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Abstract of Results Directly Applicable to UWMAK-I
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for a circularly cross sectioned chamber and plasma.
Assuming the toroidal (plasma) current J¢ = -J = constant one
o

can find explicit expressions for Aa’ 60 depending on pressure profiles.



For a pressure profile which goes as the square root of a parabola

one finds that

2
-2 13 1, 5 = T
Aa iy [Bp + 2] .75 meters for BP V/R/a
a = 5m.
R = 13m.

For this small a Aa, we find we are assured that the { surfaces are
not radically deformed from circular. (If Eé = R/a Aa =~ 1l.5m. and

then Y surfaces would still only be slightly non-circular.)

§(t) = .317 + 1.026(1 - 2.032 BS )t
+ .160N(1 - 2.032 BO) (1 + 45/&) meters
where N = # poloidal gaps in shell

e .
B, = constant (uniform) vertical field applied at t=0 and kept
constant in time from thereon.

The other assumptions concerning these formulae are discussed in the
text of this report. By a suitable choice of BS as a function of
time one can, however, keep the plasma column centered anywhere one
wants inside the casing. There is less control however over the

positioning of the { surfaces inside the plasma.



MHD Equilibrium of a Tokamak Plasma

A. Introduction

The purpose of this paper is not so much to derive and discuss
all of the results obtainable from an MHD equilibrium analysis on
a Tokamak as it is to establish the "working formulae" one might
wish to use to arrive at a first cut, so to speak, on the toroidal
effects involved in holding a circular cross sectioned, low B,
Tokamak plasma in equilibrium. My development shall follow closely
that of V. D. Shafranov as outlined in Reviews of Plasma Physics,
Vol. II, pg. 103-150, hereafter referred to as Ref. [1]. I will
have occasion to draw from other works of Shafranov, namely;

Ref. [2] Plasma Equilibrium in a Tokamak by V. S. Mukhovatov

and V. D. Shafranov Nuc. Fus. 11 (1971) 605-633

(Review Paper).

Ref. [3] Equilibrium of a Toroidal Plasma in a Magnetic Field

by V. N. Shafranov, Atomnaya Energiya 13 (1962) 521.

also I will quote from the following excellent Review Paper,
Ref. [4] Tokamak Devices by L. A. Artsimovich, Nuc. Fus. 12
(1972) 215-252.
There are typographical errors in all of the references and I will so
note them at the proper places in this paper, hoping, of course, that
I do not add to the list of errors myself! While not directly used
for this report several other papers are of benefit in reviewing

Tokamak equilibria and I shall list them below for quick reference.



Ref. [5] MHD Equilibria in Sharply Curved Axisymmetric Devices
by J. D. Callen and R. A. Dory ORNL-TM-3420 (POF)
Ref. [6] Toroidal Containment of a Plasma by Harold Grad,

POF 10 (1967) 137-154.

I shall also have need to refer to several texts
Ref. [7] Physics of High Temperature Plasmas, G. Schmidt
Ref. [8] Plasma and Controlled Fusion, Rose and Clark

Ref. [9] Electrodynamics of Continuous Media, Landau and Lifshitz.

I shall limit this paper to circular cross sectioned tori and will have
need (as Shafranov does) to use two different labeling schemes to denote
the magnetic flux (Y) surfaces in the device. I shall also initially
assume a conducting, circular cross sectioned containing chamber with
no gaps. I shall relax this gap constraint in later sections of this
paper and discuss its consequences in comparison to an ideal conducting
casing with no gaps. My intention is in essence to lead one through,
by outline and example, Ref. [1] point out where Shafranov has
errors, where he changes coordinate systems, and in some cases where
hidden assumptions are present, at least ones I have uncovered. I do
this in the hope that one will have a somewhat less arduous task in
understanding MHD equilibrium (there are really no texts, monographs,
or scrolls on the subject) than I myself have had over the past two
years. Of equal importance is the determination of analytical results
for one or two possible models of a Tokamak fusion reactor at least

to the extent of setting the first calculational "bench marks" on

equilibrium parameters for the Wisconsin Fusion Design Study Group.



A future paper will treat roughly this same problem of MHD
equilibrium, but from a slightly different point of view. (From
the paper "Toroidal Equilibrium,” by Johnson, Green, and Wiermer,

POF 14 (1971) p. 671-683.)

B. General Remarks

I shall initially be concerned with an ideal conducting (0 -+ )
tokamak plasma [App. A]. To stay consistent with [1] I shall define
the first coordinate system I am going to use with reference to

Figure 1 below.

4
? R o toroidal container or
, first wall (ossumed
|

Figure 1

R = radius from & of torus to center of plasma whose circular cross

sectioned radius is a.
a = plasma radius
b = radius of casing measured from R - Jo

So = radial shift of plasma cross section (p=a) from center of casing.

(We shall compute &o0)



Psd, w is right-handed (quasi-~toroidal) coordinate system
r,z, ¢ is circular cylindrical coordinate system with origin at

central axis of machine.

r=R+pcosw, z=p sinw, ¢=¢

L AR A -1 =z
p=vV(@R)*+ 2z, 0 = tan  ——
r—-R

The equations needed to give MHD equilibrium for a plasma are

listed below.

> -> > e
1) -Vp+JxB=0 Eqn. of motion neglecting v * Vv,
p is isotropic.
> - A
2) VxB-= qu Ampere's Law (neglecting dis-

placement current)

3) vV . E =0 Gauss's Law

These equations are suitable for describing a plasma in a quasi-stationary
electromagnetic field where one may allow relatively slow (diffusion
and drift) motions with velocities smaller than the inertial velocities

Vth’ VA. (iev << V/T/m, V << B//mnuo).

Equations 1, 2 and 3 may be combined into the following more compact

representation. (Ref. 1)

—)
4) V - % =0 for equilibrium
where
2 B.B 2 B.B
-~ B ik B ik
5) T, =1{p+—} (5, - —-) + {p - =1
ik 2u0 ik B 2uo B2
Since Tik is in tensor form (it is by the way a tensor), I will be

concerned with terms such as T¢¢,Tww,pr, etc. using the p,%,w



system. To find the forces on the plasma, let me consider a
section of the plasma as shown in the figure below (geometrical

properties are proved in Appendix 1).

rdd) “chunk”’ of plasma
s 4(b+ . "
¢ ds, &p(a,9)
" %HG e
a
Us,ﬁm i
Figure 2

where

ds¢ = pdpdw, dsp = (E + pcos w)d¢pdm

. oe . -

E¢(¢+d¢) = é¢(¢) +-—8-$9 dp = - ér = - cosw ep + sinw e,

To keep this slice in equilibrium, one must have the summation of forces
on the slice equal to zero. There are two degrees of freedom of interest
in an equilibrium analysis. The first is an expansion-contraction of

the minor radius of the plasma (see figure below).

K

p ——

P-_-

Figure 3



The forces involved in determining the minor radius are the average plasma
pressure, toroidal diamagnetic effects, the pinching force due to the
plasma current (J¢), and any external particle pressure (pg). Before

I derive any formulae, I should like to discuss the second degree of
freedom, i.e. a force balance in the Er direction. This requires a

major radius force balance, and one sees that motion with reference to

the figure below.

A (o N
. R\ / N -
'[* R+8R —

Figure 4

There are basically three distinct physical mechanisms responsible for

the plasma wishing to expand in major radius (R +~ R + 8R). They are

1) The plasmaudiamagnetié’(Jw) currents crossed with the

) field. Since B, ~ l-, it is stronger on the inside

o) ¢ T

of the torus than on the outside, this results in a net force in

toroidal (B

iér direction. These currents, composed of V x M, (Jw)g.c. = guiding
center current due to drifts, and the component of J;, in the Ew
direction (due to V+J=0 and finite 1/2m), may produce either a net
decrease in toroidal field inside the plasma (diamagnetic) or a net

increase (paramagnetic) depending on B poloidal.

2) The plasma conduction (J,) current crossed with the poloidal

¢
(self) field (Bw)' As Bw is stronger on the inside (R-a) of the

plasma loop than on the outside (R+a), there is a net force in the +€r

direction. This difference is not only due to the fact that we are



dealing with a ring current, it also comes from having a distorted J¢

distribution in an equilibrium plasma configuration. We will see

somewhat the extent if this nonuniformity later.

3) The third force is in essence the pressure force (actually
the centrifugal force EEL). This force may most easily be pictured
by looking down on a wedge of plasma and noting the p,, has a x and a

y component

pnﬁﬂq

—<ﬂi \/E\7 .

pnhﬂq

Figure 5

and the y components of the paralled pressure cancel, but the x
components add together to produce a net force in the x direction.
To balance these 3 forces, one applies a vertical (B*o) field

such that the plasma current J, crossed with this BZ field

¢
produce an inward (4ér) force on the plasma column. 1In actuality,
we will solve for Béo by using this requirement. I now must come up

with equations to find these necessary fields to keep the plasma in

equilibrium. (See Appendix B for further discussion of this point.)
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C. Derivation of Equations

I can find at least one of the equations needed by integrating
>
+
V'T=0 over the volume of a plasma wedge (as shown below in Figure 6).
Doing this one would arrive at a vector equation, each component of

this (Force) vector must equal zero for the plasma to be in equilibrium.

This is exactly what Shafranov does in Ref. [3].

dsw dSP

adw Plasma wedge

Figure 6
For my purposes, I do not need this general a wedge, I shall be content

to use a wedge as shown below in Figure 7.

ey ptdidsy
—

Figure 7

¥

-
Instead of using all of the components of f V*T , T shall instead use
v
only the projection on the meridonal (z=0) plane. This I get by dotting

with‘gr. Doing so gives the force
-5
=
T

Fa
Fr = er f Vv -

dv = e * ds’ (6)
r

vwedge wedge

2]

This force must of course be zero for equilibrium. The second equation

shall be found from using



=11~

[ T (Tydv = [ (T+¥)-ds )
v ]

which is the Virial Theorem. I shall now describe both in more detail.
-

. K3 . '3 I 3 .+ I3 . . . .
Writing the equilibrium equation V+T=0 in indicial notation one has*

v ., =0 (8)

h

. L. . t
where Ti has the meaning that it is the stress (Force/Area) in the k

k
direction on the face (surface) of a volume element of plasma whose

.. Lth o . . .
normal is in the 1 direction. By integrating over the volume of the

, " th _, .
element, one obtains the net force in the k direction on that element.

