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THE ADIABATIC THEORY OF THE LINEAR HOSE INSTABILITY
OF A RELATIVISTIC ELECTRON BEAM
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Kevin Joseph O'Brien

Under the supervision of Professor Gregory Allen Moses

In this thesis we demonstrate that the cold Vlasov beam, the
circle-1imit of the warm Vlasov beam, the spread-mass model, and
the energy-group model of a relativistic electron beam undergoing
linear hose instability, are all formally equivalent. Therefore,
the circle-orbit beam is the natural starting point for a higher
order theory. Introducing the next order in non-circularity we
make contact with the adiabatic theory for warm beams. The adiabatic
theory is founded upon the existence of transverse action invariants
which remain sufficiently well-defined, despite the nonaxisymmetric
potential and the coupling resonances driven by linear hose
instability. The existence of action invariants enables the
elimination of a fast variable, analogous to gyro-motion, called
vortex-gyration. One problem with adiabatic beam theory is that
coupling resonances between the degrees of freedom could destroy the
adiabatic invariants upon which the theory rests. In this thesis

we employ KAM theory to study the destruction of action invariants



due to linear hose instability. We define nonaxisymmetric adiabatic
beams to be those for which KAM tori exist in the transverse phase
space. For hose deflections of the magnitude considered in linear
theory we find that KAM tori persist, preventing the destruction of

the invariants.
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Chapter 1

Introduction

In recent years there has been a great deal of theoretical, numerical , and ex-
perimental work aimed at understanding, simulating, and preventing, respec-
tively, the resistive hose instability of relativistic, high-current self-pinched elec-
tron beams propagating in resistive plasma.

Interest in the hose instability is concomitant with an ever widening appre-
ciation that ultra-high-current relativistic electron beams have many exciting
applications, from food preservation, to controlled nuclear fusion, to national
defense, naming only a few for the moment. Ultra-high-current relativistic elec-
tron beams are generated in linear induction accelerators and in cyclic induction
accelerators [1.1]. Many applications of these electron beams involve stable prop-
agation through ambient gas subsequent to exiting the accelerator. The resistive
hose instability is often the major impediment to such stable propagation. A

beam is also subject to a related instability, called the beam breakup instability,



even before it leaves the accelerator [1.2].
Applications of ultra-high-current (~ 10;100 kAmp) relativistic (y ~ 10—100
electron beams are diverse 1. Such beams will provide a means of collectively
accelerating heavy ions for inertial confinement fusion [1.3]. In a magnetic con-
finement fusion device, plasma may be heated directly by a beam or indirectly
through the generation of intense microwave radiation. Electron beams can pro-
duce intense x-ray pulses of short duration. These pulses may be used in flash ra-
diography to provide short-time-resolution x-ray photographs of materials which
are changing on a short time scale. In the area of radiation simulation, relativistic
electron beams may be applied to the study of electro-magnetic pulses and their
effects upon materials. Free electron lasers may be driven by ultra-high-current
relativistic electron beams. These lasers in turn have many applications which
include : isotope separation, controlled thermonuclear fusion, material process-
ing, communications, and national defense. Concerning the latter, electron beam

physics comprises an important component of directed energy technology.

1¢f., Table 1.



Applications of Electron Beams

Application Energy Peak Average Pulse Rep-Rate
Power Power Duration
(MEV) (MW) (MW) (NSEC)

Environmental

Sludge disinfection 1-5 - 0.1-05 cw cw
Waste-water disinfection 10 - 2-10 cw cw
Drinking-water purification 10 - 2-10 cw cw
Cellulose degradation - - 2-10 cw cw
Flue-gas cleanup 0.5-2 - 3-30 cw cw
Radiative Processing

Food preservation 5-10 - 0.1-0.5 cw cw
Polymerization 0.3-3.0 - 1-10 cw cw
Radiation Sources

Synchrotron 700-3000 - 10* - -
Free-electron lasers 1-1000 - - - -
Diagnostics

Radiography 20 108 - 30-100 -
Defense

Nuclear-effects simulation 0.1-15  10%-107 - 30-100 1/hr

Directed-energy technology 103 - - - -

Table 1.1: Some of the many applications of ultra-high- current relativistic elec-

tron beams [1.1].



