is defined
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to be at the cell edge; this is also its location in
equation 3.16. Therefore the mesh edge momentum flux,
(pu)e, is the last quantity which needs to be defined.
The numerical methods which are discussed in the following
sections calculate this quantity differently.

Essentially all of the methods use a first order
forward time differencing scheme to approximate the time
dérivative. The time difference equation for the momentum

equation would be:

n+l _n+l/2 n._n
[(pu)cxslr = [(pu)c xE ] - [(pu)c x£].(3.17)

At

The mesh metric is shown at the n+l/2 time rather than the
n+l time to illustrate the point that since an explicit
adaptive procedure was used, the metric was not solved at
the same time level as the conserved quantity. If the
adaption procedure would have been implicit, the metric
would have been at the n+l time level and the solution of
governing equations would have been directly coupled to
the adaptive mesh equation. Thus, the present investiga-
tion used an explicit numerical method and an explicit
adaptive grid scheme to advance the numerical solution.
The energy transfer term, Q, in equation 3.5 poses a
problem in the development of a conservative method;

equation 3.5 is not in a strong comservative form. This
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term is essentially an energy source or sink term and has
units of energy demsity per unit time, or a volumetric
heat flux term. The technique by which the present inves-
tigation considered this problem can best be illustrated

by the following simple differential energy balance:

v(t)de = V(t)Q dt (3.18)

where V(t) is some time varying volume, de is the dif-
ferential energy demsity of that volume and dt is the
differential time step. Since the governing PDEs were to
be solved by an explicit method, @ is a constant over the
differential time. If we integrate both sides from time n
to n+l, we have

L4l

[e®*1v(n+1)] - [e®V(n)] = Q/V(t)dt. (3.19)
n

The left side of the equation just represents the net
change in energy in the volume from time n to n+l; only
the values at the end states are needed to determine it.
The right side of the equation represents the time varying
source or sink energy term in the volume; the path that
this expression takes from time n to n+l is important.
Although @ has been assumed a constant, the volume element

cannot be constant since the adaptive mesh technique
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changes the mesh volume for each time step. However, the
adaptive procedure only identifies the mesh volume at the
time end points; the temporal change is not a known
quantity. The present investigation has simply assumed a
linear profile for V(t); that is,

N+l

‘/;(t)dt ~ 0.8 [V(n+l) + Vv(n)lAt . (3.20)
n

3.5.2 PFirst Upwind Differencing First upwind differenc-

ing or ‘donor cell’ methods have been extensively used in
numerical simulation for a number of years. For a

detailed description, see Roache o.

Recall from the
previous section that quantities such as the cell edge
momentum density are required (see equation 3.16). This
method simply equates the edge yalue with one of the
neighboring cell center values dependent upon the sign of

the edge velocity, u That is, if ug is positive, the

e
left center value is used; the right center value is used
if this velocity is negative. Thus the edge flux is an
‘upwinded’ term. PFor the adaptive mesh problem, the
relative cell edge velocity, (ue - x_), was used as the
control velocity.

The major problem with using this method is its in-

herent numerical dissipation; that is, since it is a first
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order accurate method, thé Taylor series truncation error
is a viscous-like term. Roache points out that the tran-
sient diffusion-like term is multiplied by the quantity
(1 - CFL). Recall that the CFL number is the ratio be-
tween the fluid velocity and the characteristic mesh
velocity. Thus if the time step is chosen to be such that
the CFL is unity, this term vanishes. If the CFL number
' is much smaller than 1, the numerical diffusion is then
similar to the von Neumann-Richtmyer ‘artificial diffu-
slion’ model. A uniform mesh spacing would be required to
obtain a CFL of unity as a shock traversed the mesh; many
mesh points would be needed to accurately simulate the
problem.

The explicit ’‘donor cell’' method is easily vec-

.torizable and has proven to be quite robust.

3.3.3 Quadratic Upwind Differencing In an effort to
overcome the inherent dissipation property of first upwind
differencing, quadratic upwind differencing methods are
currently being developed. This method is similar to the
‘donor cell’ method except that now a quadratic profile is
constructed on the ‘upwind’ side of the cell to predict
the cell edge value. Leonard’'s method47 was evaluated as

the numerical method for the present investigation.

However, severe oscillations developed in the cases of
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strong shocks. This will be illustrated in chapter 4.0
for the shock tube problem. It is postulated that this is
due to the quadratic profile; the edge pressure was less
than the physical minimum value. Pollard®® and Pate136
report problems with QUD methods with high cell Peclet
numbers. For problems with discontinuities or shocks, a
hybrid method using ‘donor cell’ differencing at the
discontinuity and QUD elsewhere could be an appropriate

compromise method.

