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SUMMARY

In the manufacture of shell structures of complicated shape, for example,
vacuum vessels for stellerators, considerahble savings in fabrication costs can
be made if the vessels can be fabricated by cutting pieces from sheet or plate
stock, bending them to form three-dimensional developable surfaces, and then
welding the edges of the surfaces together to approximate a general curved
surface. If the sheet stock is thin enough, the bends can be either con-
tinuous or made up of small discrete-angle bends with plane sections between
bends; for thick stock, the bends must be continuous. In the following, both
cases will be treated. Finally, approximation of general curved surfaces by a
patchwork of plane surfaces with curved or straight-line intersections will be

discussed.



Introduction

The differential geometry of curved surfaces was a central theme of the
mathematics of the 18th and 19th centuries and yet is still an area of ongoing
research. The purpose of this work is to apply the mathematical machinery of
differential geometry to the practical problems of manufacture of shell struc-
tures. In the following, established results of differential geometry will be
used without proof and mathematical concepts introduced only as needed; the
reader is referred to the many textbooks(1’2’3) on the subject for background

material.

Continuous Bending of Sheets: Developable Surfaces

The surface which the fabricated structure is intended to approximate
(called hereafter the ideal surface) is assumed to be a collection of smoothly
varying surface regions joined together along curved lines (or in some cases,
points). For example, for a stellerator/torsatron with continuous windings on
a toroid, the vacuum vessel wall is made up of the sides and bottoms of
troughs containing the helical windings and of the undisturbed toroidal
surface connecting the top edges of the troughs. The ideal surfaces in this
case are not necessarily developable (that is, can be formed from a plane
surface by bending without stretching); certainly the toroidal surface between
windings is not. If the ideal surface is not developable, the surface can be
approximated by one or more developable surfaces in the following way. Let
the ideal surface be represented in a three-dimensional rectangular coordinate
system by the vector R (p,q), where p and q are surface parameters (e.g. the
toroidal and poloidal angles for a toroid). The edges of the region to be

approximated are represented by the curves ;1 and FZ’ represented on the



surface by the parametric forms p = a(t), q b(t) and p = c(t), q = d(t),

respectively. A trial intermediate curve p f(t), g = g(t) lying on the
ideal surface between the two boundary curves is then constructed (see Fig.
1). Having chosen the intermediate curve, the next step is to construct the
envelope of tangent planes to the ideal surface along the intermediate curve;
the resultant surface is known to be developable. (It will be shown Tater
that the envelope of tangent planes is just one of a class of developables
associated with the intermediate curve.) The envelope surface contains the
intermediate curve and deviates everywhere else from the intermediate curve,
the deviation being of second order in the distance along the surface from the
curve for small distances. There are no g4 priori restrictions on the inter-
mediate curve; the choice depends on the naturé of the boundary constraints
placed by the designer on the approximate surface. Finally, a parallel sur-
face can be generated from the envelope surface; the parallel surface is also
developable, according to a theorem of differential geometry. The distance of
the parallel surface from the envelope surface can then be adjusted to mini-
mize the boundary deviations according to design constraints. In practice,
the above procedure would be iterated with different choices of the inter-
mediate curve and various parallel displacements of the envelope surface,
until an approximating developable surface meeting the boundary conditions
is found.

The envelope of tangent planes ﬁ* along p = f(t), q = g(t) has the

parametric form of a ruled surface:
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line of constant q

line of constant p

Fig. 1. Approximation of a general surface by the envelope of tangent planes
to the surface along the curve p = f(t), q = g(t). The distance § is
a measure of the deviation of the ideal and approximate surfaces at a
houndary line.



where 7(t) = ﬁ[f(t), g(t)] and p is a unit vector called the unit ruling
vector. The condition that the surface be developable is equivalent to the

condition that the vectors F', 5, and 6' be coplanar; i.e.,

(F' xp)-p' =0, (2)

In the above, the prime symbol indicates differentiation with respect to the
parameter t. In Eq. (1), the space curve r(t) is known as the directriz; the
straight line formed when t is fixed and u is varied is called a ruling or
generator; the surface is thus swept out by the ruling as t is varjed along

