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ABSTRACT

The pressure due to fast fusion-born ions is calculated using the slowing
down approximation to the Fokker-Planck equation. The analysis considers
multiple ion species, including impurities. The various ion species are as-
sumed to have the same temperature, but may have arbitrary charge and mass. A
simple closed form expression for the pressure is obtained. Some results for
D-T and D-SHe plasmas are given. It is found that the fast ion pressure in a
D-3He plasma at a typical plasma temperature of 60 keV 1is about 20% of the
thermal pressure; this is about the same ratio as one gets in a D-T plasma at
20 keV. Consequently, the impact of fast ion pressure on the total pressure
is similar for D-T and D-3He plasmas at their corresponding expected operating
temperatures. At elevated temperatures, however, the fast ion pressure can

become a larger fraction of the total pressure.



I. INTRODUCTION

Fusion reactions produce fast charged particles which slow down in the
plasma and thereby transfer energy to the electrons and fuel ions. The sub-
ject of fast ion slowing down has been studied for some time.(1'13) The
fraction of the initial energy transferred to the ions and to the electrons is
of concern for plasma power balance calculations. In addition, in magnetic
fusion, the pressure of the fast ions is of concern since this uses up some of
the available pressure determined by the maximum beta (ratio of plasma
pressure to magnetic pressure). ‘A derivation of the pressure of fast alpha
particles in a D-T plasma has been given by Rose and C1ark,(2) but their re-
sult apparently contains an error in the calculation of the critical energy,

E. (defined later). An approximate formula for the fast alpha pressure in a

(10)

o
pure D-T plasma has been given by Logan. In this report, we present a
derivation of an analytical formula for the fast ion pressure; this derivation
is based on the slowing down approximation from the Fokker-Planck equation.
In our work, we do not assume the background ions are hydrogenic, but retain

explicitly the charge and mass dependence in order to apply the results to

impure plasmas and advanced fuels.

I1. THE SLOWING DOWN RATE

The rate of slowing down of a test particle of mass M, charge Ze, and

energy E, due to Coulomb collisions with a background species of mass m.,

J
charge Zje, density Ny and temperature Tj, is given by(14)
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where ¢(x) is the error function,
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and 1n Aj is the usual Coulomb logarithm for interactions between the test
particle and the background species. MKS units are used in this report. To
obtain the total rate of slowing down, we sum over the various background
species in Eq. (1).

For the contribution to the slowing down due to interaction with the
background ions, we can use a large argument expansion for the error function.
This is because the fusion born ions have a velocity V, much greater than the
thermal velocity Vj, of the background ions. The velocity of the fast ions is
much less than the thermal velocity of electrons, however. For the electron

contribution to the slowing down we use the small argument expansion for the

error function. The net slowing down rate is then given by

d _ A% /MBI (2)
where the coefficients A and B are given by
2
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The sum over j in A is over the various ionic species. The quantities with
subscript e refer to the electrons. Expressions for the Coulomb logarithms,
Tn Aj and Tn A,, are given in Appendix 1.

Equation (2) can be rewritten in the form,

E
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The critical energy EC is given by
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Some authors take 1In Ay = Tn Ag in the expression for Ec’ but this is not a
good approximation for fast ion slowing down in fusion plasmas since

In Ae = 17, while 1In Ay = 22. The slowing down time, t. iS given by

S
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When the particle energy E is above EC the contribution of the electrons to
the slowing down is larger than that of the ions. The slowing down time Tg
is actually the time scale for V to decrease due to electron drag, i.e. T =

-V/(dV/dt)e.

I1I. FRACTION OF INITIAL ENERGY GIVEN TO THE IONS AND ELECTRONS

The test particle is born at energy Ey, which is much greater than either

Ti or Te, and gives up its energy to the ions and electrons in the process of

slowing down. The power transferred to the ions at time t is



The total energy transferred to the ions is

E
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where Ef is the final energy. Since Ef << EO’ its value is not important and

we can take Ef = 0 without introducing a significant error. The fraction fi

of the initial energy given to the ions can be written as
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The integral in (10) can he evaluated ana]ytica]]y(IS) to yield
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This result, or equivalent expressions, have been given earlier by

Hou]berg.(7)
The fraction fe of the initial energy transferred to the electrons is

simply 1 - f,.

IV, FAST ION PRESSURE

The fast dons, because of their finite slowing down time, develop a

certain amount of pressure which has to be supported by the magnetic field.



This is in addition to the pressure of accumulated thermal "ash" in the
plasma. To calculate this pressure we introduce a kinetic equation for the
slowing down particles and solve it for their distribution function. Integra-
tion of the distribution function then determines the fast ion pressure.

We introduce the distribution function g, of fast djons; g is defined as
the number of ions per unit energy per unit spatial volume and satisfies the

steady-state kinetic equation,
? dE
3F (9 dt) = S(E) (12)

where S(E) is the source function in this "phase" space and dE/dt is given by
Eq. (5). This equation assumes the ions have a confinement time much longer
than the slowing down time. For cases in which this is not true, an addition-
al loss term would have to be introduced in Eq. (12). The relationship of Eq.
(12) to the Fokker-Planck equation is discussed in Appendix 2. If we assume
the ions are born monocenergetically, then

S(E) = S (13)
where Sy is the number of ions born per unit time per unit volume and § is the
Dirac delta function.

We impose the boundary condition that g = 0 for E > Ej. Equation (12)

can then be integrated to yield



SOTs
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Similar results have been obtained in Refs, 2, 6, and 7, if we consider the
appropriate limiting cases.

