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1 Introduction

The state of a system can be represented by the states of components,
of which the system is composed, and states of events outside the system
that influence the system state. The function representing the relationship
among the system state and states of components and external events is
called the structure function and denoted by ¢ [1]. Let the state of a
component or event i be denoted by X;. Then the state of the system, Y,
can be obtained by

Y = (X1, X2y ooy Xi) (1)

where n is the number of components/events. In general, Y and X; are
functions of time. Hence the time-dependent behavior of the system can be
obtained once the behavior of components and the structure function are
known. In the binary-state model, Y and X; randomly take on the value
1 or 0. Here the values 1 and 0 denote a normal state and a failed state,
respectively. Then, the availability of a system at time t, which is called the
point availability, is identical to the probability that the random variable
Y takes on the value 1 at time t.

In practical analysis, the relationship among components is displayed
as a success tree, a block diagram, or a network graph. In the success tree
approach, the system state, i.e. the top event, is represented by using logic
gates and component states. A main task of availability analysis, therefore,
is to obtain the state of the top event from the states of components at a
specific time. One of methods for this analysis utilizes the concepts of cut
sets and path sets [1].

An estimation of the top event can be made by directly obtaining an
expression for the structure function of a success tree. This straight-
forward approach has been investigated by several researchers [2],[3],[4],
[5],06],[7],[8], [9],(10]. The method is truly arithmetic and requires a large
amount of algebra. Because of this, the method has not been widely used
by reliability engineers.

The evolution of computing technology has made symbolic manipulation
on a computer much easier and faster; currently several software packages
such as MACSYMA, REDUCE, and ALTRAN [11] are available for nonspe-
cialists. In particular, the REDUCE program is readily obtained by users



at the National Magnetic Fusion Energy Computer Center (NMFECC),
Livermore, California [12].

In this report, we shall demonstrate several applications of REDUCE
for generation and manipulation of structure functions in reliability and
availability analysis using the binary-state model. In the following section,
four major usages of the structure functions will be discussed. In addition,
several other possible applications will be suggested. In Section 3, a com-
puter program REDFOR, which is an input for the REDUCE program, will
be described in detail. The REDFOR . program is used to perform symbolic
manipulations for the applications discussed in Section 2. Outcomes of this
program are Fortran programs, which are compiled and linked to create
executable programs and numerical answers for specific problems. Section
4 will conclude this work.

2 Applications of Structure Functions

2.1 Reliability and Availability Computation
2.1.1 Independent Components

Suppose that a system, whose state is denoted by a random variable Y,
is composed of n components with states denoted by random variables
X;,i=1,2,....,n. For convenience, introduce a vector X, whose components
are X, X3, ...., Xn. Then the structure function, ¢, is given by

Y = ¢(X). (2)
We make three assumptions for further discussion:
(a) ¢ is a polynomial function of X1, Xa,...; Xn.
(b) ¢ includes only terms with the first power of any X.
(c) Random variables X1, X, ..., X,, are independent.

Since any success tree can be built by means of AND, OR, and m-out-of-
n gates and the structure functions of these gates are polynomials of input
state variables, the assumption (a) is true. There may be higher order terms
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of a particular state variable in ¢ if there is more than one component with
the same random variable. These higher terms, however, can be reduced to
first order terms by applying Boolean algebra as we shall see later. Hence
the assumption (b) is true. The independence of components stated by the
assumption (c) is not true in many cases. In the next section, we shall show
how dependency can be incorporated in the current approach. Meanwhile,
in this section we assume the independence of components.

Let the expectation of a random variable X be denoted by E(X). Then
under the above three assumptions, the expectation of Y is given by

E(Y) = ¢(E(X)) 3)

where E(X) = (E(X1), E(X2), -+, E(X2))-

Since the expectation is equivalent to the point availability, Eq. (3)
leads to an equation of the system availability a(t) in terms of component
availabilities a;(t):

a(t) = ¢(a(t)) (4)

where a(t) = (ai(t), aa(t), ...r. @n(t))-

EXAMPLE

Consider a system represented by the success tree shown in Fig. 1, where
the symbols have the standard meanings [1]. Denote states of gates AB,C,
and D by Yy, Y5, Yc, and Yp, respectively. Then we have

Y, = YaYo Xy (5)

Y = XiXoYp (6)

Yo =1—(1— X3)(1 - Xs)(1 - Xi) (7)
Yp=1— (1 — Xs)(1 — Xe) (8)

Substituting Y, Yo,and Yp given by Egs. (6),(7), and (8) into Eq. (5) and
manipulating it, we have

Y4 =X1X, (X5+X6—X5X6)(X3+X4+X1 X3 Xa— X4 X1 — X3 X1 X1 X X4) X7
(9)
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This equation contains the second order terms of X;. According to a
rule of Boolean algebra [1],
X =X,. (10)

Thus Eq. (9) becomes
YA == X1X2(X5 + X6 - XsXG)X7. (11)