Ultra-High-Electron-Current Induction Accelerators

Device Laboratory Energy Current Duration Rep-Rate
(MeV) (kAmp) (nsec) (Hz)
Astron Type
Astron LLNL(US)(1963)* 4 0.2 300 . 60
Astron LLNL(US)(1968) 6 0.8 300 5
FXR LLNL(US)(1982) 20 4 75 0.1
ERA Berkeley(US)(1971) 4 0.9 2-45 0.2
NEP-2 Dubna(USSR)(1971) 30 0.25 500 50
NBS NRL(US)(1973) 0.8 1.0 2000 S.P.
ATA LLNL(US)(1984) 50 10 50 1-10
Radlac Type
LIU-10 (USSR)(1977) 13.5 50 20 or 40 ?
Radlac-1 Sandia/AFWL(US)(1980) 9 25 12 S.P.
MABE Sandia(US)(1983) 8 80 40 S.P.
Auto-Accelerators
Auto-Accelerator (USSR )(1974) 1.0 5-15 ? S.P.
Auto-Accelerator NRL(US)(1962) 7.3 70 10 S.P.
Cyclic Type
Betatron (USSR)(1964) 100 0.1 t S.P.
Modified Betatron  Irvine(US)(1983) (10)t (1) t S.P.
Modified Plasma .
Betatron Cornell(US)(1984) 3 2 t S.P.
Modified Betatron =~ NRL(US)(1985) (50) (5-10) t S.P.

* Year machine was completed

? Parameter not known

t Depends upon extraction scheme
t Parenthesis indicate design value
S.P. Single-Pulse

Table 1.2: Important parameters of some ultra-high-electron- current induction

accelerators|1.1].



1.1 Resistive Hose Instability

Upon exiting the accelerator, many applications of high-current relativistic elec-
tron beams involve subsequent propagation of the beam through an ambient gas.
Such transport must be efficient and reliable. Both efficiency and reliability de-
pend upon maintaining stability of the beam. However, such beams are known to
be subject to a wide array of destructive instabilities, the importance of any one
depending upon the particular circumstances. Generally, beam instabilities divide
into two classes: microinstabilities driven by nonequilibrium momentum distri-
butions, and macroinstabilites driven by nonequilibrium spatial distributions. In
this thesis we shall be interested only in the latter class of macroinstabilites,
otherwise known as fluid instabilities.

It is generally believed that the m = 1 “dipole moment” is the most deleteri-
ous of the lowest few (m=0 sausage, m=1 hose, and m > 2 filamentation) macro-
scopic multipole modes. Hose instability results in beam destruction through
gross sideways deflection of the beam current and need not involve appreciable
internal deformation of the beam. In contrast to sausage and filamentation, a
hosing beam may displace laterally more or less rigidly.

Three distinct types of hose instability may be distinguished. In each the
background plasma plays an important role. First, in absence of any monopole
plasma return current, a fixed plasma channel acts kinematically by determining
the important monopole and dipole decay time scales associated with free decay
of monopole or dipole excitations. If the beam current is displaced the magnetic

field axis may only follow diffusively, on the dipole decay time scale. Instability



6

is due to the phase difference between the lateral displacements of the beam
and field axes. Second, in presence of monopole plasma return current, a more
dangerous “self-hose” mechanism comes into play. The plasma now participates
dynamically as well as kinematically since it supports an axial monopole current
of its own. Lateral offset of these currents with respect to one another results
in absolute instability due to magnetic repulsion. Third, due to creation of the
plasma channel by the beam, the plasma channel may tend to follow a slow beam
displacement at fixed z ; this is a coupled beam-channel mode.