_ 0 -
F, = f o Tikdv =@ T, ds, (9)
A% L S

where I have used the divergence theorem and I will integrate over

the elemental volume as shown in Figure 7. Now

Bin Bin
= P4(61k —'——3—) + P, 5 (10)
B

B

T:'Lk

where I have made the identification

+d
i

2
p+ B /2u (11)

P

14

p - B /2u_ (12)

and clearly with this representation one can see that the magnetic

field represents a pressure transverse to the field lines (+ sign is (11))y,
but represents a tension along the field lines (- sign in (12)) . Equation

9 may be shown to be equivalent to

d
*Many EtM and physics texts take the divergence of a temsor to be 5

Tki where the divergence operation is implied over the 2nd index ani'

thus their Ti has just the reverse meaning of my Tik' The convection I

k
use is consistent with tensor calculus texts and also Schmidt's book.

Since Ti is symmetric here, it makes no difference but when dealing with

k

antisymmetric tensors it of course does make a difference and one must be

careful.
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u

2 - .
¢ (o +5as - 2EAe)y _ g (13)
S uO (o]

By doting this equation with gr’ one will arrive at the first of

the equations I shall need.

F a 2m 2 B 2 217 )
roo_ E__9,8p - B L =
RA$ )(‘; _cf; (p + TR ) g dpdw £ ( + 2“0) (R+pcosw)y coswdw = 0

(14)

Shafranov's Ref. [1] is in error here, his equation (6.3), p. 125 should

read (he uses cgs units)
2 B 2 2

B _ ¢
SRS T

B ~ -
)ds¢—f(p+ﬁ er ds

Equation 14 is derived in Appendix C. The second of the equations I
wish to use comes from the virial theorem (time independent case)[Schmidt's
book p. 74]. TUsing the vector identity

5 o
’é?(; KT = T Sie X Ex_l" (13)

and the equilibrium equation 8, one has after integrating over the

entire volume of the plasma torus (not just Figure 7 as was done for equation

14).

T dv=0T_ Xd 16
i i1 2 ik ki (16)

which can be shown (Appendix C) to become
B2 B2 > > (ﬁ +2(B ds)
A r— = D —— - — .r . S
£ 3p + 2uo)dv @ + 2po)r ds o 1 (17)

-> e 4 A S
where r = re + ze = (Recoswtp)é- Rsinw e = R e + pe
r z p w r P
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Since I will integrate this equation over the entire torus
volume, I can take advantage of the fact that the plasma surface
.+
(p=a) is defined to be the surface containing B (and of

> > >
course J). Thus B+ds=0 Equation 17 becomes

a 2mw2nm 9
fI[ ©Gp+ g-—D(R + pcosw)ddpdwdp
o 00 uo
27 21
=f f(P+§*NR+mwwmww+pmwm
o 0 2“0

performing the d¢ integration (all quantities are assumed axisymmetric
., they are not functions of ¢) one has

a 2w 2 27 2

f f (3p + E——J(R.+ pcosw)pdwdp = f (p + E~—)(R + pcosw) (Rcos + p)pdw
o o 211o o 2uo

(18)

and this is the second (and last!) of the equations I wish to use.
This is Shafranov's (Ref. 1) equation 6.1, page 125.

It is at this point that one must say something about the B
fields present (i.e. needed) to have equilibrium. Let me note that
for low B plasmas, one can assume the toroidal field will remain
essentially 1/r even across the plasma.* On the surface of our

circularly cross sectional plasma one can represent B, (a,w) as 1/r.

¢

B¢(a,w) = toroidal field on plasma surface
Be(a) a a
=S ——— =~ B (a)(l - = cosw) —<<1 (19
e R R

a
+ =cosw
L R

#This will be substantiated by calculations at end of report.
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where Be(a) is vacuum toroidal field at p=a, w=n/2. I will also

mention that even inside the plasma one may take B, (p,w) to have a

¢

similar form

By(0s0) = B, (p) (L = 3 cosw) (20)

where any 'diamagnetic?”(toroidal field) affects are contained in
Bi(p), whatever it may be. We shall not have need of the explicit
formula for Bi(p) at this time. T need also to say some words
concerning Bw(p,w). To do this, and with reference to Appendix D, I
shall choose Bw(p,w) and Bp(p,w) to have analygous functional forms
to those fields one finds close to the loop of a circular filamentary
current loop (as in Jackson, Chap. 5, p. 142). 1If one does an
asymptotic expansion of the Elliptic integrals involved, one can show

that the fields close to a filamentary loop are given by

~ RO _ (p)_Q -~ _ o =
B, ™ B, P Aw R cosw) , Bp BpAp 7 Sinw (21)
8R
where A(p) = l-ln—-—g-, A(p) é-(ln &R _ . (22)
w 2 0 p 2 P

Therefore, I choose, as does Shafranov (but he does so without explana-

tion) to take

B, (0,0) = B°(0) (1 + A(p) £ cosw) (23)

where at p=a I identify (Shaf. eqn. (6.7))

- a
Bw(a,w) = Ba(l + AaR cosw) ' (24)
Yo' f
= = o 1 \ |
where B_ = S Ip = Jq)(p Y2mp'dp (25)
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Thus one mayppresume, for low B plasmas, that

(<] 4 1 ]

uy fo Jg(eh2metdp
2mTp

B;(p) = is the correct extrapolation for p<a.

I should point out that this form of Bw in (23) must contain, through

A, the fields from both the plasma and any external control coils

which produce the vertical equilibrium field. The basic limitation

I have applied to this time are that the plasma have a circular cross
section and that = << 1. With (19), (20), (23) and (24) onme can per-
form the integrations in (14 and (18). From these two equations I shall
(1) ascertain the form of A(a) and (2) obtain the minor radius pressure

balance. Proceeding, one can find that the Virial Theorem (Equation 18)

applied to the entire torus (p=a) becomes
_ Baz BeZ _ BiZ sz BaZ
- = - + 2A —= 26
3(p -p, ) =3 ST o o 2Ma) 5 (26)
o o o o

The meridonal component of the equilibrium equation (applied to wedge
of Figure 7) becomes [when integrated, and noting that Bs ~ @Kp/R)Z)]
to 9((Q/R)),

B 2 B 2 B,2 B 2 B 2

p-p =-—--% 2 — - L} 20(a) 22 (27)
(@] 2UO

In deriving (26) and (27) I have made use of the following definitions

2m
- 1 @
g = TaZ f f g(p,w)pdwdp = average value of any
o o0 dynamical quantity g
over volume of plasma
p_ = kinetic pressure at p = a, usually set equal to zero in most

analysis.
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For example,

2
Bi
Eﬁ“ = average toroidal magnetic field internal to plasma
o ————
. . 2 . , .
so quite obviously Be - Bi is a measure of the diamagnetic (or paramagnetic)

effects in the plasma.

Subtracting (27) from (26) produces the minor radius pressure

balance —_—

p+—— =p +-° 42 | (28)
(o] o]

= _ -, 2
This equation may be rewritten in a handier form by using BP = 2uop/Ba =

Beta Poloidal, (28) becomes

. B 2 - B,2
R =1+ 21 (taking p = 0) (29)
p B 2 a
a
ép > 1 = Be2 > Bi2 ==> Net diamagnetic Jw currents in plasma
E < 1 = Be2 < Bi ==> Net paramagnetic Jw currents in plasma.
p

Adding (26) and (27) produces an equation for A(a), remembering that in
A(a) onehas the first order contributions to Bw from both the plasma

current J, and any needed external fields.

¢
2u (@ -p) 1,

A(a) = ——0—2—‘3— + *EJ:' -1 (30)

B

a
where ? 2? - -

2 1 2 internal self-
1 = 5y _ma’ o o [Bw(p,w)] pdwdp = AT inductance of

i~ .2 B 2 u plasma per unit
Ba a © length of torus

(31)
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Thus, the internal self inductance of the entire plasma is

L, = 27R —%-1, = —%—-1, (32)

It is through li that the current distribution inside the plasma enters
the equilibrium calculation. This I note is true only for
(a/R) << 1 type of expansion.
As one knows for J¢ = constant across circular conductor
for a/R << 1 one has li = 1/2 [easily computed from (31)] and thus
Li = uoR/4 which agrees with the texts [Smythe, Chap. 8, p. 340]. One

does not as yet know, and cannot in fact find out from the type of

analysis so far used, how much of

= a
Bw = Ba(l + R A(a)cosw)

is due to the plasma and how much is due to external maintaining

field i.e. vertical equilibrium field (B,). We shall determine

the value of B, from a slightly different analysis and as such

will find it to be m-% B_. This I will do in a moment, first let

me digress briefly and discuss what is meant by magnetic surfaces

or "y surfaces" as they are called, and for that matter how one might
try to define exactly how to denote the "edge" of the plasma p=a.

To do this, one must remember that the essence of what I am doing rests
upon there being a region of low electrical conductivity between the
plasma and the wall in which the current density J¢ may be taken to

be zero. If this region exists then one can give a more physical (but

not necessarily unique) meaning to the words "plasma surface" ,
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"plasma boundary," or "plasma radius" in the case of a circular
cross sectioned plasma. My forcing the cross section to be circular
will be reflected in the requirement that the external vertical maintaining
field which is used to balance the three expansion terms discussed
earlier to be exactly vertical (BZ only) to 1lst order in a/R. One
might think that we are putting the cart before the horse in dictating
plasma shape but the philosophy for doing this is as follows. One
can follow one of two options, [Ref. 3]
Option 1: If one specifies the geometric configuration of
the plasma than solving the set of equations
(1) - (3) will dictate the required fields and,
therefore, currents at infinity (or at external
conductors).
Option 2: If one specifies the fields (or currents) at boundaries
(or external coils) then the shape of the plasma
becomes determined, at least formally, by solving
equations (1) - (3).
In practice, it is obviously more convenient to use Option 1 and
assume the cross section of the pinch in the r—z plane while using
the coordinate system most convenient for the solution of the problem.
To solve the system of equations (1) - (3) for equilibria one finds
it convenient to exploit the axisymmetry of the magnetic field
configuration* and in so doing I will describe what is meant by

Y and Y surfaces.