3.3.4 MacCormack's Method As discussed earlier,
MacCormack’'s explicit method is a two-step, predictor-
corrector version of the Lax-Wendroff method. This is a
very popular method because it is vectorizable, robust,
and formally second order accurate. Essentially, the
results from both an upwind and a downwind differencing
step are averaged to obtain the new cell centered
quantities. However, this method could not be used since
it is a two-step procedure; the method calculates inter-
mediate quantities at some time between n+l and n. Recall
that in equation 35.15 the mesh metric appears in the time
differencing. There is no physical meaning to an inter-
mediate quantity since the mesh has changed from its time
n location to its n+l location. For this reason, ADI and

ADE methods also do not appear to be useful for adaptive
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mesh systems.

3.4 Computer Codes

Two computer codes have been developed for this inves-
tigation: a one-dimensional compressible flow Navier-
Stokes solver and a one-dimensional radiation
hydrodynamics code. Each code was written to take full
advantage of the vector capabilities of a Cray
supércomputer. All output was postprocessed on an IBM-PC
workstation.

Time step control was controlled by setting the CFL
number to a constant value. Since an explicit numerical
procedure was used, this number has a maximum of unity.
The compressible flow CFL number is typically defined>o

for a fixed mesh system as:
CFL = (lul + a)At/Ax (3.21)

where a i1s the local sound speed. The present investiga-

tion defined an adaptive CFL as follows:
CFL = (Iucell' + a)At/Ax (3.22)

where Y11 - 0.5(ur + ul). u, and u, are defined as the

right and left edge relative velocities respectively. For
example u, =u, - X, where ug
computed from a geometric average of the cell center

is the edge fluid velocity
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veloclities and x, is the mesh edge velocity.

A summary of the major computational steps which were

used to advance the solution from time n to n+l are:

10.

Explicitly calculate a's and §'s from equations
similar to 2.17. Integral of the weight function is
from old time step (n-1).

. Time average a’'s and 8's.

Calculate new weight distribution from equation 3.9
using updated variables (time n).

Perform limit on maximum weight value for minimum mesh
control.

Smooth welght distribution using equation 3.10.

Compute new mesh point distribution by integrating
equation 3.7.

Calculate mesh velocity using equation 3.8.
Time xs and x_ are nov defined at time n+l.
Solve the governing PDEs for time n+l variables.

Repeat steps.

The difference equations for the solution of the PDEs

can be found in Appendix B and for the weight function in

Appendix c.

5.4.1 Navier-Stokes This computer code used the explicit

‘donor cell’ differencing method with an explicit adaptive

mesh generation technique. As previously mentioned, an

iteration step was provided to converge the initial mesh
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distribution. No iteration was performed during the time
advancement.
This code consists of approximately 1500 lines of

standard Fortran and is written in a modular form.

3.4.2 Radlation Hydrodynamics This computer code started

- with the compressible code mentioned above and added an
explicit two temperature diffuslon approximation for the
radiation field and an EOS package in tabular form.
Essenﬁially the same techniques from a prior two-
dimensional radiation hydrodynamics computer code
(eulerian mesh)51 vere used 1ln the present code. However,
there were some speclal modifications which are unique to
the grid adaption algorithm.

The first h@s been previously discussed; the dilata-
tion of the mesh during a time step affects the effective
volumetric source or sink term, Q (see equations 3.5 and
3.6). The current investigation has used a simple
trapezoid integration technique to approximate this term,
see equation 3.20. Since @ is a source term in one energy
equation and a sink term in another, this approximation
does not impact the conservation of energy of the method.

The other difference from the prior code to the
present one 1s in the solution strategy for the two energy

equations (equations 3.5 and 3.6). Recall that one energy
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equation is for the radiation field and the other is for
the fluid. The time constant for the propagation of
energy via the radiation field is much shorter than by
either thermal conduction or convection. The previous
code took advantage of this fact by solving the equatiomns
using two time steps: the first step calculated only the
radiation energy equation and a ‘frozen flow' fluid energy
equation and the second time step advanced the complete
mass, momentum, and energy equations. Typically, the
first time step was 1,000 to 10,000 times smaller than the
second or hydrodynamic time step. This philosophy was
used to simply reduce the code execution time.