F(t); u is the distance along the ruling between a point on the surface and
the directrix F(t). In the case of a developahble surface, the rulings can
(1) intersect at a point (in which case the surface is a conoid), (2) all be
parallel (in which case the surface is a general cylinder), or (3) be tangent

to a space curve. For the envelope of tangent planes along F(t), the unit

vector p is given by the expression

U (e) (3)
)

where ﬁ(t) is the surface normal restricted to r(t). The surface normal is

. R xR
N=——————§1 2 (4)
|1X§2|
where the subscripts refer to partial differentiation with respect to p and q,

respectively. The derivative of the surface normal along r(t) can be written

in the form



ey g (5)

Use of Egs. (3), (4) and (5) yields the following expression for 5(t), the
unit ruling vector:
. (f'M + g'N) R, - (f'L + g'M) R

(1) = 1 2 6
P [(f'M + g'N) R, + (f'L + g'M) §2| (©)

—

N

where M = N » ﬁlZ’ N=N-. §22, and L = N . ﬁll’ and all quantities are to be
evaluated along the curve F(t). The parallel surface derived from the tangent

plane envelope surface has the form

* * ~k
ﬁp(t,u) =R (t,u) + hN (t,u) (7)
*
with R (t,u) being given by Eqs. (1) and (6) and h being the constant distance
*
between the surfaces. However, since R is a developable surface, everywhere
Ak
along a generator, the surface normal N 1is constant and equal to the value at

A% A~
the directrix. That is, N (t,u) = N(t). We can therefore write

~ A

*
ﬁp(t,u) = F(t) + up(t) + hN(t) (8)
with 6(t) being given by Eq. (6) and ﬁ(t) by Eq. (4). It should also be noted
that if the surface in question is a coil winding surface, successive layers
represent parallel surfaces and the last layer of the windings will be devel-
opable if the winding surface is (both sides of the winding pack can also be

developable but the number of turns per layer may not be constant).



For a simple, but illustrative, example of the foregoing procedure, let
the ideal surface be a sphere and the region to be approximated to be the sur-
face between two lines of latitude. If the intermediate curve is chosen to be
a line of latitude between the two bounding latitudes, the resultant develop-
able surface is a cone tangent to the sphere along the intermediate line of
latitude. The entire sphere can bhe approximated by such conical surfaces,
with the optional addition of a cylindrical surface at the equator and
circular plane surfaces at the poles. If, on the other hand, the surface is
initially divided into equal regions by lines of longitude, the developable
surfaces become cylinders and the Tines of intersection ellipses; that is, the
space curves of intersection of the developable surfaces deviate from the
boundary curves by a radial distance which is greatest at the equator and zero
at the poles.

Determination of the deviation vector of the curve of intersection of two
approximating developable surfaces from the boundary curve on the ideal sur-
face requires an explicit expression for their curve of intersection. The
fact that the developable surfaces are ruled surfaces and can be expressed
in the form of Eq. (1) greatly simplifies this task compared to the one of
finding the intersection of two arbitrary surfaces. Denoting the directrix
curves and unit ruling vectors for the two surfaces to be Fl’ 51 and Fz, 52,
and the curve of intersection to be Fl(t), we wish to find the distance uj; for
the intersection of a particular ruling ?l(tl) + uﬁl(tl) of the first surface
with the second surface (see Fig. 2). The ruling of the first surface must
intersect a ruling of the second surface (assuming the surfaces intersect);
call the wunit ruling vector of the second surface 52(t), where t 1is the

unknown to be found for solution of the problem. The intersecting rulings of



Fig. 2. Determination of the curve of intersection F. of two developable
surfaces. The directrix curves for the twohlurfacgs are ry and
Fos the respective unit ruling vectors are p; and pj.



the two surfaces and the difference vector ?Z(t) - Fl(tl) between the corres-

ponding points on the two directrix curves must be coplanar; that is
py(ty) « [(Fp(t) - P (£)) x Bp(t)] = 0. (9)

Since all of the vector functions in it are known, Eq. (9) is of the form

¥(t) = 0 and a point of intersection exists if and only if Eq. (9) has a

solution for the range of t of interest. Assuming such a solution exists

(call it tg), then the problem is reduced to one of plane geometry. With
>

the abbreviated notation ?2 = Fz(tz) and Fl = rl(tl), the angles 61 and 67

in Fig. 2 are given by

€088 =~ (10)
Ity - "1|
and
~ > >
-p, * (r, - 1)
coso, = 2+ 3 L (11)
|"‘2 - rll
The resultant expression for uj; is then
Ty - 7
_ 2 1
up(ty) = ] > (12)
- €0S 6, 1/2
coséy + ( )" “cose,
1 - cos 62



The equation for the curve of intersection is

L)+ up(e) py(t) (13)
with up(t) defined by Eq. (12).