If components 1,2,5,6, and 7 are independent, the availability of the system,
a(t), is given by

a(t) = a1(t)as(t)(as(t) + as(t) — as(t)as(t))ar(t). (12)

2.1.2 Dependent Components

Suppose that m out of n components, X;,, X,, ...., X;_, are dependent. By
expanding the function ¢ given by Eq. (2), Y can be represented as a sum
of terms such as X, X;,..X;, (= Z), k < m. If X;,,X,,,..., and X, are
independent,

E(Z) = E(X;,)E(X;,).E(X;,). (13)

But if some of these variables, say X , X},,..X},, for l < k, are dependent,
E(Z) should be represented as

E(Z) = Pr{{X;, = 1}n{X;, = }N..N{X;, = 1]E(X;,,)--B(X;,)- (14)

Here Pr[{X;, =1}N{X;, =1}N...Nn{X,, = 1}] is the probability that the

random variables X, X; ,.., and X, take on the value 1 simultaneously.
In this section we consider four types of component dependency:

(i) warm or cold standby redundancy, (ii) failure induced by another failure,

(iil) common cause failure, and (iv) mutually exclusive events.



(i) Warm or cold standby redundancy

Warm or cold standby redundancy can be represented by using an m-
out-of-n voting gate; that is, m components are in operation and n-m com-
ponents are either in warm standby or cold standby. This type of redun-
dancy is fully described in §8.2.3 of Ref. [1]. According to this reference,
the steady-state probability that the output state of the gate is 1, i.e. the
availability of the gate, A, is given by

A=) Py (15)
k=1
where 0
P, k 16
® = g (16)
H’-c:ol Ai
6 =1,0, = == 17
’ gy n:c:l “i ( )
\e — mA+ (n—m—k)A for 0<k<n-—-m (18)
Tl (n=m)A for n—m+1<k<n-1
pr = min{r,k}p for 1<k<n. (19)

In Egs. (18) and (19), A\ and u are the failure rate and repair rate of a
component. X is the failure rate of a standby component. It is assumed
that at most r components can be repaired at a time.

In order to obtain the steady-state availability of a system having warm
or cold standby components, the state of the gate for which input compo-
nents are dependent must be replaced by an expression given by Eq. (15).
For example, suppose that components 5 and 6 in the example given in
Section 2.1.1 are dependent (warm or cold standby redundancy). For inde-
pendent components,

p(p + 2X) (20)

E(YD) = a5 + ag — agdg = (A—|~—/J,)2 .



But for the dependent case,

bo+6, 2u(p+ X+ X)

E(YD)= 0 - 2“2_*_()\-}-—/()(2#"‘)‘)

(21)

Here r=1 is assumed.

(ii) Failure induced by another failure

Suppose that there are two components 1 and 2 with failure rates A1, Ag
and repair rates u;, u» and the failure of component 1 changes the failure
rate of component 2 from )\, to A;. The state transition diagram for this
two component system is given in Fig. 2. It shows that there are four states.
Let the probability that the system is in state i be denoted by P,. Since the
process is Markovian, the following differential equations can be derived:

dP
_dt—l = —(M +X)Py 4+ 11 Py + po Py (22)
dP. ~
dt2 =MP — (Ao + )Py + o Py (23)
dP.
dt3 = APy — (A1 + p2)Ps + 11 Py (24)
dP,
dt4 =XP + AP — (py + )Py . (25)
We also have
P1+P2+P3+P4:1 . (26)

In the steady-state case, the solution is easily obtained. For example P
is given by

P, = Pr{{X, = 1} N {X, = 2}] A
(Hluz(/\l + X+ + Hz))/((/\1H2 + )\2)\2 + A dapty + A dapa+

Ade g + 2)\1#1112 + A + )\ulz + Mpg g + Agpi?

+Ao2ptipin + Agpy Ay + +plpy + ppd + /\1/\2)\2)

(27)

When the failure of a component influences failure rates of more than
one component, the similar argument can be applied. But the arithmetic
involved becomes very cumbersome.
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Figure 2: State transition diagram
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(iii) Common cause failure

Consider a common cause failure of £ components. Let the failure rate
due to the common cause be c. Then the probability that all components
are in state 1 at time t is given by

Pri{X; =1} n{X, =1} N ... Nn{X, = 1}]
= e TTi [ — sdime Mot 4 fy dsce™ [T, [ (1 — e Otmoe))]

ity Aitpi
(28)
This equation can be derived by using the arguments given in §8.3
of Ref. [1].
For the steady state case, i.e. t — 0o, Eq. (28) becomes
Pri{X;=1}n{X; =1}n..Nn{X, =1}] (29)

= fooo dsce™** Hf:l [)‘,-.:m (1 - e_(,\i_wi)s)]

In particular, for ¢ =2,

— (Atp1tHda+uz+2c)pip2 (30)
(Mtu1tc)(Aetpate) (A +u1+A2+u2+c)

(iv) Exclusive events
Suppose that two events i and j are mutually exclusive. Then the fol-
lowing relation between the random variables X; and X; holds:

Xi+Xj:1 . (31)

Hence, if there are mutually exclusive events in a success tree, we can
remove one of those two random variables from the structure function by
using Eq. (31).

