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ABSTRACT

One and two dimensional radiation hydrodynamic simulations of a light
ion fusion target generated microfireball in a stratified gas atmosphere have
been performed. Three scenarios were investigated: the target in nitrogen gas
with a layer of helium above it, the target in helium with a layer of nitrogen
below it, and the target in a sphere of helium surrounded by nitrogen. The
gases were of equal pressure (15 torr). The distance from the target to the gas
interface was varied from 10 to 100 cm. Target micro-explosions of 200, 400,
and 800 MJ were investigated. The intent of these configurations was to
determine if stratified gases (with different opacities) could be used to reduce
the overpressure on the diodes placed at the walls of the target chamber and
also the diagnostic equipment placed below the target explosion. Nonspherical
fireball propagation caused by ”venting” of the fireball once its radiation front
reached the gas interface was investigated. The interface was within the
distance from the target where the fireball shock breaks away from the
radiation diffusion wave.

The configuration with the target in the nitrogen resulted in an overpres-
sure reduction of omnly 20%. The blast wave was formed very early and the
venting process was insufficient to greatly modify its magnitude. The configura-
tions with the target in the helium gas, in either gas layers or spherical
shells, resulted in a reduction of at least 50%. This is because a fireball was
created at the gas interface and was free to expand in either direction.
However, the wall heat flux in the helium gas layer was very high due to the
low X-ray stopping power of helium. A target in a central cell of helium,

surrounded by nitrogen, is the best compromise configuration for both pressure

load and heat flux reduction.
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1. Introduction

The design of a cavity vessel for a light ion beam inertial confinement
fusion (ICF) reactor must consider effects from intense pressure loading on the
cavity walll. This is because most of the target X-ray and ionic debris energy
is absorbed in the cavity gas which is converted to the mechanical and radiant
energy of a blast wave. This blast wave exhibits mechanical shock and
thermal radiation wave behavior. The vessel must both be able to withstand
the high peak overpressure which is experienced from a single event and, since
this is a cyclic process, the effect of cavity wall fatigue. Therefore, there is
an important advantage to reducing the mechanical impulse on the cavity wall
and several approaches have been suggested 2, The present investigation
explores the possibility of reducing the pressure impulse by wusing multiple
layered cavity gases with different abilities to stop both thermal and X-ray

photons. Strong shock theory 3.4

states that the overpressure is proportional to
the energy behind the shock. Is is hoped that the expanding radiation field
can be directed such that the resulting nonspherical fireball expansion would
decrease the mechanical impulse on the diodes or on diagnostic equipment placed
below the target. Also, the absorption of target generated X-rays can be
controlled by using a non-uniform gas which can be optimized to reduce damage
of the facility. This approach would help avoid excessive structural material
in the instrumentation module that affects the measured X-ray and neutron
spectra.

Figure 1 illustrates the geometry under consideration. The diagnostics
package is depicted by the module beneath the target. The target chamber was
taken as a right circular cylinder for the simulation. This study considered
the cavity gases segregated into the two regions as illustrated; the top region
would contain an optically transparent gas, helium, and the bottom region
contained a gas with a much higher opacity, nitrogen. Three scenarios were
investigated. @Two were with the geometry of fig 1: the target location was
either in the helium or in the nitrogen region. The target in figure 1 is
shown for example in the lower or nitrogen gas region. The last scenario was
to enclose the target in a spherical region of helium which was surrounded by
nitrogen. This configuration is shown in fig. 2.

The hypothesis for the target in the nitrogen region is that once the

radiation front of the expanding fireball has reached the gas interface, "vent-
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ing” of the radiation upward into the He gas would result in a nonspherical
hydrodynamic pressure expansion in the nitrogen gas region and thus reduce
the pressure loading in the radial (diodes) and downward axial (instrumentation)
directionsd. These effects are not unlike an explosion of a depth charge near
the surface of the water; the opacity differences take the role of the density
ratio.

To examine the viability of this approach, a 2-D Eulerian radiation fluid
dynamics computer code was written. A short description and a complete
listing of the code is presented in Appendix A. The diffusion approximation 6
was used for modelling the radiation field, where the radiation is assumed to
act as a fluid with a single well defined temperature. This assumption is valid
for the lower cavity gas but is incorrect for the upper gas, where because of
its low opacity, the photons are not diffusing but are free-streaming.
However, since we were not interested in modelling the behavior of the
fireball in this region, the diffusion model was sufficient to obtain realistic
boundary conditions for the lower gas region. The ramifications of this ap-
proximation will be discussed later. A tabular equation of state was used for

the lower gas7

; the upper gas was modelled as optically transparent.

A different effect was important for the case of the target in the He
region. Since He is mnot truly optically transparent, some of the initial X-ray
energy will be absorbed in He. However, a larger effect is that the X-ray
absorption will be very high in the N, , at the gas interface. Now the
fireball will be free to expand back into the helium as well as into the
nitrogen. Also, the peak energy density in the nitrogen will be reduced,
compared to an explosion in nitrogen, due to the isotropic spreading of the
X-rays before they are absorbed. The pressure impulse on the instrumentation
package and the diodes would then be reduced. This scenario is predicated on
the assumption that plasma channels can be formed in the helium region for
the ion beam to propagate through. We do not intend to investigate this, but
merely assume it.

A 1-D Lagrangian radiation fluid dynamics computer code 8 was used to
simulate this problem. This code has the ability to model radiation, fluid
dynamics, and X-ray deposition in multiple materials. It was used to determine
if a full multidimensional treatment of this situation was warranted; a spheri-

cal coordinate system was used for the present study.



2. Target in N, Region

The present analysis used helium as the transparent gas in region A and
nitrogen as the target cavity gas in region B as shown in fig. 1. The
calculations were done in a cylindrical geometry using 5§ cm square computa-
tional meshes. The radius was taken as 250 cm with a mnoflow right
boundary. The axial “top” and ”"bottom” were modelled as free-flow
boundaries. Typically the region below the target was 250 cm and the He
region 200 cm. This was done to prevent boundary contamination from
phenomena such as artificial shock reflections from affecting the regions of
interest. Figure 3 shows the computational domain for the 100 cm calculation.

The initial cavity gas number density was taken as that which would
have a pressure at 0° C of 15 torr; both gas regions were at the same initial
pressure. The shot energy was either 200 MJ (the standard TDF base case) or
800 MJ (for high yield targets). The present code does not model X-ray
attenuation; therefore, MF-FIRE 8 was used to obtain the initial gas temperature
profile. Figure 4 shows this profile for the 200 MJ case.

The present investigation was not concerned with detailed modelling of
the nitrogen-helium interface. Thus, the computer code considered only a single
species; the helium region was just modelled as a nitrogen gas with negligible
opacity. [Essentially, the helium region served as a pseudo-boundary condition
for the nitrogen region. Only the fireball loading in the nitrogen region, both
radially outward and axially downward from the target, were of interest. The
pure hydrodynamic analogy for this situation is an underwater depth charge
blast near the water surface; when the pressure pulse ’breaks’ the surface, the
explosion energy is directed upward.

21 200 MJ Target Yield

Indicated on Fig 4, the initial temperature profile for the 200 MJ case, is
the region where the shock is “"launched”; that is where the fireball
hydrodynamic speed is greater than the diffusion speed. For the present test
conditions, this value was found to be approximately 130 cm 9. The distance
between the He region and the target was varied in this study; fig. 4 indicates
the three values used: 10, 40, and 100 cm. These were chosen for one to be
inside the initial high energy deposition region, just beyond it, and prior to
launching the shock.



Fig. 3 Typical Computational Domain
(100 cm case)
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2.1.1 100 cm.

The first calculation positioned the interface 100 cm above the target.
This allowed sufficient time for the fireball to develop before it encountered
the He region. Figure S5 shows the development of the fireball from contours
of gas temperature. One can note that the fireball has just begun to interact
with the He at 17 microseconds. Prior to this time, it has essentially under-
gone a spherical expansion in the nitrogen. At about 32 microseconds, the gas
temperature contours have become nonspherical due to the change in gas
properties at the interface; the helium was optically transparent to the radia-
tion while the nitrogen was not. Thus, a radiation enhanced thermal wave
propagated into the mnitrogen but since the radiation free-streamed in the
helium, only a thermal conduction wave propagated in this region. The
nitrogen thermal wave was enhanced due to the tight coupling of the radiation
and gas fields; its propagation speed is dominated by the energy exchange
between these fields. The propagation speed of a thermal conduction wave is
due solely to its thermal conductivity; therefore, on the time scales under
consideration, the thermal wave does not propagate as far into the helium as
into the nitrogen region. Figure 6 illustrates an interesting effect due to the
opacity difference at the interface: the gas temperature in the first helium
zone becomes very high. Compression heating of the helium from the essen-
tially stationary pressure gradient at the interface rapidly increased its
temperature. Since the region was modelled as optically transparent, the gas
could not lose energy by radiating.

Finally figure 7 illustrates the spatial distribution of the radiation tempera-
ture after the fireball has reached the interface. Here we can see that the
radiation field had "burst” into the He gas and the fireball vented energy
"upward” into the cavity. One will note that the radiation temperature is
approximately 2.5 eV at this point. This will be a crucial value in determin-
ing the effectiveness of this pressure reduction scheme.

Figure 8 shows the comparison between the vented 100 cm case and a
single region nitrogen case. Essentially there are only minor differences. This
is due to the relatively low radiation interface temperature when the fireball
reached the He. Since the radiation energy density is proportional to the
fourth power of temperature, the actual energy flux being ”vented” out of the

fireball is comparatively small; the overpressure reduction would be negligible.
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2.1.2 40 cm.

In an effort to increase the interface radiation temperature when the
fireball reached the He region, the separation distance was reduced from
100 cm to 40 cm. Figure 9 shows the gas and radiation temperatures along
the vertical axis for two early times. The target was at 200 cm and the
interface located at 240 cm. Here we see that the interface radiation tempera-
ture was much higher that the 100 cm case when the fireball reaches the
helium. A temperature of 16 eV resulted in approximately 1700 times the
vented energy flux than the 100 cm case. The spatial and temporal behavior
of the fireball was otherwise similar to the 100 cm case.

Figure 10 shows the comparison between the 40 cm vented case and a one
dimensional simulation of a 200 MJ explosion in pure nitrogen. One interesting
point is that the location of the fireball edge, using the point of the maximum
velocity, is the same for both calculations. This will simplify the later
analysis. One can easily see that the vented fireball contains less energy due
to the reduced core gas temperature and velocity. However, the peak velocities
are similar because they are essentially determined from the pressure gradient
at the edge of the fireball, which are also similar for both calculations. It is
speculated that the pressure gradient, or equivalently the temperature gradient
in the diffusion dominated region, is determined by the temperature dependence
of the cavity gas opacity at the thermal front. If true, one would expect the
gradients to be similar irrespective of the venting process, as the present
calculations show.

213 10 cm.

The final calculation for the 200 MJ simulations reduced the distance
between the target and the He region to 10 cm. This was done to determine
the maximum realistic effect of energy venting. Figure 11 shows the gas and
radiation temperatures along the vertical axis during the initial stages of the
fireball evolution. Here, one can easily see the interaction of the He region
with the formation of the fireball. One interesting point is that the radiation
temperature quickly reached a steady value of about 7 eV while the gas
temperature remained somewhat higher, 12 eV; the energy loss by venting was
then balanced at these temperatures by the radiation emission from the gas.
These values are determined by the opacity differences for the temperatures
and number densities of interest. This equilibrium radiation temperature placed

11
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a limit on the vented energy loss. Different gas or fluid conditions might
yield a more favorable equilibrium temperature.

As mentioned earlier, the diffusion approximation was used to model the
radiation transport. This assumption is not valid in the helium region with
the assumption of the optically transparent gas. Figure 13 vividly shows a
consequence of this. The contour plot radiation temperature shows the non-
physical propagation of the radiation wave in the He region. One would
expect little radial diffusion as the radiation energy was transported into the
helium from the interface; it would have the characteristics of a columnar
beam. However, the diffusion approximation with its scalar effective dif-
fusivity predicted large radial spreading. For this simulation, the radiation
energy then reentered the nitrogen region and was subsequently attenuated,
increasing its temperature. This resulted in a diffuse region near the interface
and is illustrated in fig. 12, the perspective plot of the gas temperature. In
this figure, one can contrast the sharp temperature gradient along the
downward axial direction with the gentle slope in the radial direction. This in
entirely an artifact of the computational models used for radiation diffusion.
This effect was only observed for the situations where the target was very
close to the gas interface.

For this reason, comparisons. between the pure nitrogen calculation were
done using the fluid values along the downward axial direction from the target,
that would be unaffected by this interface problem. Figure 13 shows this
comparison. One can observe that although the peak stagnation pressure was
essentially the same for both cases, the core values were noticeably reduced for
the vented case. The same trends are also seem in the plot of total energy
density. However, since the total fireball energy is a volume integral of this
quantity and the majority of the volume of a sphere is in its outer radius, the
differences are not as great as the plots would tend to indicate.

22 _800 MJ Target Yield

Although a target yield of 200 MJ was the design base value for the TDF
cavity, high gain targets will be periodically tested. For this reason, a
stratified cavity gas simulation was performed with a target yield of 800 MJ;
the separation distance was taken as 20 cm. Figure 14 shows the initial gas
temperature profile for the 800 MJ case as calculated by MFFIRES . Its peak

temperature is much higher than that for the 200 MJ case as shown in figure

15



Radiation Temperature (10cm) 0.1e-6s

16.9e-5s

Plasma Temperature (10cm)

Fig. 12 Gas and Radiation Temperatures for the 10 cm vented case.

16



2.50

Stagnation Pressure-10cm 36e-6s

225 - 1

200

176

150

1.00

Pressure {Mpa)
o
9
a

0.50

0.25

0.00

10

50 100 150 200 250
Position (cm)
— He/N2 AN2

Energy Density (10cm) 36e-6s

@
£
L
2
z
5
a
&
Q
&
O T T T T
c 50 100 150 200 250
Position (cm)
— He/N2 AN2
Fig. 13 Comparison between the Stagnation Pressure and Total Energy

Density fro the vented 10 cm and pure N2 cases (target at O cm)

17



3. The MF-FIRE initialization for the 800 MJ case used a finer mesh near the
target center to better resolve this high gradient region. One might expect a
stronger venting effect for this case because of the much higher temperatures.
221 20 cm.

Figure 15 shows the initial axial gas temperature distribution for this
case. The effects of the He region are clearly shown by the sudden drop in
temperature at 220 cm; here, the target location was at 200 cm. This is a
result of the low opacity of helium. Figures 16 and 17 show the axial gas
and radiation temperatures for four simulation times. The target location and
the helium zone for the simulation are indicated. One will note that the gas
temperature remained at a high wvalue for at least 1 microsecond. ‘This is
unlike the 200 MJ cases, shown in fig 11, where the gas temperature rapidly
dropped as the core gas radiated; the gas and radiation temperatures converged
for the 200 MJ yield. Comparison of the gas and radiation temperatures for
the 800 MJ simulation in figures 16 and 17 show that the radiation tempera-
ture did not drastically increase. This is because the 800 MJ target fully
ionized the nitrogen gas; the opacity became very small so the gas and
radiation became weakly coupled.

Figure 16 also shows the expanding thermal fronts, both in the nitrogen
and the helium regions. A thermal wave is evident in the nitrogen, where
thermal radiation from the center of the fireball is absorbed and is re-emitted
from successive layers of gas. This process occurs because of the high opacity
of the nitrogen and is therefore not present in the helium, where the opacity
is very low. Also shown is that the radiation temperature at the helium-
nitrogen interface remained low; thus, fireball energy loss from radiation
"leakage” to the helium region was low. This finding was the same as for
the 200 MJ simulations.

The increased energy deposition of the 800 MJ target over the 200 MJ
simulation resulted in a very different hydrodynamic behavior at the fireball
core. Figures 18 and 19 show the initial and three subsequent axial density
and velocity profiles. The very high gas temperatures resulted in a large
pressure gradient which lead to rapid hydromotion of the gas out of the core.
This is shown by the very low core density in figure 18 and the large, early
time, outward velocities in figure 19. When the core gas temperature was

reduced to a point where the nitrogen opacity became significant, little mass

18
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remained in the core. At this point in time, the gas temperature quickly
dropped, as is shown in fig. 15, which resulted in an adverse pressure
gradient. Therefore the hydromotion in the core was reversed and the core
compressed as mass moved back into it. Figure 18 shows the increased density
in the core at the last plotted time and figure 19, the change in sign of the
velocity front. However, this effect is not important to the overall propaga-
tion of the fireball since only a small amount of mass is involved. The
majority of the fireball’'s mass was located at its perimeter, as shown in
figure 18. The high density helium region located at the gas interface was
due to the same intense pressure gradient as discussed earlier for the 200 MJ
case, that is, the result of a conduction and not radiation driven thermal wave
in the helium region.

