Computer Code AVSYS for Calculation of Fusion
Plant Availability

Z. Musicki and C.W. Maynard

November 1985

UWFDM-663

Presented at 11th Symposium on Fusion Engineering, November 18-22, 1985, Austin,
TX.

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Computer Code AVSY Sfor Calculation of
Fusion Plant Availability

Z. Musicki and C.W. Maynard

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

November 1985

UWFDM-663

Presented at 11th Symposium on Fusion Engineering, November 18-22, 1985, Austin, TX.

http://fti.neep.wisc.edu/

COMPUTER CODE AVSYS FOR CALCULATION OF FUSION PLANT AVAILABILITY

Z., Musicki and C.W. Maynard
Nuclear Engineering Department, 1500 Johnson Drive

University of Wisconsin-Madison, Madison, Wl

I. Introduction

This paper describes the computer program AVSYS
and the recent changes implemented in order to improve
its usefulness. The incentive for writing this program
comes from the perceived need for availability analysis
in fusion engineering (see related paper [1]). of
course, the utility of the code is not confined to the
fusion area, but can include the availability/relia-
bility analysis of any system.

AVSYS is a Monte Carlo simulation code, whose
basic principles and features have been described in
[2] and [3]; sample applications to the MARS conceptual
design were included in both references, The code is
currently one of the four being examined for use in
fusion (two of the others being deterministic and the
third also a Monte Carlo code). These programs have
been recently compared [4] with the conclusion that
none are to be strongly favored over the others. This
paper will describe recent improvements to AVSYS in the
areas of speed of execution, variance reduction and
versatility of application.

In general, there are two basic methods of compu-
ting system availability: deterministic and stochastic
(i.e., Monte Carlo). In the deterministic methods, the
solution is presented in the form of closed form mathe-
matical expressions. These expressions tend to be
complicated even for relatively simple cases; however,
the execution time of such programs is much shorter
than that of a Monte Carlo program. The Monte Carlo
methods simulate system transitions (failure, repair,
etc.) and options that are possible at each transition
by comparing certain probability parameters to random
numbers. These methods are flexible 1in that complex
and more realistic situations can be modeled. The dis-
advantages are increased computation time and the re-
lated problem of variance reduction (i.e., many his-
tories have to be run in order to achieve acceptable
statistical variance of the result).

In order to minimize the computer running time,
most Monte Carlo programs that the authors are aware of
simulate Markovian transitions of the system [5,6] with
the price being paid 1in increased inflexibility of
application of the program. Transition times (failure,
repair) of the whole system are simulated assuming con-
stant failure rates and repair rates of its components
(the system being the whole power plant for instance).
In AVSYS, the program looks at each component individu-
ally and decides if and when it fails or is repaired.
There is also no constraint in principle, on the type
of distribution (in time) of component failure and re-
pair (the older version of AVSYS did assume constant
failure rates and constant repair times).

AVSYS has been run on the NMFECC Cray computers at
Livermore; a MARS problem with 85 subsystems, 41 gates,
200 time steps and 100 histories runs in about a minute
of Cray-l1 time (the C or D machine). The Cray X-MP/2
(the E machine at the NMFECC) should execute a little
faster due to a shorter clock period (9.5 ns vs. 12.5
ns). We also ran the same problem on the IBM-PC in
about 1.5 hr,

The version of AVSYS described in [2] and [3] was
able to handle multiply operating units of the same

53706-1687

subsystem including m out of n operation, spares, de-
ferred repair and scheduled maintenance. The assump-
tions incorporated were of parallel repair facilities
and constant failure rates and repair times, with a
single failure mode for each subsystem, It was set up
to handle 100 subsystems and 100 gates of each kind
(these parameters could easily be changed in the pro-
gram). The assumptions could be changed relatively
easily.

In order to use the program, the user had to input
the reliability/repair information for each subsystem,
as well as the system configuration information (number
of 1identical subsystem units operating, number of
spares, etc. as well as the connection of subsystems,
AND and OR gates in the success tree of the system).

I1I. Variance Reduction

A biasing scheme has been implemented in AVSYS in
order to reduce the variance. This scheme is described
in [3]. The component failure rates are multiplied by
a user-chosen factor in order to artificially increase
the number of failures. There is a corresponding de-
crease in the weight given each failure in order to un-
bias the downtime estimator. For a component i with a
failure rate A.I. a new failure rate is instituted:

*

Ai = k)\i

where k is some pre-specified constant.