#0One must depend heavily on axisymmetry to obtain mathematically exact
equilibria, for discussion of fine points see H. Grad. Ref. 6.
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D. Determining an Equation for ¥

Consider the equilibrium equations

> >
Vp =J x B
VxB=ud
X B = uo
+
V+*B=0

Using the geometrical properties of the quasi-toroidal coordinates

we have been using [Appendix A] I note that

B e + B2 = poloidal field
P PP wWW

=~}
It

e 1 ) ) ~
=V x A= S (Rtpoosa) [56-(0Aw) ol (R + pcosw)A¢)]ep
1 0 9 "
+ Rfpoose Egg ((R + pcosw)A¢) - 5$-Ap]ew (33)
and I shall choose A = Am = 0 as the most convenient mathematical

formulation. Thus remembering r = R + pcosw

_l1oa

B =T T g5 (xAD) (34)
and

_1 9

Bw =7 ap(rAd)). (35)

Let me now define V.
P(r,z) = 2mr A¢(r,z) = P(p,w) = 27T A¢(p,w) ) (36)
r N 2r r
where one notes that f A rdd = f (VA ) * ds = f f B rd¢dr
L o ¢ o o0 z

which is the flux of magnetic field through a disk of radius r. Thus,

Y(r,z) has been "normalized" to have the physical property of being the
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"poloidal" flux through this disk which is parallel to the x-y

plane a height z above it and has radius r. This is not a unique

definition of Y however.

y
S This surface may be labeled
- = g with a special ¥ value for
Sy = S e = <> ~ ¥ = constant on this surface.
- ~ RS
N < ~ Y S z
\\ N J_
~. \\\\ \\ ) ~ o y
X S surface s
One has
R S O S )
0 2mr p ow 1 Tw  27r ¥p (37)
and thus Ep in vector notation becomes
N
§=vx(‘l’)=wxe¢ (38)
P 2mr 2mr
where one gets V °* BP =V (Vx CE%;)) = 0. From (38) I shall note

the property of Y I am interested in using. i.e.
W x @
(

, Oy o s e
p Fre ) * V¢ = 0 identically.

oy

<t

<
i

This statement implies that if I followed g poloidal field lines and

looked at how { changes along any of these lines, it would not!
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>
Bp * Vi = 0 => 1 = constant along ﬁé lines. (39)

This is just the requirement for a "streamline" in fluid mechanics.
¢ sufaces therefore contain lines of Ef' How may I incorporate the
toroidal field into this formalism? Well, the best way is to use
the axisymmetry property that %$‘= 0. Thus,

Byey © W = By %—%% =0
because by supposition Y # £(¢).

Thus

BV = (B¥%¢ + E?) SV =0 (40)

and so in general, if T follow §§z~§ field line around in a tokamak

it will lie on some specific surface of constant Y. Different values

of Y obviously have different field lines on their surfaces. This

is a property which requires exact axisymmetry, thus any asymmetric effects
must be handled in some other manner than the one I shall follow here.

This may indeed limit the "practical" application of this formalism

to real plasma devices which have as part of their construction some

> >
asymmetric perturbations.) Going back to the equation Vp = J x B one sees

that

B -Vp=8B-JxB)=0 (41)
and

FTovwp=3-GxB =0 (42)

so that E * Vp = E + V¢ = 0 and so one may take

P =p() (43)
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Again this is a direct consequence of axisymmetry. One may argue

FaS
this point even more strongly by taking the e, component of the

¢

equilibrium equation, and impose axisymmetry on p first and not say

anything about Y. Doing this one has

13
— == = - B
26 0 Jpr Jp " (44)
using

I U 1

o) 2Tr p ow °’ w  2Tr 9p
and Maxwell's equation
1l .93
oy = 7 GGl
110
Hodo = 7T 0 B0 (rBo)

one obtains from (44) the equation

113y 113 13y _
(p T ap( B9)) (- 2mr o} Bw) - por o0 ow (r B¢))(2nr Bp) 0
or
d 13y _13 Y _
35 (B 53 T o aw Byhge = O (45)

But the left hand side of (45) is merely the Jacobian of the transformation

from [{rB,,{] space to [p,w] space and since it is zero this implies that

¢

rB¢ and Y are not linearly independent. Thus, rB¢ = £(@). If this
f(y) = constant then one recovers the vacuum'% toroidal field. Since
axisymmetry lets E be a function of Y and equilibrium force balance
[equation (1)] says % is a function of p, one can formally solve

E(w) = g(p) from p = p(¥) or if we wished ¢ = Y(p). I shall use the

.+
former. We have a specific form for functionally how BP varies with ¢

equation (38). We now need one for B,.

¢
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Since p = p(Y) and according to equation (42) 3 = j(p) one has
> > -> >
that J = J(p(yp)) = J@) i.e. J lines also lie on surfaces of constant

Y. See Figure 9 below

/

—>— = B lines ‘i%

— >— = 7 lines %’ L
;” X

¥ = constant surface

Define I(Y) to be an integral over the same surface as in Figure 8

1) = [ Jds , 4
S

Now from Maxwell's equation one has

2 (mo)

u u
[ d@B,) = -é-% f J_2mrdr = 2—7‘; I(P)

¢
~
B = uol(w) (46) and repeating %’ - W x e@
o) 27r B P 2nr

P

Using (46) and (38) for B andaﬁ; one can find an equation which one

¢

must solve to find Y(r,z) (or w(b,w) if you prefer).
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E. Finding Equation for ¥

Using circular cylindrical coordinates one notes that

v x (B¢e¢) 2m r 0Z er r 9z gz

I
|
m
|
|
+
|
|
o

H . R
o dI _a_k_[)_ é + ali)

T o2mr Ei‘[— 9z °r | or z

however we have shown that

- VY x e¢ 1 3 A 3
B = = [-5Fe +=e ]
P 2mr 2Tt zZ T T
therefore
~ dT
Vx (B,e)=uB —
(BpSp) = HoPp 4
-> j % > -
A .
+ = =
V x (Bge, Bp) pd =5z B+ J]
> > ?ﬁ i “
T3> V7 T %
ZUO[ —Ej'B + }Bé -y +
P ¢ p
where I have made use of

- -+ > > 2> +> > >

BxVp=Bx (J xB) =BJ - (J-B)B

- 3-+ E \% > >

J = ~—§- B+~ =7 +7,

(47)
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Using (47) and (48) one has

B ox W B2 xW)
b L4 yxB -pfob+ | Bms 2O (0 (49)
°p LG V32 + 8 B+ B2 [

(P ¢ P 9

Using the following identities

o>

dr _ . d1 vy * %

uo P dw o dy . 27r

V¢ x e 2
_ ¢y - _ 1 3%y 9 (1 3P qn
VxB =Vx (57 ) = e 5z T T ar (r Br)]e¢
(4]
2 A
Vp x &,) (V) (B A W)W
= N ) = ¢ _ .
Bp x W 2T x Vi 2T 2mr

A
B |Wle
AL
- 21T
B Vi = -27r B B
e, x = -2Tr
¢ ¢ P ¢
53
equation (49) becomes, with o E-—E—
B
1
dr > 1 0% 13 B P
T RN el 15 8r l")] 8, = o, B+ 2, V|8, - 2mx B R
B

separating into vector components one has

QE-B =Qou B + E—c—’g—'—-(—ZTrr B B,)
ody p P 2 ¢
and
TR TP I TR HoP By
omr ' 9z2 © T Br(r Br)] au B + 2 |VW|
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simplifying these two equations somewhat, using |V¢| = 2Tr Bp
and multiplying the first equation by B¢ one has
2
dr s UO(Zﬂr)B dp _ . (3 . E)
¢ dw B? dy o ¢ B2

and

1 5% 5 1 d - ) Mo ZﬂrB; dp

e T Gl T e T BT T W
adding these two equations one has

3%y 3 1 3y 2 dp

+ — = -
Gz ¥ Ty Gl = MM gy T H, 2T By dw

d
-2t uo[zTrr ai— + Bq) di]

and this is the famous (elliptic) magnetic differential equation which

one must eventually solve to find out the pressure distribution,
current density, etc. inside** the plasma. This equation can be put
into several forms and I shall demonstrate.

_ B IW)

2Tr

_ =0 dL
o dy 2mT ay  4mr  dy

+
*%*One can solve for Y and .'.B outside the plasma also by setting R.H.S.
equal to zero. One could also use the scalar magnetic potential for
outside the plasma.
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or alternately

A, 2 am 2rd .,
S " Peap G B T 2w By

Therefore, one has defining (as do many authors)

_ 3 3 13
MEgr Yy G 0
hwp = —2mr J¢ (51)
- - dp daI
2nr uo [27r v + B¢ v (51a)
u 2
= - dp , "o dI”
27r u [27r au + Grr dU (51b)
e ng
= -2mr [Zwrgg+u—dw] (51c)
Thus one usually tries to solve
AN}=—%WL%[AWM7+E%?] (52)
U 2
= - O dr—
AWW) o S w and C(V) ya dw

after making an appropriate choice of the functional form of P(¥)and
I(Y). Shafranov has done a great deal with setting A(y) = A = constant

P
and C(Y) = C = constant [ref. ] which implies p = —2 4§ and

Y
B R 0
2
I° = 4ﬂ (gEE B ) which implies B o o‘““% vacuum toroidal field.

M ¢ ® T

0 o
This is not then such a bad choice for low B plasmas where there are

negligible plasma diamagnetic effects. After choosing a functional form
for A(Y) and C(y) one attempts to solve for Y(r,z). In most practical

problems one must resort to the use of a computer. The case of a
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circular cross sectioned tokamak plasma can be handled analytically
[ref. 3), however § can only be put into manageable form when

a/R << 1 so one may do an expansion. The result becomes [ref. 3] for
p>a

C

uI
- _ 8R _ o p 8R _ 1
Y = uORIp(ln o 2) + [ 2 (1n > Dp + 5 + Czp]cosw (53)

where Cl’CZ are constants which are determined by boundary conditions.
U = wp + we where we = C2p cosw corresponds to the external field produced
by sources other than the plasma and wp is the flux outside the plasma
due to the plasma currents themselves. Applying the boundary conditions
- A i e a
at 0 = a that B - n,0 and that Bw(a,w)=Bw(a,w)=B 1+ A(a)g cosw) one
a

finds that for p > a

u I 2
- - 8R _ 0P 1,2 N
Y = uORIp(ln 5 2) + > [lna + (A + 2)(l p2)]pcosw (54)

where
b I 8R 1
Y = —Q—E-(ln — + A - Z)pcosw, pcosw = r-R (55)
e 2 a 2
and
uI 2
8R o p 8R a 1
= - - - - + 1 - ==+ =
wp uORIp(ln o 2) + > [ ln:; 1 p2( 2)]pcosw (56)

Therefore, the external field necessary to hold the plasma in equilibrium

is found from

g1 Ve
r 2Tr 9z
Y uI
1 e 0P R 1
= = _...+ —_ —
Bz 2Tr or 4Ty (In 8a A 2) 57

to the lowest order in C%). Note this uniform vertical field has been

derived assuming J, is flowing in the plasma in the -e, direction, so

¢

that it produces a Bw > 0.



