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Fusion Technology Institute, 1500 Johnson Drive

University of Wisconsin-Madison, Madison, WI

Abstract

Lifetime considerations for the reaction chamber
of the SNL light ion fusion target development facility
include mechanical fatigue analysis because of shock
pressures generated in the chamber gas after each tar-
get ignition. The oscillatory response of the struc-
tural wall from the repetitive dynamic overpressure is
identified, including the effects of damping. Fatigue
lifetime calculations have been done in accordance with
ASME guidelines utilizing cumulative damage criteria.
It is shown that the primary design goal of 15,000
shots at a yield of 200 MJ can be met with aluminum or
steel chambers having radii from 1.5 to 3 m with
practical wall thicknesses.

Introduction

The target development facility (TDF) is a pro-
posed research installation of Sandia National Labora-
tories intended for qualification and testing of ICF
targets for the 1light ion fusion program, The usage
rate is estimated at 10 shots per day for 5 years, i.e.
approximately 15,000 shots. At this time, the reaction
chamber is considered to be a capped cylindrical shell
structure, submerged in a water shield as shown in Fig.
1. The oscillatory response of the chamber wall and
the large number of shots suggest that mechanical fa-
tigue may be an important design issue. An assessment
of fatigue life is summarized in the work which fol-
1[ows. Additional details are available in UWFDM-656
1].

Fig. 1.

53706-1687

Pressure Pulse Considerations

The dynamic load 1is assumed to be uniformly
distributed over the chamber wall. A typical pulse is
shown in Fig. 2. The impulse value of such a shock is
a key parameter in the analysis. The mechanical re-
sponse is essentially determined by the impulse magni-
tude rather than the pulse shape and peak pressure if
the mean pulse width is considerably less than vibra-
tion periods. This approach is both accurate and con-
venient for parametric studies.

Procedure and Description of the Base Case

The base case design is a chamber with radius and
effective height of 3 m and 2 m, respectively, and a
wall thickness not less than 3 cm., Materials used are
welded 6061-T6 aluminum and 2.25 Cr-1 Mo ferritic
steel. Target yield is 200 MJ with the corresponding
impulse 110 Pa-s. With these parameters and 2% damping
[2], displacement and stress histories have been deter-
mined using the relevant axisymmetric harmonics.

Maximum axial flexural stress occurs at the ends
of the cylinder. Results for a 3 cm steel wall are
shown in Fig. 3. Increasing the wall thickness will
decrease the peak stress. For example, the maximum
stress can be reduced by more than a factor of two by
doubling the wall thickness as dindicated in Fig. 4.
This stress distribution is characterized by a rather
steep axial gradient and thus can be controlled by a
localized increase in thickness near the ends, i.e., a
hub. In the greater percentage of the shell which ex-

Light Ion Target Development Facility Concept.
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Fig. 3. TDF Cylindrical Shell Flexural Mechanical
Stress.
cludes the ends, the dominant stress is circumfer-
ential. The design thickness is based upon this value

which is more uniformly distributed and also of smaller
amplitude. For comparison purposes, Fig. 5 is the cir-
cumferential stress history corresponding to Fig. 3.

The stress and strain histories are characterized
by multiple cycles of different amplitudes., Thus cumu-
lative damage criteria are used to assess chamber 1ife-
times, The ASME Pressure Vessel code procedures for
cumulative damage are followed [3]. This involves the
determination of the effects of the number of applied
cycles of various amplitudes as compared with the num-
ber of corresponding design allowable cycles, Instead
of the Code's stress design curves, the material pro-
perties used consist of fully reversed alternating
strain as a function of the number of cycles to fail-
ure. With such basic data, the guidelines call for
safety factors of two on strain magnitude or twenty on
cycles, whichever is more conservative. This is the
only formal inclusfon of a safety factor in the analy-
sis and design.

A computer code has been developed for the deter-
mination of fatigue 1ife. The principal steps in the
program include accurately calculating natural frequen-
cies and mode shapes for a specific material, thick-
ness, radius and length. The displacement and strain
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Fig. 5. TDF Cylindrical Shell Circumferential Mechani-

cal Stress.

histories are then determined for each value of the im-
pulsive loading. Typical examples are shown in Figs. 6
and 7 for steel and aluminum base cases with 3 cm
walls., A counting procedure is applied to each his-
tory, assessing cumulative damage and comparing with
stored data for strain amplitude as a function of
cycles to failure. This results in identification of
the number of shots permissible for a given chamber
subjected to impulsive pressures spanning the range of
interest. The process is then repeated completely for
a change in one parameter, e.g., the wall thickness.

Fatigue Results

The fatigue strain-range data for welded aluminum
6061-T6 was obtained from design guidelines of the
American Society of Civil Engineers [4]. The given
values had a built-in safety factor of 1.35. Test re-
sults for plate samples indicate that the ASCE formulas
provide safety factors against failure under cyclic
loading of at least 1.35. Accordingly, the original
design data from ASCE has been derated by 1,35 and is
shown in Fig. 8. Corresponding data for 2.25 Cr-1 Mo,
shown in Fig., 9., was obtained from the work of Booker
et al., at ORNL [5]. These data, characterized for the
design of nuclear steam generators, were accepted for
inclusion in ASME Code Case N-47 [3]. Data were ob-
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tained from fully reversed constant amplitude strain-
controlled fatigue tests at a strain rate of approxi-

mately 4 x 1071 s71,

The family of fatigue life design curves for
welded aluminum chambers with various thicknesses and a
radius of 3 m is presented in Fig. 10. Terminal points
on the curves joined to vertical limits identify impul-
sive pressures which cause dynamic yjelding. With a
thickness of 3 cm and an impulse of 110 Pa-s (200 MJ)
the lifetime corresponds to 32,300 shots as compared
with the design objective of 15,000. The results are
highly nonlinear. A small increase in the impulse will
dramatically reduce the allowable number of shots,
However, for this case, even if the impulse is conser-
vatively doubled for reasons associated with fireball
calculations, the design goal could still be realized
with a 5 cm wall.

As can be seen from Fig. 11, the fatigue lifetime
results for 1.5 m and 3 cm radius chambers have simi-
larities. Lifetime 1is based upon dynamic circumfer-
ential stress, a parameter which is radius-independent
for a theoretical membrane shell of arbitrary length
under radial impulsive pressure. This is an important
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Fig. 9. Fatigue Data for 2.25 Cr-1 Mo Steel.
effect, but the complex multiharmonic response for

finite shells coupled with nonlinear fatigue criteria
constitute strong influences as well. The correspond-
ing design curves for steel chambers in Figs. 12 and 13
show the superior fatigue characteristics of 2.25 Cr-1
Mo, It should also be noted that while it appears that
lifetimes of smaller chambers are higher, larger impul-
sive Toads may be generated in a smaller chamber for
the same yield,

Conclusions

The TDF fatique lifetime analysis has been made
for steel and aluminum chambers with a range of size
parameters and impulsive pressures, Lifetime for steel
chambers is considerably better than aluminum. How-
ever, it has been shown that a 3 m radius aluminum
chamber can sustain 15,000 shots at a yield of 200 MJ
with a wall as thin as 3 cm, It appears that the cham-
ber size can be reduced and still carry increased loads
if the thickness is increased appropriately. Combina-
tions of 200 MJ and higher yield shots are possible.
In general the results indicate that the design objec-
tives can be met with ample safety factors and chambers
of practical size.
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