The above curve of fintersection is then to be compared to the corres-
ponding curve of intersections for the ideal surfaces which the developable
surfaces are intended to approximate. The degree of deviation of the lines of
intersection of the developable surfaces from the boundary curves in the ideal
surface is clearly dependent upon the choice of intermediate (directrix)
curves and parallel displacement h. If desired, for example, a developable
surface can be forced through any boundary curve by choosing the boundary
curve itself as the directrix; however, the deviation at other points is then
magnified.

The previously described prescription for constructing a developable
surface which passes through a given space curve (Eqs. (1) and (6)) is
certainly not unique; there is an infinite family of developable surfaces
passing through F(t) which, instead of being tangent to the surface along the
intermediate curve, cut it at some angle. The following section describes a

method of finding such surfaces.

Frame Fields and Construction of a General Developable Surface from a Space

Curve
The rulings of the envelope of tangent planes to a surface R(p,q) along a
curve lie in the tangent planes to the surface at each point along the curve

and intuitively can he thought to represent the lines along which paper can be



folded to approximate the developable surface. The most general developahle
surface containing a space curve is formed from rulings lying in a family of
planes which contain the tangent vector to the curve at each point in the
curve and have an orientation which varies continuously and smoothly along
the curve. These planes may, in general, cut a surface on which the curve is
defined. This provides an extra degree of freedom in fitting a developable
surface to a general bounded curved surface. One well-known example is the
so-called rectifying developable of a space curve,(4) which offers certain
advantages in coil winding. For this curve, the principal normal ﬁ to the
curve (the curve being treated as a space curve) replaces the surface normal

N in Eq. (3). The rulings then lie in the (rectifying) plane formed by the
tangent and binormal vectors of the space curve.

The above ideas can be expressed mathematically by introducing the con-
cept of a coordinate frame field, or translating and rotating trihedral of
mutually orthogonal unit vectors, with origin at successive points along the
curve and with one of the unit vectors always coinciding with the tangent vec-
tor of the curve. For the tangent plane envelope, this frame is the Darboux-
Ribacour frame, defined to be (?, ﬁ, ﬁ), where ? is the tangent to the
curve, ﬁ is the surface normal, and ﬁ = ﬁ X f. When referring curves and
their associated developables to a surface the Darboux-Ribacour frame is the
most natural to use; when reference is made to a space curve independently of
a defining surface, the Frenet frame, composed of the tangent, principal
normal, and binormal unit vectors, is the natural one to use.

When referred to the Darboux-Ribacour frame, the plane in which the
rulings of the general developable lie is defined by a rotation of the T-8

plane about the T axis. That is, the normal § to the new plane is given by
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A A

S =N cos6 + B sineg (14)

where 6 is a continuous, smoothly varying function of the curve parameter t.

The surface will be developable if and only if

V>
>

(15)

w
>

T >
|
m)j(ﬁ)
.

N

(The above condition plus the fact S is perpendicular to T is equivalent to

Al

that of Eq. (2).) In order to find an expression for S , we write

A A

S' = N' cose - N singe' + B sing + B coses' . (16)

Again, differentiation refers to variation of quantities along the curve as

~ A

the curve parameter t is varied. The derivatives of the unit vectors N and B

are given in terms of the Darboux-Ribacour frame field itself by the equations

A -

(- KnT - TgB) S

=
1]

where s is arc length along the curve, Kg the geodesic curvature, K  the

normal curvature, 1, the geodesic torsion of the directrix curve, and s'

g

denotes ds/dt. The geodesic curvature K, is given by the expression

g

11



_ v 13,11 13,22 12 11y 12 4 12 22\ 21
Kg F[f I, - g' g+ (21,7 - ry7) %90 - (2r)° - 15°) f'g

+ flgll - glfll] (18)

where the subscripted I's are Christoffel symbols and V and W are normalization

factors defined as follows:

W= R f' + Ryq'l (19)

Vo= ;ﬁl X ﬁ2| . (20)

The above Christoffel symbols are determined by the ideal surface indepen-

dently of the choice of intermediate curve (but, of course, are to be eval-

uated along the intermediate curve). Introducing the vectors F = ﬁz x N

~

and G = §1 x N, we can write for the Christoffel symbols
it = (R - B rpl = -y, - )
rié = (R, « BN rpf = ~(Ry, + BNV (21)
122 = (R,, « F)/V r5% = -(Ryy + BV

12



The normal curvature K is given by

¢ - LEC o+ aurtgt + Ng'?
2

. (22)

Finally, the geodesic torsion t, is given by the formula

g

_(FL - EM)F'2 + (6L - EN)f'g' + (GM - FN)g'?

9 e

. (23)

Inspection of Egs. (18), (22), and (23) shows that only K_. contains

g
second derivatives of f and g; K, and g contain only first derivatives. This
implies that all curves on R passing through r(t) for fixed t with the same
tangent will have the same K, and Tgs however, only curves with both the same
first and second derivatives will have the same Kg. These considerations can
be given a geometrical interpretation (see Fig. 3). The principal normal 6 to
the curve r(t) lies in the B - N plane as shown. The derivative of T with
respect to arc Tlength is Kﬁ where k is the curvature of r considered as a
space curve. Denoting the angle between ﬁ and 8 by w, we then have for K, and
Kg

K = kcosw
K = xsinw. (24)

The geodesic curvature is thus the curvature of the projection of F onto the
T - B plane. (In the case shown in Fig. 3, Ky is negative and Kg is posi-

tive.) The normal curvature is the curvature of the projection of F onto

13



Fig. 3. Geometrical interpretation of normal and geodesic curvature.
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the T - N plane. The geodesic torsion g is the rate of change of N with
respect to arc Tlength projected onto the B - N plane. With these prelimi-

naries out of the way, Eqs. (16) and (17) yield the following result for B:

(t.s' - 6') T-cos® (Kncose + K sine) s'B + sine (Kncose + Kgsine) s'N

p - L]
[(t.s' - e')2 + (K _cose + K s1‘ne)zs'2]1/2
g n g (25)

Setting 8 = 0 yields a compact expression for the unit ruling vector for
the envelope of tangent planes, derived previously in a more direct way to

give Eq. (6):

R Tg? - Kné
P=T%2 %17 (26)
[Tg+Kn]/

It is easily shown that Egs. (6) and (26) are equivalent.
In summary, then, the construction of a developable surface to fit an
ideal surface bounded by two curves requires the following steps:
1. Selection of an 1intermediate curve for the directrix of the
developable ruled surface.
2. Determination of a function 6(t) for idinput to Eq. (14) which
minimizes the deviations of concern to the designer.
3. Iteration of steps 1 and 2 until a satisfactory surface is found.
It may, of course, be necessary to subdivide the original region into sub-

regions to keep overall deviations within tolerable limits,

15



Flattening a Developable Surface - Continuous Case

Up to this point, developable surfaces have been discussed in their
three-dimensional form. For a fabricator of the surfaces who wants to know
what shapes his flat sheet metal pieces must be to start with and at what
angles they should be bent to form the desired three-dimensional surfaces,
this 1is not enough. Explicit expressions are therefore required for the
shapes, curves, etc. after the isometric transformation which flattens the
developable surface to a plane is performed on the three-dimensional shapes.
This is done in this section in the continuum limit; discrete approximations
to developable surfaces are discussed in a later section.

Angles between intersecting curves and arc lengths along curves are
invariant under an isometry or isometric transformation. Moreover, rulings
are straight lines both in the flattened and unflattened surfaces. Figure 4
shows two points lying an infinitesmal distance apart on the directrix of a
developable surface which has been flattened out to a plane and referenced to
an arbitrary coordinate system. The associated unit ruling vectors are
denoted B and 5 + ds and the angles which the ruling vectors make with the
directrix curve are denoted ¢ and ¢ + do¢. The angles 6 and 6 + dé are the
angles which 6 and 6 + dﬁ, respectively, make with the x axis. Finally, the
infinitesmal angle dy is the angle between 6 and 6 + dB in the flattened
surface. (Rulings do not, in general, intersect in the unflattened surface;
they are tangent to the edge of regression.) However, the angle dy can be
defined for the unflattened surface by transporting the generator at t by the
displacement vector %ds. This is allowable since the surface is developable,
and therefore the component of dﬁ out of the T - 5 plane is of second order.