—20-

I
B, Bz e (1n o + A 2)
o
a 8R 1
= = _— 4 - — <
Ba 2R (In a A 2) Ba

(58)

2
Therefore, we can see that B; would not show up in a pressure balance

taken only to (a/R) order.

F. Partial Summary

Let me summarize what we have accomplished so far. First, we know the

fields outside the plasma, and on the plasma surface p = a, or at least

we could find them from Y. Let me list what we know and will have

future use for in this paper.

Toroidal field

= - L > P
B¢(p,w) Be(l R cosw) Pp>a R 1

= - P < L«
B¢(p,w) Bi(p)(l R cosw) p<a R 1
Be = toroidal field at p = a, w = /2.

Poloidal field
A
E -V x e
P 21T
1 139
B(D,w)=-’7};5-a%
Mo, valid for all p

I S} ‘

Bw(p’w) T omr  3p ?

For p > a and p/R <<1 one has [assuming A=C=0 in (52)]
V=t

u I
p o= —9—2-(1n 8R + A(a) - l-)pcosw
e 2 a 2
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u I 2
8R o) 8R a 1
= -U RT (In — - 2) + ==B[-10 22+ 1 - 2 (pA(a) + =
ll)p M, p( 5 ) 5 [~1n 5 pz( (a) + 3]

we have not as yet found ¥ for p < a.
External vertical field

a R 1 a

=—B (1 =+ - =) < = <<
B_Lo R a( n 8 a A(a) 2) Ba R 1
Minor Radius Pressure Balance
2 -

— B —B? 2u_ p

B =1+-5 iz 0

P B2 B>

a a
B, on surface of circular plasma column
a a
= + — — <<
Bw(a,w) Ba(l ARcosw) R 1
I
B = o
a 2Ta

Equational form of A(a)

Aa) =B_+171—1

.
B2 \internal self inductance of torus)
-~ w _ 4w } .
1, =— =-—x )per unit length of torus }
i 2 U L J
Ba o]

Equation for ¢

Aep = ~2mru d, (v,2) = -2y [AQ)T + C—(r@]

0
M
= op 32 =_04d ;2

p = p(¥) only for axisymetric equilibrium configurations



~31-

I=1I@W) = ﬁﬂE B¢ = current which produces toroidal field.
0
92 9% 1
% = + - =L .
A 22 V557 T T 5% (not the Laplacian)

G. Finding B from V9§

- -
Before I begin to study how ¥ and therefore p, B, and J varies
inside the plasma, it may do some good to exploit two further points.
First, one could find the fields for p>a by solving V26 = 0 and letting

-
B = VO, this is done in [Ref. 3] and is worth at least quoting.

Bp=-a—p- s Bw=5—&5 (59)
where
=0 w4+ O sinw + & sin20w + . . .
o} 1 2
@O:Baa (60)
= a Lye—a oy Py 0
@l = 3R Baa[(A(a) + 2)( 5 + a) + a(ln " 1]

and @2 will not be needed for our calculations since it appears to
9((a/R)2). Performing the required derivatives ome has for the

p > a fields which obey the correct continuity conditions
2

= a _a a 1 e _ *
Bw(p,w) Ba 5 + Ba 7R [+ p2)(A(a) + 2) + 1n a 1]cosw (61)
and a a2 1 0
= e— —_— —— hud) _ 1 62
Bp(p,w) 2R Ba[(l p2)(A(a) + 2) + 1n a]31nw (( )

*Ref. [4] has an error in this formula for Bw’ formula (3.3), pg. 128

a a
should have H¢(a)r not H¢(a)R.
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It may be the source of some confusion at this point as to why I applied
two boundary conditions at (p=a) the plasma surface and therefore "used
up" my two constants, when I know good and well that I must satisfy

g : S = 0 at the inside wall of the casing (since I have assumed it to be
0 = © also). To answer this let me say that when I asked that the entire
poloidal field Bw which is composed of the field from the plasma current
plus the equilibrium field due to the image currents on the surface of
the perfect conducting wall to be equal to Ba(l + A% cosw) at p=a 1l
have in effect determined where, relative to the center of the casing,
the plasma column must reside in order to fill this prescription on

Bw° What remains is to find this shift Go of the plasma column center

from the center of the casing. This is the next calculation I now

wish to make.

H. Computing Shift §g,

One notes that with just the formulae calculated so far one can
compute the shift of the center of He(p=a) plasma cross section from the
center of the perfectly conducting circular cross-sectioned casing. This
shift* 60 can be computed by using (61) and (62) along with a little

geometry. Consider Figure 10 below, for 60 << b, then

P

A
center of n =normal to wall

casing

d 3,1
| center of p=a plasma
| surface. i.e. origin of
| pw coordinate system.
R —)

*Ref [1] uses A instead of 60.
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the angle o ~ w, and b2 = p2 + 60 + 2p Socosw. To first order in

0
(E—) one has an equation for the wall

p=b -~ cSOcosm (63)

and the unit normal vector to the wall (pointing into casing)

8

a= (1,0, - —bo— sinw). (64)

To determine 60, I shall require that the normal components of the plasma

magnetic field equal zero at the wall i.e. g-g = 0. Keeping only terms
b a 60
that are first order in CE)’ Cﬁ)’ and(ir) one has

(1) S

B n=By(b) - Bg(b) 2 sinw = 0 (65)

where the superscripts explicitly show the order of the component

@ _ o _ a . .
envolved (Bp (62), but Bw Ba b only). Solving for 60 gives
2 2
b b 1 a
= =+ + = - =)} > *
8, = 7% {In St (@) +Ha bz)} >0 (66)

Note I have made no approximations as far as the ratio of a/b is con-
cerned. If, in addition to this perfectly conducting casing there was
also present a uniform vertical field (BL) perpendicular to the z = 0
(meridonal) plane. The effective boundary condition on the wall

(p=b -~ 6Ocosw) then becomes

¢y o] o . _ ,
Bp - Bw 3 sinw = B, sinw (67)

*Ref. [1] has a typographical error here, his formula (6.15), p. 127, has
a Ayand it should be A.
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and thus 50 becomes (explicitly writing in A(a))

2 2 B
b b a - 1i 1 41
= —_ 4 — — - — —_ ——
S, = 3% {1n ot a 2)(Bp + 5 -Ph-b g (68)
b b
I
where Bb = E%E- and B, is considered positive if its direction is the

same as the Bw field on the outer (r>R) side of the torus. Thus,

B, > 0 enhances the flux in this outside space between the plasma while
weakening it once inside of the torus. This, of course, results in a
pushing force on the column towards the center of the casing. This

makes do smaller —— as indeed it should!

I. Validity of 0= casing

I have also said nothing of the time span over which the approximation
of a perfect conducting wall is valid. One can estimate this to be
essentially the skin time (TS) for the field to penetrate the thickness (d)

of the casing which has conductivity Ow. Thus for times

2 _
t << md My Ow = TS (69)

one can assume the wall is a perfect conductor. (For example: d = lcm,
Cu @ 1000°F, Ts = 7 millisec). If t considerably exceeds this time then
the casing does not provide equilibrium. (i.e. the correct B, field at
the plasma surface). In this case equilibrium can be maintained if we
apply an external vertical field of the value derived in formula (58).
The needed field is

B =2-8 (In 8R+E;+}—1—2_—3).

4 2R a a
o

This equation is wvalid for times
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b
>> = =2 = (70)
t 21deuow TL s
R
where T. is an effective L/R time for the casing and to understand the

R

-

basic difference between TS and TL/R let me present the following
qualitative picture which, due to the lack of a good quantitative (yet
simple) example, I cannot defend with rigor. This will be only a short

digression.

J. Field Penetration

With the appropriate combination of Maxwell's equation, and the
. . . # + . . .
constitutive relation of nNJ = E one can derive an equation valid for

+
the propagation of B in a medium of resistivity n, permeability u, and

permitivity t. The equation in vector form is

—+
3y - H3B __ 3%B
Vx (VxB) -~ ot 8“'5;7 = 0 (71)

where the medium is assumed isotropic, homogeneous, linear, and time
independent so that €,l,n are all constants. Identical equations for
+ + . 3 3 I3
E,A, and ¢ may be derived if the change density is zero. In a vacuum
n=o, u=uo, €=€O, and one has the wave equation.

The case of very small resistivity is of interest here, and one
easily notes that the second term of (71) becomes very important. If
the resistivity is zero, as in a perfect conductor then we see the only

solution is

?le,

=0 (72)

>
for any B field that could exist physically inside the perfect conductor.
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This is merely a rephrasing of the point that the flux (f B - dX)
enclosed by a perfect conductor must remain constant. One might then
jusk frankly ask over what time scale may one assume this perfect
conductivity? There are a couple of possible physical parameters
envolved in this determination. First, the plasma frequency (wpe)

-1

1
characteristic of a metal (Fermi Gas) is approximately 10 6sec s

where I have assumed n, ~ 8.5 x 1028 electrons/m3 which corresponds to
copper. (Incidentally, this corresponds to a m.f.p. for an electron

at 300 A assuming T = 300°K, v_ = 1.56 x 108cm/sec). Secondly, the
2
n

f
.. e 13 -1 ;
collision frequency v = E——-Z 4.7 x 10 "sec which corresponds to

...l .
a Tcoll ~ 2 x 10 4sec. Both of these time scales are extremely
short composed to the times of interest in this problem. One may

then ask when is it justified to ignore the third term (displacement

current) in (71).

Consider
a) Vx (Vx g) x -EE
L
HOB  UB
b)naw nT
2
¢ e 3 B 1 B
e 77z ¥ 75 o
ot c TZ
£=L_2__ . £ _De .E_ULZ
2 2 ? - ’ TN T
a cor b T a n T
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c 1 -10

;-<< 1= T> g'x 10 sec = For phenomena whose time variations are
much slower than 10~10 seconds one can
ignore displacement current.

by 1= T= L 20 sec.

a n

C <« 1= >> ~ 10720 i

b = T nt = 10 sec. independent of scale lengths L.

Thus for times longer than 10—‘10 seconds, (say a long microsecond !)
one is justified in ignoring the effects of the third term. I might
point out that by ignoripg-%%%-l have changed my equations from a
hyperbolic to a parabolic partial differential equation. I have not
concerned myself, however with what effects one then might have in
trying to solve a boundary value problem where one wishes to match a
diffusion equation solution to a wave equation (say at a metal vacuum
interface). I personally believe that one would have to keep the
third term if one wished to do this type of solution fitting at a

boundary.

