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INTRODUCTION

Twisted coils of complicated shape are employed in various magnetic
plasma confinement devices, especially those in the general class of
stellarator-type devices. In design of these devices, ad hoc winding pack
envelopes are frequently assumed. A more exact treatment shows that the ahove
ad hoc winding pack definitions do not represent the true shape taken by wind-
ings as successive turns and layers of turns are wound. As a result, errors
in calculation of magnetic fields and in shapes of coil cases, etc., occur.
In the present work, the mathematical techniques of differential geometry are
applied to the problem. Except where otherwise noted, solutions are given for
the limiting case of conductors with small cross section compared to bend
radii and winding pack transverse dimensions.

WINDING PACK COORDINATES

A convenient set of parameters for defining a twisted winding pack is
based on the actual sequence in which it is wound. First, a starting layer
surface is specified by a vector function ﬁ(p,q) that gives the coordinates of
a surface point relative to a fixed rectangular set of axes, as a function of
two general non-orthogonal parameters p and q. Successive layers form a

family of parallel surfaces with the parametric form

R (p,q,h) = R(p,q) + hN(p,q) (1)

where h is the winding depth and ﬁ is the unit surface normal. Starting turns
in each layer are specified by defining a starting turn surface that inter-
sects the family surfaces parallel to the starting layer surface; starting

turns for each layer are the curves of intersection of the above surfaces.



In a particular layer, successive turns form a family of geodesic parallels,

Analytic expressions can usually not be found for the geodesic parallels;
instead, a particular member of a family of geodesic parallels is generated
by Taying off equal arc Tlengths along the family of geodesic curves that in-
tersect the starting turn orthogonally. The geodesic parallel is the Tocus of
the endpoints of these arcs. After starting layer and starting turn surfaces
have been given, specification of the winding pack envelope is completed by
giving a total winding depth H and a width for each layer that is the constant
arc length along the orthogonal geodesics from the starting turn to the Tlast
turn. The Tlayer widths are given by a function W(h) of the winding depth
parameter h. The above specification is the most general one possible for
winding with conductors of constant height and width in a particular turn and
constant height throughout a particular layer.

The foregoing procedure may be generalized to allow the starting layer
and starting turn surfaces to intersect at the center of the pack, in which
case turns and 1layers are "unwound" to get the actual starting layer and
starting turn surfaces.

In order to make the relation between the starting layer and starting
turn surfaces explicit, it is convenient to take the arc length s, along the
curve of intersection of the starting layer and starting turn surfaces to be
the winding length parameter. The starting turn surface can then he defined
ab initio in terms of So and one other parameter, or if needed, a coordinate
transformation can be made from some other pair of parameters to a pair that
includes s,. Assuming the former, the starting turn surface has the para-
metric form ﬁs(so,u) and its curve of intersection with the starting layer

surface is given by known parametric expressions, say p = f,(s,), q = g,(s,).



Denoting starting turns on subsequent layers by p = f(s,,h), q = g(s,,h), and

u = e(so,h), the functions f, g, and e must obey the vector equation

B(s.h) = R [f(s_,h),g(s sn)] + hN [f(s ,h),g(s ,h)]

= ﬁs [so,e(so,h] .

Equation (2) is, in general, a set of three coupled transcendental equations
in the unknowns f, g, and e; ﬁ, N, and ﬁs are known functions. Solution of

Eq. (2) for all possible values of s, and h defines functions f, g, and e of

0

the parameters s, and h (see Fig. 1). Numerical solution of Eq. (2) (which

0

will be required in almost all cases of practical interest) is most easily
performed by first differentiating it with respect to h, holding the parameter

s fixed, and using the following well-known expressions for the derivatives

0

of the normal vector with respect to the surface parameters:
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In Eqs. (3) and (4), the first order quantities E = ﬁ%, F = §1-§2, G = ﬁg, and