The angle dy is then the angle in the unflattened surface between the

16
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Fig. 4. Determination of the position and orientation of the directrix curve
and rulings in the developed surface.
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generator at r(t + dt) and the transported generator from r(t). This angle is

just dy = (6 . a) ds = ¢ |6'| ds where a is a unit vector perpendicular to
p in the T - 5 plane. The second equality follows because the surface is

developable (Eq. (2)). Denoting the quantity 6' . a by a, one can write
S
8 =0, +9¢-¢, *[a(s") ds' (27)
0

where 6, and ¢, are the values for the respective angles at an arbitrary
starting point of integration and s the arc length therefrom. We also have
for differentials of distance along the coordinate axes in the flattened

system
dx = cos® ds

dy = sin6 ds .

The angle ¢ is determined by the relation cos¢ = 6 «+ t. We can therefore
express the coordinates of the directrix curve in the flattened system in

terms of integrals as follows:

s S
y =y, +[sine +¢ -4, +[alo) do] ds'
0 0
(28)
S s!
x = x, * [ cos [6, + ¢ - o ¥ [ a(o) do] ds' .
0 0

18



The angle ¢ between the rulings and the directrix curve tangents in the
flattened system is the same as in the unflattened system. Equations (27) and
(28), together with the parametric form for the developable surface (Eq. 2)
and its first derivative, provide all of the mathematical expressions needed
to map a point or curve, including boundaries, from the unflattened surface
onto the flattened surface.

The task remaining, from a manufacturing standpoint, is to describe how
to bend the flat sheets inscribed with the directrix curves into the desired
three-dimensional surfaces. In the continuum 1imit, this requires finding the
normal curvature everywhere on the surface and bending the surface continu-
ously to give this normal curvature.

In a developable surface, the direction of largest normal curvature is in
the direction perpendicular to the rulings, or in the a direction. (In the
following, the directrix curve will be parameterized by arc length s for
simplicity.) In the a direction, the differentials in s and u, the two

surface parameters, are related as follows:
du = - cos¢ ds . (29)

Substituting Eqs. (2) and (29) in Eq. (22), one obtains for the curvature Kn

in the q direction

A . A + A" . -~
K. = K(n2 N) + u(p N% > (30)
sin"¢ + 2uasing + u-a

where G is the principal normal of the directrix curve. Equation (30) can be

further simplified by reducing the second term to a quantity proportional

19



A

to ﬂ » N. The result is

_ K(E . ﬂ)
Ky = sing(sin¢ + ua) ° (31)

Equation (31) for u = 0 can be compared with the first of Eqs. (24). The
normal curvature 1in the a direction is one of the principal curvatures; the
other principal curvature is zero because the surface is developahle. Thus,
Eqs. (24) and (31) for u = 0 are consistent with the Gaussian formula for
normal curvature at an angle ¢ with respect to the second principal direction
of curvature and 90° - ¢ with respect to the first direction of curvature,

since the two directions are orthogonal. That is,
4 2 _ .2
Kn = sin ¢K1 + cos ¢K2 = sin ¢K1 (32)
with

K. = K{n « N) _ xcosw ] (33)
. 2 . 2
sin"¢ sin ¢

Appearance of the quantity ua in the denominator in Eq. (31) for u not equal
to zero expresses the fact that away from the directrix, the infinitesmal
distance between nearby rulings varies with u because the nearby rulings are

inclined at an infinitesmal angle from each other.

Discrete Approximations to a Developable Surface

The previously described continuum description of forming developable

surfaces from flat stock is not entirely satisfactory from a manufacturer's

20



point of view; producing a continuously varying radius of curvature orthogonal
to varying ruling directions is difficult to achieve in practice. Instead,
various discrete approaches to approximating developable surfaces for which
analytic expressions are known (or, at least, for which first and second
derivatives are piecewise continuous) can be used. The simplest is to segment
the surface into plane regions with angle 26 between planes. In fabricating
such a surface, the manufacturer simply produces fixed angle bends along a
series of lines scribed on the flat stock. These lines approximately, but not
exactly, coincide with rulings of the corresponding continuous developable
surface. The procedure for finding the bend lines is as follows.