Figures 20 and 21 compare the stratified gas and pure nitrogen calculations
where the gas temperature and pressure are shown. The spatial axis has been
modified so that the target is at position 0 cm for both conditions. There are
no significant differences between the two simulations at the edge of the
fireball. The differences in the pressure at the core at 15 microseconds was
that the radiation ’venting’ allowed the flow reversal to occur earlier than for
the pure nitrogen case. Essentially the core gas temperature was reduced
faster through the radiation loss. Figure 22 shows pressure profiles for the
pure nitrogen case. We can see that at 4.22 microseconds the flow reversal

has not occurred, but at 50 microseconds it has.
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3. Target in He Region

A series of one dimensional calculations were performed when the target
was located in the helium region and the instrument package located in the
nitrogen. The initial cavity density was taken as that which would have a
pressure at 02 C of 15 torr, the same as the earlier calculations. Two target
yields were simulated: 400 and 800 MJ. And as before, the distance from the
target to the gas interface was varied to determine spatial effects. The
distance from the target to the ’wall’ was kept a constant for all cases:
300 cm.

MF-FIRE® was used to simulate this series of calculations. This code has
the X-ray deposition model and multi-material capability which were required.
This code is only omne-dimensional; a spherical coordinate system was chosen for
the present investigation. In essence the geometry simulated was one of
concentric spheres: the inner one was composed of helium and the outer
spherical shell was nitrogen. A spherical system was used as opposed to a
cartesian system to account for the 1/r 2 nature of the X-ray deposition.

Recall that figures 1 and 2 show two cavity configurations for the case
where the target is in the helium. From the prior discussion, it is evident
that the present investigation identically models the geometry in fig. 2.
However, the results can still be used to predict the initial pressure and heat
flux loads on the instrument package for the cavity in fig. 1. Since the one
dimensional simulation does not simulate the radiation losses or fluid motion to
the upper region, only the initial wall responses can be used. The long term
pressure impulse and surface heat flux history must be obtained from a full
two dimensional simulation.

3.1 _400 MJ Target Yield

Four calculations were performed with a target yield of 400 MJ: a target-
to-interface distance of 25 and 50 cm and the target in either pure helium or
nitrogen.

Figure 23 shows the initial gas temperatures for the 25 and 50 cm
simulations. The temperatures are of course identical from 0 to 25 cm in the
helium region. The much higher X-ray stopping power of the nitrogen gas
caused the gas temperature in the 25 cm case to be very high at the inter-

face; this effect is also seen for the 50 cm case. The pressure distribution
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would be very similar to the temperature distribution. Thus, a sharp pressure
gradient was created at the gas interface region. The fireball had become
essentially a plane pressure source at the interface and could expand in either
direction: into the helium or the nitrogen. One would thus expect the stagna-
tion pressure on the wall to be reduced by a factor of 2.

Figure 24 shows the stagnation pressure on the wall, located 300 cm from
the explosion, for the four 400 MJ simulations. The peak pressure for the
pure nitrogen case is approximately 3 MPa while the peak pressures for either
target in helium case is only 1.5 MPa; the maximum pressure point for a pure
helium simulation is illustrated for comparison. Essentially the use of two
gases with different opacities and X-ray stopping powers changes the fireball
expansion from having kinetic energy in one direction to having it in two;
the maximum pressures are reduced by 50% simply by momentum and energy
conservation arguments.

The limiting case of target to interface distance, the pure helium simula-
tion, had a maximum pressure of approximately 20% of the pure nitrogen
case. This helium peak pressure would correspond to a target yield of 200 MJ
in a pure nitrogen cavity. The reason for this effect will be described next.

A drawback to using the helium gas, either in conjunction with nitrogen
with the geometry of figure 1 or as a single cavity gas, is the resulting
increase in surface heat flux. This is simply due to the reduced opacity and
X-ray stopping power of the helium. Table 1 shows the maximum surface heat
fluxes for the 400 MJ and 800 MJ simulations. One can note the drastic
reduction in surface heat loading by using an absorbing gas as opposed to a
transparent gas, the helium. Since energy must be conserved, the ratio of
pressure loading to surface heat flux can be varied, depending on the particular
system limitations. The TDF cavity under consideration is an experimental
facility which will explode targets only about 10 times a day; a commercial
reactor is expected to have an operation cycle on the order of a fraction of a
second. Therefore, the heat flux question is much more important for the
reactor, because of wall ablation, than it is for a test facility.

Figure 25 shows velocity profiles for the 25 and 50 cm calculations for
the times where the velocity pulse reached the wall. Several features can be
observed. First, the pulse arrived at the wall at essentially the same time for
both calculations and the peak velocities were also equivalent. The difference
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in the helium region thickness was not enough change the initial wall loading
by the blast wave. Now recall that these calculations were done in a spheri-
cal coordinate system. One will note that the fluid in the 25 cm case has
reflected from the center and was propagating toward the gas interface; the
helium fluid for the 50 cm calculation was still reversing toward the center.
An important finding is that the magnitude of the velocity peak in the helium
for either calculation is much smaller than the peak in the nitrogen; therefore,

wall loading effects from this second pulse would not be important.

TABLE 1

Case Stagnation Pressure Heat Flux
(MPa) (VMIW/ cm? )
200 MJ pure Nitrogen .62
400 MJ pure Nitrogen 3.06 .03
400 M) 85 cm g 1.51 .18
400 MJ 50 cm 1.36 .13
400 MJ pure He .68 5.75
800 MJ pure Nitrogen 6.32 .10
800 MJ 85 cm g 3.19 .72

3.2 800 MJ Target Yield

A simulation with a single separation distance, 25 c¢cm, was performed for
the high yield target case. Figure 26 shows the wall stagnation pressure for
both this case and one for a pure nitrogen cavity gas. Again, as was the
situation for the 400 MJ targets, the peak pressure has been reduced by 50%
with the use of a gas interface region. The maximum surface heat fluxes are
given in Table 1. The heat flux follows the same inverse trend with the

peak pressure as the 400 MJ simulations.
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4. Analysis

41 _Target in N Region

Figure 27 clearly shows the effects of the venting for the 200 MJ
simulations. Here the energy in a pseudo-uniform fireball whose radial profile
is taken as the vented case is scaled to the pure nitrogen case where no
venting occurs. One can see that the 100 cm separation distance resulted in
only a minimal effect while the 10 cm case achieved a reduction of ap-
proximately 20%. Since the radial position of the fireball, determined from the
locations of the peak velocity, is similar for both the vented and non-vented
cases, it is easy to determine the overpressure reduction one would expect.

Strong shock theory 34

states that the peak stagnation pressure is proportional
to the total blast energy and inversely proportional to the radius cubed. Thus
for the same radius, the impulse ratio between the vented and non-vented cases
simply reduces to the ratio of the fireball energies; therefore, figure 27 gives
the pressure reduction directly. An asymptotic value of a 20% pressure
reduction was predicted for the 200 MJ simulations.

Figure 28 shows the temporal interface radiation temperature behavior for
the three 200 MJ cases; it is equivalently the vented energy flux. This figure
helps to interpret the results of the preceding figure. We can see that the
temperatures for the 10 and 40 cm cases are essentially the same. Thus the
differences between the energy ratios in figure 27 were due to the increased
vent area for the 10 cm case. The 100 cm interface was too far from the
target and thus its vented energy density was too low to significantly affect
the fireball evolution.

42 _Target in He Region

A significant reduction in the peak wall pressure was calculated for the
case where the target is in the helium region. This was due to the conver
sion of the spherical fireball pressure expansion to a surface source; conserva-
tion of momentum and energy lead to a 50% reduction in wall pressure
loading. A cavity with a single gas, helium, had an even further stagnation
pressure reduction when compared with the case of a pure nitrogen cavity.
The penalty for this pressure reduction is the increased surface heat flux as
shown in table 1. The use of nitrogen in either a stratified gas mode or as a

single cavity gas drastically reduced the wall heat loading. This is just a
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statement about the conservation of energy.

The reduction in surface heat flux from 25 to the 50 cm case for 400 MJ
target explosions is an interesting result. Recall that a 1-D simulation in
spherical coordinates was used for these simulations. Thus the actual geometry
is a sphere of helium in a larger sphere of nitrogen. The reason for the
reduction in surface heat flux when the helium sphere was increased from 25
to 50 cm was that due to the low opacity of the He, the ion temperature
reached an almost uniform value shortly after X-ray deposition. Now, from
figure 23, it is easy to see that this equilibrium value for the 50 cm case will
be much lower than for the 25 cm case because roughly the same energy is
spread over 8§ times the volume. The lower temperature of the 50 cm case
simply means a lower source term for the surface heat flux; the initial
maximum temperature in the nitrogen region is much lower for the 50 cm
than for the 25 cm case. The net result from both of these effects is a
reduced heat flux loading on the wall
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S. Conclusions

"Venting” the radiation energy from a target explosion in nitrogen to a
helium region, shown in fig. 1, to reduce the surface pressure loading had only
a minor effect for the 200 MJ target yields; the 800 MJ targets had little
effect. The fireball inertia prevents this loss mechanism to be of significant
benefit. The pressure shock is formed at very early times, before any appreci-
able energy loss can occur. The interesting core flow reversal of the 800 MJ
target cases was not seen in the 200 MJ simulations. This could be simply
attributed to the finer zoning used to determine the 800 MJ initial gas tem-
perature profile, the X-ray deposition. The core temperature for the 800 MJ
case was much higher than the 200 MJ one.

The geometries with the target in the helium region lead to a 50% peak
pressure reduction on the instrumentation package due to the conversion of a
spherical expansion to a surface source. However, the surface heat flux for
this case was higher than for the pure nitrogen cavity. Table 1 summarizes
these results for several calculations.

Exploding the target in the helium region will reduce the pressure on the
instrumentation package; unfortunately, the diodes will experience a very high
heat flux if the geometry of figure 1 is used. The use of a central cell of
helium, for example a gas bag as shown in figure 2, might be a compromise
between pressure reduction and wall heat flux loading for a test facility.
Future calculations will investigate increasing the helium region to determine
the minimum nitrogen region required. As the helium region is increased, the
pressure loading will be reduced by simple geometric considerations. The target
X-rays will expand in a spherical nature; thus when they are stopped in the
nitrogen and a surface pressure source created, the energy per unit area will
be lower. The surface heat flux will also be reduced by increasing the volume
of the helium region which will result in a lower mixed-mean temperature as a

radiation source.

33



ACKNOWLEDGEMENTS

This work has been supported by Sandia National Laboratory and USDOE
under contract # DE-AS08-83DP40189.

34



2.

7‘

8.

10.

11.

12.

13.

6. References

Moses, G.A., R.R. Peterson,et al., "Preconceptual Design of the Light Ion
Beam Fusion Target Development Facility”, UWFDM-664, November 1985.

Badger, B., et al, "Light Ion Beam Fusion Target Development Facility
Studies: Progress Report for the Period Oct. 1, 1984 to Sept. 30, 1985”7,
UWFDM-652, 30 September 1985.

Zek’dovich, Y.B., Y.P. Raizer, Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Academic Press, 1966.

Bethe, H.A., et al.,, "Blast Wave”, LA-2000, August 1947.

Moses, G.A., R. Spencer, "Compact-Electron-Beam or Light-Ion-Beam Fusion
Reactor Cavity Design Using Non-Spherical Blast Waves”, Nuclear Fusion,
Vol. 19, No.10 (1979), pp 1386-1388.

Pomraning, G.C.,, "Radiation Hydrodynamics”, LA-UR-82-2625.

Peterson, R.R., G.A. Moses, "MIXERG-An Equation of State and Opacity
Computer Code”, UWFDM-464, March 1982.

Moses, G.A., T.J. McCarville, R.R. Peterson, "Documentation for MF-FIRE,
A Multifrequency Radiative Transfer Version of FIRE”, UWFDM-458,
March 1982.

Uesaka, M., G.A. Moses, "Parametric Survey of Microfireball Calculations
for the Light Ion Fusion Target Development Facility Design”, UWFDM-
533, August 1983.

Cloutman, L.D., C.W. Hirt, N.C. Romero, "SOLA-ICE: A Numerical Solution
Algorithm for Transient Compressible Fluid Flows”, LA-6236, July 1976.

Spitzer, L., Physics of Fully Ionized Gases, Interscience, 1962.

Collatz, L. The Numerical Treatment of Differential Equations, Springer,
1966.

Schlichting, H., Boundary-Laver Theory, McGraw-Hill, 1968.

35



7. Appendix A

71 _GAS2DRFD Overview

GAS2DRFD is a 2-D Eulerian radiation fluid dynamics computer code. It
can simulate problems in spherical (R), cartesian (X-Y), or cylindrical (R-Z)
coordinate systems. The code comprises about 2200 lines of standard Fortran
(about 30% comments). It is written in a simple modular fashion which allows
easy modification. The code is also highly vectorized; although it is a 2-D
code, the arrays are simple vectors. Thus, the typical problem under discussion
would have DO loop indices from 1 to 5000 rather than nested loops of from
1 to 70. This allowed the full vector potential of the Cray computer to be
realized. @ The code will be briefly described here; only special, non-standard
features will be discussed.

The SOLAICE 10 algorithm was used to solve the standard compressible
Navier-Stokes equations. A staggered mesh was used with cell edge velocities.
Essentially, first upwind differencing was wused on the convective terms and
centered differencing on the diffusion terms. The SOLAICE technique is first
order accurate in time. The convective terms vary from explicit to implicit
based on the local pressure change during the time step; a simple point SOR
method was used to iteratively solve the continuity equation and reduced
momentum and energy equations. The fluid diffusion terms and convective
energy transport were then updated in a explicit manner.

6 was used to simulate the

A single temperature diffusion approximation
radiation transport. Local thermodynamic equilibrium was assumed between the
electrons and ions; a single temperature was used for the gas. A three
parameter, both temperatures and fluid density, equation-of-state table was used
to determine the Planck and Rosseland opacities. The coupling coefficients
between the radiation and plasma fields are highly nonlinear; a simple explicit
or Crank-Nicolson scheme for the diffusion terms would be inadequate. An
iterative scheme to update these coefficients was used with an explicit dif-
ferencing scheme to obtain the updated energy densities. A standard flux

limiter model® was used to limit the radiation field propagation speed.
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7.2 _Governing Equations

Let:
-- fluid density

p
u -- fluid velocity along X or R direction
v -- fluid velocity along Y or Z direction
; -- coordinate system controller
0 -- cartesian
1 -- cylindrical
2 -- spherical
Em -- fluid specific internal energy
Ey -- radiation energy density
Tm -- material (gas) temperature
T -- radiation temperature
M -- fluid viscosity
ky -- fluid thermal conductivity
ky, -- effective radiation thermal conductivity

(includes the flux limiter logic found in see ref. 8)

gx» 8y -- body accelerations (e.g. gravity)
¥ -- ratio of fluid specific heats
o, -- radiation absorption coefficient (see ref. 6)
e -- radiation emission coefficient (see ref. 6)
P -- total pressure (material + radiation)
note: - x direction is either X or R depending on?

- viscous dissipation terms,@ , are neglected

in the material energy equation

13

- Stokes Hypothesis used for viscous

momentum terms
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One will note that since GAS2DRFD was based on a Navier-Stokes solver,
the viscous momentum terms have been retained; these terms are not typically
included in a radiation fluid dynamics code. For the problem under considera-
tion, the fluid viscosity,/t, and the fluid thermal conductivity, A, were very
small. The flow was essentially inviscid and the thermal transport dominated
by the absorption and reemission of the radiation and fluid fields.

7.3 _Equation-of-State

The present problem consisted of two different gases: nitrogen and
helium. A three parameter EOS table 7 was used to determine the nitrogen
opacities: both Planck and Rosseland. The gas heat capacity, charge state, and
specific energy density were also obtained from it. A standard Spitzer model 11
was used for the thermal conductivity. The Navier-Stokes gas dynamics code
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was originally written assuming an ideal gas; that is, Yl, the ratio of specific
heats, was held constant. This limitation was removed by simply calculating a
local time dependent Y‘ for each grid point from the EQS tables. The actual
gas behavior was then able to be modelled.