Thus, for the first and second terms to be equivalent, one has

1.2 L2
e 1, where T = Eﬁ—-z TS which is the so called "skin time" for

n T
field (and current) penetration into a conducting medium to a depth
z L. After several skin times, the current has diffused fairly well
through the conductor. One now has (provided there are no gaps in
my casing) a complete circuit around the torus which may be characterized
by some lumped parameters such as L and R. The time scale over which
the entire current I = f Jedk decays in then TL/R % L/R and should in
0

fact represent the smallest (time) eigenvalue to the diffusion equation
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problem solved in its generality for the particular geometry of
interest. [See Landau & Lifshitz, "Electrodynamics of Continuous
Media," Chap. VII p. 188-201]. Thus with reference to the figures
below, one may qualitatively see the effects of field diffusion for

the two time scales, T and T

L/R’
Note: after say 5T one can
begin fo ascribe one L
J(x) vs. t and one R value to
geometry.
J J J J
\
. ; X X X =X
»{dle
|
l
|
2
= Tpd - |
= time for J to e-fold | = characteristic length
down at distance d. of the circuit.

It would be pedagodically beneficial if one could come up with a simple
analytical example to illustrate these two time scales. I have been
unsuccessful in my attempts to do so! With the previous ideas in mind,
then we can return to the problem of containing a toroidal plasma in

a resistive casing with no gaps.

) : > >
K Plasma Shift for TL/R t TS

Since unfortunately most present day experiments last for times

between TS and T one must go to a little more trouble to find 6(t),

L/R

the shift of the (p2a) plasma center from center of casing. To find
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§(t) one must solve the following equation [Ref. 4]

B. (t)
4 _ _ DbI(t) 8R R ST
dr THOB© = 813 = P a4+ @) - A -5 ()
o
2 B (t)
-2— 2B Ry - pa -
L/R a -
o
where
I(t) = plasma (toroidal) current
TL/R = uobd/Zn = (b/21Td)TS
b = radius of containing wall
B e
LO = field computed from (58)
60 = shift for perfect conducting casing, formula (68)
BL(t) = any additional vertical field acting on the plasma loop

at instant t.

B(t), whether programmed from external sources or not can usually be
measured as a function of t as can I(t), Therefore, in principle, one
can find 6(t). The effects of both transverse (poloidal) gaps and
longitudinal (toroidal) gaps can markedly affect 8(t). These effects

will be discussed later.
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L. Computation of Magnetic surfaces inside (p=a) plasma

A consideration of equilibrium conditions would not be complete
without considering the effects of the plasma pressure and current
distritution on the positioning of the magnetic () surfaces in the
plasma. Up to this time I have only delt with fields outside the
plasma and the shift 8y of the 0 = a plasma surface from the center
of the casing. In order to-discuss the shift of the y surfaces inside
the plasma it will be convenient to shift my coordinate system from
that shown in figure #1, where the origin of the (p,0,w) system was
at the center of the (p=a) plasma surface, to the set of coordinates
shown below (Fig. 12) where the origin of the p,0,w coordinate system

is the magnetic axis not the center of the plasma.

R
magnetic
axis
center of
plasma a P
w
center 3o
of cast-
ing b

Figure #12
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R= radius from § of torus to magnetic axis (not to be

confused with R used previously which was from ¢ to
center of p = a surface)

a = radius of plasma surface

§ = shift of center of plasma surface from center of
container
Aa = shift of center of plasma surface from magnetic axis.

(p,8,w) = quasi-toroidal coordinate system whose orgin is
magnetic axis ( Bw=0 at magnetic axis.)

In this coordinate system the equation for a magnetic surface of
circular cross sectional radius po vs given by

p = po - A(po) cosw (74%

Thus the equation of the plasma surface (po = g) is p = a—Aacosw.

One must now compute A(po). Definity Bél)(p,w) to the first order,
8(p/R), toroidal correction to the poloidal field in our coordinate
system, then one can find what the toroidal correction to the azimuthal
field on the magnetic surface (p=po - Acosw) should be.

Call this correction GBw.

NG B8 s pD oy 4 BB |
6B, = B, (p,w) + o= 8p = BT (po,w) + =40 |po p (75
= e = ° = 9__
where Jp = p-po A(po)cosw , Bw(p) = Baa (76
= gV - 4B}
SBw = Bw (po,w) A(po) cosw o

Since, in equilibrium, this PO surface must be held in by fields of
the same form as the (p=a) plasma surface, one knows that on the plasma

surface p = po A(po)cosw

* The next order correction to this formula is p = po - A(po)cosw
Fr S .
Aﬁ(_;ﬁ; ) 51;’/\) 0
Fooen

o
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B (p,0) = B2(p) (L+3 Alp) cosw )

vt B (po) (1 + A(po)cosw) assuming A-<< Q—- (78

and Aoy = Zop(@)=p(p)) ligp) -1
oy 2
(Bw)
_ _ no . no po
Thus dBw = Bw(p,m) Bw(po) Bw(po) R A(po) cosw and

therefore using this equation amd (77 one finds that to 66%)

BV 0, - 3 (p0,u) = [82(00) B2 A(po) + A(po) L Tcosw

3D (0u) = [83(0) B ) + 400 B 1 cos w (79

Equation (79 is one of the factors one wishes to find from a MHD
equilibrium analysis. Continuing now, I wish to find the toroidal
corrections to Y and p in the coordinate system used here. Obviously
on magnetic surfaces ( Y = constant and p = p(y) only => p = constant)

§Y and §p are both zero on the surface. Thus

o= 0= 4 (o) + 9 60 = P ooy + |

=> w(l)(p,w) = __Q_ S§p = A(p) cosw (80
- 18y ooyl O0°
since Bw— 27T Sp then Bw(p) 27R Sp therefore
(1) ~ 0
b7 (p,w) » 2mRB ) (0) A(p)cosw (81

(<]
and &p = 0 = p(l)(p,w) +'%%— Sp. This gives

oD (0,w) = Ap) % cosw (61

It is to be noted, for example, that one needs only the zero order
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pressure and fields to compute the toroidal corrections. The magnetic

surfaces to zero order are not only circular they are also concentric.
2

Thus one can specify (easily) pressure profiles P° = po(l~-§z) and in

the zero order profile the magnetic axis is assumed to coincide with the

center of all the magnetic surfaces, even p = a! Some of this will

become clearer when I work several examples later. In addition to

SORES e 1) W @ L@ (D

one need to know Bp p > Ja o By ey

and eventually A(p). I proceed to find these. Knowledge of y=° +w(l)
(L

allows one to find Bp since

> Y » and p

-1 18 Sy _ - »@D
Bp =21t o ow ’ Sw 0 so that Bp Bp (p,w)
(L
(1) ___1 138y - AP) o .
and Bp (p,w) = TR p ow 5 Bw (p) sin w (83

to order C%), where I have used (81 for w(l). In an analogous manner

to finding B(l) and B(l) I can find J(l) and J(l). = E(W) so
p w p ®
that to 66%), and assuming-% <« £ one has
N S |
I, P = o ——Tsp
81 o
0 o T
Jo P = Fp7 Sp
8J (1)(p w) + dJ° §p = J (po) A(p)cos w
W dp
= 3P 0w = 1320 2 ary°
P> R Ap) + A(p) =] cosu (84
and (l)

? (p,w) = _g_ J (p) sinw (85
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To obtain the corrections to the lonitudinal (toroidal) plasma current

dinsity (J¢) and magnetic field (B, ) one must first write the corrections

¢

over the plasma surface (p = po -Acosw).

Since by equation (19 and (20 one has

By = B,(0) (1 -5 cosw) = BS (p) (1 - ¢ cosw)
one has
cSBd) = Byo,w) - Bq‘)’(p) = - Bd‘)’(p) % cosw . (86

The toroidal correction to J¢ can only be obtained from inspections

the general form of J¢(¢). From (51 and (52 one has

A%y = =21 po Jy = -2mr o [A(Y)T + -C-lfﬂ ]
which implies
3, =AW r+ S8 s - 2 CW) = %%25
adding and subtracting 3—2‘;‘—@— one has
5, - EAW £ 0wy, (oK (87

r

letting r = R +pcosw one has to first order p/R

2
7oy (XA FC @y 0 gy 4 A (1°) (20c08 )

¢ R R
= o - _Q.. g‘_ﬁ 88
J¢ (0 (1 R cosw) + 2 v ( 2pcosw) (
where I have made the identification
3 e =a @) R+ (89

which as one can easily see logically comes from the form of (52.
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Thus using

[}

o 9B (20 cosw) = 21 9B (2p cosw) (-%%i y 1

dy dp
- dpo l,
4T 0 cosw do ( TR Bpr) )
- 2P dp®
R BO(p) dp cosw (90*
W
one has
8T (psw) = T (p,w) = T (p)
= _ £ 3o 2p  dp°
R J¢ (p)cosw + R B;(p) q cosw
-k 2 _dp°(@ _ ;o
R [ B;(p) o J¢ (p) ] cosw (91
Using (86 and (91 one can find that
1 ° e
37000 = 183 (0) 8+ () B3 ] cosu (925

and

(1) _§ o2 4t o 4T3(0)
J¢ (p,w) z [ B;(p) do J¢(p) 15+ Ap) “aﬁ““/; cosw

*Eqn. (90 have corresponds to the equation just above (6.28) in Ref.[l]

and Ref [1l] is in error because it has left out the cosw on the right
hand side.

**Error in (6.29) of Ref. [1]. It has Ap instead of A(p).

(93
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One should note that all toroidal corrections can be expressed in

terms of A(p). I shall show directly that A(p) can be expressed as
an integral over the plasma cross sections of A(p), which is called
the "asymmetry coefficient" of the poloidal (azimuthal) field. To
see this relationship one must return to the basic definition of ﬁ

interms of V.

= zﬂ [ 27R B (p) +-—— (27R B (0) A(p)cosw)]

where I have used (81 for w(l). Expanding-% z 1 —-% cos W one has

to 8(p/R)

(l)(p w) = - B (p)-E cosw + — (B (p) A(p))cosw (94

but equation (79 gives Bél)(p,m) as

(D R sl 4B
Bm (p,w) Bw (p) R A(p)cosw + A(p) a5 cosw (79

Comparing these two equations one sees that

Bw®

_ no E. EE&L_ ° dA
p Bw(p) + A(p) Bw(o) q

B (0) & Aoy + a(p)

2u0(p(p) = p°(p) ), li(p) _

and therefore, for A(p) = 3 2
(B2(p) )
d A P
== = ) +
4o R [A(p) + 1]

P
¢ '
ST A +1] dp'
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and the distance between the centers of the cross sections of any two

Y surfaces of radii a and b is given by

b
A(a,b) -—-j B rae +17ap (96
a

One can even use this formula to give the displacement of the vacuum
surfaces, since A=0 outside the plasma.