Ideally, as the beam exits the accelerator port, beam current should be carried
entirely in the monopole equilibrium J,(r), independent of 8, z, ¢, where (r,8) are
coordinates transverse to the axial flow along 2 , and ¢ is the time. Expressing

the beam current in terms of multipole moments

[o o]
To(r,0,2,t) = Y Jom(r, 2,t)e™ (1.1)

m=0

the objective of any propagation experiment is to create the beam in the monopole
equilibrium and prevent any unstable excitation of the m > 0 states. Through
the self-consistent field and source equations the multipole moments are coupled
together. These equations are nonlinear, due to the beam-current- dependent
generation of plasma conductivity o , and the plasma Ohm’s law J, = cE . An
emittance mismatch between the accelerator and the gas into which the beam
is injected may trigger an m = 0 sausage mode. Even if this mode damps, the
nonlinearity allows it to set off the m = 1 moment which may in turn trigger
the m = 2 and so forth. If these nonaxisymmetric excitations are unstable they

destroy the beam by feeding upon free kinetic energy in the m = 0 axial flow.
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Experimentally, one considers a relativistic electron beam injected at z = 0
into a tank z > 0 containing gas or plasma 2. Assuming a well formed axisymmet-
ric equilibrium within the accelerator, a natural situation to consider is that of
deflection, either intentionally for experimental purposes, or unintentionally due
to stray fields, emittance mismatch, or geometrical irregularities, of the beam as
it passes z = 0. This lateral deflection or modulation of the beam occurs with
phase kB¢ — wt in the accelerator reference frame, where w is the frequency and &
is the axial wave-number of the disturbance, § = v,/c is the “fluid- beta” of the
beam, and c is the speed of light in vacuo. It is customary, and useful, to employ
“beam variables” (z,¢) where ¢ = B¢t — z is the “slice-variable”, in place of (z,t).
For ultra-relativistic beams the slice variable, which describes the position of a
particle with respect to the head of the beam, is a single particle constant of
motion. Physically, axial acceleration of an ultra-relativistic beam particle in-
volves the effective mass 3 v®m > m , where m is the particle rest mass and
'7’2 =1- ,@2.

Transforming the phase, by elimination of ¢, results in k¢ —wt — —Qz/Bc—
w¢/Bc , the “Doppler- shifted” phase. Here 2 = w — kB¢ is the “Doppler-shifted”
hose frequency, the frequency experienced by a moving segment, as viewed in the
accelerator rest frame. Since {1 describes the z response of a slice at fixed ¢ it
scales with the characteristic single particle frequency (13 of transverse betatron

oscillation of the particles within the particular ¢ disk. The frequency w describes

2¢f. Fig. 1.1

3This point is made explicit in Chapter 3
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the axial structure of the hose pattern within the beam frame. Since w describes
how the disturbance changes from slice to slice, at fixed z , it scales with the
characteristic dipole decay time 7; governing the dipole fields which couple each
slice to its neighbors. Therefore, the dispersion relation is couched mainly in
terms of dimensionless “frequencies” §1/()3 and wm, ; however, monopole plasma

current brings in explicit w dependence as well.



Coordinate System of a Propagating Beam
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Figure 1.1: Basic geometry of a typical beam experiment. Note conventional
definition of the beam variables z and ¢ . Also shown are the physically important

distinctions between various regions of the beam.
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1.2 Previous Theories of Hose Instability

Various models of linear hose instability of a relativistic electron beam have been
developed since the original (unpublished) ground breaking work of C.Longmire
in the 1950’s. The first published work (1960) was Rosenbluth’s “nonrigid” treat-
ment of the low frequency (2/Q03, < 1 limit. Rosenbluth started with the relativis-
tic Vlasov equation and ultimately considered the fluid moments thereof to arrive
at a mode which was essentially a rigid lateral displacement on a hydrodynamic
time scale [1.4]. Following this was a period of unpublished work  which centered
around the important “rigid-beam” model of Lewis. When extended to higher
driver frequencies the rigid-beam model does not yield a high-frequency cutoff
and exhibits an infinite resonance. A rigid-beam model (1964), valid only in the
low-frequency limit, was developed by Weinberg for a modulated or “chopped”
beam. The motivation being to allow any convective instability to convect out
the tailend of the short pulse before growing to appreciable amplitude [1.5] . Fol-
lowing this Weinberg developed a “nonrigid-beam” model (1967), valid for all
driver frequencies but utilizing idealized circular transverse orbits (as opposed to
precessing ellipses) [1.6]. This theory was developed for general rounded profiles
and all values of m. Calculated growth rates did not include phase mixing ef-
fects since for these calculations specialization to a harmonic pinch potential was

employed.