The helium region was treated differently. Since GAS2DRFD was used to
model the case where the target and the diagnostic module were both in the
nitrogen region, the helium region served only as a special boundary condition
for the nitrogen field. Therefore its equation-of-state was greatly simplified.
First, an ideal gas assumption was used: )" was held constant. Next, the
helium was assumed to be optically transparent; the radiation flux propagated

through the gas without being absorbed. Finally, the Spitzer thermal

11

conductivity = was also used for the helium gas.

7.4 _Special Features

The numeric techniques used to solve the hydrodynamic motion and the
radiative transport are quite standard. However, several special features were
incorporated into GAS2DRFD to better simulate the present problem. These
include procedures for the initial conditions, time step control, and special
diffusion stencils for the radiation transport.

74.1 JIon Deposition.

An X-ray deposition model was not included in GAS2DRFD. Therefore, the
following procedure was utilized to obtain the initial energy profile in the
cavity. First, the MFFIRE code 3 was used to determine a 1-D (spherical)
initial X-ray deposition profile with the target in nitrogen. All of the energy
deposition was assumed to be absorbed in the gas; the radiation emergy density
remained at its initial state. No deposition was assumed in the helium region;
it was modelled as optically transparent. After this initial time zero profile
was established, the GAS2DRFD code was used to obtain the temporal solution;
no further X-ray deposition modelling was used.

742 Time Step.

This problem has two vastly different time constants: the hydrodynamic
motion and the energy exchange between the radiation and gas energy fields.
The differences were further amplified by the use of a 2-T radiation transport
model; the resulting highly nonlinear coupling coefficients made the equations
very stiff. Therefore, for computational expediency, two different time steps
were used in GAS2DRFD. The fluid motion was held constant during the
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radiation time step; only the pressure work term was updated. At the end of
a given number of radiation time steps, the hydrodynamic equations were
solved. The radiation time step was typically from 1,000 to 10,000 times
smaller than the hydrodynamic time step; the CFL limit for the radiative field
was approximately 10711 gec (based on the speed of light and a 5 cm mesh).
74.3 Radiation Diffusion Stencil.

A second order centered difference scheme typically uses a 5-point sym-
metric stencil on a finite difference mesh. This creates a diffusion flux bias
in the orthogonal directions (major mesh axes). A cylindrical coordinate system
was used for the problem under consideration; the spherical expansion of the
fireball caused the dominant fluxes to be along the diagonals of the computa-
tional cells. Initial calculations with the S5-pt stencil resulted in a definite
cylindrical bias for the spherical expansion along the major mesh axes. Figure
29a shows a typical result for this stencil; the rectangular bias is clearly
shown. A 9-pt stencil was developed which used the additional four nearest
points, along the cell diagonals. The 8 perimeter points were essentially evenly
weighted (adjusted for different physical lengths). This is unlike the 9-pt
higher ordered methods of Collatz 12 which just increased the number of points
along the major axes; these methods simply more accurately resolved the
cylindrical bias. The new 9-pt stencil greatly reduced this bias and resulted in
a near-spherical expansion. One can compare fig. 29a for the 5-pt stencil and
fig. 29b for the new 9-pt stencil; the improvement is obvious.

An explicit solution scheme was used to advance the solution in time
because it could be fully vectorized. There are mno advantages to implicit
schemes for calculating time accurate solutions. For the present problem, the
numerical, flux limited 8 diffusion propagation speed from an explicit scheme
was more time accurate than either Crank-Nicolson or fully implicit, with an
infinite diffusion speed, methods.

Figure 30 compares the radial velocity and ion temperature for a calcula-
tion performed in both a 1-D spherical and 2-D cylindrical coordinate system.
The difference equations in GAS2DRFD were analytically manipulated to split
them into a cartesian and radial portion; a simple multiplier was then used to
indicate the coordinate system. The comparisons are quite good although the

equations were not in conservative form.
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Fig. 29 Typical Results from 5 and 9-pt
mesh stencils.
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FILE LISTING FOR b:gas2drfd 2-12-86 13:38:36 page -

program gas2d
version 4.9 rfd

this is a special version of gas2d--modified with radiation hydro.
2T approx made (single equation for radiation energy density).

an equation of state package is also integrated into the code.

the plasma ideal gas equation has been modified by using a mesh
varying ratio of specific heats

caution: nine pt diffusion stencil currentiy requires uniform mesh
with aspect ratio of unity

c
c

c

c

c

c

c

c

c

c

c

c special modifications for the 2 gas layer blast problem

c let————— gamma— ratio of specific heats for ’upper’ region

c xkap2— thermal conductivity for 'upper region’

c bvari— left hand boundary efor fit A

c ivar2— location centre of energy deposition

c bvar3— offset for the B fit

c bvar4-~ plasma temperature at centerline (ev)

c bvarS5— epsilon energy for Er diffusion model

[ bvar6— exponential attenuation factor for B (1/c¢m)

c bvar7- exponential attenuation factor for A (1/cm)

c bvar8— right hand boundary of fit A

c dmpcd—~ number of time steps for dump c¢/d

c erl — initial radiation temp for 'upper’ region (ev)
c iloche—j location of the He ‘upper region’

c core — radius of initial energy core (cm)

c delt — overall problem time step (control hydro and output)
c dtrad- lagrangian radiation energy transfer time step only
c note: dt2 << dt1

c weight-weight factor for 9 pt diffusion stencil

c for ’normal’ axes (rotated axes is 1.~weight)
¢ con(23)--relative error in tp (subroutine e2t)

¢ con(24)--relative temp difference in RMFP

¢ con(25)——floor tp in input

c con(26)——floor value for Er (in ev)

c

c

c

c

c

c

c

c

c

c

c

c

assume He to be the 'upper’ gas. Let He be treated as
transparent. (see variable wtmol2)

units——— er J/em3 (radiation density)
X,y cm
P.Pr  Mpa or J/cm3 (output only)
dyne/cm2 (erg/cm3) —— internal use
rho gm/cm3
tp,tr ev
e J/gm (plasma specific energy density)

ctt*#“#t##t#*‘t#lll#‘#*t###*###*“t###*#**it“**‘***##tt*###t***t#*‘**#tt##

this Is a one phase 2-d compressible code for the full navier—stokes
equations (e.g. includes an energy equation)
the present convective transport formulation is first order accurate

O 0 O 0 O O

the solution procedure is sola—ice ref 1a-6236 (1978)

1



56
57
58
59
60
61
62
63
64
€5
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8o
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
1e0
101
102
103
104
105
1e6
107
108
109
110

OOOOOOO0000000000000000000000OOOOOOOOOOOOOO000000000000

modified for variable mesh

pressure iteration modification

vectorized version—-——single vector instead of 2-d matrix

note: k =
k+1 =
k=1 =
k+imx =
k-imx =

i

41, ]
=1, ]
P, j+
i, j=1

imx = length of i subscript (x or r dimension)
jmx = length of j subscript (y or z dimension)

kpta =
kptb
kptc =
kptd =
kpte =
kptf =

recal |——~boundary conditions meshes around physical mesh——imx=imesh+2

note———cdir$
input values:

tinit—init
tend-——prob

(2,2)

(imx=1, jmx—1)
(imx, jregipt)
(imx, jmx)
(tmx, jmx—1)
(imx, jmx-2)

ivdep forces do loop vectorization

fal problem start time
lem end time

iterimt~maximum # pressure iterations
rstrt——0 = no 1 = yes

xmu———~—absolute viscosity (constant)

cyl—- @ for cartesian and 1 for cylindrical
espi————pressure iteration convergence criterion
xkap————thermal conductivity

gX=————— body acceleration in the positive x—direction
gy—————-body acceleration in the positive y—direction
Uj—————— initial x velocity

Vi—————— init

ial y velocity

omega———sor relaxation factor for pressure iteration
alpha-~-controls the amount of donor cell fluxing

1.0———=full donor cell

0.0—-~centered differencing
W|=—————bounadry condtion-left side
W —m—e——— boundary condition-right side
Wt———ee boundary condition—top side
Wh————m— boundary condition—bottom

1——rigid, free-slip wall

2——r

igid, no—slip wall

3——continuative outflow wall
4——periodic (needs symmetric bc)
5——user defined

gamma———ratio of specific heats

asq—-——-square of sound speed used in the stiffened gas eos

not currently impiemented

rhoi————reference density
eamb———ambient temperature for i.c. and/or b.c.

page -
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111 c edrive—temperature of right boundary for thermally driven
112 c cavity problem

113 c wtmol———molecular weight in amu

114 ¢ rgas-———gas constant (8.3143e7 in cgs)

115 c ireg1,2,3——number of real x (r) meshes in region

116 c dx1,2,3————width of mesh in corresponding region

117 c jregt,2,3~-number of real y (z) meshes in region

118 c dy1,2,3————width of mesh in corresponding region

119 c grid system such that iregl and jregl are low numbered
120 ¢ mesh points

121 c cnrst———number of time steps per restart dump

122 c cndmpa——number of time steps per dump type a

123 c pressure iter, mesh ke, total energy, mass

124 c cndmpb————— number of time steps per dump type b

125 c icntr|———— control for type b dump fileds

126 c format field = 87654321 (@-no dmp, 1—dmp data)
127 c 1——u velocity

128 c 2——v velocity

129 c 3-—pressure

130 c 4~—density

131 c S5——specific internal energy

132 c 6——temperature

133 c 7--radiation energy density

134 c 8——gamma—-1 in ideal gas eos

135 c dt——————— time step 1

136 c ndt{-————— number of time steps of dt1

137 c dt2,ndt2———time step 2 control

138 c bvar{——m — boundary condition 1

138 c bvar2

140 c bvar3

141 c bvar4

142 c bvar5

143 c bvaré

144 c bvar?7

145 c bvar8

146 c

147 c

148 c stiffened gas eos p = asq *(rho-rhoi) + (gamma—1)*rhoxi
149 c ref fluid dynamics |a—-4700

150 c

151 c note——restart option used to define velocity, pressure, energy
152 c and density fields., cycle © calculation is required to
153 c determine beta for first 'real’ time step

154 c

155 c

156 c output file descriptions:

157 c

158 c gswrast——echo input data and contains array dumps for
159 c printing or editing for restart

160 c also contains job timing info in last few lines
161 c gsdmpa———global mesh data for conservation checks

162 c gsdmpb———particular time and spatial data for post process plottin
163 c

164 integer cycle, wl, wr, wt, wb

165 real ke
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166 integer*4 itemp, icntrl, ndti1, ndt2

167 integer rstrt

168 dimension xput(61), mask(9), value(8)

169 ¢

170 character*80 header

171 character*80 scratch

172 character+3 depen(8)

173 character=*8 gasinp

174 character*8 gsdmpa

175 character*8 gsdmpb

176 characters8 gsdmpc

177 character+8 gsdmpd

178 character*8 gswrst

179 character*8 gsinrst

180 character*8 eostab

181 common /mesh/ xc(9999) , yc(9999) , dx(9999) . dy(9999) ,
182 1 rdx(9999) , rdy(99s%9) ,

183 2 rdxc(9999), rdyc(9999), rxc(9999), r2dx(9999),
184 3 r2dy (9999)

185 common /wrk/ un(9999) , vn(9999) , rhon(9999), en(9999) ,
186 1 pr(9999) , work(9999,7)

187 common /np1/ u(9999) , v(9999) , rho(9999) , e(9999) ,
188 1 er(9999) , p(9999) , tp(9999)

189 common /prop/ gam1(9999), rosmfp(9999), rmfp1t(9999),

1990 1 rmfp2t(9999), rcsubv(9999), xkap(9999)

191 common /a/ beta(9999) , xmask(9999), con(30)

192 common /e/ cycle, w!, wr, wt, wb, iter, imx, jmx, delt, xmu,
193 1 im1, jmi1, im2, jm2, iterimt, cyl, epsi, gaminit,
194 2 gx, gy, ui, vi, cnrst, cndmp, omega, alpha, t, amt,
195 3 gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
196 4 kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
197 5 bvar1, ivar2, bvar3, bvar4, bvar5, bvar6, bvar7,bvar8
198 data length /9999/

199 data pi , ixero /3.1415927, o/

200 data nimp /61/

201 6data wtmol2 / 14. /

202 data depen /°U ',V '’ ,’Pr *,’Rho’,’Ep *,’'Tp ',’'Tr *,'gmi1’/
203

204 c set file definitions

205

2086 data ir,iwrst,ireos,idmpa,idmpb,irst/ 5,6,4,1,3,2/

207 data idmpc, idmpd /7,8/

208 data gsdmpa, gsdmpb, gasinp, gswrst, gsinrst

209 1 /'gsdmpa’, 'gsdmpb’, ‘gasinp’, 'gswrst', 'gsinrst’'/

210 data eostab / 'eostab’'/

211 data gsdmpc, gsdmpd /’gsdmpc’, ’gsdmpd’/

212 c

213 c Ir—input problem file

214 c iwrst—output restart file

215 c irw—console

216 c idmpa—~plot save file a

217 c idmpb—plot save file b

218 ¢ irst-initial condition or restart file

219 c

220 call dropfile (@)



221

222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
249
241

242
243
244
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
279
271

272
273
274
275

o 00

10
11

define

open (1,
open (3,
open (5,
open (6,
open (4,
open (7,
open (8,

input

ifo:-files
file=gsdmpa
file=gsdmpb
filemgasinp

filemgswrst
file=eostab
file=gsdmpc
file=gsdmpd

,status=’'new’)
,status='new’)
,status=’o01d’)
,status="new’)
,status="old’)
,status="new’)
,status='new’)

problem parameters

read(ir,1@) header
read(ir,11) (xput(i),i=1,nimp)

format(a)
format(el
tinit=
tend =

2.0)
xput(1)
xput (2)

iterimt=xput(3) + .001
xput(4) + .e001

rstrim
Xmu =
cyl =
epsi =
xkap2=
gx =
ay -
ui -
vi -
omega=
alpha=
wi =
wr -
wt =
wb -
gammaqss
asq =
rhoi =
eamb =

xput(5)
xput(6)
xput(7)
xput(8)
xput(9)
xput(10)
xput(11)
xput(12)
xput(13)
xput(14)
xput(15)
xput(16)
xput(17)
xput(18)
xput(19)
xput(20)
xput(21)
xput (22)

+ 4+ + +

edrivemxput(23)

wimoim=
rgas =
iregim
dxl =
ireg2m=
dx2 m
ireg3m
dx3 =
jregim
dyl =
jreg2m
dy2 =
jregdm
dy3 =
erl =

xput(24)
xput(25)
xput(26) +
xput(27)
xput(28) +
xput(29)
xput(30) +
xput(31)
xput(32) +
xput (33)
xput(34) +
xput (35)
xput(36) +
xput(37)
xput (38)

.001
.001
.001
.001

.001

.001

.001

.001

.001

.001

page -
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276
277
278
278
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303
304
305
3086
307
308
309
3te
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330

cnrst= xput(39)
cndmpa=xput (40)
cndmpb=xput(41)
fentri=xput(42)
delt = xput(43)
ndt1 = xput(44)
dtrad= xput(45)
weight=xput(46)
bvarti= xput(47)
ivar2= xput(48)
bvar3= xput(49)
bvar4= xput(50)
bvarS5= xput(51)
bvaré= xput(52)
bvar7= xput(53)
bvar8= xput(54)
dmpcd= xput(55)
iloche=xput(56)
core = xput(57)
con(24)=xput(58)
con(23)=xput(59)
con(25)=xput (60)

+ .001

+ .001

+ .001

+ .001

con(21) = xput(61)

echo print input

rewind ir

read(ir,10) scratch

file

write(iwrst,101) scratch

c
c

do
102
101
91 con

CEXRRRRAREEXBERBREREEEEEBEBRER RS REER R R RNk ek kR Rk

[
[
[+

CEEERAEREERRREREREERREERRE RS R R R KRR R R B R R R R R R R R R kR
ibar = jregl + ireg2 + ireg3

jba
imx
jmx
imi
jm1
im2
jm2
ile
iri
kpt
kpt
kpt
kpt
kpt

91 i=1,nimp
read(ir,10) scra

write(iwrst,102) i,xput(i),scratch
format(1x,i2,1x,e12.5,5x,a80)

format(1x,a80)
tinue

compute constant terms

r = jregl + jreg2 + jreg3
= jbar + 2
= jbar + 2
= imx — 1
= mx — 1
= jmx — 2
= jmx — 2

ft= ivar2*imx +
ght=ileft + im1
a= imx + 2

b= imx « jml -
c = imx »

d= imx * jmx
e = imx * jml

tch

1

1

(iloche+1) ~ 1

page -
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331

332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381

382
383
384
385

O 0 0 0

kptf = imx = (jmx—2)
if (kptd.gt.length) go to 990

j1 =1
j2 = kpte + 1

otd = 1./3.
ftd = 4./3
am1 = {1, — alpha

con array initialization

con(1) = 7.6387e-22

con(2) = 0.7500e+10

con(3) = 2.2916e-11

con(4) = 3.0000e+10

con(5) = 1./ con(1)

con(6) = 6.0230e+23 / wtmol
con(8) = 1.2175e+02

con(9) = 1.6020e-19
con(11) = wtmol / rgas

con(12) = 1./11605.
con(13) = 116@5.
con(14) = ert
con(15) = 2.001
con(16) = 1,e+07
con(17) = 1.e-07
con(18) = core
con(19) = (1.41421 » dx1)
con(1@) = 1./con(19)
con(7) = ©.5%dx1
con(20) = weight

convert from K to ev

con(1) = con(1) » (con(13))*+4
con(3) = con(3) * (con(13))*«4
con(5) = 1./con(1)

con(11) = con(11) * con(12)
xkap2 = xkap2 * con(13)

rgas = rgas * con(13)
con(26) = con{1) » 0.25++4

con(22) = con(26)

