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ABSTRACT

The techniques of differential geometry have
been applied to the problem of predicting the
shape of thick twisted coil windings as suc-
cessive turns and layers of turns are applied to
a winding form. The explicit expressions for
the required Christoffel symbols for parallel
surfaces are derived in terms of the starting
surface parameterization. Expressions for
geodesic windings on a particular surface,
called the rectifying developable, and the
family of surfaces parallel to it are derived.
The advantages of the rectifying developable
from the point of view of coil fabrication are
discussed.

INTRODUCTION

For magnet coils wound in a plane, such as
the circular or D-shaped toroidal field coils of
a tokamak, the winding cavity is well approxi-
mated by the envelope of rectangles of constant
dimensions centered on the central filament of
the winding pack and lying in the plane formed
by the in-plane normal to the central filament
and the normal to the winding plane. Various
workers have {incorrectly) generalized the above
idea to the case of twisted coil windings,
taking the winding cavity to be, for example,
the envelope qQf rectangles with sides parallel
to the normal N to the winding surface along the
central filament of the first layer and, top and
bottom_parallel to the binormal vector B = TxN,
where T is the tangent to the central filament.
However, the above envelope does not represent
the true shape taken by the windings as succes-
sive layers are wound. Knowledge of the true
shape of the winding cavity envelope and direc-
tion of the current filaments is necessary for
detailed design of twisted coils and accurate
calculation of the magnetic fields produced by
them, and requires use of differential geometry.
In the present work, the mathematical tools
required for such a description are described.

Two different approaches to the problem of
defining twisted coil windings can be used. The
first is to start with a defining surface (e.g.,
a toroid for modular stellarators) and define a
closed curve on the defining surface in terms of
a relation between two surface parameters. The
closed curve represents either a first or cen-
tral turn in a layer wound on the defining sur-
face., The second approach is not to use the
defining surface as a winding surface, but to
start with a space curve, which may be defined
by the defining surface, or by some other me-
thod, and construct a particular winding sur-
face, called the rectifying developable, from
it. The rectifying developable offers distinct
advantages in coil fabrication, including the
fact that the turns in a layer are geodesics on
it.

In the following discussion, it is assumed
that turns have constant transverse dimensions
and that effects due to deformation of individ-
ual turns can be neglected; the latter approxi-
mation is good for coils with many turns and
conversely for those with few turns.

WINDINGS ON AN ARBITRARY SURFACE

Given a surface with cartesian coordinates
ﬁ(P,q), where p and q are surface parameters,
and a starting curve representing the first turn
in a layer, the problem is to find the family of
geodesic parallels to the starting curve. The
center filaments of successive turns in a layer
are members of this family. 1In a plane, the
solution is to find the normals to the starting
curve at each point along {it; the parallel
curves are the loci of points equidistant from
the starting curve along the normals. The
analogous procedure on a curved surface is to
find at each point along the starting curve the
geodesic orthogonal to the starting curve. The
geodesic parallels are the loci of points that
are a constant arc length away from the starting
curve along the orthogonal geodesics (see Fig.
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Fig. 1. Construction of geodesic parallels on a
curved surface,

Finding the positions of successive turns
in a layer therefore reduces to the problem of
finding the geodesics orthogonal to an arbitrary
curve in a surface. In general, constructing
the orthogonal geodesics requires solution of
the following pair of ordinary differential

equations:l’2
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Here s 1is arc length along the orthogonal
geodesic and the coefficients are Christoffel
symbols, defined by the following equations:
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where the subscripts 1 and 2 on R signify par-
tial differentiation of R by p and g, respec-
tively and V = lﬁl x 2|. The vectors F and

gre derived from the unit surface normal vector
N and first derivatives of the coordinate
vector R as follows: ;

2 (4)

Finally, the unit surface normal vector N is
simply

N = (ﬁl x §2)/v . (5)

From the theory of differential equations, the
solution to the above equations is uniquely
determined for each point on the starting curve
by the starting values and derivatives at each
point. Their solution, 1in general, requires
numerical techniques. The starting derivatives
dp/ds and dq/ds can be easily found from the
defining relation for the starting curve (e.g.,
p = f(q) or ¢(p,q) = 0) and the expression for
arc length:

ds? = (ﬁl dp + ﬁz dq)2 . (6)
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PARALLEL SURFACES