‘We refer to work of M.Rosenbluth, N.Christofilos, H.W.Lewis, K.Brueckner, G.Ascoli,
H.Chang, S.Yadavalli, H.Singhaus, A.Sessler and R.Briggs. We do not have access to all

of this work but surmise its existence from references in the literature.
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It has often been stated that a cold beam, that is, a beam with circular
transverse orbits 3 , will not yield phase mix damping. One purpose of the
present work is to demonstrate that circle orbits do yield phase mix damping in
beams with anharmonic pinch potentials. The lack of phase mixing in the growth
rates calculated in [1.6] had nothing to do with the use of circle orbits.
Anharmonic phase mixing effects significantly influence the evolution of non-
axisymmetric beam phenomena such as hose deflections. Mixing arises due to
radially depéndent betatron frequencies of transverse particle orbits in the pinch
potential well. The pinch potential is defined as ¢ = B4, — ¢ where A, is the axial
component of the vector potential and ¢ is the scalar potential. The pinch po-
tential completely describes transverse dynamics, in absence of collisional effects.

In terms of i the betatron frequency is

QZ(r) = L (._.1_‘.@) . (1.2)

ym r dr
Imagining the beam to be composed of a sequence of slices, labeled by ¢, as the
hose disturbance develops, a given slice experiences a shaking back and forth.
Because of the spread in betatron frequency each slice responds as if it were a
collection of oscillators, each of different frequency, coupled to the perturbation.
We propose to call models which explicitly treat each disk as a collection of
oscillators “multiple-oscillator” models. Multiple-oscillator models include the
“spread-mass” [1.7], the “energy-group” [1.8], and the “multi-component” models

1.9].

5 As far as we are aware H.Lewis first employed the idealization of circular helices in a treatment

of the m = 0 sausage instability.
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The first multiple-oscillator model, the “spread-mass” model [1.4] (1978), ex-
ploited the known damping and convection due to relativistic mass spread, by
introducing an artificial mass spread. A distribution of particle masses, chosen to
recover the correct low and high-frequency results of perturbative kinetic theory
for the Bennett [1.10] beam, are introduced to yield finite resonance and cutoff.
In the spread-mass model each slice is resolved into a superposition of disks. Each
disk is defined by the particular mass of the individual particles in it. The partial
current profile associated with each disk is that of the equilibrium beam. Each
disk undergoes rigid harmonic oscillations in response to the linearized J x B
force, averaged over the radial profile of the disk. Phase mixing arises due to the
differing shaking frequencies of each oscillator. The spread-mass model agrees
well with the rigid-beam model for low-frequencies and yields a cutoff frequency.
Since each disk has the same radial structure the spread-mass model does not
include any radial localization of the response. Physically, one expects that par-
ticles for which (2 ~ ﬁﬂ, where ﬁﬂ denotes the orbit average betatron frequency,
should couple maximally to the perturbation.

Subsequently the “energy-group” model (1980) was developed [1.8]. In the
energy-group model the slice is resolved into disks each of which is comprized of
particles having a particular range of transverse energy. Each energy group has
a partial profile which is flat out to an energy dependent radius beyond which

it vanishes. The energy- group model purports  to incorporate radial structure

SWe prdve in Chapter 8 that the energy-group model is in fact perfectly equivalent to the

spread-mass model, and also to the circle-orbit Vlasov theory, therefore the claim that radial
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but does not have the proper analytical properties revealed in an Ampére-Vlasov
treatment [1.6).

Formal solution of the linearized Ampére and Vlasov equations results in an
integro-differential equation for the vector potential. Analysis of the analytical
properties of the perturbed current indicates a radially localized resonance which
gives a logarithmic singularity. .