V2 = EG - F2, and the second order quantities L = ﬁlloﬁ, M = ﬁlZ-N,

and ﬁ = ﬁzz-ﬁ have been introduced. The resultant system of first order

equations to be integrated with respect to h is
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Construction of geodesic parallels on a parallel surface that is a
distance h from the starting surface. The curves shown for the
parallel surface (p = f(so,h), q = q(so,h) and its geodesic parallel)
are represented by their respective normal projections on the
starting surface.
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Equation (5) is reduced to a set of three scalar equations, each containing
only one unknown derivative, by taking scalar products with vectors orthogonal
to the vectors multiplying the remaining two unknowns. The initial conditions
for integration are f(so,O) = fo(so), g(so,O) = go(so), and e(sO,O) = 0,

The starting coordinates Pos 9 for orthogonal geodesics are given by the
solutions to Eq. (5). For complete specification of the geodesics, the start-
ing direction must also be given; this requires knowledge of the tangent
vector to the starting turn curve. Differentiating Eq. (2) with respect to

s., one obtains

0

(ﬁl * h"\il) %g_ ¥ (§2 * hﬁZJ gg B asS ¥ aes gg : (6)
0 0 0

Equation (6) is solved for the unknowns af/aso, ag/aso, and ae/aso by taking
scalar products with orthogonal vectors as before. The three expressions are
evaluated after each iteration during the integration of Eq. (5) and substi-
tuted in Eq. (6); the left hand side, apart from a normalization factor, is
the tangent to the starting turn at a point with parameter values p = f, q = ¢
on the parallel surface and s,, h on the starting turn surface. Denoting the
first order quantities for the parallel surface by E* = ﬁ;z, F* = ﬁ;-ﬁ;,
G* = ﬁ;z, the starting derivatives for geodesics on the parallel surface that

are orthogonal to the starting curve are given by
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The above first order quantities are readily obtained from Egs. (1), (3) and
(4).

Using the notation p = a(so,h,w), q = e(so,h,w) for orthogonal geodesics
(which depend explicitly on w, the arc length along them, and on So and h

through initial values pg, q,, pé and qé), the parameterization of the winding

pack is
B(s,» = R [als ,h,u),8(s, h,m)] + M [a(s,,hw),8(s shw)] . (9)

The explicit method of finding a and B is given in the next section. The
magnetic field generated by a current density J(h,w) is given by the Biot-

Savart law which takes the following form (MKS units)

‘ ‘ ™x (X - B)

B(X) = 2 dwds _dh 10
M =g ) S m-m wsodh - (10)

where T is the unit tangent vector to a turn and L is the total length of the



starting turn. The vector T is given by vector product of N with the unit

vector aﬁ/aw:
T=Nx2 (11)

As P is, in general, not available in analytic form, the three partial deriva-
tives of P must be obtained by numerical means; the procedure is outlined in
the next section.

GEODESICS ON PARALLEL SURFACES

When the two parametric coordinates of a geodesic curve are given in

terms of its arc length w, the equations for geodesics take the well-known

form(l)

n 1 |2 1 "y 1 ,2
pY F TPt 2 Typpia’ T

]
O

(12)

L2 2 2 2. .2
q" * TP+ 2 TyopTqt + TH0q

1}
(@=]

where the primes indicate differentiation with respect to w. The coefficients
are functions of the first and second partial derivatives of the Cartesian
coordinates ﬁ(p,q) of the surface with respect to the parameters p and q and
are a type of Christoffel symbol. Equations (12) are coupled second-order
equations. From the theory of differential equations it is known that if
initial values P> Y9 and initial derivatives pé, qé are given, the solution
is unique. That is, given a surface, geodesics are uniquely specified by

giving their direction at any one point along them. In some cases, it is



desirable to eliminate the variable w from Eqs. (12) and express one coordi-
nate in terms of another, e.g., q = ¢(p). In this case, the equations for

geodesics become the single equation

‘ﬁ% + 11y, (%3)3 v (21, - zrzz)(%%)z v (ryy - 2 %) - rjp =0 . (13)
The normal vector to the surface is given by the expressions
N = (R) x R,/ (14)
Vo= |§1 X §2| . (15)
The Christoffel symbols are given by the expressions
1rjk = (Iijk cFON (16)

~

where ?1 = ﬁz x N and ?2 = -ﬁl x N,

On the parallel surfaces, the Christoffel symbols are defined in the same
way, with §* (Eq. 1) replacing R. The Christoffel symhols for the parallel
surface, when it is parameterized in terms of the fixed distance h between the
surfaces and the parameters p and q of the starting surface, now involve third
partial derivatives in addition to first and second derivatives. The normal
vector ﬁ is the same for the same values of p and q on the two surfaces. One
can show that for the parallel surface,