An arbitrary staring point Fl on the directrix curve of the surface is
chosen. The normal &1 to the surface at F1= F(tl) is determined. Next the
function F(t) = &1 . ﬁ(t) is evaluated along the curve. Let t, be the value
of t for which F(t) = cos26 and the corresponding directrix curve coordinates
and unit ruling vector be denoted FZ’QZ’ respectively. The two surface
normals ﬁ and &2 and the corresponding directrix curve coordinates Fl and FZ
define planes. A point in these planes can be conveniently expressed para-
metrically in terms of the unit ruling vectors 61 and 52 and the in-plane

orthogonal unit vectors 51 and aZ' For the line of intersection, one has
Fo= Fl tupy +vqq = Fz *wp, +xq, . (34)

Equation (34) represents three equations (one for each component of r) in the
four unknowns u, v, w, x and therefore can yield a relation of any one
variable in terms of another. Choosing first v(u) as the desired solution,

one takes the scalar product of NZ with Eq. (34). The scalar products

21
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of N2 with 62 and az vanish and the result is

+ A A ~ A )
or voEmu ot bl (36)
with my = - (p1 . N2)/(q1 . N2) and by = (?2 - ?1) * N, / (ql . NZ)‘ The

analogous solution in terms of the variables w and x of the second plane is

obtained by taking the scalar product of ﬁl with Eq. (34); the result is

X = mow + b2 (37)

Py A

<>

The process can be continued around the closed curve (if it is closed) until
the starting point is reached. If there is a discrepancy in position (as will
almost always be the case), a small adjustment can be made in & to make the
final and initial fold lines coincide.

The straight boundary lines on the sides of the pieces are determined by
the tangent vectors to the boundary curves at their intersections with the

rulings at Fl and FZ' A continuous boundary curve Fb(t) can be written as

F(t) = F & f(t)p(t) . (38)

22



Then the unit tangent vector at Fb(tl) is

T 1 » ~y
£ (tl) ) r (tl) + f (tl) pl + f(tl) p (tl) (39)
b i ] ~ AI °
7' (t)) + £'(t) py + Fty) p'(ty)]
In the frame 51, 51’ gb(tl) can be written
) (cos¢y s'(ty) + £'(t;)) py + (sing; s'(t;) + f(t;)) q
(t) - 1 1 1’7 Py 1 1 1044

[(cos¢1 s'(ty) + f'(tl))z + (sing s'(ty) + f(tl))z]l/z

The corner of the piece is just the intersection of the line ;b(tl) +r €b(t1)
where r is an arbitrary parameter, with the folding Tine v(u) (Eq. (36)). The
remaining corners are found in an analogous way.

The previously described method of approximating a developable surface by
plane segments may not be acceptable, for example, to coil winders because of
the finite angle bends. A better approximation to the continuous developable
surface can be made by use of a combination of portions of circular conical
surfaces and planes. The resultant surface has continuous tangents. A combi-
nation of planes and cones is required because in a general developable sur-
face, nearby rulings do not intersect (as would be the case for a general
conoid). This means that it is impossible, in general, to approximate the
surface with cone segments alone without having discontinuities in the surface
tangents. In general, between successive cone segments, trapezoidal plane
pieces are required to bring the surfaces into tangency. A description of the
specific method of finding these cone segments and flat pieces follows: To

A

start, a pair of points ?1 and Fz on the directrix with ﬁl . N2 = c0S20 are

found and the two planes with normals Nl and N2 are constructed as before.