2.2 Importance Calculation

Let us assume that n components are independent. Then we have Eq. (4):

alt) = p(ar(t), az(t), ..., an(t)) . (32)



We define importances for success trees similar to those of fault trees
described in Chapter 10 of Ref.[1].

Birnbaum’s structural importance

dal(t
Agi(t) = Ba-((t)) (33)
Critical importance
Ry _ i(t) _
I19%(0) = S5 A (34
Upgrading function
AiOu(t)
UF (4 _ 2N
Ii (t) - u(t)a)\i (35)
where u(t) =1 — a(t) and a;(t) = e~ ™.
Barlow-Proschan importance
i
IBfF = a“—(t)w,-(t)dt (36)

o Jo Ow(t)
where u(t) = ¢(uy(t), ua(t),...., un(t)) and w;(t) is the unconditional
failure intensity. ¢ is the structure function of a fault tree and u and u; are
unavailabilities.

2.3 Error Propagation Analysis

The uncertainty due to the uncertainties of \; and p; leads to the uncer-
tainty of a; and consequently, the uncertainty of the system availability
a(t). The estimation of the uncertainty of a(t) can be made by using a
Monte Carlo program such as the SAMPLE program [1]. For this analysis
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an explicit expression of the structure function is useful. In fact, the expres-
sion must be provided by a user to the SAMPLE program. Although the
Monte Carlo approach gives the distribution function of a(t), the method
is rather expensive.

In this section, we obtain an estimate of the variance of a(t) analytically
from expectations and variances of a;(t). For simplicity, make the three
assumptions given in Section 2.1.1. The structure function is now the first
order polynomial with respect to any a;. Thus we have

E(a) = ¢(E(a)) (37)

where E(a) = (E(a;), E(ay), ..., E(ay)).
If the variance of a random variable X is denoted by V(X), the variance
of a is given by

V(a) = E(¢*(a)) - E(¢(a))’ = E(¢°(a)) — ¢*(E(a)). (38)

The first term on the right hand side of Eq. (38) includes the expecta-
tions of the second order term of a;. This can be eliminated by using the
definition of the variance:

E(a;) = V(a:) + E*(a). (39)

Therefore, V(a) is represented as a function of a; and V(a;), i=1,2,....,n.

EXAMPLE

An error analysis is carried out for the fault tree given in Fig. 3. This
problem is taken from §12.5.2 in Ref. [1], which lists the results of the Monte
Carlo program SAMPLE. The structure function for the top gate is given
by

Y — X2 + X1X3 e X1X2X3. (40)

Since X; X, X is small compared with other terms, we can ignore this term.
The means and variances of random variables X, X,, and X; are given in
Table 1.
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Figure 3: Fault tree for Error Propagation Analysis
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Table 1: Means and variances of components

Component ID || Median Unavail. Mean | Variance
1 9.90E-3 1.25E-2 | 9.36E-5
2 7.41E-2 9.37E-2 | 5.25E-3
3 1.53E-1 1.93E-1 | 2.22E-2

Table 2: Computational results

Method | Expectation | Standard deviation
SAMPLE || 9.4798E-2 6.7285E-2
Analytical 9.61E-2 7.24E-2

The expectation of Y is given by
E(Y) = E(X2) + E(X1)E(X3). (41)

The variance of Y is given by the following equation after some manipula-
tion using Eq. (39):

V(Y) = V(X3) + V(X1)V(Xs) + E*(X1)V(X3) + V(X)) E*(X;).  (42)

The expectations and standard deviations \/V(Y) by the SAMPLE pro-
gram and analytical formulas Eq. (41) and (42) are shown in Table 2.
These results agree well with each other.

2.4 Utilization in Monte Carlo Simulation

In Monte Carlo simulations of system availability, states of gate outputs
are computed by using input states. The procedure is repeated for all
gates from the gates at the lowest level up to the top gate [13],[14]. Since
this algorithm is serial in nature and involves bookkeeping processes such
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as obtaining the number of inputs, ID numbers of input components and
gates, and a proper logic for the gate, it is not sufficiently efficient even on
supercomputers utilizing vector and parallel processing.

Here we propose a very different approach: a use of structure functions.
The analytical expressions of structure functions are obtained for every gate
in terms of only component states. Hence the gate states can be computed
simultaneously by just calling a subroutine including those expressions once
the states of all components are known. It is noteworthy, however, that
the vectorization of this algorithm cannot be realized by the present Cray
compiler because each gate is associated with a different form of function,
while, the multiprocessing can be easily applied.

In order to demonstrate this new approach, the PROPA program (Ver-
sion 1.5) has been modified so that it does binary-state simulations. A pro-
gram POLD uses the old algorithm; a program PNEW utilizes the structure
function approach. The CPU times used by the portion where gate states
are computed are compared for the following three problems. All cases are
solved by using 100 histories for 8760 hours of operation time with 24 hours
for time step.

o The first problem is from Ref. [15]. It has 2 AND gates and 3 com-
ponents.

e The second problem is taken from Ref. [16]. It has 6 AND gates and

14 components.

e The third problem is the same as the second one except component
6 is replaced by a 2-out-of-3 gate. It has now 7 gates and 16 compo-
nents.