L= F e D (M, - R (17)
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The three second partial derivatives for the parallel surface are given by the

expressions below containing Christoffel symbols for the starting surface:

x h 1 2 . 1 2
Ry =Ry +yl2Lryp v 2myy - NeRy)F + (2L 1y + 2 M1y,
(20)
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(22)
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Equations (17)-(22), when substituted in Eq. (16), yield the Christoffel
symbols for the parallel surface; final expressions are not given here because
of space limitations. Integration of the geodesic equations on the parallel
surface, for each pair of values Sps h on the starting curves, yields a series
of values of p and gq along the geodesic solution curves p = a(so,h,w), q =
B(so,h,w) (see Fig. 1). As a hy-product, for each iteration values for p' and

q' are determined. These are used to find the unit vector aﬁ/aw as follows:



9_5_ = (ﬁl + hﬁl)p' + (F?Z + hﬁz)q' . (23)
Expressions for aP/3h and aﬁ/aso could be obtained from the geodesic equations
by constructing the set of linear differential equations in the unknown deriv-
atives of the solution curves with respect to initial values and integrating
them along with the geodesic equations themselves. Instead, it is simpler to
approximate the above partial derivatives using increments in P at successive
values of So and h in the generation of the winding pack parameterization.

At this point it is instructive to point out a fundamental difference be-
tween flat and twisted windings. Assuming for the moment turns of square
cross section, for flat windings turn Tocations and the winding pack envelope
are the same regardless of whether the winding pack is made up of n layers
with m turns per layer, or by m pancakes or discs with n turns per pancake.

For twisted windings this 1is not generally true. This can be seen from the

fact that while turns in a layer form 5 family of geodesic parallels, the
curves of 1intersection of successive layers with the starting turn surface do
not, unless, for example, the starting turn surface is the set of normals to
the starting turn surface along the starting turn in the first layer (in this
case the orthogonal geodesics in question are the normals, which are straight
lines in space). Even if the above particular starting curve surface is
chosen, the surfaces parallel to it do not 1in general intersect the starting
layer surface along geodesic parallels, as would be required if layer winding
against the starting layer surface and pancake winding against the starting
turn surface were to give the same result.

Also, in a flat winding, a plane orthogonal to any turn intersects all of

the other turns orthogonally; the total ampere-turns of the windings for con-

10



stant current density is just the area of the normal section times the current

density. For twisted windings, it is impossible in general to find a family

of surfaces that intersect all of the current filaments in a winding pack

orthogonally. This is a result of the fact that the infinitesimal angle be-

tween geodesics orthogonal to starting curves in layers differing by an
infinitesimal depth dh is not necessarily zero; therefore, a turn in one layer
may be rotated with respect to nearby turns in the layer below.

USE OF DEVELOPABLES FOR WINDING SURFACES

Fabrication of surfaces for winding can be considerably simplified if a
particular class of surfaces, called developables, is used. Developables are
surfaces that can be formed out of plane pieces by bending without stretching
and are a subset of the class of ruled surfaces, or surfaces formed hy sweep-
ing a straight line through space. Ruled surfaces have the parametric form

A~

ﬁ(so,u) = FO(SO) + up(so) (24)

where s_ is the arc length along the directrix curve Fo and u is the Tength

0

along the ruling intersecting ?0 at s,.

Developables are those ruled surfaces for which the unit vector p, its

derivative 5‘, and the tangent vector to the directrix t, are coplanar, i.e.

p'e(p xt) =0. (25)

The unit normal ﬁ is ﬁ = (5 x %)/sin ¢ (26)

where ¢ is the angle between B and %. ﬁ is the same for all values of u along

11



a particular ruling by virtue of Eq. (25). A third vector a orthogonal to ﬁ

and 5 can be formed by defining

One can now write 5' = aq (28)

thereby defining a function a of s The remaining two derivatives are given

o
by the expressions
. K.
l=—
N sin ¢ q (29)
K©
TR TR,
and a =T 3 N-ap. (30)

The quantity Kg is the normal curvature, or curvature in the N-£ plane of the
directrix curve on the developable surface itself; it is given by the formu-
la Kg = Kﬁ-ﬁ, where « 1is the total curvature and 6 is the principal normal
to Fo' The unit vectors 5, a, and N form a rotating frame field in which any
vector may be represented; Eqgs. (28)-(30) allow derivatives of vectors to he
expressed in terms of the frame field.