To tie all of what I have done together, I shall work completely
two examples, the last of which shall demonstrates the types of

problems one may encounter in choosing p(p) arbitrarily.
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M. Example #1, Assume a (Zero order) pressure distribution and

current density profile.

2

° = po _ b
P Po 1 437) This choice will
make some of the
{; = J_ = constant = I/ma’ math easier.

(across plasma only)

Step 1 Compute 50(0)

P P

5 o) = 5 (oo Pg o

Po(P) =307 P (p) 2mpdp = =7 (1= 2z )2pdp
o

a)2

Lo .
= Po 2z 5 (1-w)du = p [1-1/2() ]

Py

P=pa) =5

p.(0) = 2p [1-1/2()) ]

Step 2 Compute 1i(p)

11 (p) ——25 [B2(p") 1% omp'do’

o 2
[B2(0)]
uT

(p)‘—‘q"‘zp

<P
1i(p) = %W j (0")2 Hmp'dp”

=-% (independent of p)
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1i = 1i(a) = 1i(p) = 1/2 for this special case!
Step 3 Compute A(p) from

2u, (p_(P)=p°(0))

+1§(p) -1
o 2
[B ()]
= P2 = o
Moy = 2uy [ 2 p(-1/29- 2 pa- £ |
a + 1/2 (1/2) -1
do J o?
2ma’
u I
Using B_ = 5-— which is zero order B field for a uniform current at
a 2ma W
plasma surface, one has
2u 2 2 2
-2 2 _ Lot by Oy _ 3
A(p) B:z- oz 2P [1- 172D 1+ 1-3
_ 2Uop 2a2 [_l p2 ] - 3
Ba2 p? 2 a’ 4

and this gives the very simple result¥*

g 3 _
Moy =65 -7 = M@
— - 2u05 uOI
where Bp = Bp(a) =3z > Ba = Zma

Step 4 Compute A(p) from (95

0 p
Mm=$ %@;—%+um'=%ﬁ;+%] p'dp’
° (o]
2 ———
o) =G5 B+ )

* Ref. [1] has error for A(p). p? in derominator of eqn. just above (6.3)
should not be there.
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Step 5 Compute BLO from

-2 g §B 1i-3, _a 8R
?LO = ZR (ln + B + > =) = (ln 3 + B - 1.25)

Using A(p) now one can complete the calculations for the toroidal
corrections. The computations are straight forward and so I shall

state just the result and indicate the formulae used.

1)_=a

B 'E [ (B +'*) -1 ]-Qz cosw Formula
v 79,76
B (o) =B 2 [1+2[2 @& +3) - 1] cos w ] 80
W aa R "2 Yp 4
.15 2
v ow) =8 mp? BT 5 1 G cosw 81
a P
IS
R
wo = 2mR S gs(p')dp' = Wp2B$£)+ wo’ where wo= Y atp = O,
“o
wo = 0 for convenience.
Y =3B WOZ'B [ 1 + £ B +-l ] cosw ]
a a R. p 4
Ho

=7 I T2 MR [ 1+ & B +-—-] cosw ]
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P o.w) = - 2 5% o+ 4] (§)2 cosw 82

NGy -3 & a4+l &2
Bp = Bp (p,w) = Ba 7R [Bp + A ] (a) sinw 83

2

[Ref. [1], has an error for Bp, his formula (6.34) does not have CS) 1
One must now do a little algebraie juggling to proceed further. Going
back to the equilibrium equation

A%y = - 2mr p I = - 2mru_ [AGY)T + Eiif)— 1

¢

One notes from formulae (87,(88, and especially (89 that

o _ o C(@o)
J¢ = A(W°)R + =
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where dn° dp°/d
AQU°) = 21 SB = oy SR 74D
dy dy°®/dp
H u
oy _2_(_1___ oy 2 - 9 _ng_ 2.2 __i ° 2
W) = 7rgg O =7 EOR g5 @)
2
_ o 2T 2.2 d(BS(p)) /dp
4T ‘o d ¢°/dp
and we already have assumed Ja = —Jo = ~ E%T = constant. The minus

o

¢

sign is due to fact I wish to have QS due to the plasma current J

in the + @, direction. Using the formula for dy°/dp, dp°/dp, and

o)
J£ =-ﬂo = - I/ma® one finds
By2
d o 2 4 a o
T B = 5= [Bp- 1]
2 Yy

and using definition B = Eg (a), i.e. By at p=a, w=m/2. One has

2 2

(B2 (p))? B B 2
M) __&e a_ T p
= -2 Bp-1111-%51
2 “o 2“0 2“0 a
and thus
B 5 1/2
° = _ a,?2 - _ b
B =B [1-2GH" Bp-11C1-57) ]

- Ba. 2 — p? Ba, >
~B, (1- (G Bp-1] a=-77)) for (77) << 1

Using this formula for %;(p) one can compute %S(p) from its definition
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2mr B°(p)

o ld 1 d o
w 2mr dp T 27mr dp Uy
;1 dB °
== — to zero order
M, dp
B

dJw® = Ju’(p)
dp p

And now one can proceed to obtain the rest of the toroidal corrections.

Jw(l)(p,ag B on(p)-% ['% [Bp +'% 1-117cosw 84
a Ba pz —— 3 — 1
*Z(i"]'g:) (;‘2‘) Jo Bp - 1] [-E(Bp+z)—l] cos W
[ B

Jw(p,&D = 2 JO'S'gé Bp - 1] [1 +‘% ['% @Gp + %) -1 1 cos w]

(1]

In most present Tokamak reactors Ba/Be ~ 6 (a/R) and so

3, 8¢ (a/R®) 1.

W
2
BV = - By@2 1 1-2 8 @ Ep- U+l 92
2B (o) & if B3 c 8
~ Bq) (0) R if (Be) £ R

L

B¢(p,“0 B;(p) (1—-% cosw) = vacuum toroidal 1/r field.
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J£l)(p,w) = - Jo [ BE.+ E‘%% [Eg-—l] ]-%9 cosw 93
Tp(P0) = =3 [ 1+22 Bp+L222 Bp -1 1} cosw)

Note again minus sign denotes J¢ in - %¢ direction.

Now that I have computed all of the first order (p/R) toroidal
corrections for one model I shall proceed to do the same except with

a more realistic (?) set of pressure and current profiles. I will

only give final results of this calculation, and leave the verification

as 'labor of love" for the interested reader.

Example #2, (UWMAK-1)
2 1)2
P=p (1-29

o
J, = -J = constant
¢ o

In this latter choice I have assumed J ~ T3/2 and due to the divertor

the T profile will be fairly flat.

. — a2 2 3/2
P =P &l 1-(1-5) ]

- _ 2
P:":;PO
. 1 .
1li(p) = 5= 1i(a)
UOI
%u(p) = Ba(é?,p <a , Ba-= e

Summary of Toroidal Corrections  in Example #1.

Assuming P° = PO( 1-

mJtL

) =P = Po/2
o . = 2
J¢ = JO =«]/Ta

one finds . _ 1 5
Po(p) =2 (1-35 &%
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2 —_ 2
B (o) =Bat+Bag ) QG B+ 7] -1) cosw Bo(p,w=,2 B (D)
o, [Bp + Zﬂsinw
By (os) = BS(0) [1-§ (~2 G2 [Bp +71(Bp - 1] cosw]
. 2
BY() = Bell - 2 @3 (@ -11a1 - &) 12

Be = Toroidal field at p= a, w = 7/2

= T° o3 &L

3,0 =300 [1+2 G @+ - 1) cosw ]
° - b Ba =— -

3 =25 Jo 22 [Bp - 1]

Jo = J; = zero order plasma current density

1P 00 = 3,B*G $B (B - 1B + 1 stn

b Ba

- L a3
J(b(p,U))—Jo [I_ZR[BP(l+aBe

_ b Ba
) 7 Be ] cosw ]

p(0,0) =y [1- & A+ FH+d)cosw)

Bl 2 (Bp + T ] ]
Ypow) = —5— p L+ [Bp+7 ] cosw

—m 4 2 3/2 2 2 1/2
Mp) =B [ - -2 ) - Fa -y -3
A(a)=—6_15—% ,?;‘2‘%372
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2 2 2 3/2 - 2
M) =S I B 5-% (1-(1-&) Hf+lo

2R \2p a P

2 2 2

a - 1 — 1
A(a) = IR [ Bp +~5 ] <-§§ [Bp +'Z ] = A(a) for p = po(1l - 27 )

G 2 e 1
A(Smi) = 4(13) EE v13/5 +‘§-] _Z.75 meters.
where I have assumed.gg =<% (Bp) max =-% VR/a .
021/2, . a” 2 3/2

Bil)(p’w)=3a§§€6_1>[3 [1-Q- ) ]+‘52'[l—(l—%2-) 1 -

g L4 p@®
B,(Psw) =B, —+3B " (0,0)
2 2 3/2 2
VP 0w =B ot [ B3 -2 (1-(1-2 ) §+32 12 con
V(o,w) =B mp? T+ v 0,0
. 2 2 3/2 2
P (0,0 = -1232% [Bp g% - %z (1-(1- tgzr) )5 +zl;%z I cos w
2
(1-2) 12
» 1/2
p=py (1-2)  +2Wp,u
- 2 2 3/2 2
B (0w = B, 35 (Bof 5 - 220--® ) ) § + 3 1 sim
Find Bo(p), Jg (p)
21/2 2 1/2

) = e 1-2 &) Bl a-@) +1-%
¢ Be 2 a a

Be = Bg(p= a, W=1/2)
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3 —
2 PP

2
(1- 1;_2_)1/2

o] _Jo p Ba

o
That Jw goes to ® at P = a comes from the unphysical nature of

the pressure distribution p(p) at p= a.

o
NOTE: dp~ _ 1. _2p
o " 37 ) -

—

/1= F v a® - p°

. P (p/a)

—> 0Qatp=20
—> - ® at p=a

[+ o
Since B¢ is finite at p = a, as is J¢ and Ba one must, near the

plasma edge,hold Vp exclusively with JZ)X B} and for B% finite and Vp ~—3 o,

Jz)must of necessity be infinite. Thus this is an unrealistic distri-

bution near the plasma "edge".