Upon failure of component i, the downtime credited
in each step At during repair is adjusted by multiply~-

ing At by the weight w? for the n-th failure of compo-
nent 1:

_ _1 * *
Wy T Wy A/ exp(-d(Ai - Ai))

d is the elapsed time between the end of the previous
repair and the beginning of the current failure.
Figure 1 explains how the downtime is credited at each
failure., Since now only a portion of At in each time
step is credited to downtime at each failure, compo-
nents and gates may change state inside each At, If
there are several units of a subsystem operating to-
gether (e.g., m out of n system) then the state of the
subsystem is determined by looking at the state of each
unit inside At to compute the state(s) of the subsystem
inside this At,

If the weight w’; becomes too small, the history is

either terminated for this component (meaning it stays
up until the end of current history), or it is resumed
but with an increased weight. This is the game of
Russian roulette. The cutoff weight wy and the proba-

bility R are input by the user, Then if w? < Wy, the

history of component i is terminated with probability
(1 - R) and is resumed with probability R, but with the

downtime credited in each

State n
| | At = weat
e RT
1 ‘
| |
|
failure ;
L |
0 B |
At 28t 3at Pdat t
repair time = 3at '
“i.. 1, Subsystem downtime credited in each At,

n+l

increased weight Wi o= w?/R, to be acquired at the
next failure.

The values of k, wg and R are determined by trial

and error for minimum computation time and variance,
2

a°, In our runs, we generally apply this scheme if

Ay < 10% nr7l; our time step is At = 50 hr and there
are 200 time steps and 100 histories.

We have run a sample problem with a simple three-
input AND gate (input No. 1 consists of 5 identical
units, input No, 2 consists of 2 identical units and
input No. 3 consists of one unit). The input informa-
tion is described in Table 1. For 200 time steps of 50
hr each and 100 histories, the problem runs in 6 sec of
Cray-1 time with a standard deviation, o, of less than
1% for most time steps. Without the biasing scheme in
place, this standard deviation is about 10-20% with
about the same running time. The sample standard devi-
ation, og, Of the mean values of availability for each
time step is 10 times less than o (100 trials). Assum-
ing normal distribution over trials [3], about 99.7% of
the population of availabilities for each time step
will lie within 30 (standard deviations) of the mean
value for a particular time step, so an acceptable pre-
cision results from employment of the biasing scheme.
Similar results are obtained by running a sample MARS
problem [71].

III. Running Time Reduction; Vectorization and

Paralleiism

The motivation for attempting to increase the ef-
ficiency of the program comes from the fact that any
detailed modeling of a reasonably large system will
involve thousands of subsystem inputs and logic gates.
The simple representation of MARS that we ran had 85

As a result of our biasing scheme, we've had to
add some subroutines in our program with a small in-
crease in running time [3,7] (the program layout is
presented in Fig., 2). However, this is more than off-
set by vectorizing [8] the routine FAIL which does the
Monte Carlo simulation of failure by comparing a random
number to a component's reliability (in REPAIR, we just
add a specified repair time to the component's down-
time). Vectorization allows more efficient use of pro-
cessor time 1inside DO 1loops. Before vectorization,
about 7 times as much time {s spent in FAIL as in an
average subroutine (30-60 us per call), After vectori-
zation FAIL execution time is comparable to that of an
average subroutine which cuts program execution time in
half.

The program execution time can also be decreased
(at least theoretically) by employing the parallel pro-
cessing capabilities of the Cray X-MP/2 (E machine) re-
cently installed at the NMFECC [9]. This computer has
two processors that can process concurrently a single
program. The program has to be changed to insure the
right timing. However, so far we have not been able to
show a significant decrease of computing time; it is
difficult to get both processors to work on the same
program when there are other users in the system. We
are continuing to work on this aspect of speed improve-
ment.

IV. Running Time Reduction: A Method of Sampling
Transition Times

The method of simulation of subsystem/component
failure 1in our program has been to compare its time
step reliability, exp(-xiAt), to a random number in

{(0,1). This is very inefficient, because in order to
generate one failure, many time steps with no failure
have to be sampled even with a biasing scheme in place.

* - -

For example, for A1 = 10 3 hr 1 and At = 50 hr, a fail-
ure will occur approximately once for every 20 steps
sampled, on the average. It would be more efficient to
sample time to failure of each component/subsystem
since then, each sampling will lead to a failure and we
can generate as many failures as we want for good sta-
tistical properties of our resuit. Apparently, this
method has been used in a reliability Monte Carlo pro-
gram [10]. The time to next failure of component i,
tgy is generated by:

tfi =-1n E/Xi

where £ is a random number in (0,1) and Ai is the ith

subsystem failure rate (assumed constant over time).
For time-dependent failures:

subsystems and 41 gates. That problem took about one Tt
minute of Cray time (200 time steps and 100 histories). £ =exp (-f Ai(t) dt)
Usually, one wants to run parametric studies which then t
involve several runs of the problem. 1
Table 1. Input Variables for Sample Problem
Subsystem Number # Operating Units # Actively Redundant # Spares Failure Rate, hr'l Repair Time, hr
1 5 0 0 1. E-5 100.
2 2 0 0 3.3E-6 500.
3 1 0 0 1.4E-6 200.
k W R for all three subsystems
100. 0.001 0.002

where t; is the time at the beginning of the next "up

period after the end of the current repair. An itera-
tive procedure has to be implemented to find tes this

shouldn't be too time consuming provided a limited (say
10) number of time intervals (inside which i; is con-
stant) is allowed.