The pressure p of the fast ions is

Eg
2
p = §-IO dE g(E) E (15)
which can be rewritten as
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For most applications to fusion born particles, the dominant term is the first

term in the square brackets.

V., SOME RESULTS

To illustrate the magnitude of the fast ion pressure, we show some re-
sults calculated using the above formulae. We present the results in terms of
I, which is the ratio of the fast ion pressure to the pressure of the back-

ground plasma. Shown in Fig. 1 is I versus Te for a D-T plasma (50:50 mix-



0.5

0.4

0.3

0.2

0.1

0.0

Fig1

Fast Ion Pressure in a D-T Fusion Reactor

= /—.——s_. -
)
B y i
TIZTO
¢ Reference 10
- o Equation (17) -
/ .
e, L 1 ) L 1 I
0.0 10.0 20.0 30.0 40.0 50.0 80.0

Temperature ( keV)

70.0



ture) along with the approximate result from Logan.(lo)

Logan's simple
formula fits the results rather well.

The effect of dmpurity accumulation on the fast ion pressure in a D-T
plasma is shown in Fig. 2. In this case the impurity is oxygen (Zj = 8) and

the electron temperature is 15 keV; Zeff is defined as
2
yn.Z.
. J
Z .. =2
eff )YnZ,6°
jJJ

The normalized pressure, T, decreases with increasing Zeff partly because the
impurity ions increase the thermal ion drag on the fast ions, but also because
the increased electron density, relative to the ion density, increases the ion
drag. The latter effect is probably more important. In addition, the thermal
pressure is increased for a given ion density and temperature. All of these
effects contribute to the reduction in T,

The normalized pressure, I', for a D-3He (50:50 mixture) plasma is shown
in Fig. 3. For an electron temperature of about 60 keV (a typical operating
temperature), I' is about 20%, which is about what is gotten in a D-T system at
about 20 keV., Consequently, the impact of the hot ion pressure on a D-3He re-
actor is about the same as on a D-T reactor. Figure 4 shows the effect of
changing the fuel mixture in a D-3He plasma. The quantity T peaks at a fuel
mixture of about 65% D and 35% 3le. This is about the same fuel mixture which

optimizes the ignition margin and the fusion power density.
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Fig4 Fast lon Pressure in a D—"He Fusion Reactor
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APPENDIX 1, THE COULOMB LOGARITHM

In general,

A=b /b . |,
max’ min
where the maximum impact parametef bmaX is taken to be the electron Debye
length since the background ions cannot respond quickly enough to shield a

fast test ion. The minimum impact parameter b is taken to be the greater

min
of the 90° impact parameter, bpy, or the de Broglie wavelength, A. For fast
ion-electron collisions the usual results given in the NRL Plasma Formu-

16) apply. The case of ion-ion collisions requires special attention,

1ary(
however. For collisions between thermal ions, the classical impact parameter,
by, 1is wusually greater than the de Broglie wavelength. High energy ions,
however, can have a de Broglie wavelength which is shorter than by. This is

E'O'5 whereas by scales as E'l.

because the de Broglie wavelength scales as
For both 3.5 MeV alpha particles and 14.7 MeV protons, we have to take b,
equal to the de Broglie wavelength. As thé particles slow down to thermal
energy, this will no longer be true, but it is better to use the correct value
for A at the high energy end in describing the slowing down process, since the
initial slowing down time scale plays a role in determining the pressure of
the fast ions. Hou]berg(7) gives E > 25 ZjZZZA keV as the rule of thumb for

when the quantum mechanical byin applies (A is the amu of the test ion). This

n
covers most of the interesting energy range for our purposes. Consequently,

we take

12
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where h is Planck's constant, m. is the reduced mass, and u is the velocity of

r

the fast test ion. Thus we can write

2E0kTeE ij
InA;=1n [ 77 oWl
n_e Mh J
e
or in more practical units,
miﬁ TeE
Tn Ay = 17.1 + 1n [(mj ) M ]

where the electron density, Nas is measured in units of 1020 m'3, the electron
temperature and the test particle energy in units of keV, and the masses in

amu.
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APPENDIX 2. RELATIONSHIP TO THE FOKKER-PLANCK EQUATION

The kinetic equation used in this report, which was written down from

first principles, <can be obtained directly from the Fokker-Planck

equation,(14)

<AV .> 2 <AV.AV .>
] (f 1 ) +l 9 (f 1
avi At 2 aviavj At

af _
== ) +S (2.1)

v
where SV is the source function in velocity space. We are using Cartesian
tensor notation with the summation convention.

For test ions fast relative to the background ions and for interaction of
test ions with electrons, the diffusion term, <Av1Avj>/At, is negligible com-
pared with the dynamical friction term, <Avi>/At. We also drop the time

derivative for steady-state to get,

) =S . (2.2)

For an isotropic source, f is also isotropic. Since g is the number of parti-

cles per unit energy, we have

f d3v = 4nv2f dv = g dE = Mvg dv ,

or ¢ =Mg_

is the relationship between the two distribution functions, f and g. Likewise

14



where S is the source per unit energy. Also

<Av.> dv.
i i
At dt °

Since the slowing down process is isotropic,

dvi V. d

dt

dE

v 1
My dt °

E s

=—l ﬂ-:
v dt

We use the above results to transform Eq. (2.2) to energy space

or 5—3:(9%%);%4—,
since 3%; (%%) =0,
Thus FOBE S0
iv
But %%—-= Mvi and Vivy = v2 s

which yields the desired result
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This is our kinetic equation, Eq. (12).
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