However, the mesh dilatation and adaption prevents the
use of this simple multiple time step philosophy. The
fluid temperature is an important variable and one which
would be used as the adaption function in equation 3.9.
There are three ways which one could proceed. The first
would be to hold the mesh constant for the inner or small
time step loop and then the adaption on the fluid tempera-
ture would be accomplished in the outer or hydrodynamic
loop. The second would be to adapt the mesh in the inner
loop. The final technique would be to have only a single
time step and simply perform the mesh adaption at the end
of the step.

If the first method is used, inadequate tracking of
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the thermal wave would occur since significant energy
exchange occurs during the inner loop. The mesh movement
would not be tightly coupled with the fluid temperature.
The second choice, adaption in the inner loop, would
result in mass and momentum conservation problems. Since
the flow is assumed to be ‘frozen’, moving the mesh in the
inner loop would not change the fluid density or velocity;
however, the mesh volume would be changed. This is
clearly not a viable choice. The final method would be to
simply adapt at the end of a single time step. Since the
present lnvestigation is concerned with demonstrating the
benefits of grid adaption, computer efficiency is not an
overriding factor. Therefore the third method, the single
time step approach, was used for the present work.

This code consists of approximately 2600 lines of

standard Fortran.
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4.0 NUMERICAIL SIMULATIONS

Four test problems were chosen to evaluate various
features of the adaptive grid technique which has been
described in chapter 2.0: a shock wave, a shock tube,
interacting blast waves, and a radiation hydrodynamic
blast wave. The ideal shock wave problem was chosen as a
test problem since it has only a single gradient region
and has an analytical solution. The second problem, the
shock tube, was chosen since it has two discontinuties and
a mild gradient region, the rarefaction fan. The inter-
acting blast wave problem tested the present method to
resolve severe gradients and also the adaption procedure
as the two waves merged.. The final problem was a test
with a coupled temperature problem. The intent of these
test problems was to evaluate different aspects of the
grid method: the adaption variable, the sensitivity to the
user defined R's, the minimum mesh control logic, and the
coupling between the grid adaption control and the numeri-
cal solution method.

The following discussions will not try to develop the
optimum set of parameters which would obtain the ‘best’
solution with the least computer time, but to simply

demonstrate the role the mesh has on the quality of the
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solution. And more specifically, the role that grid
adaption can play in numerical simulation. Also,

prototypic values of various parameters will be given.

4.1 Inviscid Shock Vave

The first test problem was a simple shock wave
propagating into a polytropic gas at rest; the shock moved
from the left boundary to the right. The initial pressure
of the gas was 1.0 x 108 (dynes/cmz) with a temperature of
300°K. The upstream conditions for a Mach 2 shock were
analytically defined at the left boundary (for example see
ref. 57 for the shock jump relations). This problenm
served not only to test the grid adaption technique, but
also to verify the Navier-Stokes solver.

The initial sharp gradient of this problem prompted
the development of the smoothing algorithm for the mesh
point distribution. This problem started with the fully
developed velocity field, unlike the other three test
problems in which the initial and boundary velocities were
zero. That 1s, the veloclties had instantanseously high
values while the system inertia limited the response time
of the other test problems. The grid point clustering
provided by the smoothing technique allowed a larger CFL

number to be used which reduced the numerical viscosity.
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The three calculatlions to be presented had several
parameters in common. First, the momentum density, pu,
was used as the single adaption function. That is, A in
equation 3.9 was pu and B was not used. The CFL number
was 0.8 and finally, the artificial viscosity model coef-
ficient was 2.0 (C = 2.0 in equation 3.4).

Figure 4.1 shows pressure profiles for 0.4 ms and
1.0 ms into the simulation. Fifty mesh points were used;

the R values were Ra = 0.35 and R, = 0.10. The minimun

B
mesh spacing was set to 0.1 cm. The results show that an
essentlally square wave pressure pulse has propagated down
the mesh; the propagation speed agreed with the analytical
value. These results deviate from the ideal by only the
pressure overshoot at the shock front and the slight
curvature of the pressure foot. Figure 4.2 shows pressure
profiles for the second calculation at the same two

times. The input parameters were identical exzcept the
minimum mesh spacing was reduced to 0.05 cm. The results
now show an ideal shock front propagation. The problems
with the previous calculation were due to inadequacies of
the simple donor cell numerical method to resolve the
gradient region. Note that the total number of mesh
points remained constant, only their placement in time was
altered. The validity of the Navier-Stokes solver was

assured since there were no abrupt changes in the vari-
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ables at the left hand, boundary, mesh cells. Since the
analytical solution was used to provide the boundary
variables, any difference in the code would appear as a
change in these variables in the interior of the mesh.
Figure 4.3 again shows pressure profiles for the third
calculation at the same two simulation times. However,
the number of mesh points has been reduced from 50 to 20,

the R values changed to Ra = 0.50 and R, = 0.10, and the

8
minimum mesh spacing reduced to 0.0l cm. This calculation
also shows pressure profiles typical of an ideal shock
wave. A pure eulerian mesh would have required 10,000
mesh points to achieve the same results as this adaptive
mesh did with 20 points.

