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Introduction

Previous fatigue Tlife calculations for the TDF reaction chamber were
based upon conservative guidelines from the ASME Pressure Vessel Code. The
magnitudes of the peak pressures generated at the chamber wall by the fireball
shock were used with dynamic load factors restricted to be no less than unity.
This procedure has been replaced by a less conservative but more accurate
technique using the impulse value of the shock. The response is primarily
determined by the impulse magnitude rather than the pulse shape or peak pres-
sure if the mean pulse width is considerably less than mechanical vibration
periods. This representation also facilitates the generation of parametric
data. In earlier work, the maximum dynamic pressure was also conservatively
doubled to account for uncertainties in the fireball numerical modeling. The
current work does not use this additional factor. Procedures for the determi-
nation of the dynamic response have also been improved. In addition, fatigue
calculations are now based upon strain criteria, which is necessary for an
accurate assessment of the effects of intense dynamic loads from a limited
number of shots.

Description of the Base Case

The base case design is a cylindrical shell with radius and effective
height of 3 m and 2 m, respectively, and a wall thickness not less than 3 cm.
Materials considered are 2.25 Cr-1 Mo ferritic steel and 6061-T6 aluminum,
unwelded and welded. The target yield is 200 MJ with the corresponding im-
pulse of 110 Pa-s. The pressure pulse is shown in Fig. 1. (For comparison,
the corresponding 800 MJ result in Fig. 2 has a much higher pressure, but the
impulse is only slightly larger.) With these parameters and 2% damping, dis-
placement and stress histories are determined from the relevant axisymmetric

harmonics.



0.6

S YIELD: 200MJ
s OS5 RADIUS: 3m
j X

g 04

2 X

= 03

<

uJ

& 02|

-

0

77,

u

a

a

Ol J
i ) l ] ! |- ] ) | 1 1 1 N

00 Ol 02 03 04 05 06 07 08 09 10

TIME (ms)

Fig. 1. Dynamic pressure at first wall.
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Fig. 2. Dynamic pressure at first wall.
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Vibration Frequencies

Only axisymmetric modes contribute to the dynamic response since the
applied pressure is assumed to have no circumferential variation. Further-
more, because the shock is also axially uniform, the participating modes are
characterized by symmetry with respect to midspan, i.e. modes with an odd num-
ber of half waves. Frequencies for eight of the twenty-four cases used in
fatigue computations are listed in Tables 1 and 2. Values for even numbers of
half waves are tabulated but were not used. The natural frequencies are pri-
marily dependent upon the radius and only moderately influenced by thickness
changes. In addition, steel and aluminum results are very similar since fre-
quencies depend upon the ratio of elastic modulus to density, a factor which
is nearly the same for the two materials.

Mechanical Response

Maximum axial flexural stress occurs at the ends of the cylinder. Re-
sults for a 3 cm steel wall are shown in Fig. 3. Increasing the wall thick-
ness will decrease the peak stress. For example, the maximum stress can be
reduced by more than a factor of two by doubling the wall thickness as indi-
cated in Fig. 4. (Note that the stress scales are different.) This stress
distribution is characterized by a rather steep axial gradient and thus can be
controlled by a localized increase in thickness near the ends, i.e. a hub. In
the greater percentage of the shell which excludes the ends, the dominant
stress is circumferential. The design thickness 1is based upon this value
which is more uniformly distributed and also of smaller amplitude. For com-
parison purposes, Fig. 5 is the circumferential stress history corresponding

to Fig. 3.
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Fig. 3. TDF cylindrical shell flexural mechanical stress.
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Fatigue Analysis

different amplitudes. Thus, cumulative damage criteria are used to assess
chamber lifetimes, The ASME Pressure Vesse] code procedures for cumulative
damage are followed [1]. This involves the determination of the effects of
the number of applied cycles of various amplitudes as compared with the number
of corresponding design allowable cycles. Instead of the code's stress design
curves, the material properties used consist of fully reversed a]ternating
strain as a function of tpe number of cycles to failure. With such basic
data, the guidelines calj for safety factors of two on strain magnitude or
twenty on cycles, whichever is more conservative. This is the only formal
inclusion of a safety factor in the analysis and design.