Recognizing the clues provided by the formal Vlasov result the “multi- com-
ponent” model [1.9] was developed (1982). In the multi-component model each
slice is resolved into disks according to the azimuthal frequency of the particles.
Each component is localized within a frequency dependent radius. Selection of
the radial profile of the disks is effected by requiring the correct logarithmic sin-
gularity and results in parabolic profiles. This model has the powerful advantage
of successfully duplicating the important analytical properties deduced from the,

formal, linearized Ampére-Vlasov theory 7.

effects are treated more carefully than in the spread-mass model is illusory.

"The Vlasov theory is not, however, the final word either. In Vlasov calculations the evo-
lution operator is inverted upon the unperturbed orbits; therefore, any effects due to orbit
perturbations are lost. A superior method of calculation consists in computing the first-order
orbit perturbations and building the perturbed current as an integral over all initial positions
that “launch” particles which arrive at a given time, at a given space point, on the perturbed

orbits. We use this method for the circle-orbit equilibrium beam in Chapter 7.
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1.3 Adiabatic Theory

In this thesis we demonstrate that the cold Vlasov beam, the circle-limit of the
warm Vlasov beam, the spread-mass, and the energy-group models are all for-
mally equivalent (they differ only in the underlying physical interpretation as to
the meaning of the calculation, the final results are all the same) therefore, log-
ically, the circle-orbit beam, or, as we shall say, the “circular-helix beam” is the
natural starting point for the development of a “higher-order” theory.

Introducing the next order, in non-circularity, we make contact with the “adi-
abatic” theory for warm beams [1.13,1.14]. Adiabatic beam theory provides the
framework within which a drift-kinetic treatment of charged particle beams is con-
structed. The drift-kinetic equation is used to compute the reduced single particle
distribution function from which the pressure tensor is computed by moments.
This pressure tensor is used to close the exact fluid continuity and momentum
equations 8.

The adiabatic theory is founded upon the fact that there exist transverse ac-
tion invariants which remain sufficiently well defined despite the nonaxisymmetric
potential and the coupling resonances driven by the linear hose instability. The
existence of action invariants enables the elimination of a fast variable, analogous
to gyro-motion, here called “vortex gyration”, and the reduced description of the

particle orbit as a circular orbit 2, here called “circular-drift”. Particle orbits in a

8This procedure follows long traditions in fluid dynamics in that the appropriate physical
approximations are incorporated in the closure relations.

9For a radially expanding beam the drift is in reality a “spiraling-helix”.
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general charged particle beam resemble precessing ellipses in the transverse (r,0)
plane. The basic idea is to resolve the ellipse into a circle and an epicycle, then
the epicyclic vortex gyration is averaged out of the problem 19.

One major problem with an adiabatic, drift-kinetic treatment, however, is the
fact that resonances between the different degrees of freedom may destroy the
adiabatic invariants upon which the theoretical foundation rests. In this thesis we
employ methods of Hamiltonian mechanics (KAM theory) to study the resonance
properties of the beam orbits and to investigate the validity of the drift-kinetic
theory. .

Transverse dynamics in an axisymmetric equilibrium constitutes an integrable
nonlinear Hamiltonian system. This thesis is concerned however with m = 1 non-
axisymmetric phenomena. We define nonaxisymmetric adiabatic charged parti-
cle beams to be those for which KAM tori exist in the transverse phase space. The
drift-kinetic treatment is justified in situations for which the KAM structure is
well enough preserved. We have investigated stochastic effects of linear hose per-
turbations upon the transverse dynamics. Utilizing section maps we have studied
the transverse orbit structure due to coupling resonances, between harmonics of
circular drift and vortex gyration, driven by linear hose perturbations.

The Hamiltonian of a particle in a beam undergoing a linear hose instability
is |

H=H, +6H (1.3)

10This procedure is essentially a small gyro-radius expansion where the vortex gyration radius

plays the role of gyro-radius.
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where the unperturbed Hamiltonian for a Bennett beam is

H, = -2-% ( 2+ ;—52) + 2T log(1 + p?) (1.4)
with T = ¢BI,(1 — 1/8%(1 + f.)/(1 + fm))/2c the Bennett temperature, a the
Bennett radius, and p = r/a the dimensionless radial position of a particle in the
beam. The hose perturbation 6 H is given in detail in Chapter 9.