The parallel to a developable surface ﬁ* = Fo + uB + hﬁ is itself de-
velopable, as can be seen by substitution in Eq. (25) with Fo + hﬁ re-
placing Fo’ and use of Eq. (29) to evaluate N

The equations for geodesics reduce to a particularly simple form on a

developable surface, since they are straight lines on the flattened surface.

Equations (12) are equivalent to the equation Kg = 0, where Kg is the geodesic

12



curvature of a geodesic curve. The geodesic curvature of the directrix curve
is

A A

=P = (a4 ). (31)

0
Kg sin ¢

The latter equality is easily proved by differentiation of the equality {-B =
cos ¢ and use of Eq. (28). But any other curve besides Fo’ including a geo-
desic, can also be considered to be the directrix curve (the effect of chang-
ing directrix curves is to reparameterize the surface). Writing w now for arc

tength along a geodesic, one has

de dp = ds
_dw = - dw ] q = —a ——-—dw (32)
de _
or 'd—s— = =a (33)

where 6 1is the angle that the geodesic makes with a ruling; s is the arc
length parameter where the ruling intersects the original directrix curve.

On the paraliel to the surface of Eq. (24) the directrix curve can be
taken to be r=r_ + N h. If a geodesic on the parallel surface is

0 0
parameterized by s, the arc length along Fo’ one can write for the geodesic

A

Fq = Tols) + N (s) + U(s) p(s) (34)

where U(s) is an unknown function of s. Differentiating the above equation

with respect to s using Egs. (28) and (29) yields

13



hk® .

Taking scalar products with 6 and a yields the equation

hk©

cos & (sin ¢ - E?ﬁﬂ$'+ Ua) = sin 8 (cos ¢ + U') . (36)

With the help of Eq. (33) integration of Eq. (36) is reduced to quadratures

and one has

S S Kg cos B
. _ . ) . , .
Usine=/[ sin (¢ - 8) ds h ST e ds' + uy sin 8 (37)
s S
1 1
S
and =0, -] ads. (38)
51

In the above, sy and uy are the starting parameter values of the geodesic and
61 is its initial angle with respect to 6(51). In practice, Egs. (37) and
(38) are not very useful for determination of geodesic parallels because they
do not involve arc length w along the geodesic explicitly. For numerical cal-
culations, as was previously the case with determination of the starting turn
curves, it is bhetter to integrate a system of first order differential

equations in arc length w. These are

du _

G = cos @ (39)

ds _ sin 0 cos 6

ds e : (40)
sin(¢ - 8) - (sinn¢ - la) cos

14



For determination of the geodesic parallels of the starting turn in an
arbitrary layer, it is necessary to express the initial parameters S1, U1, O
of the geodesics in terms of the starting turn surface. Assuming this surface

also to he developable, it must have the parametric form
Ro=7 +1s . (41)
S 0

Introducing the unit binormal vector R = E x ﬁ, the most general developable

. > . . . .
surface with ro as a directrix is given by

s = [(Kﬁ cot¢y + W')£ + siny (Kg siny + Kg cosw)ﬁ + cosy (siny Kg

KO cosp)BL/IKD cote + 4102 + (KD siny + K cosy)]1V?

where ¢, the angle between the normals to the two developables along Fo’ is an
arbitrary continuous differentiable function of arc length along Fo‘ For a
surface that intersects the starting layer surface orthogonally, v = n/2, y' =
0 and Eq. (42) reduces to
0 : oy
+
N Kn cotot KqN

s = . (43)
[KO% cot?y + ng]

In Eq. (43), the quantity Kﬁ cot¢ can be identified as the geodesic torsion rg
of the directrix curve. Determination of the intersection curves and starting
parameters for geodesics 1is accomplished by the numerical method outlined

previously for the general case (Egs. 5-8).