JE})(p,uD = unrealistically complicated expression
- o ] dJg
[33(P) 5 Ae)  + Ap) —3%- 1 cosw
o o 3 i 2
where dJ J J pBa = Bp p/a
W~ __(i) + (o] [ 2 ]
dp P 2a Be p2 3/2
1-=2)
but one can deduce limiting properties for Ji as follows:
dJ°
0 . Ba (37
1lim Jw - o0 1lim o Jo o [2 Bp + 2 ]

lim A(p) ~»o => 1lim qi +~ 0 , lim {Sl) >
p~>0 p*0 o0

also therefore perturbation technique breaks down
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B (o) = [ - By () £+ a0y O coqy

w

L4
and l%ga ga%¢ - ® => breakdown is expension procedure.

However one may still look at p = 0 and B(l) should be valid.

¢
dB; Ba, 2 8p -%
B C G az | (1. (B 57 TP ]

a

J (l)(p,w) = Jo [ 1- 3_Bp ]-Q cosWw
¢ 4 ri- oz R

a?

and this too —2» - ® as p > a, as we might have suspected from
J x B=Vp force balance. ( one begins to see this break down in the

expansion for p = 2 vYa/R = 1.2 for UWMAK-1).

. _(-3B o
J¢(p,w) = - Jo [1 (1 n ; : ) R Cosw ]

-3z

(valid for p< 1.2 meters when a = 5 m., R =4l3m., EE-='% VR/a )
I have thus computed the toroidal corrections applicable for a flatter
pressure distribution. During the course of the calculations one
has discovered that due to the infinite pressure gradient at p = a
for p ~ VEE;EESEE_— the expansion procedure (in p/R) breaks down so
that unreliable estimates exist for p > 3R/Bp or so.

There are two further topics of discussion necessary at this
point and they shall be treated in the following where I have assumed

Bi may vary with time. If Qi were a constant then

_ na R 1., . _3B%
8,(t) = 8o + R ( 1n(8 a)+ Ma) =5 (1 %LO) t ome (99
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resistivity of shell (Q-m) (for cu, typically lO_SQ—m)

and n =
y = b/a (typically .8 =.91)
d = thickness of casing
R = radius from £ to center of plasma column.

Effect of poloidal gaps

When one takes into account poloidal (azimuthal) gaps as shown below

in Figure #13 then in addition to Sz(t)

Figure #13

one must account for a contribution due to, if you will, the flux

leaking out of the gaps. This is found to be

3 e 9/2
= b 8R 1., _ Ba 10 nt
Sne * 5-%5 (1n =3 + Aa) - D e (15— 7 ) m. (100.

and must be added to 62(t).

Computation of So, shift of plasma column with respect to casing center.

Ideal conducting casing.
2 2
_b b _a 1
o = R ( 1In 3 + (1 Ez) (A(a) + 2) ) m.

Letting y = a/b one has for ideal casing W/o any external (uniform)

vertical field present that

2 3
50 =-}17—2- g—ﬁ%ln(%;) +(1-9Y (M) +%_)§; m. (96.

1i

where A(a) = EE.+'—E -1,
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If one assumes that inside this perfectly conducting casing

(with no gaps) there is also present a uniform vertical field, BJ?

say, then using (6 one has

I, H

where ol

By

B

Finite conducting of casing.

Including finite conductivity effects, and assuming for simplicity
that the plasma current does not charge much during an expansion
towards the wall one can calculate the total shift of the plasma

62. If BLW = 0 and Qi is switched on at t = 0, one has
T e
- _nb_ 8R -1 _ B.(t)
62(t) So + (1n S + A(a) 2) 5#(1 T ) dt (98.
o g

UoRd N
A derivation of the above equations (99 & 100) will be the topic
of a future paper, but for completeness I wished to include the results

here. In (100 the function ¥ is defined by

_ N
X = T Ia(/n) (101
where N = # of gaps (assumed equally spaced around torus)
2h = gap width

Formula (100 also assumes Qf is not a function of time after t = o
Thus the total shift of the (p=a) plasma column with respect to the
center of a (p=b) circularly cross-sectioned, finite resistivity,

containing shell, with N equally spaced poloidal gaps* is given by
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2 2

S(e) =55 (In 2+ (1- %) (A@@) +D) )

8R

e
b (B @ - D (1-34 ) ¢
J-

UoRd

e
+'"‘E§7 (n 2+ ) - D~ 2@+
.L

(meters)

v’ Eg )y (102.

* I will also discuss the effect of toroidal (or lengitudinal) gaps

in subsequent paper.

For the two examples worked earlier I can compute explicitly &(t),

it becomes; using the following data

= 5m., b

N
=
1l
|
[a¥
i

5.5m, R = 13.0m, Bp = /R/a # Bp, Ip =

21.0 x 106A.

05,1 =5x10°Q -m Cu at 1000°F)

. e ., .
and remembering that I have assumed B, is switched on at t=o and

A

remains a constant from there on out.

Example #1

p = po(1-p%/a?) J° =-Jo = const.

g - L -1 /R _
Bp = 5 Bp = > v 5 = -806

A(a) = .056

3: .418 Tesla, Ba = .84 Tesla
S(b) = .184

+ .871 (1-2.392 BY) t

+ .135N(1-2.392 BS) (1 + 45.0 vVt

S(t) = .184 + .871 + .135 (1 + 45.0 /&£

=> §(t) = .5 at t= 6.68 milliseconds.

meters

meters
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Example #2

1/2 o
P =po(l- p*/a®) , 3.7 = J, = const.
7T _ 2 -2 4R _
Bp = 3 Bp 3 v S = l.27
A(a) = .52
%; = .492 Tesla Ba = .84 Tesla
S(t) = .317

+ 1.026 (1-2.032 BS) t

+ 160N (1-2.032 B;) (L + 45 /t ) meters
For Ef =0, N=1 &(t) = .5m at t = 10 usec.
If Bi had been present prior to t=0 and had the constant value B

(o]

e ©
then B;(t) = By <« AB,°. Usually B,

may be small (%£§L< .1)to cancel out §o shift. This implies that the
A

zero order shift is not So but is 61. If A@i(t) is assumed zero than
the above examples need be corrected only by subtracting from & (t)

the quantity 5 b2B:/Ip(Meg amps).

5b2
—— B, = .184 one only needs
Ip L

For example #1

B, = .0255 Tesla << .42 T = BS

for an Ip = 21.0 Meg amps

e 2]

2
5 -
Example #2 for I B, = .317 one only needs

o0
By = .044 Tesla << 49 T = 31

for Ip = 21.0 Meg amps.

It may be noted however that considerable technological effort must be

[=+]
expelled in order to produce this uniform field B, in the presence of the

conducting walls with their image currents present. A possibility may exist

«©
however for a startup with BL already present in the chamber since it is

<<B°

¢

enough" to prevent breakdown of gas and establishment of Ip. These points

and therefore may not spiral field lines into chamber walls "fast

are treated in more detail in Ref. [2].
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CONCLUSION

It has been the purpose of this report to develop MHD equlibrium
theory for a circular cross sectioned Tokamak. This has been accom-
plished by following an expansion procedure in (p/R) and parallels the
works of V. D. Shafrano¥. These calculations are not meant to be
used as exact formulas for computing the equilibrium fields in as
"non-round" a shaped design as proposed by the Wisconsin Fusion
Design Group (UWMAK-1). It is intended however to fulfill (other than
pedagogical purposes) the need for a set of bench mark calculations on
toroidal corrections and plasma shifts present in any Tokamak.

The complications brought about by an other than uniform main-
taining field and the presence of nulls at the plasma bounary are
not considered. The adjustments necessary to handle the problems
associated with a very thick conducting blanket are also not discussed.
These topics hopefully will be discussed in later papers as MHD

equilibrium theory is sophisticated to meet these needs.
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Appendix A

Quasi-Toroidal Geometry

If (r,¢,z) is the position of a point in circular cylindrical coordi-
nates then the corresponding point is (p,¢,w) in quasi-toroidal

coordinates. The two systems are related by

r = R + 0 cosy
z = 0 singy
¢ =9
o=+ (r—R)2 +zz2]1/2
P /—_—‘—2'—'2—) _ -1 z )
w = sin ((r R) “+z = tan (-—-—-—r_R

Relating to rectangular coordinates one has

i}

X (R + p cosy) cos¢d

y (R + p cosy) sing

z psing

Unit Vectors

~ A . A . A
ep = cosy cosd e + cos w 51n¢ey + sinw e,

e =—sin<1>/e\: + cos¢ €
X y

¢

sy

. S . . -~ A
e = -sinw cosd e - sinw sind e + cosw ‘e
0 x y z
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and conversely

N A . ) .
= w - w -
e, ep cosW cosd ’éw sin cosd e¢ sin¢
A Fal . ” . . A
e ='e cosw sind -‘¢€ sin sind + e, cos
y P e b+ ey cosd
é% =‘e sinw + Q¢ cosw

where obviously":a\p X 2¢ = gw and (p,w,9) defines the triple for a

right handed coordinate system. (Not all authors use this set, some
define’é¢ to be in the opposite direction to this example. Others
define w to be the complement of the w I use i.e. r =R-pcosw. Be careful!)

Derivatives of Unit vectors

&8 5@ Y

—9-=/é cosw 3 —9-=’3 ; -—9_

¢ o Jw 0 ap =0

Y & &
%Q=lé¢sinw—epcosw=/exr ;é—u-)i=0 H 'a‘p—Q=O
A A A

_csfg—_- - wA . E-i@-: _,é . ie—(£= O

5 sin e¢ R o 3 o

Infinitesimals and metric
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(ds)2 = (dp)z + pz(dw)2 + (R + pcosw)z(dqb)2 = gij d xide

= (Rtpcosw) d¢ pdw dp , [J] = (R+pcosw) p
Lo 20} ; /¢
g.. ={ o (Rtpcosw) o "= ¢
1] QZ/ “

o o
Define: h =1 +-% cosw =) r = Rh

Vector Relations

Gradient:

_da 1 3 L 13WA
Vi 30 ep Rh 3¢ e¢ + 5 e

Divergence of Vector:

@
e
(>

-

V*B = —Fﬁ [—"‘ (pRth)+ 36 (DB¢) + (Rth) 1

Curl of Vector

2y =1 |3 9

Laplacian on a scalar

2y - L2 (omdty o 2o (22, Ry 9 |
VU = Gre | ap ( PREG) + 55 ( + 3z G 2w

Equilibrium operator

2%y = W - & (cos w g5 - S B aq) G’ + )
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Appendix B

There is a "Quick and Dirty" method of obtaining the equilibrium

force balance and Shafranov, Ref [1], demonstrates its utility.