As successive layers are wound on a coil,
the surfaces formed constitute a family of
parallel surfaces, described by the parametric
expression

R*(p,q.0) = R(p,q) + N(p,a)h (9)

where h is the winding depth and is fixed for a
particular layer. In the above expression,
p and g are parameters with some geometrical
definition on the starting surface; their geo-
metrical analogs for the parallel surface are
in general given by complicated expressions.
Parallel turns are found as before by construct-
ing the family of geodesics orthogonal to the
starting curve. The latter curve must be speci-



fied independently for each layer. A reason-
able, but not unique, choice would be to take
the normal projection of the center turn gf the
first layer: 1i.e., rc(so,h) = rc(so) + N(sy)h

for the center of each succeeding layer.

Explicit expressions for the Christoffel
symbols of the parallel surface in terms of the
parametric expression for the starting surface
are found by substituting Eq. (9) in Egs. (3),
(4) and (5). The analogous quantities for the
parallel surface 1in place of those of the
starting surface are denoted by asterisks.

Introducing the definitions L = ﬁ . B
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Finally, the three second partial derivatives
ﬁ*. for the parallel surface are given by the
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DEVELOPABLE SURFACES

A developable surface is a surface that can
be developed (bent without stretching) to a
plane. Developable surfaces are special cases
of ruled surfaces. A ruled surface has the
parametric form

R(s,1) = F_(s) + 1p (s) (15)

where s is arc length along the space curve
ro(s) and p(s) is a unit vector defined at every

point of the space curve. 5(50,1) for a fixed
value of s, is a straight line called a genera-

tor of the surface. A ruled surface is develop-
able if and only if there exists a space curve
to which a1l of the generators are tangent; this
curve is called the edge of regression. An
equivalent analytical definition is that a sur-
face is developable if and only if the total or
Gaussian curvature Ktot is zero, that is

2
- LN - M7 0. (16)

K
ve

tot

For any ruled surface of the form of Eq. (10),
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and Eq. (16) reduces to M = 0 or

Pt (F p) =0 . (17)

In practice, Eq. (17) is more useful than the
previous geometrical definition of a developable
for determining whether or not a particular
parametric form represents a developable
surface.

The angle ¢ between the generators of a
ruled surface and a curve r lying on the surface
is determined by the relation

cos¢= ?'-B . (18)

In the above and following discussions, the
prime symbol indicates differentiation with
respect to arc length s. According to Eq. (17),
if the ruled surface is developable, p' must lie
in the r' - p plane and one has the further
requirement that

sing = #'eq (19)



where q is a unit vector in the ro- p plane
perpendicular to p. Finally, differentiation of
Eq. {18) yields

. TR LS
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From the Frenet-Serret formg1as3 for space
curves, one has the relation r'' = «i where «
is the curyvature and nis the principal normal
tor. If ris a geodesic, by definitiop n must
ge parallel to the surface normal along r and

r'' « p = 0. We therefore have for geodesics on

a developable surface
o' =-p'eg=x [p'] . (20)

Formal integration of Eq. (20) shows that if r
is a geodesic on a developable surface, then any
other geodesic cuts the generators at angles
that differ at most by a constant angle from the
angles at which r cuts the generators. This
follows geometrically from the fact that geo-
desics are straight lines when the surface i
developed to a plane. Geodesics parallel to r
must therefore cut the generators at the same
angles as r.

THE RECTIFYING DEVELOPABLE

A particular developable surface, called
the rectifying developab]e, can be ggnerated
from any smoothly varying space curve ro. The

advantages of using the rectifying developable
for a winding surface have been pointed out by

varigus authors. 4,5 Among them is the fact that
the r and its geodesic parallels are geodesics
on the surface and therefore have no tendency to
slip sideways under tension; continuous clamping
of turns is therefore not required. Another
advantage is the fact that the coil bobbin can
be formed by rolling of plate stock since it is
a developable surface. Finally, flat ribbon-
1ike conductors can be used in order to minimize
bending strains since bending in the “"hard"
direction is not required.

The rectifying developable has the para-
metric form of Eq. (15) with p having the form

o= (21)
P [1+(1)]7

where 7 and x are the torsion Qnd normal curva-
ture, respectively, and t and b the tangent gnd
binormal unit vectors of the space curve ro.