We recall that the adaptive momentum differential
equation, equation 3.15, had a relative mesh edge
velocity, (u - xs), instead of the fluid velocity, u, as
in an eulerian mesh. Figure 4.4 shows both of these
velocities for the last calculation (20 mesh point) at a
time of 1.0 ms. The fluid velocity is typical of a simple
shock; the relative mesh velocity is much higher than the
fluid, except in the region near the shock. This is due
to the movement of the mesh points toward the shock
Tegion. Although the relative mesh velocity is from 3 to
7 times larger than the fluid velocity, this does not

limlt the computational time step (from equation 3.22).
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This 1s a non-physical velocity term with respect to the
simulation of the fluid problem; its value is transparent
to the physical results. PFigure 4.5 shows the local CFL
number for the same computational time. We see that the
limit i1s at the shock front; the maximum CFL number was
0.8. The reason for this is that the ratio of mesh spac-
ing between the shock and non-shock regions is much smal-
ler than the ratio of the velocities. Recall that the
numerical dissipation for the donor cell method has a
factor of (1 - CFL); therefore, little numerical smoothing
would be expected at the shock front. Of course, the

von Neumann-Richtmyer artificial viscosity model is not
affected by the CFL number.

Finally, figure 4.6 shows the mesh spacing for three
times: 0.2 ms, 0.6 ms, and 1.0 ms. The plot symbols
represent the locations of the centers of the computa-
tional meshes. Although this simulation used 20 mesh
points, only 7 are clearly visible at each time
distribution. Thus, 13 points are clustered near the
shock front. We note that as the shock propagates from
left to right, the mesh spacing outside of the shock zone
remalns approximately constant. This is unlike a lagran-
gian mesh, where the mesh points move at the fluid
velocity. In this system, the mesh points ahead of the

Shock would begin to ‘bunch’, and additional mesh points
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would have to be introduced at the left boundary to main-
tain the constant zone mass; the mesh would exhibit an

accordion-like behavior.

4.2 Shock Tube

The second test problem was a one-dimensional shock
tube simulation. In this problem, a membrane at the
centerline separates a polytropic gas into two regions of
unequal pressure and deansity. The gas was in thermal
equilibrium. At time O+, the membrane is instantaneously
broken and a shock is formed which propagates from left to
right; the left region was the high pressure région. A
rarefaction wave propagates from right to left as the
pressure 1ls belng relieved. Between these two waves, a
contact discontinuity propagates from left to right. The
velocity of this discontinuity is lower than the shock
speed. There are therefore three distinct regions of
interest which must be captured: the shock wave, the
contact discontinuity, and the rarefaction wave. This
will be a severe tesﬁ of the adaption technique since the
gradients of the first two regions are much higher than
the rarefaction fan. The wave speeds and jump relations

for this problem can be found in ref. 57.
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Figure 4.7 shows the initial pressure distribution for
this problem; a pressure ratio of 3.0 was uséd for this
problem. Since gas had an initial isothermal profile, the
density profile would be similar to the pressure profile.

Recall from chapter 3.0 that three numerical methods
were initially evaluated for the present investigation:
MacCormack’s method, Leonard’s QUD method, and donor cell
differencing. Figure 4.8 shows results for these methods;
a uniform eulerian mesh was used with no grid adaption.
The profiles were all obtained at a simulation time of
1.0 ms.

Figure 4.8a shows the pressure and density profiles
for the MacCormack method; 990 mesh points, an artificial
viscosity model coefficient of 1.75, and a fixed time step
of 1.0 us were used for this simulation. The rarefaction
region, contact discontinuity, and shock region are
clearly shown in this figure. We note the existence of

the characteristic Gibbs phenomenon58

, the dampened oscil-
lations, at discontinuites in the solution which is typi-
cal of second-order numerical methods. If an adaptive
grid scheme was used with this method, artificial grid
point clustering would occur since regions of numerically
generated gradients would influence the weight function

distribution. Thus points would be needlessly clustered

in these regions and would reduce the mesh spacing else-
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where in the grid. More mesh points would then be needed
to adequately simulate the problem.