15



From the foregoing, it is clear that at least the top and bottom layer
surfaces and one side surface (the starting turn surface) can be made to be
developable; the resultant fourth surface is, in general, not developable.

DEVELOPABLES THAT ARE DERIVED FROM A GENERAL CURVED SURFACE

A developable can be used to approximate locally a general curved sur-
face. Given a curve on a general surface ﬁ(p,q), and expressions p = f(s),
q = g(s) where s is arc length, the envelope of tangent planes to the general
surface along the curve forms a developable surface; the distance hetween the
two surfaces is second order in distance from the curve along the surface.
The normal curvature Kg, geodesic curvature Kg, and geodesic torsion Tq are
the same for the tangent plane envelope surface and the original surface along
the above curve. If the above quantities are known, the ruling vector 5 for
the tangent plane envelope surface can be obtained by substituting ¢ = 0 into

Eq. (42); the result is

K° cotet + Koﬁ
n n

S JOY W B V. (44)
[cot™eK = + K]
R 10€ + Kgé
or = . (45)
02, ,0271/2
[Tg + Kn ]

The quantities Kn’ Kg, and g for the original surface are given by the well-

known expressions

2 V2

_Lf'" + 2 Mf'g" + Ng
no . (46)

K
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K9 73 [F17 7y =97 Ty + (2 7ryp - 1)
(47)

1 2 ] ] 2 ] n H] ]
" (27T - Tt et ¢ " - ']
12 - 02
o _(FL - EMF'® + (6L - EN)f'g' + (GM - FN)g (48)
g vp?

with D = [R f' + R,g'

. If desired, a more general surface that intersects
the original surface at an angle can then be found by use of Eq. (42).

THE RECTIFYING DEVELOPABLE

Another developable that has been considered by magnet system de-
signers(z) is the rectifying developable, or envelope of rectifying planes of

a space curve. This surface is most conveniently represented in terms of the

Frenet-Serret frame t, n, b, where t and n are the curve tangent and

A A

principal normal, and b = E x n is the binormal. In this frame of reference,

the ruling vector for the most general possible developable has the form

~_ (v # T)£ + k siny coswa + x cossz (49)

P
(3 + )% + x? cos?y]'/?

where ¥ is now the angle between the normal to the surface and the principal
normal to the space curve n; the new quantity T is the torsion of the space
curve; it contains three derivatives of the space curve. The choice y = 0 now

yields the ruling vector for the rectifying developable:

~ - T£ + K6
[TZ K2]1/2 . (50)

~

+
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If desired, 6 may be expressed in terms of a curve p = f(s), q = g(s) and
a defining surface ﬁ(p,q) by repeated differentiation and use of the Frenet-
Serret formulas; the result contains first, second, and third derivatives of
the parameter functions and of the defining surface.

The surface with the ruling vector of Eq. (50) has the remarkable pro-
perty that the directrix curve and its geodesic parallels are themselves geo-
desics on the surface and of equal length. They therefore don't tend to slip
sideways under winding tension -- a desirable aspect for coil winders. (There
will be problems, however; if the principal curvature changes sign.) When the
surface is developed or flattened to a plane, the directrix curve and its
parallels become straight lines, hence the term "rectifying". Moreover, since
the windings are geodesics, their geodesic curvature is zero. This means they
do not bend in their tangent plane and that wide, flat ribbon-1ike conductors
can be used to maximize transport current while minimizing bending strains;
this feature should be especially useful in winding coils with brittle
superconductors such as NbaSn.

On the rectifying developable (unlike the general developable) an ana-

lytic expression for geodesic parallels can be easily found;(3) it is

U(s,) = Si”rj ;- (51)

A parametric formula for geodesic windings on the surfaces parallel to the

rectifying developable can also he derived in analytic form; it is

>0 %0

U(Soh) =m [sin o f (1 + kh) ds + cos o f ht ds + W] . (52)

S S

18



The angle o represents a skewing in the layers required to make the ends of a

turn meet and is given by the formula

tan a = - LO (53)
L +h [ «(s)ds
0 0

where L0 is the length of the directrix curve in the starting layer.