The results are shown in Table 3. This indicates the new approach
is about twice as fast as the old one. Although obtaining the structure
functions takes some time, the new method is attractive, in particular,
when a very large number of histories are executed by varying reliability
parameters.

16



Table 3: Comparison of CPU times

Problem POLD PNEW
11,131,472 580,426
2| 2,827,137 | 1,173,933
3| 2,823,817 | 1,333,018

1) Unit is psec.
2) All cases were run on a Cray-1 at NMFECC

2.5 Other Possible Applications

e Simplification of a tree

Rearrangement of a structure function by using Boolean laws leads
to a structure function corresponding to a simpler tree. For example,
let us return to the example given in Section 2.1.1. Here Eq. (11)
suggests a success tree illustrated in Fig. 4.
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DO ®

Figure 4: Simplified success tree
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e Checking the correctness of minimal cut sets

Suppose that we have obtained minimal cut sets but we are not sure
if they are correct. To prove this, we can use the structure function.
Let a minimal cut set i be denoted by Z;. Then the top event Y is
given by
Y=1-J[1-2) (43)
1

where the product with respect to i is taken for all minimal cut sets.
Z; is given by a product of event states included in the cut set i.
Thus if the difference between Y given by Eq. (43) and the structure
function obtained by a direct method is 0, then we can say that the
minimal cut sets are correct.

e Optimization

Consider an optimization problem:
Maximize the system availability a = ¢(a)
subject to constraints G;(a) < C.

Knowing the expression of ¢ in terms a;, we easily take derivatives
of ¢ with respect to any a;. Hence, standard mathematical methods
can be applied. See References [17],[18] about this subject.

3 Computer Program REDFOR

3.1 Program Description

In the previous sections, several applications of structure functions were
discussed. Those applications require a large amount of symbolic manipu-
lation. And what we need to know finally are not symbolic expressions but
numerical values for a problem being considered. The computer software
REDUCE can be used to manipulate complex algebraic expressions and
write Fortran programs which eventually give a user numerical answers.
For this purpose, a program REDFOR has been developed.

The program REDFOR is an input file for REDUCE and contains data
necessary to construct the structure function of a tree. Structure functions
are obtained for each gate. In the current version, it is assumed that a
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gate is one of three types: AND, OR, and p-out-of-q gates and components
are independent. If the output state and states of n inputs to a gate are
denoted by Y and Xj,(i=1,2,....,n), the expressions of Y for the three gates
can be represented as follows:

AND gate
Y = ﬁ X; (44)
i=1
OR gate
Y=1- ﬁ(l - X;) (45)
i=1
p-out-of-q voting gate
[
Y =1-T](1 - X;, X,,...X,) (46)
where i1, 1,, ..., 1, is a set of p inputs out of q inputs. The product over £

(=q!/p!(g-p)!) combinations must be taken. In REDFOR , the algorithms
for Eqgs. (44) and (45) are simple; but the derivation of Eq. (46) requires
a special algorithm[19]. The product term is expanded and a Boolean law
X" = X is used to simplify the expression. If all i, inputs are identical,
Eq. (46) is equivalent to

q
y=% ( Z ) X*(1 — X))ok (47)
k=p
Once structure functions for all gates are generated, the expressions
are written in a file FUNCT so that they can be used in another run of
REDUCE to manipulate them further.
Next, Fortran programs are written in a file FNCT according to an

input parameter IOPT. There are six options:

IOPT=1: A Fortran subprogram FNCT containing expressions of struc-
ture functions of gates is written.

20



IOPT=21: A Fortran subprogram FNCT containing the expression of the
structure function of the top gate and a Fortran subprogram DERV
containing expressions of derivatives of the structure function of the
top gate with respect to component state variables are written.

IOPT=22: A Fortran subprogram FNCT containing the expressions of
all gates and a Fortran subprogram DERV containing the expressions
of derivatives of the structure function of the top gate with respect
to component state variables are written.

IOPT=23: Same as IOPT=22.

IOPT=3: A Fortran subprogram VAR containing the expressions of the
expectation and variance of the top event is written. The expressions
are derived by the method described in Section 2.3.

Finally, the Fortran subprograms obtained by running REDUCE are
used for quantitative availability analysis.

o In order to utilize the structure functions in a Monte Carlo simulation
as discussed in Section 2.4, the subprogram FNCT obtained by the
IOPT=1 option is combined with other subprograms to create an
executable program.

e In order to obtain system reliability at a specific time, the subpro-
grams FNCT and DERV are combined with an existing main program
OPT21 to create an executable program. The program computes the
system unavailability and the Birnbaum and critical importances at
the specific time.

e If the availabilities of components are known, availabilities of all gates
and the Birnbaum and critical importances can be computed by a
Fortran program, which is created by combining the subprograms
FNCT and DERV obtained by the IOPT=22 option with an existing
main program OPT22.

e When only failure rates and repair rates of components are known,
the steady-state availabilities of gates and the Birnbaum and critical
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importances can be computed by the program that is obtained from
an existing main program OPT23 and subprograms FNCT and DERV
created by the IOPT=23 option.

e If the expectations and variances of component availabilities are known,
the expectation and variance of the top event can be computed by the
program that is obtained by combining an existing program OPT3
and the subprogram VAR.