Bookkeeping procedures have to be implemented in
order to keep track of transition times for each compo-
nent and how each transition influences the whole
system and the other components and their transition
times. This method is not as flexible as far as ease
of modeling the "real world" is considered, but so far
we haven't encountered any insurmountable difficulties.

V. Program Changes: Failure Modes

The next few sections will describe the changes
made in the code that relax the previously made assump-
tions and constraints and make it more realistic.

One of the changes is the possibility of including
more than one failure mode for each subsystem. Each
failure mode will have its own failure rate and repair
time, This is accompiished by adding extra dimensions
to the arrays holding the values of failure rates and
repair times (up to 10 failure modes are allowed). An
extra random number is generated at failure in order to
choose the failure mode.

VI, Time Dependent Fajlures and Wear-out

Failure rates can vary with time instead of being
constant as is often assumed. Some types of components

have failure rates that follow the bathtub curve in
which there are three distinct periods in the life of a
component: burn-in (decreasing failure rates), random
failures (constant failure rates) and wear-out (in-
creasing failure rates) [11]. Some other types of
components do not exhibit the constant failure rates at
all

The input stream to the program can specify up to
10 cutoff times at which a component's failure rate
changes and assumes a constant, specified value until
the next cutoff time., The program automatically up-
dates the failure rate at the specified time. The
lifetime of a component can also be specified. Upon
failure, the component is repaired to "as good as old"
condition, unless the failure occurs within mttf (mean
time to failure) of the component's lifetime; in that
case it is replaced, i.e. repaired to "as good as new"
condition.

VII. Component Dependent (Common Mode) Failures

A component may fail because some other component
has failed. In the input, we can specify the component
i and its failure mode 1 that induces failure in compo-
nent j with probability P11j. Repair time is also

input for component j. Upon failure of component i, a
random number in (0,1) is compared to Pi]j to determine
if component j fails too.

VIII. Summary

The current improvements in the availability simu-
lation computer program AVSYS are presented. These are

COMNMODE

Fallure
—J— Dependency
FAIL

Simulation
| Program AVSYS l of failures
ROULETTE
MAIN SCHED (Russian
Read data & combine Scheduiled roulette)
Print resuits maintenance
ORDGAT | | MAIN2 REPAIR REPTIM
Gate Overail control Simulation Mean time
ordering of program of repair to repeir
STATE
=t State of subsys-
tems and units
GATE
State of
esch gate TRANTIME
] determines the
transition times
L
QUKSORT SPLFIL
orders vaiues efficlent
(Wd‘htl. tran— ordering
sition times) In routine
ascending order
Fig. 2. Layout of program AVSYS

in the areas of variance reduction,

speed of execution

and more realistic modeling.

ment

(1]

f2]

[3l

{4]

IX. Acknowledgement

This work has been sponsored by the U.S. Depart-
of Energy.

X, References

Z. Musicki, C.W. Maynard, Y. Watanabe, A.
Bennethum, K, Gruetzmacher, "The Fusion Engineer-
ing Data Base," presented at the llth Symposium
on Fusion Energy, Nov. 18-22, 1985, Austin, TX.

Z. Musicki, C.W. Maynard, "The Availability Ana-
lysis of Fusion Power Plants as Applied To MARS,"
Nuclear Technology/Fusion, Vol. 4, No. 3, pp.
284-289, Sept. 133% [Proceedings of the 5th Topi-
cal Meeting on the Technology of Fusion Energy,
Knoxville, TN, 1983).

Z. Musicki, "Availability Analysis of Fusion
Plants Employing a Monte Carlo Simulation Com-

puter Code," Ph.D. thesis, 1984, University of
Wisconsin-Madison.
S.L. Thomson, A, Dabiri, D.C. Keeton, B.W.

Riemer, L.M. Waganer, "Availability Program Phase
1 Report," ORNL/FEDC-84/10, May 1985,

(5]

(6]

7]

£el

fol

(10]

[11]

G.E. Apostolakis, "Mathematical Methods of Proba-
bilistic Safety Analysis," UCLA-ENG-7464, Sept.
1974,

Ernest J. Henley, Hiromitsu Kumamoto, Reliabilit
Engineering and Risk Assessment, Prentice Hall,

1981.

Z, Musicki, "Recent Modifications in Availability
Program AVSYS," University of Wisconsin Fusion
Technology Institute Report UWFDM-634, Nov, 1985.
“CFT, The Cray-l Fortran Compiler,” National Mag-
netic Fusion Energy Computer Center, Lawrence
Livermore National Laboratory, Nov. 1984,

"MPDOC, CTSS Multiprocessor Support," National
Magnetic Fusion Energy Computer Center, Lawrence
Livermore National Laboratory, Nov. 1984,

Satish J. Kamat, Michael W. Riley, "Determination
of Reliability Using Event-Based Monte Carlo
Simulation," IEEE Transactions on Reliability,
Yol. R-24, No. I, April 1975,

Z. Musicki, C.W. Maynard, "A Preliminary Fusion
Availability Data Base,” University of Wisconsin
Fusion Technology Institute Report UWFDM-532,
Feb, 1984,