Figure 4.8b shows the density distribution for
Leonard’s QUD scheme; 500 mesh points, an artificial
viscoslity model coefficient of 1.0, and a CFL number of
0.1 were used for this simulation. We note'that the
amplitude of the oscillations at the shock location are
much larger than for MacCormack’s method. The same con-
cern of artificial grid point clustering at these oscilla-
tions which has been previously discussed is also a
problem with this method.

Figure 4.8c shows the density distribution for a donor
cell differencing with a uniform grid of 500 mesh points;
the artificial viscosity model coefficient was 1.75 and a
CFL number of 0.95 was used. Note that the results are
totally meaningless. One could have achieved a more
realistic profile by reducing the CFL number; in essence,
additional numerical artificial viscosity would be intro-
duced and the ideal sharp profiles would now be diffuse.
However, the goal of numerical simulation is to obtain
results which model the physical problem which can exhibit
these discontinuities. One could also have simply in-
creased the number of mesh points to reduce the gradient
across a mesh; the adaptive mesh strategy attempts to do

Just that, but at specified regions of the grid.
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/ Figures 4.9 - 4.11 show densities profiles at 1.0 ms
for simulations using the adaptive mesh technique and the
donor cell differencing; 50 mesh points, a CFL number of
0.95, and a minimum mesh spacing of 0.10 cm. were used
for these simulations. The density and preséure were
chosen as the adaption functions A and B in equation 3.9
respectively. The relative weight coefficients, R’'s, can
be found in Table 4.1 for these calculations. The density

- distribution in figure 4.9 shows the result of inadequate
zoning near the contact discontinuity region. Also the
rarefaction fan has a distorted shape. Figure 4.10 shows
the results with an increased weighting on the density
distribution. Ve can see that the contact discontinuity
region was now simulated. Finally, figure 4.11 shows the
density profile from an increased weighting on the density
distribution. The contact discontinuity has now been more
sharply resolved; however, a computational artifact has
now appeared in the rarefaction fan. This artifact has
the characteristics of a zeroth-order numerical error: the
error persists when the mesh size 1is reducedso. This
behavior was observed when the mesh was ’‘over-adapted’;
that is, when the grid point clustering was tightly
coupled to the solution. Since this occurs only in
regions of smooth curvature, it is speculated that the

first-order donor cell method on an unequal mesh grid



Table 4.1

Relative 'eight Coefficients for the Shock Tube

Rum Raa_______ 2ga fab_______ b
R45 0.2 0.1 0.2 - 0.1
R46 0.4 0.0 0.2 0.0
R49 0.8 0.1 0.3 0.1
R204 0.5 0.15
R207 0.35 0.18

Table 4.2

Relative Weight Coefficients for the Blast VWave

Rum Raa “ga fab__ 26p
Rx20 0.20 0.1 0.3 0.1
Rx22 0.15 0.1 0.5 0.1

Rx23 0.15 0.1 0.4 0.1
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contributed to this error.

The remaining figures, 4.12 - 4.15, were obtained using
only the momentum density as the single weight variable.
This function was chosen since its derivatives capture not
only the shock front and rarefaction fan, but also the
contact discontinuity. It appears to be a natural weight
variable for flow driven problems. The relative weight
coefficlents for these calculations can be found in
Table 4.1.

Figures 4.12a and 4.12b show the pressure and density
distributions, respectively, for a simulation using 50
mesh points, a minimum mesh spacing of 0.1 cm, a CFL
number of 1.0, and an artificial viscosity coefficieant of
1.0. Computational times of 0.4 and 1.0 ms are shown. We
note that the artifact seen in the previous simulation
does not appear. The pressure and density profiles at the
shock front compare favorably with the MacCormack simula-
tion, figure 4.8a. However, the rarefaction fan is more
diffuse in the donor cell calculations. Also the contact
discontinuity profile has diffused from its sharp profile
in tinme.

Figures 4.13%a and 4.13b show the same profiles as the
previous simulation, but using 100 mesh points, slightly
different relative weights, and a minimum mesh spacing of

0.05 cm. Ve see that the density profiles are now quite
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sharp for both the shock and the contact diécontinuity.
The rarefaction fan still exhibits a more diffuse profile
than the MacCormack simulation; this is probably due to
the difference in a first and second order method.