The computational flow discussed in this section is illustrated in Fig. 5.
For users who are concerned about the computing cost by REDUCE, the
following data is useful: the elapsed CPU time on a Cray-1(c) is 1383 msec
for a 14 components and 6 gates problem with the IOPT=22 option.

3.2 Input Data for REDFOR

Parameter | Format | Number of data Description
IOPT I 1 | Option number: 0/1/21/22/23/3
MM 1 1 Number of gates
NN I 1 Number of components
ITP(m) I MM Type of gate

1/2/3/4=AND/OR/p-out-of-q
/p-out-of-q identical

INNO(m) I MM Number of inputs to gate
VOTE(m) I - p for p-out-of-q gate
ID(n,m) I £* MM | ID number of inputs to gate;

a positive number for component
a negative number for gate

A listing of the input for the example in Section 2.1.1 is given in Fig. 6.
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REDFOR

oPT2I
oPT22
OoPT23
OPT3

CFT
LOR

EXECUTABLE
PROGRAM

Figure 5: Computational low by REDFOR
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Figure 6: A sample input

%This is an input for the example problem
off echo$

iopt:=23%

mm: =4$

nn:=7$

itp(1):=1$

itp(2) :=1%

itp(3) :=1$

itp(4) :=2%

inno (1) :=3%

inno(2) :=3%

inno(3) :=3%

inno (4) :=2%

id(1,1):=-2% id(2,1):=-3% id(3,1):=7$
id(1,2) :=1$ id(2,2):=2% id(3,2):=-4%
id(1,3):=3% id(2,3):=4$ id(3,3):=1%
id(1,4):=5% id(2,4):=6$%

end$
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3.3 Computational Procedures on NMFECC Crays

1. Obtain a LIB library BIGAPPLE by typing in
FILEM 1751 .AVAILPHI BIGAPPLE / t v

2. Obtain the REDFOR program and a necessary Fortran program by
typing in
LIB BIGAPPLE / t v
ok: REDFOR
ok: the name of a file(OPT21,0PT22,0PT23,0or OPT3)
ok: END

3. Prepare an input data file INP for REDUCE, then run REDUCE by
typing in
REDUCE / t v
1: IN “REDFOR”;

4. Create a program FORT by combining the FNCT file and one of the
OPT files.

5. To obtain an executable file XFORT, type in
RCFT I=FORT,X=XFORT / t v

6. Prepare an input file, I , for XFORT.

7. Run XFORT by typing in
XFORT I=“input file name” ,0=“output file name” / t v
The file O contains the computational results.

To make the run more compact, a batch run file for the COSMOS
routine was written. The file is named COSRED and obtained by typing
FILEM 1751 .AVAILPHI COSRED. To use this, type in
COSMOS I=COSRED WITH IOPT= an option number / t v
It is noted that old files FUNCT and FNCT must be destroyed or renamed
before new job is started.
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4 Summary and Suggestions

Several applications of structure functions of success trees have been pro-
posed. To quickly perform the analysis, a program REDFOR for the sym-
bolic manipulation software REDUCE has been developed. The execution
of REDUCE with REDFOR as an input creates several types of Fortran
subprograms, and these subprograms can be used to quickly obtain numer-
ical values of system availability parameters such as unavailability, avail-
ability, importances, and variance. One of subprograms also can be used
in a Monte Carlo simulation program to reduce the computing time.

The current version of REDFOR derives only two types of importances.
Other importances such as the upgrading function and Barlow-Proschan
importances can be included. The upgrading function requires the deriva-
tive with respect to A;. The Barlow-Proschan importance requires an in-
tegration with respect to a time variable. These can be performed by
REDUCE without any difficulty. In the current version of REDFOR, com-
ponents/events must be independent. Dependency can be included in a
system model by using the expressions given in Section 2.1.2.