The first step is to find the parameters of a cone segment of arc angle 26

23



which is tangent to the first plane along the generator through ?1 and which
is also tangent to the second plane. The line of tangency of the cone with
the second plane will not, in general, coincide with the ruling at FZ' The
angle between the generator at ?1 and the fold line is a; = tan'lm1 (see Fig.
5). Denoting the apex angle of the cone by B (the apex angle being defined as

the angle between any ruling of the cone and its axis), one has the relation

My COSO (41)
sing = . 1
(sinze + m12)1/2
The cone radius a at Fl is given by the formula
by
a=—sinB . (42)
™

The line of tangency of the cone with the second plane has the equation
~ ~ + ~
X = b].q]. e q2 - (Fz = rl) hd q2 + b]. COS(al = az)
~ ~ <> > ~ .
+ tan (a1 - az)[w - by gy eyt (r2 - rl) © Pyt b1 s1n(a1 - az)] . (43)

The plane trapezoidal piece required to fill in between cones 1is thus the
region bounded between the line of Eq. (43) and the line x = O,

Determination of boundary curves is more complicated than in the plane
case and requires determination of the intersections of cone segments
approximating adjoining regions of the ideal surface. In practice, the fit

with the cone segments to the continuous developable surface should be so
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Fig. 5. Determination of the 1ine of tangency of cone segments on successive
tangent planes to a developable surface.
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close that orthogonal projection of the boundary line in the continuous sur-
face onto the cone segment surface will be sufficiently accurate for most

fabrication purposes.

Approximation of General Curved Surfaces with Planes

Various approaches to approximating curved surfaces with planes are well
known (e.g. so-called geodesic domes). A general surface can always be
approximated to any degree of accuracy by use of triangular plane elements.
One question of importance from a fabrication standpoint is how many seams
have to be made by welding, etc.: bending along a line 1is cheaper than
cutting and welding. This is related to the question of the curvature of the
surface in a region. In terms of the principal radii of curvature K; and Ko,
a surface is locally categorized as:

1. Elliptic if KyKp > O,

2. Hyperbolic if K{Kp < O,

3. Parabolic if K; = 0 or Ky = 0,

4. Planar if Ky = Kp = 0,

A developable surface is everywhere parabolic or parabolic and/or planar. A
sphere is elliptic. A ruled surface which is not developahle is hyperbolic
(but not all hyperbolic surfaces are ruled surfaces). The non-developable
ruled surface will be the last surface discussed in this section; the question
of the optimum representation of a surface by plane triangles with respect to
the length of seams per unit area is left open; the fact that ruled surfaces
are naturally hyperbolic suggests that they may be best suited to economically

approximate general hyperbolic surfaces.
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A general ruled surface has the parametric form of Eq. (1), but does not
necessarily satisfy Eq. (2). This means that a plane segment approximation of
such a surface requires intersecting fold lines as shown in Fig. 6. In this
case, folds are made at the rulings through Fl’ Fz, etc., but also along
diagonals connecting the boundary points. In practice, a ruled surface of
this type is most easily defined in terms of its boundary curves rather than
Eq. (1).

Assuming the two boundary curves ry(t) and ?r(t) are parameterized with

the same parameter t, a ruled surface can be defined by the form

R(t,u) = F1(t) + U . (44)

Actually, Eq. (44) represents an infinite number of different ruled surfaces
passing through F] and Fr’ depending on the relative parameterizations of the
two curves; the choice of the "best fit" surface is thus a choice of a
parameterization which minimizes deviations. Therefore, Eq. (44) can be

rewritten

s FLe(t)] - 7 (t)
R(t,u) = F (1) +u— S
I+ [o(£)] - 7 ()]

with ¢(t) a function of t which reparameterizes the right-hand curve.
The fold angles coseij are then determined by the scalar product of the

normals Ni and Nj to adjoining triangular plane regions:
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Fig. 6. Approximation of a general ruled surface by triangular elements.
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The normals are readily determined from the boundary position vectors which
define successive planes. Determination of the flattened shape of the plane-

approximated surface is similarly straightforward.

Conclusions

Explicit methods for approximating general curved surfaces with
developable surfaces have been described. Developable surfaces can be
themselves approximated ‘by a collection of plane surfaces connected by
discrete-angle bends, or to greater accuracy, by a collection of segments of
circular cones tangent to trapezoidal plane sections. These approximations
provide practical methods of fabricating such surfaces. The mathematical
formalism necessary to lay out patterns on the flat stock and form the
finished three-dimensional pieces 1is described. Approximation of non-
developable surfaces including elliptic and general ruled surfaces by
triangular plane elements is also discussed.

The detailed implementation of the approximation methods previously
described is problem-dependent and requires extensive development of numerical
codes coupled with graphics software programs of the sort used with large

finite element stress analysis codes.
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