Figure 4.13¢c shows the velocity profiles for this
simulation. We can see that the shock front is steeply
defined, with only a very small precursor diffusion zone.

Figure 4.14 shows the CFL number distribution for the
simulation generating the results shown in figure 4.13;
the only time showa is for 1.0 ms. We see that the CFL
number is unity at the shock froant. Thus we would expect
little numerical diffusion in this region. However, it is
only about half of that at the contact discontinuity;
therefore, numerical diffusion would tend to smear this
discontinuity. The CFL number in the rarefaction fan
region is only about 0.1. We would therefore expect that
the increased numerical diffusion in this region would
contribute greatly to the smeared results. It is postu-
lated that a local mesh anti-diffusion techniquesg might
alleviate this problem.

Finally figure 4.15 shows three mesh point distribu-
tions for the last simulation. The three regions can be
easily seen from the increased point clustering. We note
that the grid has an essentially uniform distribution with

three finer zoned regions superimposed on it.
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4.3 Interacting Blast VWaves

The third test problem presents a very severe test of
an eulerian fluid dynamics computer code. Figure 4.16
shows the initial pressure distribution for this problem;
the steep pressure ratio of 4 and 5 orders of magnitude is
extremely high. Eulerian methods have difficulties with
pressure ratios of approximately 3 or 4 times, npnot orders
0of magnitude. The initial density is uniform throughout
the mesh; therefore, the temperature distribution exhibits
a similar behavior as the pressure profile, since a
polytropic gas was used. No-flow boundaries were used.
The physical interpretation of this problem is a very
intense energy deposition into two regiomns of a gas with a
uniform density. There are no analytical solutions to
this problem42. This high pressure gradient can cause
negative internal energies to be obtained using an ex-
plicit numerical procedure if the CFL number is too high:
a CFL number of between 0.2 and 0.3 was used in the three
simulations which are presented here. The stability of
this problem is determined by the pressure gradient; the
CFL number is a stability requirement for convectively
dominated problems. Comparison simulations without the
grid adaption algorithm could not be made since computa-
tionally unstable results were obtained with 1000 mesh
points and a CFL anumber of O.1.
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Figure 4.17 shows the pressure distributions for three
simulation times: 2.5, 3.0, and 4.0 ms. These correspond
to a time Just prior to the interaction of both waves, the
merging of the two waves, and the post-interaction expan-
sion region. This simulation used 200 mesh points, a CFL
number of 0.3, and a minimum mesh spacing of 0.05. The
momentum density and pressure were used as the two adap-
tion functions; the relative welight coefficients can be
found in Table 4.2. Since this problem was driven by the
pressure distribution, the pressure weighting was larger
than the momentum density. Figure 4.18 shows a similar
simulatlion but where the weighting of the pressure profile
was increased. The same computational artifact which was
seen in the shock tube problem is evident here in the
pressure distribution at time 4.0 ms. It is poStulated
that the same reasons also apply for this problem.

Figure 4.19 shows the same pressure distributions for
a simulation which now had 500 mesh points and used a CFL
number of 0.2; all of the discontinuities are finely
resolved. One can notice that the pressure profile at
time 4.0 ms differed from that in figure 4.17; this 4if-
ference is probably due to the use of a first-order method
for this problem. Figures 4.20a and 4.20b show the pres-
sure and velocity profiles at time 2.0 ms for this last

Simulation. We note that the pressure fronts have been
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sharply resolved, even with the extremely large pressure

gradients. The corresponding velocity profile alsoc shows
this sharp front. The low frequency wave behavior in the
left portion of the velocity profile is attributed to the

use of a first-order method.

4.4 Radiation Hydrodynamic Blast Wave

The final test problem was a radiation hydrodynaﬁics
problem. A simple problem was run only to demonstrate the
features of the adaptive mesh. The two temperature diffu-
sion approximation used in a previous computer code51 was
incorporated into the adaptive mesh hydro code. The

multifrequency modelling of the radiation fieldSS

would be
recommended for actual numerical simulation problems.
Flgure 4.21 shows results at an early time in the
simulation of a plane blast wave; a cartesian grid was
used. This problem used 50 mesh points. The fluid tem-
perature and pressure were used for the two weighting

functions A and B; Ra and Rab were both 0.25 and both

a
Rﬂ's were 0.0. Only the first derivative was adapted.
Figure 4.2la shows the fluid temperature profile and
figure 4.21b the corresponding grid point locations.
Since these profiles were at an early time, the velocity
gradients would not have developed and a lagrangian mesh