6con(29) = .@0001 * rhoi
6con(30) = 1.0

[+]

[+

gaminit = gamma - 1.

rcsubin = wtmol * gaminit / rgas
rcsub2 = wtmol2 * gaminit / rgas
tpinit = eamb

con(27) = @.1 / rcsubin

CRERRBEREEEERREREEEERE LR SRR R R AR R R R B KRR AR R B R R B R kR Rk Rk ok k ko

[~

page -
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386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
4490

[+
[
[+

initialize mesh stuff for variable width option
do x mesh first, then y mesh

Ca ko ok o o o o ok ok ok e o ok ok ok ok o e ok o ok ok ok kK ok ok ok ok ok ke ok ol ok ok ok ok ek ok ok ok ok ok ok k%

15

ctim

17

0O 0 0 0 O

dx(1) = dx1

rdx(1) = 1./dx1
xc(1) = -0.5 x dx1
rxc(1) = 1. / xc(1)

do 15 i=2,im1

dxa = dx3

if (1. le. (iregi+ireg2+1) ) dxa = dx2
if (i. le. (iregl + 1) ) dxa = dx1
dx(i) = dxa

rdx(i) = 1./dxa
xc(i) = xe(i-1) + @.5%( dx(i—-1) + dx(i) )
rxc(i) = 1./xe(i)

continue

dx(imx) = dx(im1)

rdx(imx) = 1./dx(imx)

xc(imx) = xc(im1) + @.5«( dx(im1)+dx(imx))
rxc(imx) = 1. / xc(imx)

do 16 i=1,im1

rdxc(1) = 1./(dx(i) + dx(i+1))

continue
rdxc(imx)= @.,5/dx(imx)

now fill entire matrix

do 17 i=1,imx

do 17 j=1,jmi
k = 1 + imx#j
dx(k) = dx(i)
rdx(k) = rdx(i)
xc(k) = xc(i)
rxc(k) = rxe(i)
rdxc(k)= rdxc(i)

continue

now the y mesh variables

dy(1) = dyi

rdy(1) = 1./dy1
yc(1) = -0.5 » dy1
do 20 j=2,jm1

dya = dy3

if (j. le. (jregi+jreg2+1) ) dya = dy2
if (j. le. (jregl+1) ) dya = dyt
kpt = (j=1) » imx + 1

dy(kpt) = dya
rdy(kpt) = 1./dya

page —
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441

442
443
444
445
448
447
448
449
450
451

452
453
454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471

472
473
474
475
476
477
478
479
480
481

482
483
484
485
486
487
488
489
490
491

492
493
494
495

ye(kpt)
20 continue
kpt
dy(kpt)
rdy(kpt)

1

= yc(kpt—imx) + 0.5%( dy(kpt—imx) + dy(kpt) )

kpte + 1
dy(kpt—imx)

./dy(kpt—imx)

ye(kpt) = yc(kpt—imx) + 0.5+( dy(kpt—imx)+dy(kpt))
do 21 k=1,kpte,imx
rdyc(k) = 1./(dy(k) + dy(k+imx))

21 continue

rdyc(kpt) = 0.5/dy(kpt)

c
c fill up entire mesh
c
ctim
do 22 kj=1,kptd, imx
do 22 i=1,im1
k = kj + i
dy(k) = dy(kj)
rdy(k) = rdy(kj)
ye(k) = ye(kj)
rdyc(k) = rdyc(kj)
22 continue
c
c compute 2nd order diffusion delx, dely

do 18 kwkpta,kptb
r2dx(k) = 1. / ( dx(k=1) + 2.edx(k) + dx(k+1) )
r2dy(k) = 1. / ( dy(k-imx) + 2.+dy(k) + dy(k+imx) )

18 continue

CH ke ok ok ok ok o o ok o e o ol o oo ok o o ok ok ok o o ook ok o ok o o o o o o ok ok e ok ok o

c
c initialize mask vector—-——1.0 interior mesh, 0.0 bc mesh
c
Col s o ko s ko ok ek ok ko ok ol o o ok o ol ok ok ok ok o ok ok ok o ok ko o ok ok ok ok ok o ok o ok ok ok ok o K ok o ok ik ok
[
do 23 k=kpta,kptb
xmask(k) = 1,
23 continue
c
cdir$ ivdep
do 24 k=1,imx
xmask (k) = 0.0
xmask(k+kpte) = 0.0

24 continue

cdir$ ivdep

do 25 k=1,kptd, imx

xmask(k)
xmask( k+i
25 continue

CRHEXREEREEREERRB R R E R R B R R R Rk ok kb R ko2 ok okl ook ok ok ook ok o ok o i ook ol ot ok o ok o o oK o ok ok

[+

m1)

c initialize counters

[+

A L R A e eI Inmmm

page -
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496
497
498
499
500
5o1

502
503
504
505
506
507
508
509
510
511

512
513
514
515
516
517
518
519
520
521

522
523
524
525
526
527
528
529
530
531

5§32
533
534
5§35
536
537
538
539
540
541

542
543
544
545
5486
547
548
549
550

t = tinit
iter =0

cycle = @

trst = tinit
tdmpa = tinit
tdmpb = tinit
tdmpecd= tinit

CHEEREEZEERERBRBRREXEB R R RABR R R Rk R R kb b hkkkk ok ks k kR kok ok k ks kb ks ok k ok k ok &k

O 0 0 0 0 0

initialize dependent variables
call subroutine init2 to input eos tables

check for standard/restart option

CHEXRARAEREERXBEBRRRRRERRERERR RSB RN R KRR R Rk R kR Rk kR kk Rk R Rk ok ok ki k k%

then

open (2, file=gsinrst, status=’o0ld’)

(irst,iwrst)
i2)

c
call init2 (ireos)
c
if (rstrt.eq.1)
call restart
call eos (j1,
go to 58
endif
c
do 56 kk=1,2
c
c note: eamb

if (kk.eq.1)
rhoinit =
einit =
pinit -
erinit =
ka
kb

else
rhoinit
eamb2
einit
pinit
erinit
ka -
kb =

endif

is temperature on input

then
rhoi
eamb / rcsubin

gaminit * rhoinit = einit * con(16)
con(1) » con(14)s+4

1

kptec + 1

rhoi * wtmol2 / wtmol

eamb / rcsub2

eamb2

gaminit * rhoinit » einit * con(16)
con(1) * con(14)*»4

kptec + 2

kptd

do 56 k=ka,kb

u(k)
v(k)
e(k)
rho(k)
p(k)
rhon(k)
en(k)
er(k)
tp(k)

ui

vi
einit
rhoinit
pinit
rhoinit
einit
erinit
tpinit

page — 1@



551

5§52
583
554
5585
556
557
558
559
560
561
562
563
564
565
566
567
568
569
57e
571

5§72
573
574
575
576
577
578
579
580
581

582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601

602
6e3
604
605

pr(k) = pinit + otd * erinit
56 continue
c
Gk ok ok o ok ok o ok 3k kK ok o o o ok o o o ok o ke ok o o e ok ok ek ko ok ok ok ok koK ok K R K Rk ok kR K
c *
c initial energy ball profile *
c *

CEEXXRRERRERBEXERRRR AR R R R R R R Rk Rk kR Rk Rk kR Rk kR kR kR Rk kR kKRR k
c
call epinit

58 continue
c set properties for He region —— constant

do 57 k=kptc+2,kptd

xkap(k) = xkap2

rosmfp(k) = 1.e—6

rmfplt(k) = 1.e—6

rmfp2t(k) 1.6e-6

resubv (k) recsub2

gam1 (k) = gaminit
57 continue
C ek ok ok ok ok ok o ok ok ok sk ol ok o ol ok e ok o ok o ok ok ok ok ok ol ok ok ok ko o ok ok o ok ok o ok ok koK ok ok ok ok ko ok ok ok ok ok ok K
¢

c unscrunch icntrl

c

3o ol ool o ok e o e ook ok ok ke o ok ok o ok o o e o ok o o ok e ok o ok e ok o o ok o ok e ok ok o ok K ok oKk ok ok ok ok ok ok ok ok
ndepb = @
do 30 i=1,8

itemp = 0.1 * jcntri
itemp = jcntrl — 10 * itemp
icntrl = 9.1 * jentri
if (itemp.eq.?) go to 30
ndepb = ndepb + 1
mask(ndepb) = i
30 continue
CEEREE R B Rk kg okl okook ok o s ok ok o ok ok ol ok o ol ok ok ok ok ok ok o o ok o ok o ok ok ol ok ok ok ok o ok ok ok ok ok ok
c
c initialize dump files
c
CE Bl a ok ok ko K ek 0 ko o ok ok o o o ko o ok ok ol ok ok e o o ol ok ok ok ok ok ok o o ok o0 o ok o o o ol ok ok e ok o ok ok K K ok
c
ndmpb = 0
ndmpcd = @
nrst = 9
write(idmpa,810) header
810 format(a80)

write(idmpb,810) header

write(idmpb,811) ndepb
811 format(1x,i2)

write(idmpb,812) ibar, jbar,(depen(mask(i)),i=1,ndepb)
812 format(ix,'time (sec)’,i3,i3,8a3)

do 813 k=2, im1
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606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631

632
633
634
635
636
637
638
639
640
641

642
643
644
645
648
647
648
649
650
€51

652
653
654
655
656
657
658
659
660

write(idmpb,814) xc(k)
814 format(1x,e12.5)
813 continue
do 816 k=kpta,kpte,imx
write(idmpb,814) yc(k)
816 continue

write(idmpc,810) header
write(idmpc,811) ndepb
write(idmpc,815) (depen(mask(i)),i=1,ndepb)
815 format(® time (sec) *,' cell centre (cm) ',8a3)

write(idmpd,810) header

write(idmpd,811) ndepb

write(idmpd,815) (depen(mask(i)),i=1,ndepb)
c
CRERRERRRERRRERRRRREEE R R R R R R R TR AR R R KRR R R R R KRR R RNk Rk k Rk ko kok ok k ok ok ok &k &
CHEREERXEERERERRBRRE KRB RRE RS R E SRR AR R R R AR R AR AR R R Rk kR kKRR Rk kR ke

*

call subroutine solaice for each time step

note: time step O skips hydro and just sets up

beta array and properties

add time splitting lagrangian energy calculation e2t here
note: jump around this subroutine for cycle @

L I IR 2R B .

computational loop begins now

O O 0 0 O O 06 O O O

*
C ek bk ok ok ok ko ok ok o ok o o o ok o o o o ok ok o ok ok o o o ok o ok o o e o ol o ok o o o ok oK ok ok ok oK o KK ok ok
CF ek ok ok K Ak o ok o ok kol o e o ok ok ok ko o ok o o ok o o o ol ok o ok ok ok o ok ol ok ol ok ok ok o o ke ok o ok ok 3K o ok ok
¢
100 continue

if (cycle.eq.9) go to 111

2T energy equation solver section
solve for e—tilde, p—tilde, and er—tilde
note———split time step solution technique used for speed
perform lagrangian radiation energy transport and
exchange only using time step dtrad
grad (velocity) assumed constant for this loop

L AR R IR 2 R 2N N

sub eosset iterates on Tp to satisfy Ep from EOS tables

0O 0 0 0 O 0 0 0 0 O 0

ja =1

jb = kptc + 1

call eosset (ja,jb)
call e2t

set time n vectors

0o 0 0 o

111 continue
do 650 k=1,kptd
vn(k) = v(k)
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661

662
663
664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698
€99
700
701

702
703
704
705
706
707
708
709
710
711

712
713
714
715

650

O 0 0 0

651

0 0 0 0 0 0 0 0

-
-t
[

701

800

799

880

801

575

un(k) = u(k)
rhon(k) = rho(k)
pr(k) = p(k) + otd * er{(k) * con(186)

continue

update He thermal conductivity (Spitzer Conductivity)
k = J/cm—s—ev t——ev

do 651 kmkptc+2,kptd

xkap(k) = 274, = tp(k)»»2.5

continue

call solaice

—
-t

AR AR AR R AR R R 2R 2 2 R R R A R R R R s R RS RS R

check for output options
check for dmp file a output

(t.l1t.tdmpa.and.(t+delt).It.tend) go to 799
tdmpa = tdmpa + cndmpaxdelt

calculate grid ke, mass, and internal energy

ke = 9,
energy = 9.
xmass = @,
do 701 k=kpta,kptb
vol = (1. — cyl + 2.#pisxc(k)scyl) » dx(k) = dy(k)
vol = vol * xmask(k)
uave = u(k-1) + u(k)
vave = v(k) + v(k—imx)
ke = ke + rho(k) * vol s (uavesuave + vave*vave)
xmass xmass + rho(k) * vol
energy = energy + e(k) * vol * rho(k)

continue

ke = 0.125 = ke * con(17)
write(idmpa,800) t,iter,ke,xmass,energy
format(2x,e12.5,2x,i3,°.’,2x,3(e12.5,2x))

check restart file control
(t.1t.trst.and.(t+delt).It.tend) go to 580

trst = trst + cnrstxdelt
write(iwrst,880) t

format(’1 time = *,e12.5)
write(iwrst,801)
format ("’ k’,10x,’u’ ,12x,°v’,12x,’p’,11x,’rho’ ,11x,

‘e’ ,11x,'Tp  *,11x,'Er’)
do 575 k=1i,kptd
write(iwrst,802)k,u(k),v(k),p(k),rho(k),e(k),tp(k),er(k)
continue
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716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

732
733
734
735
736
737
738
7389
740
741

742
743
744
745
746
747
748
749
750
751

752
753
754
755
756
757
758
759
760
761

762
763
764
765
766
767
768
769
770

802

804

585
805

778
590

592

format(i1x,i5,3x,7(1x,e12.5))

nrst = nrst + 1

write(idmpa,777) nrst,t

format (23x,’wrst file — *',i3,’ time = ',e12.5)

check dump file b control

(t.It.tdmpb.and.(t+delt).It.tend) go to 590
tdmpb = tdmpb + cndmpb=xdelt
write{idmpb,804) t,ibar,jbar
format(1x,e12.5,2x,i3,2x,i3)
do 585 k=1,kptd

value(1) = u(k)

value(2) = v(k)

value(3) = pr(k) » con(17)
value(4) = rho(k)

value(5) = e(k)

value(6) = tp(k)

value(7) = (con(5)*er(k))++0.25

value(8) = gami(k)
write(idmpb,805)(value(mask(kk)),kk=1,ndepb)
continue
format(1x,9(e12.5,1x))
ndmpb = ndmpb + 1
write(idmpa,778) ndmpb,t
format(23x,‘dmpb file — *,i3,’ time = ’',e12.5)

continue

check for dump file ¢/d contro!

if (t.1t.tdmped.and.(t+delt).It.tend) go to 599

tdmpcd = tdmpcd + dmpcdxdelt
write(idmpc,804) t,imx
do 592 k=jleft,iright
value(1) = u(k)
value(2) = v(k)
value(3) = pr(k) * con(17)
value(4) = rho(k)
value(5) = e(k)
value(6) = tp(k)
value(7) = (con(5)»er(k))»+0.25
value(8) = gami(k)
write(idmpc,805) xc(k),(value(mask(kk)),kk=1,ndepb)
continue
write(idmpd,804) t,jmx
do 593 k=2,kptd, imx
value(1) = u(k)

value(2) = v(k)

value(3) = pr(k) = con(17)
value(4) = rho(k)

valiue(5) = e(k)

value(6) = tp(k)

value(7) = (con(5)ser(k))++0.25
value(8) = gami1(k)

write(idmpd,805) yc(k),(value(mask(kk)),kk=1,ndepb)
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771