Consider the following definitions:

B2
Q = ~—2uo+p) dav
- B B P
=, +0Q; +0Q
where
QzB = energy in poloidal and external "holding" fields
1 2 1 2
2 Doly T Mllhe ¥ 5 hoeloe
Q3B = energy in Toroidal field (includes (dia/para) magnetic
effects in plasma)
1 2 1 2
= = 4+ =
2 Laly +M3lglg + 5 L3I,
L2 = gelf inductance of plasma loop
BR 1i
- 1._._.__ + —
LR (1n S 2 > )
I = current of primary loop (transformer, divertor coils,
2e
control loops, etc.)
L2e self inductance of primary loop.
¥ = M I, = externally produced Flux passing through plane
27 2e _
— (z=0) of plasma loop.
5)rRB 2rrdr for a<<R
oz
v v
= o= 9L2 , _MoR
oR ZﬂRBz(R) > da 0, da  a
N B,” Bez 1. 2 1 2
zuo av ~ 2“0 dv + ZUO dv = E-L313 -+ M3I3I3e +'E L3e13e
@7

)') im:_;;?k T
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where I have assumed that most promounced effects of I3 are inside

->

plasma and .. B = 0 outside plasma. One must analyze role of 13.
i

I3 produces a toroidal (dia or para) magnetic field which is the

difference between the total internal field in the plasma and the

field that would be there (from external sources) if I

5 vere not
present. (Assumes I3e stays constant)
(B. - Be)z l 2
0 dv =5 L313 definition of L3
Plfl&ﬂv
2 (B, - Ee).se
= definiti fM
5 “o dv : M3I3I3e efinition o 3
/tla,:mq, | 9 . 9 g '1‘3*
112, -]ii——dv+ & gy -2}t gy
3733 Zuo 2uo 2uo
/"mwm;b RiSrhe Pias e
E : Be2
= e —_—r = I =
MBIBIBe 2 dv 2 L3 3e " ZUO dv
/*if’»J”n.. 3]:%,:,‘,): [.yiabfﬂt-«
2

since V = 2T Ra

oV _ V. 9V
da 2; > B3R

Qp E‘S V where Qp is assumed to be varied at constant pressure
(bad assumption of doing adiabatic compression)

. 9Qp — 9 -
© 3 p-gg = 2 pV
Ta
3Qp _ = v _ =
3R " PR - PV
R

Now one must know L3 and M3. Shafranov says they are the same?

(R - VR —a2 ) which assumes surface currents
in both cases.

i~
[3%)

=-2 2
=5 - a+ EH =L, @)
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dlo _ 2 og _ 2

da a Lo da a &
Lo _ Lo 98 _ _ 28
oR R R =~ R

3 (1+g) 3
oM
3_2 M (1+2g) . 2 M
da a 3 (1+g) a '3
oL L L
3__.3 (+3g) . _ 73
oR R (1+g) R
My M3 sy . M3
oR R (1+g) R
B
9Q, =l12(_uoR) __2v By
da I2=(const) 2 72 a a 2u
p= (const)
B = -];12-]5.
a 2Ta
3Q, >
3 1.2 2 (1+2g)
= — — + =
da I3=(const) 2 I3 ¢ L3 (1+g) ) I I (
p=(const) B 2 B 2
_ VAN B S - (1+2g)
I3o=(const) a \2u_ " 7n ) (1+g)
(e} (o}
?&gl 2=
] — a P
p=(const)
Fa = forces in minor radius expansion
2 > 2
_3q _2v (B4 . A2 By 'Be+—)
da a 2uo 1+g Zuo P
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2 2
2 BT - B,
Fa =0 =>p = Ba + e211 i §l+2g :)

2uo 1+g \E;

where I have included toroidal corrections through g = (%§)2

+2g ., a2 _ a4
1+g 1 (ZR) (2 )

so to first order (gﬁ) one has Eqn. (28 b§Ck’§
-B

Fr = 3&. = .Y. __Ba_z.. (1n _83 -1 + .1‘}_) + _'Ee i Bz BaR
R - R Hy a 2 P’ Zuo 2Ta Uo
_ a 8RR 3, 1i
= = = = - — _— . = —
Fp=0 B =B, 5% B, {1:1 >t 5+ 'Sp

and we can see that the major radius force balance produces a formula
for B o which is exactly Eqn. (58.

Thus one can arrive at 1) the minor radius pressure balance, and
2) the required value of B o by essentially doing a "circuit"

theory analog at the problem. In fact we have said that at equilibrium

(Fa=0, FR=O) that Q has an extremum. The extremum is a minimum.
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Appendix C
Derivation of Equilibrium an virial equations
Starting with the equilibrium equation in‘égrated over slice as

shown below, are has

% 3 da
F(p + T—) ds = B (B'ds) (c1l
Ho Ho
A e
and e, dsp = e, (R+pcosw) d¢ pdw
2, dsa = e, pdwd
e(b s = e¢ odwdp
~ 8e¢
+ + =t
e(b(d da) = ¢(¢) a(b d¢
= e¢(¢) - erd¢
R =0
r o
A > A A
er~ds =e. epdsp = cosw [(R+ cosw)d¢odw]
B=B 2 +B +B 2
o ¢ PP wow
E-dg =B ds + B,ds (for slice remember)
PP ¢ ¢
B (¢+dd) , (¢+dd) = B (¢) (e.-"e. d)) (B # £1) by axi~symmetry
¢ ¢ ¢ ¢ T st ption)

writing out left hand side of (cl one has

I(p+ ) (e ) ds f(p Eﬁ—epdsp+j “)(A ddv) ds(b

q)(cb)/ S ¢( dﬂ-d ¢>)

doting with e gives

2 : 2
-d¢ 5(1) + E—J—) dsq) + §(P + —B—) /t\a ./é ds (c2
P

g 0
¢
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Taking the right hand side of (Cl gives

«““ /*""”/ 0
,}fggggng;ﬁgiil;tfﬂﬂgﬁn (-B ds ) + §Jf} ...... ) B2
S¢(¢) 0
+}§I:Bg§§¢-e d) + B (@‘ + e coswdA) + ngé —s1nwd¢e¢)] ¢ ¢)
+d
S¢(¢+ ¢) 1o
dot with e gives
t 2
- B
—d¢1! Ii%—- ds¢ (c3
¢
Thus combining (C2 and (C3 one has
2 2 B¢2
B A A
_d¢ 4]’ (p+ 57) dsy + ,ép(P+§ao)e e ds =—d¢ . ﬁ;—ds¢
¢ P ¢
/5'(P +'§ﬁ; er.ep dsp = d¢ /((p + Eﬂ; - u ) ds¢

.
But e . eds = e .ds and thus one arrives at (l4.
r (o] r

2
2 2
B - ______Jz_
(p + 2“0) (R+pcosW) cosw p dw —/f?p + 2U O ) pdp dw Q.E.D.

Virial equation. Biginning with

ﬁii 4 =j: T1Xd8:

_ _ i ik
T = 2 (‘Sk BZ )+ P11 782
> - B2 _ B
4+ P 2u) P1p =P 2u
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one has

Jn B B B, B

P, (S, - )+Pll——-——) av
A S ii B B
B, Bk
=ﬁ P85yX a8, +)((P11 2 k9 (ca
s BB,
The left hand side becomes, (noting aii = 3, 121 = 1)
B

JJﬂ B2 B2
( E’L(?)—l) + Plll) dv =f[2 (P + E}T(;) + P - —ZU_O]dV

B2
=j (3P+_2—U—_) dv (C5
Q

The right hand side of (C4 becomes

2 2 > > > >
’ B, 2 32 _ _____ _ (B.r) (B.ds)
ys ® + 2“0) RIS +§ (P 2“0) 4
' 5 & r)(B ds)
=;§; (p + 2, ) T.ds - § - ™ (c6

T de = (£ A - VA A AN
where r.ds = (rer + zez) . Ggpdsp) = [2R+pcosw) er.ep + psinw ez.e;)dsp
= (Rtpcosw) (Reoswtp) pdwdd

and combining (C5 and (C6 into (C4 one has

j (3p + 2 ) av —f {p+ —-«) T.ds - (B.x)(@.ds)

o

Taking this integral over the entire torus surface one notes that by

> >
definition of the surface being a magnetic surface B.ds = 0.
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Thus one is left with
, 2
’j, 3p +-——~) dv = (p + 2U ) r ds

which is equation (18. Q.E.D.
appendix D

> >
Magnetic fields (Bw Bp) close to circular current loop.

Noting from appendix A that

B = - ——
o pROh Sw (Rh A¢)
1 4§
B = —— —
R h §p (Rh A ¢)
- L
h=1+ R cosw
[¢]

For a current loop, in cylindrical coordinates (Smythe, 3rd Ed.,

chap. 7, p 291)
¢(r z) = J—‘\ [j 1- /k ) K - é]

kzz 4 or » K,E are elliptic integrals.

Rtr)2 + 2

convience I include Br,Bz in terms of elliptic integrals.

B =B cos + B sin

P r w z w
BW = Br 31n(u + B cogﬂ
B = Mol

2
RQ +1’.‘ +Z-]
r -K + E
2mr LjR.+r) + z ]/&'[: (Ro- r) + z2 -.

—

Hol 1 Ro2 - (r2+zz) E

B, = Ton T = K+ 2 .2
[£F°+r)2 N %E] 1/2 (Ry-1)” + Z
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Let r = Ro + pcoswW , Z=p sim , assume%<<1

2 .

kW =1~ (ST)Z, Using the asymptotic forms of K and E
o

— 4
1,0 2 —4
K =1 +7 (== (1 - 1)+ ...
n(>?;;5iiifj) 47 2R, " V(o/2R,)2

4
D 12 e — 1
1+ 1/2 (ZKO) (In JGoTR)2 ™ 3 ) + ...

E(k)

Using these asymptotive expansions gives (k = 1)

uw I

L _o” _ P 8R, _ A
A¢(D,w)— ¢4 2% cosw ) 1n _Ba 1 ( e¢)
one finds then that
rI 8R
_ _ .o p |3 4 o _ .
Bp = _EE Ro [; (1n'—5— 1{] sinw
8R
- _ 7° L =3 _o _
= Bp(p) Ap Ro sinw . Ap =3 (In 5 1)
LI
o - 0
B = =
p(p) —
and UOI v 8R
B = — 1 - L in —2 cosw
W T 2Ro p

Bg(p) Ll - %— Aw cost

o

Aw = 1/2 [1n E;O_]