would not have the mesh point clustering.
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The mesh clustering at the temperature gradients
serves two purposes. The first is that the fluid
opacities vary considerably in these temperature regimes;
the energy coupling term in equations 3.5 and 3.6 is very
dependent upon the opacities. This nonlinear term can
require extremely small time steps in an explicit numeri-
cal procedure if the temperature gradient between adjacent
meshes is large. The adaptive mesh grid distribution
reduces the temperature gradient by moving many mesh
polints to the high gradient region. Therefore, the
dominance of this nonlinear term upon the time step is
reduced. The second benefit of the adaptive mesh is to
cluster points at the edge of the blast wave. Margolin
has indicated the importance of resolving the precursor
temperature diétribution on the wave front velocitys. By
adaption on the temperature, this can be easily done. It
is impossible to cluster mesh points in this region with a

lagrangian mesh system.
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5.0 CORCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations can be

made concerning this numerical investigation.

1. The numerical simulation of several different and
difficult unsteady problems with an adaptive mesh
generation technique was successful. These
problems would have required many more mesh points
and smaller time steps if simulated with an
eulerian mesh. The adaptive mesh increases the
accuracy of problems which have many sharp gradient

regions.

2. The use of an adaptive mesh has removed the dif-
ficulty of defining an initial grid point
distribution. This point distribution is very
problem dependent and its implementation is almost
an art form rather than a science. However, with
the adaptive logic, the investigator need only
decide on the number of grid points to use, the
variables to adapt upon, and their relative
welghts. These are much easier than determining

the mesh point distribution.
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The explicit adaption method proved to be very
robust. No code ’‘dials’ or ‘fudge factors’ were
required for the test problems presented. This
procedure was also completely vectorizable so that

its impact on execution time would be minimal.

Modifying the weight distribution to limit the mesh
spacing and to smooth the mesh rather than altering
the mesh directly was shown to be not only simple
but to provide good results. The approximate
control of the grid spacing is offset by the simple

and robust nature of the method.

The ability to easily change the weight function
variables or combinations of variables was very
useful. For flow driven problems such as the shock
wave and shock tube, the use of the momentum den-
sity allowed a variety of gradients regions to be
resolved: a shock wave, a contact discontinuity,
and a rarefaction fan. Simulations using any
single primitive variable (i.e. pressure or den-
sity) as the weight function did not adequately
capture all of these gradient regioms. For pres-
sure or temperature driven problems, the ability %o

use a simple combination of variables proved to be
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very useful. The interacting blast wave problem is
dominated Sy the pressure gradients; the use of
pressure as a welght function is obvious. The
addition of the momentum density in the blast wave
welght function helped to better resolve the
rarefaction regions. For the radiation
hydrodynamics problem, the fluid temperature and
momentum density were used. One could easily
postulate problems where other variables would be
important; the weight function could easily be

extended to any number of variables.

The difference equations for the governing partial
differential equations in the transformed plane
were successfully cast in a strong conservative
form. However, the highly nonlinear energy trans-
fer term, 9, in the radiation hydrodynamics equa-

tions could not be put in conservative form.

The use of a control volume approach rather than
the more prevalent differential approach to develop
the difference equations is the only feasible
method since special attention has to be given to
the different velocities: the fluid cell center

velocity, the fluid mesh edge velocity, and the
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physical mesh edge velocity.

The simple donor cell differencing method was very
successful in capturing strong gradient regionms,
l1.e., shocks and contact discontinuities, but was
only acceptable in mild gradient regiomns, i.e., the
rarefaction fan. Conditions developed when the
mesh adaption was strongly coupled to the solution
where zeroth-order errors developed in mild
gradient regions. It is speculated that this is
due to ghe use of a first-order method with a
highly ﬁnequally spaced mesh in a mild gradient
region. However, reducing the coupling between the

grid adaption and the solution reduced this error.

The adaptive grid CFL number used in this inves-
tigation (equation 3.22) was successful in predict-
ing the maximum stable explicit time step for flow
or velocity driven problems; the blast wave was a

pressure driven problem.