Since the surface is developable (a fact that is
easily shown by use of Eq. (17) and the Frenet-

Serret equations for a space curve), geodesics
become straight lines when the surface is devel-
oped to a p1age In particu1ar. the geodesic
parallels to o (including r itself) are par-

allel straight 11nes on the developed surface
(hence the word rectifying). If the curve r0 is

a closed curve in space (as in coil windings),
the geodesic parallels have equal length., The
latter statement can be verified analytically as
follows. For the rectifying developable, Egs.
(18) and (19) yield the result

cote, = o (22)

where the subscript indicates that the angle
refers to ro and where the symbol o = 1/« has

been introduced. A geodesic parallel to ro(so)
can be written in the form

Flsg) = Fols) + ulsy) pls;) (23)

where the function u(so) is the length along the
generator between Fo(so) and ;(so) (see Fig. 2).

An explicit expression for u can then be ob-
tained by substituting Eq. (23) in Eqs. (18)
and (19) and using Eq. (22). The result is

sin¢°(o)

0 sin¢°(s°) (24)

u{s ) = u = Ll
0 s1n¢°(s°)

where w is the (constant) perpendicular distance
between s and r in  the developed surface.

Substituting Eq. (24) in Eqg. {23), the differen-
tial of arc length ds along r(s ) is found to be

= It = '
ds = [r'| dsy = (1 + wo') ds, . (25)

Since w 1is constant, wc'dso is an exact

differential and when integrated around a closed

curve must yield zero. This completes the

analytic proof that geodesic parallels on the

rectifying developable have equal length when
(s ) is a closed curve in space.

GEODESICS ON THE FAMILY OF SURFACES PARALLEL TO
THE RECTIFYING DEVELOPABLE

An explicit form for the family of surfaces
parallel to the rectifying developable can be
found using Eqs. (9), (15) and (21). The result
is

Ro=F(sg) - n(s,0h + 1p (s,) (26)
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Fig. 2. Parallel geodesics on the rectifying
developable. The surface has been
developed to a plane.

where ﬁo’ the principal normal to the curve Eo
is parallel to the surface normal N along ;o'
This is a consequence of the fact ;o is a

geodesic on the rectifying developable.
Equation (26) has the same form as Eq. (15),
with Fo - ﬁoh substituting for Fo(so). Using
Eq. (17), it can be shown that the surface given

by Eq. (26) is also developable. From Eq. (20),
it then follows that for a given value of L

the angle between a geodesic on the parallel
surface and the generator differs at most by a
constant from the angle between o and the
corresponding generator,

I[f this constant angle is chosen to be

zero, then ¢ = ¢, = cot™! o{s,). Proceeding as

before, one writes an expression analogous to
Eq. (23) for a geodesic on the parallel surface.
(See Fig. 3)

Flsgah) = ¥ = noh +uls ) pls) . (27)

Use of Eqs. (18-21) yields a first order dif-
ferential equation for u(sy):

u 5'ln¢o + ucos¢o¢° = d(usin¢o) = ht. (28)
Equation {28) is integrated to yield

S
__h 0 W
U(So) = E?T% £ t(s)ds + .STW . (29)

The above result (Eq. 29) 1is not physically
correct, however, since in general the integral

'r'o—l"\\oh 'F=?°-?\°h+u(s°)6
\\
.\

U(So) _u'a

Fig. 3. Construction of a geodesic on a surface
parallel to the rectifying developable.
The surface has been developed to a
plane.

of the torsion t around a closed space curve is
not zero; there will be an offset after the turn
has returned to its starting position. This
must be compensated by winding at an angle ¢
that differs by a constant o from $gs Dy Eg.

(20} the curve can still be a geodesic. The
resultant expression for u is

S
.l 0
u= m [sina g (1 + «h)ds
sO

+cosa [ htds +w] .
0

o 1s determined by the condition u(o) = u(L,)
where L, is the length of the curve ;o and is
given by the expression:

Lo
-h [ t(s)ds
tan a = 9
Lo
L+ h [ x(s)ds
o
CONCLUSIONS

The mathematical tools for determining the
growth of twisted coil windings as they are
wound have been described. The resultant de-
scription of the precise shape of the winding



pack is expected to be especially useful in the
detailed design of actual machines, where the
exact shape of the winding cavity must be known,
and in precise calculation of magnetic fields.
A particular winding surface, the rectifying
developable, has desirable properties for coil
fabrication.
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