772
773
774
775
776
777
778
779
780
781

782
783
784
785
786
787
788
789
790
791

792
793
794
795
796
797
798
799
800
801

802
803
804
805
806
807
808
809
810
811

812
813
814
815
816
817
818
819
820

593

779
599
c

990
c

continue

ndmped = ndmpcd + 1

write(idmpa,779) ndmpecd,t

format (23x,'dmped file — *,i3,’ time = ’,e12.5)
continue

advance time t = t + delt

t =t + delt
if (t.gt.tend) go to 999
call timeleft (isec)
if (isec.[t.40) then
tend = 0,
go to 110
endif
cycle = cycle + 1
go to 100
continue

CEERRABEEERRREEERREEERRREBRRE R R R AR AR KRR AR R R KRR R RN KRRk Rk k&

[+

991
999

776

775

write(iwrst,991)
format(® input error’)
continue

housekeeping and file closing

t =t — delt

write(idmpa,776) t,cycle

format ("’ last dump time = ' ,e12.5,' cycle = *,i5)
call timeused (icpu,iio,isys,imenm)

tcpu = icpu* 1.e-6

tio = iio = 1.e-6

tsys = jsys* 1,e-6

tmem = imem+1.e-12
write(idmpa,775)tcpu,tio, tsys, tmem

format(2x,'cpu(s) = *,e12.5,' i/o(s) = ',e12.5,’ sys(s) = *,

e12.5,' mem(s) = ’',e12.5)
close (1)
close (3)
close (6)

close (7)
close (8)

save dropfile for possible restart
call exit (1)

end
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821

822
823
824
825
826
827
828
829
830
831
832
833
834
835
8386
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

852
853
854
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869
870
871

872
873
874
875

0O 00 0 0 00 0 0 0 0 0 0 0 0 0 0 00000000

o)

SUBROUTINE EOS (j1,j2)

eos calculates equation of state quantities by table look~up
output——m

xkap —= thermal conductivity

gam1 —— (gamma-1) for ideal gas eos
rcsubv — recipical of Cv

rmfp ——— radiation mfp

ross2t — rosseland mfp for 2 temperatures

rosmfp — rosseland mfp for 1 temperature
input——
ja, jb limits on input array

this eos package is constructed around those in MF-FIRE FDM-458
note: an effort was made to conserve arrays here
several arrays perform double duty here

en, rhon, un, and vn are fair game here

con array:

5 —— ¢/(4.+sigma)

6 —=— number density / mass density

9 ——~ pressure conversion constant (from MF-FIRE)
11 —— mol wt / rgas (constant)
22 —— eos floor value energy density (j/cm3)

common/eost/ ad, bd, at, bt, nmat, nfg, ja, jb,

1 rad, rdb, rat, rbt
common/eostab/ ztab(20,10,2), entab(20,10,2),
1 rostab(20,20,10,2), rmftab(20,20,10,2)

common/wrk / work(9989,12)
common/eoswrk/ tr1(9999), tpl(98999), rhol(9999),

1 meos(9999), leos(9999), keos(9999)

common /np1/  u(9999) , v(9999) , rho(99899) , e(9999) ,
1 er(9999) , p(9999) . tp(8989)

common /prop/ gam1(9999), rosmfp(99899), rmfp1t(9999),
1 rmfp2t(9999), rcsubv(9998), xkap(9999)

common /a/ beta(9999) , xmask(9999), con(30)

common /e/ cycle, wi, wr, wt, wb, iter, imx, jmx, delt, xmu,
im1, jm1, im2, jm2, iteriImt, cyl, epsi, gaminit,
gx, gy, ui, vi, cnrst, cndmp, omega, alpha, t, ami,
gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
bvar1, ivar2, bvar3, bvar4, bvar5, bvar6, bvar7,bvar8

D UN =

dimension z(9999), ee(9999), dummy(9999), dedt(9999)
dimension xflg(9999)

equivalence (ee(1), work(1,11)) , (z(1), work(1,12)),
1 (dummy (1), ,work(1,10)), (dedt(1), work(1,9))

ja = j1
jb = j2

COMPUTE THE LOGARITHMS OF THE TEMPERATURES AND DENSITY FOR USE IN

page — 18



8786
877
878
879
880
881

882
883
884
885
886
887
888
889
890
891

892
893
894
895
896
897
898
839
900
901

902
903
904
905
906
907
908
909
910
911

912
913
914
915
916
817
918
919
920
921

922
923
924
925
926
9827
928
929
9390

C THE TABLE LOOK-UP ROUTINES

[+

10

o OO0 OO 0O 000

O 0 0 O

O 0O 0 O

ceo
ceo

40
c
c
¢

c
c

DO 10 J = ja,jb

erad
erad
tfluid
tri(j)
tpl())
rhol(j)

continue

FIRST FIND THE (K,L) POINTS THAT CORRESPOND TO THE TEMPERATURE AND

= er(j)

= cvmgp ( erad , con(22) , (erad-con(22)) )
= tp(j)

= 0.25 * alog1@( con(5)*erad )

= alog10( tfluid )

alog1@( rho(j)scon(6) )

DENSITY IN EACH ZONE

CALL POINT

NOW FIND THE VALUES IN THE CHARGE STATE TABLE

CALL TABLE2 (ZTAB,Z,dummy,tp)

NEXT FIND THE

VALUES IN THE SPECIFIC ENERGY TABLE

CALL TABLE2 (ENTAB,EE,dedt,tp)

calulate xkap (from subroutine kappa)

call kappa

note: p = gam1 * rho * e = ¢c9 * ¢c6 * rho * tp » (1 + z)
check for values below table (leos=®) use initial values then

gaml1 and rcubv from Z and EE

(Z, ja. jb)

do 40 j = ja,jb

xgam1 = con(9)scon(6) * tp(j) * (1.+2(})) / e(j)

s gami1(j) = cvmgn ( xgam1, gaminit, float(leos(j)) )

s rcsubv(j) = cvmgn ( 1./dedt(j), rcsubin, float(leos(j)) )
gam1(j) = xgam1

resubv(j) = 1./dedt(j)

continue

FIND THE VALUES IN THE RADIATION MFP TABLE

CALL TABLE3 (RMFTAB,RMFP2T)

FIND THE VALUES IN THE ROSSELAND MFP TABLE

CALL TABLE3 (ROSTAB,ROSMFP)

FIND THE VALUES WHEN TR = TP

do 60 j= ja,jb

KEOS(J)

tri(})
60 CONTINUE

= LEOS(J)
= tpi(j)
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931
932
933
934

CALL TABLE3 (rmftab,rmfpit)

return
END
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935
936
937
938
939
940
941

942
943
944
945
946
947
948
949
950
951

952
953
954
955
956
957
958
959
960
961

862
963
964
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981

982
983
984
985
986
987
988
989

a0 0 0 0 0 0 O

o000

SUBROUTINE EOSSET (j1,]2)

eosset iterates on tp to satisfy e with the EOS tables

input——
ja, jb —= 1limits on input array
con(21) ~ relative error on Tp iteration

common/eos1/ ad, bd, at, bt, nmat, nfg, ja, jb,

1 rad, rdb, rat, rbt
common/eostab/ ztab(20,10,2), entab(20,10,2),
1 rostab(20,20,10,2), rmftab(20,20,10,2)

common/wrk / work(9999,12)
common/eoswrk/ tr1(9999), tpl(9999), rhol(9999),

1 meos(9999), leos(9999), keos(9999)

common /np1/  u(9999) , v(9999) , rho(9999) , e(9999) R
1 er(9999) , p(9999) , tp(9999)

common /prop/ gam1(9999), rosmfp(9999), rmfp1t(9999),
1 rmfp2t(9999), rcsubv(9999), xkap(9999)

common /a/ beta(9999) , xmask(9999), con(30)

common /e/ cycle, wl, wr, wt, wb, iter, imx, jmx, delt, xmu,
im1, jm1, im2, jm2, iterimt, cyl, epsi, gaminit,
gx., gy, ui, vi, cnrst, cndmp, omega, alpha, t, ami,
gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
bvart, ivar2, bvar3, bvar4, bvar5, bvar6é, bvar7,bvar8

O pUN =

dimension 2(9999), ee(9999), dummy(9999), dedt(9999)
dimension xflg(9999)
data limit / 25/

equivalence (ee(1), work(i,11)) , (z(1), work(1,12)),
1 (dummy (1) ,work(1,10)), (dedt(1), work(1,9))

ja = j1
jb = j2
nloop = 0@

COMPUTE THE LOGARITHMS OF THE TEMPERATURES AND DENSITY FOR USE IN
THE TABLE LOOK-UP ROUTINES

DO 10 J = ja,jb
erad = er(j)
erad = cvmgp ( erad , con(22) , (erad-con(22)) )

9tfluid = cvmgp (tp(j), .25, (tp(j) - ©.25))

c
c
c
c

50

tri(j) = 0.25 * alog10( con(5)*erad )

tpl(j) = alog1@( tfluid )

rhot(j) = alog1@( rho(j)scon(6) )
continue

FIRST FIND THE (K,L) POINTS THAT CORRESPOND TO THE TEMPERATURE AND
DENSITY IN EACH ZONE

continue
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990
991
892
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

CALL POINT
c
C NEXT FIND THE VALUES IN THE SPECIFIC ENERGY TABLE
c
CALL TABLE2 (ENTAB,EE,dedt,tp)
c
c now iterate on Tp until the convergence criterian is achieved

xflag = 1.9
nloop = nloop + 1
do 20 j = ja,jb
tnew = tp(j) + (e(j) — ee(j)) / dedt(j)
relt = abs (tnew—tp(j)) / tp(j)
xflag = xflag = cvmgp ( 0.2, 1.0, (relt—con(21)) )
8tp(j) = cvmgp (tnew, ©.25, (tnew — 9.25))
tpI(j)= alogte (tp(j))
20 continue
c
if (xflag.gt.0.01) go to 999
if (nloop.It.limit) go to 50

999 continue
return
END
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1014
1015
1016
1017
1018
1019
1020
1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

1052
10563
1054
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065
1066
1067
1068

0O 0 0 0 0 0o O

0O OO0

o000

OO0

SUBROUTINE EOSINIT (j1,j2)
eosinit initializes energy density and pressure for epinit
input——

ja, jb = limits on input array

common/eost/ ad, bd, at, bt, nmat, nfg, ja, jb,

1 rad, rdb, rat, rbt
common/eostab/ ztab(20,10,2), entab(20,10,2),
1 rostab(20,20,10,2), rmftab(20,20,10,2)

common/wrk / work(9999,12)
common/eoswrk/ trl1(9999), tpl(9999), rhol(9999),

1 meos(9999), leos(9999), keos(9999)

common /np1/  u(9999) , v(9999) , Tho(9999) , e(9999) ,
1 er(9999) , p(9999) ., tp(9999)

common /prop/ gam1(9999), rosmfp(9999), rmfp1t(9999),
1 rmfp2t(9999), rcsubv(9999), xkap(9999)

common /a/ beta(9999) , xmask{9999), con(30)

common /e/ cycie, wl, wr, wt, wb, iter, imx, jmx, delt, xmu,
im1, jmi1, im2, jm2, iterimt, cyl, epsi, gaminit,
gx, gy, ui, vi, cnrst, cndmp, omega, alpha, t, ami,
gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
bvar1, ivar2, bvar3, bvar4, bvar5, bvar6, bvar7,bvar8

b GN =

dimension z(9999), ee(9999), dummy(9999), dedt(9999)
dimension xflg(9999)

equivalence (ee(1), work(1,11)) , (z(1), work(1,12)),
1 (dummy (1) ,work(1,1@)), (dedt(1), work(1,9))

ja = j1
jb = j2

COMPUTE THE LOGARITHMS OF THE TEMPERATURES AND DENSITY FOR USE IN
THE TABLE LOOK-UP ROUTINES

DO 10 J = ja,jb

erad = er(j)
erad = cvmgp ( erad , con(22) , (erad-con(22)) )
tfluid = tp(j)
tri(j) = 0.25 » alog10( con(5)*erad )
tpl(j) = alogte( tfiuid )
rhol(j) = atogi@( rho(j)scon(6) )
continue

FIRST FIND THE (K,L) POINTS THAT CORRESPOND TO THE TEMPERATURE AND
DENSITY IN EACH ZONE

CALL POINT

NEXT FIND THE VALUES IN THE SPECIFIC ENERGY TABLE
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1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

ceos
ceos

40

CALL TABLE2 (ENTAB,EE,dedt,tp)

call table2 (ztab,z,dummy, tp)

do 40 j = ja,jb

= con(9)scon(6) = tp(j) * (1.4+z(j)) / ee(j)
= cvmgn (xgami, gaminit, float(leos(j)) )

xgami
gami(j)

resubv(j) = cvmgn (1./dedt(j),

gami(j) = xgami

resubv(j) = 1./dedt(])

e(j)
continue
return

END

= ee(j)

rcsubin,

float(leos(j)) )
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1083 subroutine epinit

1084 c

1085 c this subroutine determines the initial plasma specific energy
1086 c density (En) and initial radiation density (Er) for a fireball.
187 c It uses a linear fit for the initial plasma temperature.
1088 c

1089 c

10990 integer cycle, wl, wr, wt, wb

1091 common /mesh/ xc(9999) , yc(9999) , dx(9999) , dy(999s8) ,
1092 1 rdx(9999) , rdy(9999) ,

1093 2 rdxc(9999), rdyc(9999), rxc(9999), r2dx(9999),
1094 3 r2dy(9999)

1095 common /wrk/ un(9999) , vn(9999) , rhon(9999), en(9999) ,
1096 1 pr(9999) , work(9999,7)

1097 common /np1/ u(9999) , v(98999) , rho(9999) , e(9999) ,
1098 1 er(9999) , p(9999) , tp(9999)

1099 common /prop/ gom1(9999), rosmfp(9999), rmfp1t(9999),

1100 1 rmfp2t(9999), rcsubv(9999), xkap(9999)

1101 common /a/ beta(9999) , xmask(9999), con(3e)

1102 common /e/ cycle, wl, wr, wt, wb, iter, imx, jmx, delt, xmu,
1103 1 im1, jm1, im2, jm2, iterimt, cy!, epsi, gaminit,
1104 2 gx, gy, ui, vi, cnrst, cndmp, omega, alpha, t, ami,
1105 3 gammo, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
1106 4 kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
1107 5 bvart, ivar2, bvar3, bvar4, bvar5, bvar6, bvar7, bvar8
1108 dimension xr(16),tr(16)

1109 data xr /1.0, 2.5, 6.12, 8.0, 11.5, 12.3, 18.3, 21., 25.4, 30.0,
1110 1 32.6,41.5,60.0 ,114., 189., 250. /

1111 6dato tr / 1226., 853., 450., 310., 235., 220., 200., 195., 190.,
1112 1 160., 110., 30., 4.7, 1.0, 0.5, 0.37 /

1113 c

1114 c find limits first

1115 c

1116 kcenter= ivar2simx + 2

1117 ycent = yc(kcenter)

1118 xcent = xc(kcenter) — ©.5 » dx(kcenter)

1119 k1 = 1

1120 k2 = kptc + 1

1121 ntab = 16

1122 c

1123 c profile initilization

1124 c set Tr profile using linear fits

1125 c determine Ep from EOS tables

1126 c

1127 c

1128 do 100 k=ki,k2

1129 d = sqrt( (xcent—xc(k))**2 + (ycent—yc(k))s»2 )

1130 do 90 i=2,ntab

1131 if (xr(i).1t.d) go to S0

1132 tp(k) = tr(i) + (tr(i=1)=tr(i))*(d=—xr(1))/(xr(i=1)=xr(i))
1133 ?7go to 91

1134 90 continue

1135 917continue

1138 if (tp(k).1t.con(25).0r.d.ge.xr(ntab)) tp(k) = con(25)

1137 100 continue



1138
1139
1140
1141

1142
1143
1144
1145
11486
1147
1148
1149
1150
1151

1152
1153
1154
1155
1156
1157
1158
1189
1160
1161

1162
1163
1164
1165
1166
1167
1168
1169
1170
1N

1172
1173
1174
1175
1176
1177
1178
1179
1189
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192

call eosinit (k1,k2)
set pressure profile with eos properties

do 110 k=k1,k2
p(k) = gam1(k) * rho{(k) * e(k) * con(16)
en(k) = e(k)
pr(k) = p(k) + otd+er(k)*con(16)
110 continue

c
return
end

6subroutine e2t

c

G ok o ok ok o ok ok ok ok o s o ko ok ok ok ok ok o ok o ok o o ok ok o o ok ol ok o ol ok ok ok ok ok ok ok o ok e ok kR K