The mild gradient regions in the shock tube and
blast wave problems illustrate the need for a
second-order numerical method. However, the

popular and robust MacCormack method is not
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amenable to an adaptive mesh since it is a two-step
method. Leonard’'s QUD method was not capable of
Simulating problems with high grid Peclet numbers

or shock regions. Further work in this area is

warranted.
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Coordinate Transformations
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Coordinate Transformations

First we consider simple chaln rule applications for the

transformation of a function in (x,t) to (%,7):

1 1l 1 X
-— - — _ _£&
fxz , [ fE] : x? fEE % fE
fr(z,r) - fx(x,t) x ¢+ ft(x,t) tr

Now we note that t_ == 1 (from equation 1.2); thus:

£.(E,7)
£.(x,8) = £ (§,1) - i AR

xE(E,r) T

Next, consider the first-order wave equation (equation 1.1):

U, + CU_ = 0.

Using the above chain rule relations we can obtain equa-

tion 1.3, in a non-conservative form, as:

U+ (C - X )U =0
T -—EE—T ¢
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We now start with the wave equation in comservative form:
u, + [C U]x = 0.

C is a constant but has been included inside of the braces
to illustrate the conservative form of the equation.

Transforming this equation to the (£,7) system, we obtain:

(xEU)r + [(C ; xr) xEU]j = 0.
‘ £

One can note that in the conservative form, the con-

served variable has been effectively transformed from U to

(xEU); the convective term is written with x, in both the

3
numerator and denominator to simply make this point. The
conservation form of the equations were used in the
present investigation.

Finally, we consider the addition of a diffusion term

to the wave equation, in written in comservative form:
U, + (c U)x = (D Ux)x

with D taken as a constant. Using the same transforma-

tions as before, we obtain:

(x,0), + [(c = xr) xEUJ - [Px_UE]s
3 E £
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Again, we can note that the conserved variable is simply
(xEU). The diffusion term remains in a conservative
form.

Since the present investigation has defined A{ to be

unity, the xE terms are simply the mesh spacing, Ax.
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APPENDIZX B

Difference Equations



120

Difference Equations

Only the difference equations for the momentum equa-
tion will be g%ven here; the form of the continuity dif-
ferencing equation is contained in it and the form of the
-energy equation is very similar.

Recall that an explicit upwind or donor cell dif-
ferencing on the spacial derivatives and forward time
differencing on the temporal derivative were the numerical
methods chosen to integrate the PDEs from the-time n level
to n+l. The equatlon was in the strong conservative
form. The adaptive mesh momentum equation, equation 3.15,

ls rewritten here:

/x,]

[puxslr + [puCu - x )+ P - u*u,‘, £l

=0 .(B.1)

An explicit adaptive scheme was used to obtain xE prior to
the time integration; therefore, the time level of this
term should be n+l/2 and not n+l. The difference equa-

tion, in cartesian coordinates, can be written as:
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[(pu)n+1 x?+1/2] - [Cowd] s] -

-At ([(pu)n o

Ure (pu)l le]

n n n
+ [ (R, - P2 D(axl/ax))]

- [ (u Braxdyu},; - ud) - (u;n/dxﬁ)(uz - uﬁ_l)l)

where:

n n
U = [u -x ]
ul - [u® _axP + u? ]/(Ax + Ax®)
T 1+1771+1 i 1 1+1 i
n n n
(pu) = cvmgp [ (pu)y, (pu)1+1, u, 1
n n
dxr = 0.5 [ Axi+1 + Axi ]
n
dxl = 0.5 [ Ax:L + Axi 1 ]
n n n
dx, = dx, + dxy
*a [ ]
o o= 0.5 Hy + By + a

a = p? (c ax? 2 Idudx|

50

n n ' n
dudx = [ u, - U 1/ Axi

Note that x? i is defined at the right mesh edge
velocity and the subscripts r and 1 are the right and left

mesh edge values respectively.
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Weight Function Derivatives

Recall that the weight function for the present inves-

tigation is of the form:

V=14 aalel + B_1A__I + abIBxl

.
a XX

* 3b'Bxx
Simple centered differences were used to determine the
derivatives Ax and Axx and the corresponding Bs. Since
these derivatives are only used to determine the local
cell weights and not to advance the governing PDEs,
Stability considerations are not a problem. Each deriva-
tive was scaled by the maximum absolute value ofbthe
particular function. This scaling was required to put the
derivative of the two functions A and B on an equivalent
domain. The function values are cell centered.

The difference equations for Ax and Axx are:

R _os i R U8 Wl
x,i ) _ _
Amax xi xi—l x1.+l xl
A - 1 Aty ~ Ay _ Ay - Ay _q
xx,1 _ _
Amax x:L+1 xi xi Xl—l
Ax
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where Amax is the maximum absolute value of the As,
X, is the cell center location for mesh i, and
Ax, is the ith mesh spacing.

i
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