To the author’s knowledge, there is only one published work on an
application of symbolic manipulation computer software to reliability and
availability analysis[20]. One example of applications besides those dis-
cussed in the present report is to solve the linear differential equations and
a set of algebraic equations for Markov models. In fact, Egs. (22) to (26)
in this report are solved by using REDUCE for the steady-state case, in
which the time-derivatives are zero. The resulting solution, Eq. (27), is
very complicated; it would be very cumbersome to obtain the solution by
hand.
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Appendix A: REDFOR Program Listing

WL oO~NDDO D WN =

bW WWWWWWWWWNNNDNDNDINDNDNDDNDNDDNRE R B e e e s
H O OONOOTNHEWNEFR,OODNTNONBEWNROOO~NOOTONSE WNEREO

comment
comment

off echo;
operator

array inn
array a(1

REDFOR Version 1.1 created on 06/21/86;

REDFOR is an input file for a symbolic manipulation
computer software REDUCE and creates FORTRAN programs
for system availability and reliability analyses.
Input file = INP, Output files = FUNCT and FNCT;

x,Yy,T;
0(50),itp(50),vote(50),id(20,50);
00),ind (100) ;

% read data

% The to
in " inp" ;
% compute
off exp;
for m:=1
if itp(m
else if
else if
else go
% AND gat
aaa:
g:=1;j:=1
while num
jje=id(
if jj >
else xx
g:1=g*xX
Ji=j+1;
end;
y(m) :=g;
return;
% OR gate
bbb:
g:=1;j:=1

P gate must be m=1
the structure function

step 1 until mm do begin
)=1 then go to aaa
itp(m)=2 then go to bbb
itp(m)=3 then go to ccc
to ddd;

e

(inno(m)-j) >= 0 do begin
jom;

0 then xx:=x(jj)

=y (-jj);

while num(inno(m)-j) >= 0 do begin

jje=id(
if jj >
else xx
g:=g*(1
ji=itL
end;

j.m);

0 then xx:=x(jj)
=y(-3j);

-XX);
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42
43
44
45
416
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

y(m) :=1-g;

r

% p-out-of-q voting gate

c
P

eturn;

cc:
:=vote(m);

q:=inno(m) ;
ql:=q+1;qp:=q-p;qpl:=q-p+1;

r
f
f
f
d

b

(0) :=q1;r(ql) :=-2;

or 1:=1:qp do <<r(1):=0>>;
or 1:=gpl:q do <<r(l):=1-qp>>;
or 1:=1:q do <<a(1):=1>>;

one:=0;
z:=1;

for 1l:=qpl:q do z:=z*x(1);

zz:=1-z;
egin integer 11;

LNEXT:

h

comment TWIDDLE can be used in generating all
combinations of p out of q objects.

L

L

L

L

Ref: P.J.Chase,"Combinations of M out N objects",

Com. ACM, Vol.13, p368 (1970);
begin integer j,k,1;k:=0;

1:

k:=k+1; if r(k) <= O then go to Li;

k1:=k-1;
if r(k1) neq O then go

to L11;

for j:=k1 step -1 until 2 do r(j):=-1;r(k):=0;

r(1):=1;go to L4;
11:

if k > 1 then r(k1) :=0;

2:

k:=k+1; if r(k) > 0 then go to L2;

j:=1l:=k-1;

3:

je=i*t;

if r(j)=0 then << r(j):
if r(j)=-1 then <<r(j):

=-1; go to L3>>;
=r(1);r(l) :=-1;go to L4>>;

if j=r(0) then << done:=1;go to L4>>;

r
L
e

%

(&) :=x(j);r(j):=0;
4:
nd ;

if done=1 then return;
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86 11:=0;
87 for 1:=1:q do begin

88 if r(1)>=1 then << 11:=11+1;ind(11):=a(1)>>;
89 end;

90 z:=1;

91 for 1:=1:p do

92 <<1lid:=ind(1) ;z:=z*x(1id)>>;

93 zz:=zz*(1-2);

94 go to LNEXT;

95 end;

96 for j:=1:nmn do

97 << for all 1 let x(j)*x1 = x(j) >>;
98 y(m):=1-zz;

99 for j:=1:nn do

100 << for all 1 clear x(j)**1 >>;

101 return;

102 % p-out-of-q voting gate (indentical units)
103 ddd:

104 p:=vote(m);

105 q:=inno(m);

106 j:=id(1,m);

107 zz:=0;

108 for l:=p:q do begin

109 cb:=(for k:=1:q product k)/

110 ((for k:=1:1 product k)*(for k:=1:(q-1) product k));
111 zz:=zz+cb*x (j) **1*(1-x(j) ) **(q-1);

112 end;

113 y(m) :=zz;

114 return;

115 end;

116 Yprocess results

117 Ysave structure function for later use

118 off nat;out funct;

119 write "off exp$";

120 write "operator x,y3$";

121 for j:=1:mm do

122 <<yy:=y(j);write " y(",j,"):=",yy>>;

123 write "end";

124 shut funct;on nat;

125 comment kkskksokokakskkokokokdokokok ok ko ok dokokkok kb ook ¥
126 comment The following will create FORTRAN programs
127 according to an option chosed by IOPT.;
128 begin

129 if iopt=0 then go to OPTO;
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130 if iopt=1 then go to OPT1;

131 if iopt=21 then go to OPT21;

132 if iopt=22 then go to OPT22;

133 if iopt=23 then go to OPT22;

134 if iopt=3 then go to OPT3;

135 Y% Option 1 : FORTRAN program FNCT containing
136 7 structure functions y(i) for gates is created.
137 OPT1:

138 cardno!*:=20;