(o] *
c 2T energy equation solver section *
c use implicit technique to solve for e—tilde and er—tilde »
c also calculate p—tiide *
c note———use centered differencing on Er diffusion term *
[ *
c special update———use split time step to solve lagrangian =
c portion only in this subroutine: *
c diffusion + radiation exhange + pdv work term *
o] *
c new update———incorporate quickie nine pt diffusion stencil
c assume uniform mesh weight controled by *
¢ variable con(20) *
c *
c set properties to n+1 with 2 loop iteration *
c *
CEEXRBEEERRRE BB R R E Rk k ok kR Rk dk ok ok ok okt ok ko kok ok ok skt dk sk e sk ok e ok ok ok ok o e ok ok ok ok o o ko o
c
integer cycle, wl, wr, wt, wb
common /mesh/ xc(9999) , yc(9999) , dx(9999) , dy(9999) ,
1 rdx(9999) , rdy(9999) ,
2 rdxc(9999), rdyc(9999), rxc(9999), r2dx(9999),
3 r2dy(9999)
common /wrk/ un(9999) , vn(9999) , rhon(9999), en(9999) ,
1 pr(9999) , work(9999,7)
common /np1/ u(9999) , v(9999) » rho(9999) , e(9999) ,
1 er(9998) , p(9999) , tp(9999)
common /prop/ gam1(9999), rosmfp(9999), rmfp1t(9999),
1 rmfp2t(9999), rcsubv(9999), xkap (9999)
common /a/ beta(9999) , xmask(9999), con(30)
common /e/ cycle, wl, wr, wt, wb, iter, imx, jmx, delt, xmu,
1 im1, jmt, im2, jm2, iterimt, cyl, epsi, gaminit,
2 gx, gy, ui, vi, enrst, cndmp, omega, alpha, t, ami,
3 gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
4 kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
5 bvar1, ivar2, bvar3, bvar4, bvar5, bvar6, bvar7,bvar8
c

dimension fluxx(9999), fluxy(9999), fluxxy(9999), fluxyx(9999),
1 etrans(9999), gradv(9999), ern(9999)
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1193
1194
1195
1196
1197
1198
1199
1200
1201

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
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equivalence (fluxx(1) ,work(1,1)), (fluxy(1) ,work(1,2)),

1 (fluxxy(1),work(1,3)), (fluxyx(1),work(1,4)),
2 (etrans(1),work(1,5)),
3 (ern(1) ,work(1,7))
equivalence (tt, con(20)), (delxy, con(19)), (rdelxy, con(10)),
1 (rerror, con(23)),(halfdx, con(7)),(dtemp,con(24))

data loopimt / 10/
c first calculate number of lagrangian loops to perform

nloop = delt / dtrad

j1 = 1
j2 = kptc + 1
xtt = 1. - tt
c now calculate velocity gradient — constant for all loops

do 5 k=kpta,kptd
gradv(k) =( rdx(k) * ( un(k) — un(k-1) ) +

1 rdy(k) = ( vn(k) — vn(k=imx) ) +

2 eyl * (un(k) + un(k-1) ) * 0.5xrxc(k) )
5 continue
o 2k o e e o o o ok ok e o K ok ok o ko o ko ol ok ol ol o ol ol ook e o o ok ok ko ok ok o o o ol ok ok K ok ok ok o o ok ok ok ok
c
c the lagranian loop begins now
c
CRERREERRR R R R R R R R 0 8 30 ok ook ok ok ok o 0 30 0 ok 3ok ok ok o o o o o0 o ok ok e ok ok oo ok o ok ok oK o ok o ok ok ok ok ok Kk ok K
c

do 10@ loop=1,nloop

c
c
c call eos routine for opacities, conductivity, gami
c determine tp from constant volume process

call eos (jt, j2)
c
c set n level plasma and radiation energy densities
c also put fix in for RMFP2T
c

do 51 k=kpta,kptd

en(k) = e(k)

ern(k)= er(k)

trad = (con{5)*er(k))*»0.25

temp = abs(trad-tp(k))/tp(k)

rmfp2t (k) = cvmgp( rmfp2t(k), rmfpit(k), (temp—dtemp) )
9rmfp2t (k) =cvmgp(rmfp2t(k),rmfp1t(k), (tp(k)—con(30)))
51 continue
c
c point—jacobi iteration loop
c
349 iter = 0
350 flag = 1,
c
set lefthand b.c. (zero gradient)



1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1285
12986
1297
1298
1299
1300
1301

1302

cdir$ ivdep

do 52 k=1,kptd, imx
er(k) = er(k+1)
tp(k) = tp(k+1)

52 continue

¢

c set top and bottom be

¢

cdir$ ivdep

do 53 k=1, imx

er(k) = er(k+imx)
er(k+kpte) = er(k+kpte—imx)
tp(k) = tp(k+imx)
tp(k+kpte) = tp(k+kpte—~imx)

53 continue

first determine misc intermediate quantities for Er

do 10 k=kpta,kptd
deixeb = er(k-1) — eor(k)

cupwind ebxstar = cvmgp( er(k-1), er(k), delxeb)

O 0O 00

10

11

12

13

1
2
3

1
2
3

1
2
3

1
2
3

ebxstar = 0.5 = ( er(k—1) + er(k) )
fluxx(k) = con(2) *ebxstar »+ delxeb /
(.375+ebxstars( rho(k—1)*rosmfp(k—1)*dx(k—1) +
rho(k) =srosmfp(k) #*dx(k) ) +
abs(delxeb) + bvar5 )
continue
do 11 k=mkpta,kptd
delyeb = er(k—imx) - er(k)
ebystar = 0.5 * ( er(k—imx) + er(k) )
fluxy(k) = con(2)*ebystar * delyeb /
(.375+ebystar*(rho(k—imx)*rosmfp(k—imx)*dy(k—imx)+
rho(k) srosmfp(k) *dy (k) )+
abs(delyeb) + bvar5 )
continue
do 12 k=kpta,kptd
delxye = er(k—imx—1)— er(k)
ebxystr = 0.5 + ( er(k—imx—1) + er(k) )
fluxxy(k)= con(2) * ebxystr * delxye /
(.375+ebxystrsdelxys(rho(k—imx—1)+rosmfp(k—imx—1)+
rho(k) xrosmfp(k) )+
abs(delxye) + bvar5 )
continue
do 13 k=kpta,kptd
delyxe = er(k—imx+1)— er(k)
ebyxstr = 0.5 ¢ ( er(k~imx+1) + er(k) )
fluxyx(k)= con(2) * ebyxstr s delyxe /
(.375+ebyxstredelxys(rho(k—imx+1)+rosmfp(k—imx+1)+
rho(k) srosmfp(k) )+
abs(delyxe) + bvar5 )
continue

calculate energy transfer by emission and absorption
( assume positive for Er )
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1303
1304
1305
1306
1307
1308
1309
1310
1311

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

1352
13583
1354
1355
1356
1357

15
c

25

20

21

22

23

1

1

1

1
2

-,

do 15 k=kpta,kptd
etrans(k)= rho(k) * ( con(3)srmfplt(k)=tp(k)»»4 -
con(4)srmfp2t(k)ser(k) )
continue

now for the solution of er—tilde

do 25 k=kpta,kptb

r1 = xc(k) - halfdx

r2 = xc(k) + halfdx

r3 = xc(k)

ebx = rdx(k)*( fluxx(k) = fluxx(k+1) )

eby = rdy(k)*( fluxy(k) — fluxy(k+imx) )

ebe = 0.5%cyl*rxc(k)* (fluxx(k) + fluxx(k+1))

ebxy = rdelxys(fluxxy(k)sri—fluxxy(k+imx+1)*r2)/r3
ebyx = rdelxy*(fluxyx(k)sr2—fluxyx{(k+imx=1)*r1)/r3
erwork = —otd * er(k) * gradv(k)

ediff = tt + (ebx+eby—ebc) + xtt » (ebxy+ebyx)

deler = dtrod » xmask(k) * ( ediff + etrans(k) + erwork )

ernp1 = ern(k) + deler

er(k) = ernpi

er(k) = cvmgp ( er(k), con(26), (er(k)~con(26)) )
continue

determine intermediate quantities for E

do 20 k=kpta,kptd
fluxx(k)= 2.+ (tp(k—1)-tp(k)) = (xkap(k—1)sxkap(k)) /
( dx(k=1)*xkap(k) + dx(k)*xkap(k—1) )
continue
do 21 k=kpta,kptd
fluxy(k)= 2.« (tp(k—imx) —tp(k)) * (xkap(k—imx)*xkap(k)) /
( dy(k—imx)*xkap(k) + dy(k)*xkap(k—imx) )
continue
do 22 k=kpta,kptd
fluxxy(k)=2. « rdeixy =*
(tp(k=imx=1) — tp(k)) * (xkap(k—imx—1)*xkap(k))/
( xkap(k—imx—1) + xkap(k) )
continue
do 23 k=kpta,kptb
fluxyx(k)=2, * rdelxy =
(tp(k—imx+1) — tp(k)) * (xkap(k—imx+1)sxkap(k))/
( xkap(k—imx+1) + xkap(k) )
continue

the solution for e-tilde

do 30 k=kpta,kptb

r1 = x¢(k) ~ halfdx
r2 = xc(k) + halfdx
r3 = xc(k)

ex = rdx(k)*( fluxx(k) — fluxx(k+1) )
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1358 ey = rdy(k)*( fluxy(k) — fluxy(k+imx) )
1359 ac 0.5+cyl*rxc(k)* (fluxx(k) + fluxx(k+1))

1360 exy = rdelxy*(fluxxy(k)*r1—fluxxy(k+imx+1)*r2)/r3
1361 eyx = rdelxys(fluxyx(k)*sr2—fluxyx(k+imx=1)*r1 )/r3
1362 epwork = ~p(k) * con(17) * gradv(k)

1363 ediff = tt » (extey—ec) + xtt * (exy+eyx)

1364 c

1365 dele = dtrad * xmask(k) * (ediff —etrans(k) +epwork) /rho(k)
1366 enp1 = en(k) + dele

1367 enp1 = cvmgp( enpl, con(27), (enpl-con(27)))

1368 temp = abs(enpli-e(k)) — e(k) * rerror

1369 flag = flag * cvimgp ( 0.0, 1.8, temp )

1370 c

1371 p(k) = gam1{k) * rho(k) * enpt » con(16)

1372 tp(k) = tp(k) + rcsubv(k) = (enp1 —e(k))

1373 e(k) = enp1

1374 39 continue

1375 c

1376 iter = jter + 1

1377 if (flag.gt.0.01) go to 360

1378 if (iter.It.looplmt) go to 350

1379 write(1,700) cycle,loop

1380 700 format(' iteration e2t exceeded ',i6,2x,i4)

1381 ctim close (1)

1382 ctim close (3)

1383 ctim close (8)

1384 ctim close (7)

1385 ctim close (8)

1386 ctimn stop 1

1387 36@ continue

1388 c

1389 c update time value of e for later plasma temp calculations
1390 c

1391 do 40 k=kpta,kptb

1392 en(k) = e(k)

1393 40 continue

1394 c

1395 100 continue

1396 return

1397 end
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1398 SUBROUTINE INIT2 (ireos)

1399 Cc

1400 C INIT2 reads in opacity tables

1401 c taken from MF-FIRE ref. UWFDM-458

1402 c

1403 common/eos1/ ad, bd, at, bt, nmat, nfg, ja, jb,
1404 1 rad, rdb, rat, rbt

1405 common/eostab/ ztab(20,10,2), entab(20,10,2),

1406 1 rostab(20,20,10,2), rmftab(20,20,10,2)
1407 character*4@ headri1, headr2

1408 dimension hnui(1),hnu11(1),hnut2(1),rrtab(20,20,10,2),
1409 1 rptab(20,20,10,2)
1410 equivalence (rostab(1,1,1,1), rrtab(1,1,1,1))

1411 equivalence (rmftab(1,1,1,1), rptab(1,1,1,1))

1412 Cc

1413 nmat = 1

1414 nfg = @

1415 (o]

1416 C READ IN EOS DATA FROM ireos FOR MATERIAL 1 &

1417 c FROM ireos2 FOR MATERIAL 2

1418 READ(ireos,1002) HEADR1

1419 READ(ireos,1001) AD1, BD1, AT1, BT1, NFGi

1420 IF (NMAT .EQ. 2) then

1421 read(ireos2,1002) headr2

1422 READ(ireos2,1001) AD2, BD2, AT2, BT2, NFG2

1423 endif

1424 5 AD = AD1

1425 BD = BD1

1426 AT = AT1

1427 BT = BT1

1428 rad= 1./ad

1429 rbd= 1./bd

1430 rat= 1. /at

1431 rbt= 1./bt

1432 c

1433 READ(ireos,1000) ((ZTAB(L,M,1), L=1,20), M=1,1@)

1434 READ(ireos,1000) ((ENTAB(L,M,1), L=1,20), M=1,10)

1435 READ(ireos, 1000) (((ROSTAB(K,L,M,1), K=1,20), L=1,20), M=1,10)
1436 READ(ireos,1000) (((RMFTAB(K,L,M,1), K=1,20), L=1,20), M=1,10)
1437 IF (NMAT .EQ. 1) GOTO 15

1438 reAD(ireos2,1000) ((ZTAB(L,M,2), L=1,20), M=1,10)
1439 READ(ireos2,1000) ((ENTAB(L,M,2), L=1,20), M=1,10)
1440 READ(ireos2,1000) (((ROSTAB(K,L,M,2), K=1,20), L=1,20), M=1,10)
1441 READ(ireos2,1000) (((RMFTAB(K,L,M,2), K=1,20), L=1,20), M=1,10)
1442 15 CONTINUE

1443 1000 FORMAT(4(1x,E12.6))

1444 1001 FORMAT(4(1x,E12.68),112)

1445 1002 FORMAT(40@A1)

1446 20 DO 50 M = 1,10

1447 DO 5@ L = 1,20

1448 DO 50 KMAT = 1, nmat

1449 IF(ZTAB(L,M,KMAT) .NE. 2.0) ZTAB(L,M,KMAT) =
1450 1 ALOG10(ZTAB(L,M,KMAT))
1451 IF(ENTAB(L,M,KMAT) .NE. ©.9) ENTAB(L,M,KMAT) =

1452 1 ALOG1@(ENTAB(L,M,KMAT))



1453
1454
1455
1456
1457
1458
1459
1460
1461

1
50 CONTINUE

RETURN
END

DO 50 K = 1,20
IF(RMFTAB(K,L,M,KMAT) .NE.9.@) RMFTAB(K,L,M,KMAT) =
ALOG10(RMFTAB(K,L,M,KMAT))
IF(ROSTAB(K,L,M,KMAT) .NE.®.0) ROSTAB(K,L,M,KMAT) =
ALOG10(ROSTAB(K,L,M,KMAT))
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1463
1464
1465
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1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480
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150

185

1
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1

1
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subroutine kappa (z,ja,jb)

this subroutine computes the plasma thermal conductivity
it uses a curve fit to loglamda

see subs. |lam and pcond in MF-FIRE FDM-458

vectorized

common/wrk / work(8999,12)

common /np1/ u(9999) , v(9999) , rho(9999) , e(9999) ,
er(9999) , p(9999) , tp(9999)

common /prop/ gam1(9998), rosmfp(9999), rmfp1t(9999),
rmfp2t(9999), rcsubv(9999), xkap(9999)

common /a/ beta(9999) , xmask(9999), con(30)

real Inxb(10), Inyb(14)

dimension xt(10), yt(14), rxt(10), ryt(14), z(»)

dimension x(9999), dens(9999), xisx(9999), xisy(9999),
xlogIm(9999), sqtp(9999)

equivalence (x(1) , work(1,1)), (dens(1), work(1,2)),
(xisx(1) , work(1,3)), (xisy(1), work(1,4)),
(xlogim(1), work(1,5)), (sqtp(1), work(1,6))

data xt / 1.e3, 100., 10., 1.
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.1, .01, .001, .0001, 1.e~5, 1.e-6/

data rxt/ .ee1, .01, .1, 1., 10., 100., 1000., 1.e4, 1.e+5, 1.e+6/

data yt / 1
1.620, 1.e19, 1.e18, 1.e17, 1.e16, 1.e15 /
data ryt/ 1

.628, 1.e27, 1.e26, 1.e25, 1.e24, 1.e23, 1.e22, 1.e21,

.e=28, 1.e-27, 1.e-26, 1.e-25, 1.e-24, 1.e-23, 1.e-22,

1.e-21, 1.0~20, 1.e~19, 1.6-18, 1.e-17, 1.e—16, 1.e~15 /
data Inxb / 6.91, 4.60, 2.30, 0.0, -2.30, -4.60, ~6.91, -9.21,