A computer code has been developed for the determination of fatigue Tife,
The Principal steps in the program include accurately calculating both natural
frequencies and mode shapes for a specific material, thickness, radius and
length. The displacement and strain histories are then determined for each
value of the impulsive Toading, Typical examples are shown in Figs. 6 and 7
for steel and aluminum base cases with 3 cm walls., A counting procedure is
applied to each history, assessing cumulative damage and comparing with stored
data for strain amplitude as a function of cycles to failure. This results in
identification of the number of shots permissible for a given chamber sub-
Jected to impulsive pressures spanning the range of interest. The process is

then repeated completely for a change in one parameter, e.g., the wall thick-

ness,

The fatigue strain-range data for welded aluminum 6061-T6 was obtained

from design guidelines of the American Society of Civil Engineers [2]. The
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Fig. 5. TDF cylindrical shell circumferential mechanical stress.
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given values had a built-in safety factor of 1.35. Test results for plate
samples indicate that the ASCE formulas provide safety factors against failure
under cyclic loading of at least 1.35. Accordingly, the original design data
from ASCE has been derated by 1.35 and is shown in Fig. 8. The effects of
welding on fatigue 1ife can be determined by comparing data of Fig. 9 [3] with
Fig. 8. Corresponding data for 2.25 Cr-1 Mo, shown in Fig. 10, was obtained
from the work of Booker et al., at ORNL [4]. These data, characterized for
the design of nuclear steam generators, were accepted for inclusion in ASME
Code Case N-47 [1]. Data were obtained from fully reversed constant amplitude
strain-controlled fatigue tests at a strain rate of approximately 4 x 1071
s7L,

Fatigue Life Results

The family of fatique life design curves for welded aluminum chambers
with various thicknesses and a radius of 3 m is presented in Fig. 11. Termi-
nal points on the curves joined to vertical limits identify impulsive pres-
sures which cause dynamic yielding. With a thickness of 3 cm and an impulse
of 110 Pa-s (200 MJ) the lifetime corresponds to 32,300 shots as compared with
the design objective of 15,000. The results are highly nonlinear. A small
increase in the impulse will dramatically reduce the allowable number of
shots. However, for this case, even if the impulse is conservatively doubled
for reasons associated with fireball calculations, the design goal could stiil
be realized with a 5 cm wall.

As can be seen from Fig. 12, the fatigue lifetime results for 1.5 m and
3 m radius chambers have similarities. Lifetime is based upon dynamic circum-
ferential stress, a parameter which is radius-independent for a theoretical

membrane shell of arbitrary length under radial impulsive pressure. This is
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an important effect, but the complex multiharmonic response for finite length
shells coupled with nonlinear fatigue criteria constitute strong influences as
well. The corresponding design curves for steel chambers in Figs. 13 and 14
show the superior fatigue characteristics of 2.25 Cr-1 Mo steel. It should
also be noted that while it appears that lifetimes of small chambers are
higher, larger impulsive loads may be generated in a smaller chamber for the
same yield.
Conclusions

The TDF fatigue lifetime analysis has been made for steel and aluminum
cylindrical chambers with a range of size parameters and impulsive pressures.
Lifetime for steel chambers is considerably better than aluminum. However, it
has been shown that a 3 m radius aluminum chamber can sustain 15,000 shots at
a yield of 200 MJ with a wall as thin as 3 cm. It appears that the chamber
size can be reduced and still carry increased loads if the thickness is in-
creased appropriately. Combinations of 200 MJ and higher yield shots are
possible. In general, the results indicate that the design objectives can be

met with ample safety factors and cylindrical chambers of practical size.
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