FABRICATION OF DEVELOPABLE SURFACES

The process of bending a flat surface into a curved surface is an iso-
metric transformation or isometry; arc lengths and angles between intersecting
curves are invariant under the transformation. Another invariant quantity is

the geodesic curvature K_; when a developable is flattened, the plane curva-

g
ture of a flattened curve is just the geodesic curvature of the unflattened
curve. This means that the parametric formula for any flattened curve can he
obtained from that for the unflattened curve by quadratures. The Cartesian

coordinates of a point on the directrix curve are

S
x =x_+ [ cos y(s') ds' (54)
°© 7o
S
y =y, t [ siny(s') ds' (55)
0
S . S .
w—wo-fokgds —wo-¢o+¢+f0ads (56)
where Xgs Yo» and wo are constants of integration and are determined by the

choice of the fixed coordinate system. The rulings remain straight after the

19



transformation and form an angle of ¢ - ¢ with the x-axis. The above equa-
tions provide all of the information needed to find the Cartesian coordinates

of any point on the flattened surface, given parameter values s. and u for it

0
on the curved surface. If the starting curve is the directrix, the orthogonal
geodesics intersect the x-axis at an angle ¢ - /2. For the surface parallel
to the starting developable, also developable, one can take the directrix to
be 7 = Fo + h&, with arc length So along Fo and length along rulings from F to
be the surface parameters. The tangent to this directrix makes a different

angle ¢* with the rulings at the same value of s, , the angle being given by

the expression

hk®
n

tan ¢* = (1 - >—) tan ¢ . (57)
sin ¢

As the rulings are the same except for being displaced in space by the
vector hN, the value of a is the same as in the starting surface for the same

value of s_ with the above parameterization of the surface, and Egs. (54)-(56)

0
can be used with ¢* substituting for ¢ to find the directrix curve on the
flattened parallel surface.

The above equations provide the information needed to find the shape of
flat pieces for fabrication of developables, given the parameter values for
their boundaries. The remaining task is to specify the bend radii. The di-
rection of largest normal curvature on a developable is perpendicular to the
rulings, or in the a direction, the value being
K0

_ n
Kmax “ sin ¢ (sin ¢ + ua) ° (58)




On the parallel surface parameterized by Sy the arc length along the direc-
trix for the starting surface, the direction of largest normal curvature is
still given by a, but the value is

* K:])

max hK2 (59)
sin ¢ (sin ¢ + ua -

sin ¢)
The above specification of bend radii is not entirely satisfactory from a
manufacturer's point of view, because producing a radius of curvature that
varies continuously both along and in the direction perpendicular to the
rulings 1is difficult to achieve in practice. Instead, developables can be
approximated either by plane segments or by a combination of plane pieces and‘
segments of right circular cones. In the latter case, winding surfaces with
continuous tangents can be produced. If cone segments are used, plane pieces
must be inserted between them in the general case in order to avoid discon-
tinuities in the surface tangents. This is a consequence of the fact that the
rulings of a general developable do not necessarily intersect at a point as
would be the case for a conoid, but rather are tangent to a space curve (the
latter property is an alternative to Eq. (25) for the definition of a develop-
able). A detailed procedure for constructing these approximations to the
exact developable surface can be found in Ref. 4.
CONCLUSIONS

In the foregoing, the mathematical machinery needed to find and specify
the detailed shape of twisted coil windings has been outlined. Practical
implementation requires development of computer programs to solve the differ-
ential equations. Fortunately, all of the differential equations are of the

initial value type and solution is expected to be straightforward. Output of

21



such programs would best be comhined with graphics packages for easy visuali-
zation of the results.

For the case of conductors of finite thickness, the results given are
only approximately true. The approximation should he sufficiently accurate
for most superconducting coil winding packs, because superconductor strain
limitations place 1imits on bend radii. For copper coils with Targe winding
strains, the layer surfaces are not exactly parallel surfaces (as defined by
Eq. 1) and turns 1in a layer are not exactly geodesic parallels, because the
cross-sectional dimensions change when the conductor 1is bent. The final
conductor cross section is not even rectangular and cannot be calculated by
analytic means. For such winding packs, a semi-empirical approach in which
approximate formulas for cross-sectional dimensions of deformed conductors are
found by bending experiments can be contemplated. The approximate formulas
would then be used to find layer envelopes and positions of parallel turns by
finite methods.
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