Expanding H; about a reference circle orbit to lowest order yields a system

of harmonic oscillators
H; =99J9+€2Q,J,-+--- (1.5)

where Jj is the action of the circular drift, J, is the action of the vortex-gyration,
{1 is the circular-drift frequency, and (1, is the vortex-gyration frequency. The
system is inherenﬂy nonlinear so we expand to higher order to expose the lowest
order nonlinearity. Expanding to fourth order in the small parameter ¢ = ép/p,

we get the transverse Hamiltonian
g . 3 2 .
H, =Q¢Jp + EQ,J, + €Q3J2 sin3€ + *QyJ2sinte + - - (1.6)

for a particle on a near-circle orbit at reference radius p, . We employ Deprit’s
[1.15] version of canonical Lie transform perturbation theory to get the action-
angle variables and Hamiltonian to the requisite order in ¢ . The azimuthal
contribution is already in its exact action-angle variables. Performing the Lie

transform calculation [1.16] we get the “near-circle” Hamiltonian

Hy =QoJy+ €Q,d, + QT2 + - - - . (1.7)
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Particles on orbits of high eccentricity, small angular momentum Jy, are not
realistically included in this theory. In a well mixed beam however the fraction
of particles on such orbits is negligible. One should also note that the theory
here is order e so particles on orbits of substantial “gyro-radius” are consistently
included so that really only a small class of particles is left out.

The introduction of a nonaxisymmetric potential 6 H due to a linear hose
instability couples the two oscillators nonlinearly. The result of this interaction
is coupling resonance between the vortex gyration and the circular drift. The
anisotropy engendered by the lateral hose deflection can result in transfer of en-
ergy between these two degrees of freedom thereby destroying the action invari-
ants. In our investigation of this phenomenon we have discovered that for lateral
deflections of the order typically considered in the context of linear instability !,
that is y/a ~ 10~® — 10~4, well preserved KAM tori prevent excessive modifica-
tion of the invariants. Even though the transverse orbits undergo stochastisation,
due to resonance overlap, the vortex gyration invariant is bounded by KAM tori.
This means that radial diffusion, due to energy transfer between the two degrees
of freedom, is bounded as well, therefore, particles remain within a well-defined
ring even in the nonintegrable situation of linear hose instability. We view this

as justification for the adiabatic model in the linear regime.

11y ateral displacement amplitudes for beam breakup instability, for example, are typically
6y/a ~ 10~* (beam breakup instability is essentially hose instability of a beam inside the

accelerator). Beam breakup is trigged by beam coupling to dipole cavity modes [1.2].
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1.4 Synopsis of Thesis and Original Contributions

This thesis deals with a constellation of problems centered upon the basic question
of whether or not a reduced “fluid-kinetic” model of electron beam propagation
can be used to study nonaxisymmetric instabilities such as the linear hose insta-
bility. Our main results are concerned with the modification of transverse action
invariants, due to the coupling resonances driven by the nonaxisymmetric pinch
potential of a hosing beam. In the course of this investigation we have also de-
veloped formalism, and have clarified essential points of previous theory. Not a
small part of our work has been in the nature of logical organization of the devel-
opment and presentation of the subject, and in the refinement and illumination
of the interrelations between various different approaches to the subject.

In Chapter 2 the basic physical concepts underlying electron beam theory are
presented. The basic scaling parameters: charge neutralization time, monopole
decay time, dipole decay time, and charge and current neutralization factors, are
discussed. We point out the fact that an ultra-relativistic electron beam has a
magnetic Reynold’s number S ~ 1072, which is to be contrasted with a typical
magnetic Reynold’s number in a magnetic fusion plasma, a tokamak for example
has S ~ 108 .