139 fortwidth!*:=72;

140 on fort;

141 off echo;

142 out "fnct";

143 write "c ";

144 write " subroutine fnct(x,y)";
145 write " integer x(100),y(100)";
146 for n:=1 step 1 until mm do begin
147 ddd:=y(n);

148 off period;
149 write ddd;

150 write " y(",n,")=ans";
151 on period;

152 end;

153 write " return";

154 write " end";

155 shut "fnct";

1566 off fort;on echo;

167 out t;

158 return;

159 Y Option 21: writes a FORTRAN program computing
160 ¥ unavailabilities and importances at time t.
161 O0OPT21:

162 cardno!*:=20;

163 fortwidth!*:=72;

164 on fort;

165 off echo;

166 out "fnct'";

167 write "c i
168 write " subroutine fnct(x,y)";

169 write " dimension x(100)";

170 av:=y(1);

171 write " y=",av;

172 write " return";

173 write " end";

32



174 write "c ",
175 write " subroutine derv(x,dd)";

176 write " dimension x(100),dd(100)";
177 for n:=1:nn do begin

178  ddd:=df(y(1),x(n));

179  off period;

180 write ddd;

181 write " dd(",n,")=ans";
182 on period;

183 end;

184 write " return";

185 write " end";

186 shut "fnct";

187 off fort;on echo;out t;

188 return;

189 ¥ Option 22: writes FROTRAN subprogram for steady-state
190 7 availability and importances from component avails.
191 O0PT22:

192 cardno!*:=20;

193 fortwidth!*:=72;

194 on fort;

195 off echo;

196 out "fnct";

197 write "c ";

198 write " subroutine fnct(x,y)";
199 write " real x(100),y(100)";
200 for n:=1 step 1 until mm do begin
201 ddd:=y(n);

202 off period;
203 write ddd;

204 write " y(",n,")=ans";

205 on period;

206 end;

207 write " return";

208 write " end";

209 write '"c ",
210 write " subroutine derv(x,dd)";

211 write " dimension x(100),dd(100)";

212 for n:=1:nn do begin

213  ddd:=df(y(1),x(n));

214  off period;

215 write ddd;

216 write " dd(",n,")=ans";
217 on period;
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218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
262
253
254
255
256
257
258
259
260
261

end;

write " return";
write " end";

shut "fnct";

off fort;on echo;out t;
return;

% Option 23: writes a FORTRAN program for steady-state
% availability and importances from failure and

% repair rates of components.

0OPT23:

% The same subprograms as option 22 are used

return;

% Option 3: writes a FORTRAN prog. for the variance of
% system avail from given compts expects and variances.
OPT3:

off echo;

off exp;

operator u,v;

for all n let x(n)#**2=v(n)+u(n)**2;
vvi=y (1) *%2;

for all n clear x(n)#*#2;

for all n let x(n)=u(n);

ee:=y(1)**2;

aa:=y(1);

cardno!*:=20;

fortwidth!#*:=72;

on fort;

out "fnct";

write "c ",
write " subroutine var(u,v,aa,vvv)";
write " dimension u(100),v(100)";
write " vv=" vv;

write " ee=",ee;

write " vvv=vv-ee";

write " aa=",aa;

write " return";

write " end";

shut "fnct";
off fort;on echo;out t;
return;
% Option 0:
OPTO:

% This option does nothing.
return;
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262
263
264
265

end;

% time used in milisecond
showtime;

bye;
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Appendix B: COSMOS run file COSRED

*/ cosmos input file "cosred"
*/ for reduce run by using redfor
*/ needs a library "bigapple"
*/ this file is in FILEM 1751 .AVAILPHI
*/to run, type COSMOS INPUT=COSRED WITH IOPT= num
*select printlog=cosout

*filem rds .availphi bigapple
end

*1ib bigapple

x redfor

end

*destroy funct fnct

*reduce

in "redfor"$

*if iopt .eq. 21 then goto 121
*if iopt .eq. 22 then goto 122
*if iopt .eq. 23 then goto 123
*if iopt .eq. 3 then goto 130
*121:

*1ib bigapple

X opt21

end

*tedi opt21

cfal,*,29;fnct

wr;fort21

end

*srcft i=fort21,x=xf21

*go to lend

*]122:

*1ib bigapple

X opt22

end

*tedi opt22

© 00N D WN

W WWWNNNNMNNDNMNMMNDNDNIRKEFER S (@ b o o o
WNEHEOOONOOOD WNRLROWOOMNDDODdWNERLO
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34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

cfal,*,33;fnct
wr;fort22

end

*rcft i=fort22,x=xf22
*go to lend

*123:

*1ib bigapple

x opt23

end

*tedi opt23
cfal,*,42;fnct
wr;fort23

end

*rcft i=fort23,x=xf23
*go to lend

*130:

*1ib bigapple

x opt3

end

*tedi opt3
cfal,*,23;fnct
wr;fort3

end

*rcft i=fort3,x=xf3
*xlend:

*/ end of cosmos run

*/ now run the xfort program
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Appendix C-1: Program OPT21