-11.51,-13.81 /
data Inyb / 64.47, 62.17, 59.87, 57.56, 55.26, 52.96, 50.66,
48.35, 46.05, 43.75, 41.45, 39.14, 36.84, 34.54 /

define misc goodies here

do 150 j=ja,jb
sqtp(J) = sqrt( tp(j) )
x(j) = 3.1623e-5 » tp(j) * satp(}) / z(j)
dens(j) = con(6) * rho(j)

xisx(j) = 1.0
xisy(j) = 1.0
continue

search for limits on x
switch order of loops for efficiency

do 155 i=1,9
do 155 j=ja, b
xtemp = float(i) + 1.
delx = x(j) — xt(i)
xisx(j) = cvmgp ( xisx(j), xtemp, delx )
continue

now search for limits on density



1517
1518
1519
1520
1521

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541

1542
1543

[+]
o]

[+]

160

170

180

1

do 160 i=1,13

do 160 j=ja,

jb

xtemp = float(i) + 1.
delrho = dens(j) — yt(i)
xisy(j) = cvmgp ( xisy(j), xtemp, delrho )

continue

determine loglamdas in a scalar loop

do 170 j=ja,jb

isx -
isy =
xlog =
xlogim(j) =
continue

now put all

do 180 j=ja,jb

int( xisx(j) )

int( xisy(j) )

33.825 + Inxb(isx) + .26 * x(j) * rxt(isx) -
2.5 ¢ ( Inyb(isy) + .26+dens(j) *» ryt(isy) )
cvmgp ( xlog, 1.0, (xlog—-1.9) )

this stuff together to get kappa

xkap(]) = con(8) * tp(j) = tp(j) = satp(j) /

continue

return
end

( xtogim(j) = (4. + z(j) ) )
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1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
15672
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

SUBROUTINE POINT

Cc
C POINT COMPUTES THE (K,L,M) INDEX IN THE EOS TABLES THAT CORRESPOND
C TO (R-TEMP,P-TEMP,DENSITY) IN EACH ZONE OF THE PLASMA
c modified for cray vectorization
(o4
common/eos1/ ad, bd, at, bt, nmat, nfg, ja, jb,
1 rad, rdb, rat, rbt
common/eoswrk/ tr1(9999), tpl(9998), rhol(9999),
1 meos(9999), leos(9999), keos(9999)
Cc
C FIND THE INDEX FOR THE DENSITY

DO 100 J = ja,jb
temp = (rhol(j) — bd) * rad + 1.
x = cvmgp( temp, 0., temp-1.)
9x7= cvmgp(4x, 9.,39.-x )
MEOS(J) = ifix(x)
100 CONTINUE
o]
C FIND THE INDEX FOR radiation TEMPERATURE
c
DO 200 J = ja,jb
temp = (tr1(j) — bt ) * rat + 1
x = cvmgp( temp, 0.0, temp-1.)
9x7= cvmgp(4x, 19., 19.-x )
keos(J) = 1fix(x)
200 CONTINUE
Cc
C FIND THE INDEX FOR plasma TEMPERATURE
c
DO 300 J = ja,jb
temp = (tpl(j) — bt ) » rat + 1
x = cvmgp( temp, 0.0, temp—1.)
gx7= cvmgp(4x, 19., 19.-x )
leos(Jd) = ifix(x)
300 CONTINUE

return
END
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1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610

20

1

1

b N -

subroutine restart (irst,iwrst)
integer cycle, wl, wr, wt, wb

common /wrk/ wun(9999) , vn(9999) , rhon(9999), en(9999)

pr(9999) , work(9999,7)

common /np1/ u(9999) , v(9999) , rho(9999) , e(9999)

er(9999) , p(9999) , tp(9999)
common /a/ beta(9999) , xmask(9999), con(30)

common /e/ cycle, wl, wr, wt, wb, iter, imx, jmx, delt,
im1, jmi, im2, jm2, iterimt, cyl, epsi, gaminit,
gx, gy, ui, vi, cenrst, cndmp, omega, alpha,
gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,

kpta, kptb, kptc, kptd, kpte, kptf, eamb2,
bvar1, ivar2, bvar3, bvar4, bvar5, bvaré,
character*80 header

read(irst,1) ir,jr,header
format(i3,i3,a80)
write(iwrst,2) header
format(a80)

do 20 k=1,kptd

read(irst,*) ipt,u(k),v(k),p(k),rho(k),e(k),tp(k),er(k)

rhon(k) = rho(k)
en(k) = e(k)
prik) = p(k) + otdser(k)=*con(16)
continue
return
end

bvar7,bvar8
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1611

1612
1613
1614
1615
1616
1617
1618
1618
1620
1621

1622
1623
1624
1625
1626
1627
1628
1629
163@
1631

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651

1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665

O 0 0 0 0 0 0 0 0 0 0 0

ctim
ctim
ctim
ctim

102

104

1
2
3
1
1

1

N b GN -

subroutine solabc (iflag)

boundary condition subroutine
bc flags (wl, wr, wt, wb) +
1=—rigid, free slip wall
2——rigid, no-slip wall
3-—continuative outflow wall
4—-periodic (symmetric bc)
S5——user defined

note: since explicit routines used for e, er, and rho

only n+1 bc values needed——called at end of time step

integer cycle, wl, wr, wt, wb

common /mesh/ xc(9999) , yc(9999) , dx(9999) , dy(9999)

rdx(9999) , rdy(9999) ,

rdxc(9999), rdyc(9999), rxc(9998), r2dx(9999),

r2dy(9999)

common /wrk/ wun(9999) , vn(9989) , rhon(9999), en(9999)

pr(9999) , work(9999,7)

common /np1/ u(9999) . v(9999) , rho(9999) , e(9999)

er(9999) , p(9999) , tp(9999)
common /prop/ gam1(9999), rosmfp(9999), rmfp1t(9999),
rmfp2t(9999), rcsubv(9999), xkap(9999)
common /a/ beta(9999) , xmask(9999), con(30)

common /e/ cycle, wi, wr, wt, wb, iter, imx, jmx, delt,
imt, jmi1, im2, jm2, iterimt, cyl, epsi, gaminit,
g%, gy, ui, vi, cnrst, cndmp, omega, alpha,
gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,

kpta, kptb, kptc, kptd, kpte, kptf, eamb2,
bvar1, ivar2, bvar3, bvar4, bvar5, bvars,

do 140 k=1,kptb+2, imx
rho(k) = rho(k+1)
e(k) = o(k+1)
en(k) = en(k+1)
er(k) = or(k+1)
gami(k) = gami(k+1)
rcsubv(k)= rcsubv(k+1)
xkap(k) = xkap(k+1)
tp(k) = tp(k+1)
rho(k+im1) = rho(k+im2)
e(k+im1) = e(k+im2)
en(k+im1) = en(k+im2)
er(k+im1) = er(k+im2)

left be

go to (102, 104, 106, 108, 110) wl
u(k) = 0.0
v(k) = v(k+1)
go to 111
u(k) = 0.0
v(k) = —v(k+1)
go to 111

ami,

rcsubin,
bvar7,bvar8
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1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682
1683
1684
1685
1686
1687
1688
1689
16990
1691

1692
1693
1694
16985
1696
1697
1698
1699
1700
1701

1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

1712
1713
1714
1715
1716
1717
1718
1719
1720

106

108

111
122

124

126

128

130

140
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e(k) = e(k+1)
er(k) = er(k+1)
if(iflag.gt.o) go to 111
u(k) = u(k+1)
v(k) m y(k+1)

go to 111

u(k) = y(k+im2)
v(k) = v(k+im2)
rho(k) = rho(k+im2)
e(k) = e(k+im2)
en(k) = en(k+im2)
er(k) = er(k+im2)
go to 111

continue

u(k) = 0.0
v(k) = v(k+1)

right bc

go to (122, 124, 126, 128, 130) wr

u(k+im2) = 0.0

v(k+im1) = v(k+im2)

go to 140

u(k+im2) = 0.0

v(k+im1) = —v(k+im2)

go to 140

if(iflag.gt.@) go to 140
u(k+im2) = u(k+im2-1)
v(k+im1) = v(k+im2)

go to 140
u(k+im1) = u(k+1)
v(k+im1) = v(k+1)
rho(k+im1) = rho(k+1)
e(k+im1) = e(k+1)
er(k+tim1) = er(k+1)
go to 140
continue
continue
do 190 k=2, im1
rho(k) = rho(k+imx)
e(k) = e(k+imx)
en(k) = en(k+imx)

en(k+kpte) = en(k+kptf)
rho(k+kpte)= rho(k+kptf)

e(k+kpte) = e(k+kptf)

er(k) = er(k+imx)

er(k+kpte) = er(k+kptf)
tp(k) = tp(k+imx)

tp(k+kpte) = tp(k+kptf)
top be

go to (152, 154, 156, 158, 168) wt
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1721 152 v(k+kptf) = 0.0

1722 u(k+kpte) = u(k+kptf)
1723 go to 161

1724 154 v(k+kptf) = 0.0

1725 u(k+kpte) = —u(k+kptf)
17286 go to 161

1727 156 if(iflag.gt.9) go to 161
1728 v(k+kptf) = v(k+kptf—imx)
1729 u(k+kpte) = u(k+kptf)
1730 go to 161

1731 158 v(k+kpte) = v(k+imx)
1732 u(k+kpte) = u(k+imx)
1733 rho(k+kpte) = rho(k+imx)
1734 e(k+kpte) = e(k+imx)
1735 er(k+kpte) = er(k+imx)
1736 go to 161

1737 160 continue

1738 c

1739 c bottom bc

1740

1741 161 go to (172, 174, 176, 178, 180) wb
1742 172 v(k) = 0.9

1743 u(k) = u(k+imx)

1744 go to 190

1745 174 v(k) = 0.9

1746 u(k) = —u(k+imx)

1747 go to 1990

1748 176 if(iflag.gt.8) go to 190
1749 v(k) = v(k+imx)

1750 u(k) = u(k+imx)

1751 go to 190

1752 178 v(k) = v(k+kptf)
1753 u(k) = y(k+kptf)
1754 rho(k) = rho(k+kptf)
1755 e(k) = e(k+kptf)
1756 er(k) = or(k+kptf)
1757 go to 1990

1758 180 continue

1759 196 continue

1760 return

1761 end



1762
1763
1764
1765
1766
1767
1768
1769
1779
1771

1772
1773
1774
1775
1776
1777
1778
1779
1780
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1783
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N b UN =

subroutine s

olaice

this subroutine solves a single time step of a 2-d
compressible flow problem (with energy equation)
using the sola—ice technique
modified for

vectorized loops
pressure iteration

note: k == i,]

k=1 === ji=1,j
k+1 === i+1,]
k—imx ——— i,j-1
k+imx ——— i, j+1

integer cycl

e, wi, wr, wt, wb

common /mesh/ xc(9999) , yc(9999) , dx(9999) , dy(9999)

common /wrk/

common /npi/

rdx(9999) , rdy(99%9) ,

rdxc(9999), rdyc(9999), rxc(9999), r2dx(9999),
r2dy (9999)

un(9999) , vn(9999) , rhon(9999), en(9999) ,
pr(9999) , work(9999,7)

u(9999) , v(9999) , rho(9999) , e(9999)
er(9999) , p(9999) , tp(9999)

common /prop/ gam1(9999), rosmfp(9999), rmfp1t(9999),

common /a/
common /fe/

dimension en
equivalence

start cyc

if (cycle.eq

rmfp2t(9999), rcsubv(9999), xkap(9999)

beta(9999) , xmask(8999), con(30)
cycle, wl, wr, wt, wb, iter, imx, jmx, delt, xmu,
im1, jmi, im2, jm2, iterimt, cyl, epsi, gaminit,
gx, gy, ui, vi, enrst, cndmp, omega, alpha, t, ami,
gamma, asq, rhoi, eamb, dtrad, otd, ftd, xkap2,
kpta, kptb, kptc, kptd, kpte, kptf, eamb2, rcsubin,
bvar1, ivar2, bvar3, bvar4, bvar5, bvar6é, bvar7,bvar8

p1(9999), ernp1(9999)
( enp1(1), work(1,1) ), ( ernpi(1), work(1,2) )

.9) go to 480

CHu b Rk i k0 ok e o ko ok ook o o ok o ol ko ok ol o o o o o e ok ok ok ok ol ok o ok ok ok ok ok ok ok ke

c
[
[

first com

*
pute u-tilde and v—-tilde using explicit solver *
*

CEEEREEEREABE RN R kR R R AR KR T Kok ok e ok ok ok ok ok ok ok ok o ok ok o ok o o ok o o ok ok o o ok ol o ok o o ok ok ok K oK K

[+
c

compute u

do 60 k=kpta
fux = am

0.
vstar= 9.
fuy = 2,
al

tilde

, kptb

1sun(k)*rdxc(k)*(un(k+1)—un(k-1)) +

S5*alpha*(rdx(k+1)«(un(k+1)—un(k))*(un(k)—abs(un(k)))+
rdx(k)*(un(k)-un(k=1))*(un(k)+abs(un(k))) )

Serdxc(k)s( dx(k)s(vn(k)+vn(k—imx)) +

dx(k+1)s(vn(k+imx+1)+va(k—imx+1)) )
*amisvstars( un(k+imx)-un(k—imx) ) * r2dy(k) +
pha*(rdyc(k)*(un(k+imx)—un(k))*(vstar-abs(vstar)) +
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1817 2 rdyc(k=imx)*(un(k)-un(k-imx))*{vstar—abs(vstar)))
1818 vk = 2.axmu/(rhon(k)+rhon(k+1))

1819 visx = vke( ftd » rdx(k) = ( rdxc(k=1) * (un(k=1) - un(k)) -
1820 a rdxc (k) « (un(k) = un(k+1)) ) +
1821 1 rdy(k) * ( rdyc(k—imx) * (un(k—imx) = un(k)) -
1822 a rdyc(k) * (un(k) — un(k+imx)) ) +
1823 2 (va(k+1)=vn(k=imx+1)—vn{k)+vn(k—imx))*otdsrdy (k)=

1824 3 2.#srdxc(k) +

1825 4 ftdecyl»( (un(k+1)=un(k—1) )*2.%r2dx(k) -

1826 5 un(k)/(abs(xc(k))+.5«dx(k)) ) /

1827 6 ( abs(xc(k))+.5%dx(k) ) )

1828 dp = 2.+(pr(k)-pr(k+1)) / (dx(k)*rhon(k) + dx(k+1)srhon(k+1))
1829 c

1830 c

1831 u(k) = un(k) + xmask(k) « delt*( dp + gx — fux — fuy + visx )
1832 60 continue

1833 c

1834 c compute v tilde

1835 c

1836 do 61 k=kpta, kptb

1837 ustar= @.5+rdyc(k)*( dy(k)s(un(k)+un(k=1)) +

1838 1 dy (k+imx)*(un{k+imx)+un(k+imx—1)) )

1839 fvx = 2. xamisustare( vn(k+t) — vn(k=1) ) » r2dx(k) +

1840 1 alphas(rdxc(k)*(vn(k+1)~vn(k))*(ustar — abs(ustar)) +
1841 2 rdxc(k=1)+(vn(k)-vn(k))*(ustar — abs(ustar)) )
1842 fvy = amisvn(k)*rdyc(k)*( vn(k+imx) — vn(k—imx) ) +

1843 1 .5salphas(rdy(k+imx)*(vn(k+imx)-vn(k))*(vn(k)—abs(vn(k)))+
1844 2 rdy(k)*(vn(k)-vn(k=1))*(vn(k)=abs(vn(k))) )
1845 vk = 2.s«xmu/(rhon(k)+rhon(k+imx))

1846 visym vk*( rdx(k—1) * ( rdxc(k—=1) » (vn(k=1) = vn(k)) -

1847 a rdxc(k) * (vn(k) — vn(k+1)) ) +
1848 1 ftdsrdy(k) » ( rdyc(k—imx) * (vn(k-imx) - vn(k)) -
1849 b rdyc(k) * (vn(k) — vn(k+imx)) ) +
1850 2 (un(k+imx)—un(k)—un(k+imx—=1)+un(k=1))sotdsrdx(k)*

1851 3 2.%rdyc(k) +

1852 4 cylerxc(k)*( (vn(k+1)—vn(k—1))*2.%r2dx(k) +

1853 5 2.%0td*rdyc(k)*( un(k+imx)+un(k+imx—1)-
1854 6 un(k)=un(k=1)) ))

1855 dp =2.*(pr(k)-pr(k+imx))/(dy(k)*rhon(k)+dy(k+imx)*rhon(k+imx))
1856 c

1857 c

1858 v(k)= vn(k) + xmask(k)sdelt*( dp + gy — fvx — fvy + visy )
1859 61 continue

1860 CREEERRBEEERRREEERRREEEREER RN R AR KRR R KRR R AR AR R R R KRR R R R KRR Rk Rk k& &k k&
1861 c *
1862 c pressure solver sequence — determine u,v,p (n+1) *
1863 c satisfy continuity and reduced momentum equations *
1864 c implicit technique *
1865 c *
1868 c.."*"*“#“.*““"*.“**t“"‘"l"*‘**tt‘*“#‘**“‘*#**#*##***
1867 iter = @

1868 flg = 0.