1 c23456

2 ¢ RELIAN

3 ¢ compute time dependent unavailablity of unrepairable system
4 real lambda(100),q(100),brn(100),cir(100),upg(100)
5 namelist/inp/ncomp,time

6 c

7 call link("unit5=(i,open),unit6=(o,create,text)//")
8 read(5,inp)

9 do 10 i=1,ncomp

10 read(5,*) lambda(i)

11 q(i)=1-exp(-lambda(i)*time)

12 10 continue

13 ¢

14 call fnct(q,unav)

15 call derv(q,brn)
16 ¢

17 write(6,911) time,unav

18 write(6,920)

19 do 20 i=1,ncomp
20 cir(i)=brn(i)*q(i)/unav
21 write(6,921) i,lambda(i),q(i),brn(i),cir(i)
22 20 continue
23 call exit
24 911 format(//"#* Program RELIAN *x",//,
25 15x,"system unavailablity at time ",f10.4," = ",el2.4//)

26 920 format(" id",2x,"lambda",6x,"unavail",5x,"BIRNBAUM", 4x,
27 1"Critical")

28 921 format(i3,2x,el12.4,f10.6,2e12.4)

29 end
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Appendix C-2: Program OPT22

1 cmkrikkiokok ook ok kKoK Rk kR ok Rk kKoK

2 ¢ STRCT: computes the system availability

3 ¢ by using the structure function

4 c

5 ¢23456

6 dimension x(100),y(100),cri(100),dd(100)
7 namelist/par/ncomp

8 ¢

9 call link("unit5=(i,open),unit6=(o,create,text)//")
10 ¢

11 read(5,par)

12 ¢

13 do 10 i=1,ncomp

14 read(5,*) x(i)

15 10 continue

16 ¢

17 call fnct(x,y)

18 call derv(x,dd )

19 do 40 i=1,ncomp
20 40 cri(i)=dd(i)*x(i)/y(1)

21 ¢

22 write(6,901)

23 do 50 i=1,ncomp

24 write(6,902) i,x(i),dd(i),cri(i)

25 50 continue

26 write(6,905) y(1)

27 ¢

28 call exit

29 901 format(10h comp. no.,2x,"availability",4x, " "BIRNBAUM",
30 14x,"Critical")

31 902 format(2x,i5,4x,3£12.6)

32 905 format(//" system availability = ",£10.4//)
33 end
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Appendix C-3: Program OPT23

WO N WN

Db B WWWWWWWWWWNNNDNDDNDNDNDNDNRE B b b b b md e e
N OOO~NOOTNHWNHOOONDINDWNEOWONOOONH WNRLO

0O 0 o0 6

STAVAL:

computes steady state availabilities of components and gates
and BIRNBAUM and Critical importances

Failure and repair rates of components are input data.

c23456

10

20

30

40

900
910

911
920
921
950
951

real lambda(100),mu(100),a(100),y(100),dd(100),cri(100)
namelist/inp/ncomp,ngate
call link("unit5=(i,open),unité=(o,create,text)//")

read(5,inp)

write(6,900)

do 10 i=1,ncomp
read(5,*) lambda(i),mu(i)

compute steady state availability
write(6,910)

do 20 i=1,ncomp
a(i)=mu(i)/(lambda(i)+mu(i))
write(6,911) i,lambda(i),mu(i),a(i)
continue

call fnct(a,y)
call derv(a,dd)

do 30 i=1,ncomp
cri(i)=dd(i)*a(i)/y(1)

write(6,920)

write(6,921) (m,y(m) ,m=1,ngate)

write(6,950)

do 40 i=1,ncomp

write(6,951)i,dd(i),cri(i)

call exit

format (//"*** program STAVAL ##*%")

format(//"* component data and availability",
1//," i",3x," lambda",4x,"mu",10x,"availability")
format (i3,2x,2e12.4,£10.6)

format(//"* gate availability",//," m",3x,"availability")
format(i3,2x,f10.6)

format(//"id",3x," BIRNBAUM",4x,"Critical")
format (i3,2x,2e12.4)

end
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Appendix C-4: Program OPT3

1 ¢ program ERRAN

2 ¢ computes expectaion and variance from those of components
3 dimension a(100),v(100)

4 namelist/inp/ncomp

5 call link("unit5=(i,open),unité=(o,create,text)//")
6 read(5,inp)

7 write(6,900)ncomp

8 do 10 i=1,ncomp

9 read(5,*) a(i),v(i)

10 write(6,910) i,a(i),v(i)

11 10 continue

12 ¢

13 call var(a,v,aa,vv)

14 ¢

15 write(6,950) aa,vv

16 call exit

17 900 format(//"** program ERRAN *x",//,

18 1" ncomp =",i5,//,

19 2" id",2x,"expectaion",2x,"variance")
20 910 format(i3,2x,f10.6,2x,e12.4)
21 950 format(//" system availability expectaion =",£10.6,/,
22 1 " system availability variance =",e12.4)
23 end
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