1869

1870 c now set boundary conditions

1871
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1872 75 continue

1873 iflag = iter

1874 call solabe (iflag)

1875 c

1876 c check for pressure convergence

1877 c

1878 iter = iter + 1

1879 if (abs(fig-1.2).1t.0.001) go to 400

1880 if (iter.lt.iterimt) go to 255

1881 if (cycle.1t.2) go to 400

1882 t = 1.e+32

1883 go to 502

1884 c

1885 c vector function cvmgp sets iflig:

1886 c =0 if temp.ge.® (not converged)

1887 ¢ =1 if temp.It.®@ (converged)

1888 c

1889 255 continue

1890 c

1891 flg = 1.

1892 c

1893 do 301 k=kpta,kptb

1894 d = rdx(k)s(u(k)=u(k=1))+rdy(k)*(v(k)-v(k=imx))

1895 1 +eyl*(u(k)+u(k-1))»(0.5%rxc(k))

1896 rot = rhon{k)/(1.0+deltsd)

1897 et = e(k) - p(k)sdelt*d/rotscon(17)

1898 pt = gami(k) * rot = et » con(16)

1899 delp = —beta(k)*(p(k) — pt) * xmask(k)

1900 p(k) = p(k) + delp

1901 temp = abs(delp) — p(k)*epsi

1902 filg = flg = cvmgp(0.0, 1.9, temp)

1903 u(k) = u(k)+2.0+delt*rdx(k)*delp/(rhon(k)+rhon(k+1))

1904 u(k—=1)=u(k=1)-2+deltsrdx(k)*delp/(rhon(k—=1)+rhon(k))

1905 v(k) = v(k)+ 2.+deltsrdy(k)sdelp/(rhon(k)+rhon(k+imx))
1906 v(k=imx)=v(k—imx)-2#deltsrdy(k)sdelp/(rhon(k—imx)+rhon(k))
1907 301 continue

1908 go to 75

1909 400 continue

1910 CEERRE R R R R R R0 ok o o o aokok ok ok ok o o ol s ok ok o o ok ok o ool ok koK ok ok sk o o ok ok ok ok ok o ok ok ok K K
1911 c *
1912 c converged step——now update scalor transport equation *
1913 c *
1914 c‘***‘t‘##*.‘*‘#*"#‘*‘.###“"##““**#‘t‘##*‘#“*#*##***##‘##‘#**
1915 c

1916 c density equation

1917 c

1918 do 450 km=kpta, kptb

1918 f1 = rhon(k)

1920 f2 = —rdx(k)*( (u(k)*( rhon(k) + rhon(k+1) ) +

1921 1 alpha*abs(u(k))*( rhon(k) — rhon(k+1)))
1922 2 - (u(k=1)*( rhon(k=1)+ rhon(k) ) +

1923 3 alphasabs(u(k=1))*( rhon(k=1)= rhon(k))))
1924 f3 = —rdy(k)*( (v(k)*( rhon(k) + rhon(k+imx) ) +
1825 1 alphaxabs(v(k))*( rhon(k) - rhon(k+imx)))

1926 2 - (v(k=imx)*(rhon(k)+rhon(k—=imx)) +



1927
1928
1929
1930
1931

1932
1933
1934
1935
1936
1937
1938
19389
1940
1941

1942
1943
1944
1945
1946
1947
1948
1949
1950
1951

1952
19583
1954
1955
1956
1957
1958
1959
1960
1961

1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

1972
1973
1974
1975
1876
1977
1978
1979
1980
1981
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3 alpha*abs(v(k—imx))*( rhon(k—imx)=rhon(k))))
f4 = —rxc(k)*( u(k)*( rhon(k)+ rhon(k+1) ) +

1 alphas*abs(u(k))*( rhon(k) — rhon(k+1) )

2 + u(k—1)*( rhon(k=1)+ rhon(k) ) +

3 alpha*abs(u(k=1))*( rhon(k=1)~ rhon(k)) )

rho(k) = f1 + xmask(k) * deilt » .5 « ( f2 + 3 + cyl*f4 )
9rho(k)3= cvmgp (rho(k), con(28), (rho(k) — con(29)) )
450 continue

c
c energy equation--convective portion only
c for both e and er energy densities
c
do 475 k=kpta, kptb
f1 = e(k)
f2 = amix(u(k)+u(k—1))s( e(k+1) — e(k-1) ) * r2dx(k) +
1 amis(v(k)+v(k=imx))*( e(k+imx) — e(k—imx) ) * r2dy(k)+
2 ©.5%alphae( rdxc(k)s(u(k)+u(k=1) —abs(u(k)+u(k=1)) ) =*
3 ( e(k+t1) — e(k) ) +
4 rdxc(k=1)+*(u(k)+u(k—1)+abs(u(k)+u(k-1)) ) =
5 (e(k) — e(k-1) ) ) +
6 ©.5+alphas(rdyc(k)*(v(k)+v(k—-imx)—abs(v(k)+v(k—imx)))*
7 ( e(k+imx) — e(k) ) +
8 rdyc(k—imx)+(v(k)+v(k~imx)+abs(v(k)+v(k—imx)))=
9 ( e(k) — e(k—imx) ) )
c

enpl(k)= f1 — xmask(k) * delts {2
475 continue

do 476 k=kpta, kptb
f1 = er(k)
f2 = amis(u(k)+u(k-1))+( er(k+1) — er(k=1) ) * r2dx(k) +
aml*(v(k)+v(k—imx))*( er(k+imx) — er(k—imx) )sr2dy(k)+
0.5+alpha*( rdxc(k)*(u(k)+u(k-1) —abs(u(k)+u(k=1)) ) =
( er(k+1) — er(k) ) +
rdxc(k—1)*(u(k)+u(k=1)+abs(u(k)+u(k=1)) ) =
( er(k) — er(k-1) ) ) +
©.5salphas(rdyc(k)+(v(k)+v(k—imx)—abs(v(k)+v(k—imx)))*
( er(k+imx) — er(k) ) +
rdyc(k—imx)*(v(k)+v(k—imx)+abs(v(k)+v(k—imx)))=
( er(k) — er(k=imx) ) )

W 0N, P GN =

ernpi(k)= f1 — xmask(k) » delt* f2
476 continue

do 477 k=kpta,kptb
tp(k) = tp(k) + resubv(k) * (enpi(k) — e(k))
e(k) = enpti(k)
erad = ernp1(k)
er(k) = cvmgp ( erad, con(26), (erad-con(26)) )
477 continue

now update the hydro pressure and total pressure

do 478 k=1,kptd
p(k) = gami(k) = rho(k) » e(k) * con(16)



1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1983
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
201¢
2011
2012
2013
2014
2015

pr(k) = p(k) + otd * er(k) + con(16)
en(k) = e(k)

478 continue

480 continue

iflag = @

call

boundary conditons since loops go to im1, and jm1

call solabe (iflag)
CHRERR KB RE RN AR KR R R R Rk ook R o o o o ook ook ok ok 3 a0 ok ok ok ok ok ok o o ol o ol o ok ok ok ok ok ok ok ok ok ok ok ok ok kK K K

[+

c compute the relaxation factors——constant for time step *

[+]

*

CHEXABRRSERERKEEXRERAER SRR B R KR E AR KRR AR R RR AR AR R R R R R R Rk ke Rk kR X

do 490 k=kpta, kptb

pto
delp

ur
ul
vt
vb
dt

= gam1(k) * rho(k) » e(k) * con(16)

= 1.e~4 * pto

= 2.0sdelt » rdx(k) = delp /(rho(k)+rho(k+1))
=-2.0sdelt + rdx(k) * delp /(rho(k=1)+rho(k))
= 2.0+delt * rdy(k) * delp /(rho(k)+rho(k+imx))
=—2.0+delt * rdy(k) = delp /(rho(k—imx)+rho(k))
= delt *«(rdx(k)*(ur—ul) + rdy(k)*(vt—=vb)

+ cyls(ur+ul)*0.50%rxc(k))

rho(k)/(1.0 + dt)

e(k) ~ p(k)/rho(k)*dtscon(17)
gami(k)*rotset*con(16)

beta(k) = omegasdelp/(delp—(pt—pto))

499 continue
502 continue

return
end
END
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2016
2017
2018
2019
2020
2021

2022
2023
2024
2025
2026
2027
2028
2029
2030
2031

2032
2033
2034
2035
2036
2037
2038
2939
20490
2041

2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061

2062
2063
2064
2065
2066
2067
2068
2069
2070

OO0 o OO0

(o]

(o]

OO OOO0OOO0OOOOO0OO0

SUBROUTINE TABLE2(A,AA,AADER, tp)

TABLE2 INTERPOLATES IN THE TWO-DIMENSIONAL EOS TABLES USING THE
LEOS AND MEOS INDICES
modified for cray vectorization
cvmgz (=0, <>0, test)

common/eos1 / ad, bd, at, bt, nmat, nfg, ja, jb,
1 rad, rdb, rat, rbt

common/wrk / work(9999,12)

common/eoswrk/ tr1{9999), tpl(9999), rhol(9999),

1 meos(9999), leos(9999), keos(9999)

dimension A(*), AA(*), AADER(s), tp(s),
1 dtp(9999), dden(9999), xpt(9999)

equivalence (work(1,5), dtp(1)), (work(1,6), dden(1)),
1 (work(1,7), xpt(1))

data kmat, xtab, itab, xytab /1, 20., 20, 200./
const = float(kmat—1) * xytab
FIND THE EOS QUANTITIES
DO 100 J = ja,jb
| = LEOS(J)
M = MEOS(J)
dtp(j) = tpl(J) — AT = (L-1) - BT
dden(j) = rhol(J) — AD s (M-1) - BD

TEST FOR LOWER TABLE LIMIT

x| = float(l)

dtp(j) = cvmgz (0.0, dtp(j), xI)

x| = cvmgz (1.0, xl, xI)

xm = float(m)

dden(j) = cvmgz (0.0, dden(j), xm)

xm = cvymgz (1.0, xm, xm)
xpt(j) = (xm = 1,)*xtab + x| + const

100 continue

IF THE DENSITY BECOMES LOWER THAN THE MINIMUM IN THE TABLE, WE MUST
EXTRAPOLATE TO GET Z2B AND EN2B USING Y=SLOPE*X + B FORMULA.
EXTRAPOLATE THE DENSITY AT L.

SLOPE1 = —(A(L,1,KMAT) - A(L,2,KMAT))/AD

Bt = A(L,1) - SLOPE1 « BD

ALMS = SLOPE1 * rhol(J) + B1
EXTRAPOLATE THE DENSITY AT L + 1

SLOPE2 = —(A(L+1,1,KMAT) — A(L+1,2,KMAT))/AD

B2 = A(L+1,1,KMAT) — SLOPE2 *« BD

ALMSS = SLOPE2 * rhol(J) + B2

GO TO 30
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2071

2072
2073
2074
2075
2076
2077
2078
2079
2089
2081

2082
2083
2084
2085
2086
2087
2088
2089
2090
2091

2092
2093
2094
2095
2096
2087
2098
2099
2100
2101
2102
2103

[+
[+

(o]

(o 2N @]

set table values in a scalar loop

do 110 j=ja,jb

ipt = ifix(xpt(j))
work(j,1) = a(ipt)
work(j,2) = a(ipt+itab)
work(j,3) = a(ipt+1)
work(j,4) = a(ipt+itab+1)

11@ continue
now finish with o vectorized loop
do 150 j=ja,jb
INTERPOLATE THE DENSITY AT L and I+1

ALMS = work(j,1) + (work(]j,2) — work(J,1)) * rad + dden(j)
almss = work(j,3) + (work{(j,4) — work(j,3)) * rad * dden(j)

COMPUTE THE PLASMA TEMPERATURE DERIVATIVE

ADER = (ALMSS - ALMS) s rat
QUAN = ALMS + ADER = DTP(j)

CONVERT FROM LOGARITHMIC BACK TO REAL UNITS

AA(Y) = 10.%sQUAN
AADER(J) = ADER * AA(J) / tp(j)

150 CONTINUE
RETURN
END
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2104
2105
2106
2107
2108
2109
2110
21119

2112
2113
2114
2115
2116
2117
2118
2119
2129
2121

2122
2123
2124
2125
21286
2127
2128
2129
2130
2131

2132
2133
2134
2135
2136
2137
2138
2139
2140
2141

2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

2152
2153
2154
2155
2156
2157
2158

SUBROUTINE TABLE3(B,AA)

C
C TABLE3 INTERPOLATES IN THE THREE-DIMENSIONAL EOS TABLES USING THE
C KEOS, LEOS, AND MEOS INDICES
c modified for cray vectorization
(o
common/eosli / ad, bd, at, bt, nmat, nfg, ja, jb,
1 rad, rdb, rat, rbt
common/wrk / work(98999,12)
common/eoswrk/ tr1(9999), tpl1(9999), rhol(9999),
1 meos(9999), leos(9999), keos(9999)
c
dimension B(#*), aa(s), xpt(9999), dden(8999),
1 dtp(9998), dtr(9999)
¢
equivalence (xpt(1), work(1,11)), (dden(1), work(1,9)),
1 (dtp(1), work(1,12)), ( dtr(1), work(1,10))
c
data kmat,xtab,xytab,itab,ijtab
1 / 1, 20., 400., 20, 400/
c
DO 200 J = ja,jb
xk = float(KEOS(J))
x| = float(LEOS(V))
xm = float(MEOS(J))
dden(j) = rhol(J)— AD * (xm-1.) - BD
dtp(j) = tpl(J) — AT = (x1-1.) - BT
dtr(j) = tri(J) - AT & (xk=1.) - BT
c
C TEST FOR LOWER TABLE LIMIT
c
dtr(j) = cvmgn ( dtr(j), @.0, xk)
xk = cvmgn ( xk, 1.0, xk)
dtp(j) = cvmgn ( dtp(j), @.0, xI)
x| = cvmgn ( xl, 1.0, xI)
dden(j) = cvmgn (dden(j), @.0, xm)
xm = cvmgn ( xm, 1.0, xm)
xpt(j) = (xm —1.)sxytab + (x| —1.)sxtab + xk

2090 continue
c

¢ setup property arrays-——scalar mode

c

do 250 j=ja,]b

ipt
work(j,1)
work(j,2)
work(j,3)
work(j,4)
work(j,5)
work(j,6)
work(]},7)
work(j,8)

250 continue

¢

Ifix(xpt(j))

b(ipt)

b(ipt+itab)
b(ipt+1)
b(ipt+itab+1)
b(ipt+ijtab)
b(ipt+ijtab+itab)
b(ipt+ijtab+1)
b(ipt+ijtab+itab+1)

¢ now finish the job with vectorized loop
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2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
217¢
2179
2180
2181
2182
2183
2184
2185
21886
2187
2188
2189

(o]

(9N 9]

do 300 j=ja,jb

INTERPOLATE THE PLASMA TEMPERATURE AT M and M+

AMS = work(j,1) + (work(j,2) — work(j,1)) * rat = dtp(j)
AMSS = work(],3) + (work(j,4) — work(j.3)) * rat * dtp(j)
AM1S = work(],5) + (work(],6) — work(j,5)) * rat * dtp(j)
AM1SS= work(j,7) + (work(j,8) — work(j,7)) * rat = dtp(j)

COMPUTE THE RADIATION TEMPERATURE DERIVATIVE AT M AND M+

ACER = (AMSS - AMS) »* rat
ADER' = (AM1SS — AM1S) » rat

INTERPOLATE THE RADIATION TEMPERATURE AT M AND M+1

QUAN = AMS + ADER * DTR(})
QUAN1 = AM1S -+ ADER1 * DTR(j)

INTERPOLATE THE DENSITY
QUAN = QUAN + (QUAM1-QUAN) * rad * dden(j)
CONVERT FROM LOGARITHMIC BACK TO REAL UNITS
AA(J) = 10.@%+QUAN
300 ZONTINUE

RETURN
END
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