In Chapter 3 we discuss relativistic beam equilibria. In Section 3.2, starting
with the Boltzmann H-theorem, we derive the single-particle phase-space mo-
mentum distribution for a spatially uniform beam. We discover the important
fact that the effective mass for axial dynamics is ~ y3m . Therefore, for paraxial

ultra-relativistic electron beams, the axial degree of freedom is effectively cold. In



19
Section 3.3, using the relativistically covariant Maxwell-Boltzmann distribution,
we derive the single-particle phase-space distribution in terms of the covariant
pinch-potential. Using a relativistically covariant formulation of the Maxwell-
Boltzmann distribution, combined with the inhomogeneous Maxwell equation,
we carefully reduce the problem of specifying the equilibrium of two superim-
posed particle streams, by means of an ansatz concerning the pinch-potentials of
the streams, to the classical Poisson-Boltzmann equation. We determine the con-
ditions under which a beam is in a pure-pinch. In Section 3.4 we carefully derive
the class of Bennett equilibria which are self-similar solutions of the Poisson-
Boltzmann equation. Having gotten the pinch-potential we compute the impor-
tant properties of the classical Bennett equilibrium. Using the virial of Clau-
sius we calculate the Bennett temperature. Also, in Section 3.5 we derive the
paraxial Hamiltonian for an electron in a beam and introduce the concept of
near-circularity of the transverse betatron motion. We show that for near-circle
particles in a Bennett equilibrium the transverse motion resolves into circular-
drift and vortex-oscillation. A graphical result shows that the frequency of the
vortex-oscillation is greater than the circular-drift (betatron) frequency. This is
our first contact with the important fact that the circle-orbits are crucial to the
theory; the fast vortex-gyration may be averaged out of the problem.
In Chapter 4 we present, primarily in the interest of completeness and to foster
a correct perspective, a brief discussion of the subtle issue of beam driven gen-
eration of free electrons in the ambient gas through which it propagates. Many,

perhaps not dominant, interesting effects are known to be associated with con-
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ductivity generation. For example, in low density gas, the head of the beam may
not be charge neutralized quickly enough to short out the radial electric field.
Beam generated free electrons therefore accelerate radially under the influence of
large E,; the Lorentz force qu, x By due to the magnetic field By accelerates the
free electrons axially. The result is that in the head of a beam propagating in
low density gas the net current may actually ezceed the beam current. We argue
in Chapter 4 that the dominant conductivity generating effect in the body of a
beam propagating in atmospheric air is direct beam-driven collisional ionization.

In Chapter 5 we present a careful, and original, derivation of the EMPULSE
field equations describing the electromagnetic fields of an ultra-relativistic, parax-
ial electron beam propagating in resistive plasma. We point out the fact that all
hose models differ primarily only in the recipe for computing the perturbed beam
current Jp; . We also derive the field equation for a charge neutral beam with self-
consistent conductivity generation by impact ionization, and for a charge neutral
beam with conductivity generation neglected, the “pure-pinch” field equation.

In Chapter 6 we present an original, and complete, account of the important
rigid-beam theory. Rigid-beam theory is less a single, coherent formalism, than
it is a loose collection of ideas and concepts. Rigid-beam theory originated in the
work of pioneers in the field of electron beam propagation, and in work on the
hose instability in particular. We have tried to develop the whole theory logically,
from first principles, and with only the important ideas emphasised. In Section
6.2 we derive the “hose equation” and dispersion relation for the continuous rigid

beam, and compare the predictions of theory with old (available) data from the
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Astron accelerator. We point out the failure of the rigid beam theory to produce
a high-frequency cutoff and the importance of phase mixing effects in this regard.
We extend the continuous rigid beam theory to the case of a beam propagating in
a powerful B, guide-field. Stabilization of lateral beam displacements is possible
with the guide-field. We treat only the case of circular polarization of the beam
displacement. In Section 6.4 we introduce the key idea of beam chopping. Chop-
ping a beam into short segments is one natural way to limit destructiveness of
the convective hose instability. In Section 6.5 we present an ofiginal, and general,
Green function treatment of the chopped rigid beam hose equations which brings
to the forefront the overall structure of the theory of chopped rigid beams. One
result of this work is the realization that, for thin beams in particular, simple
monopole and dipole decay lengths may not be sufficient to describe the decay of
the fields.

In Chapter 7 we investigate Vlasov or “nonrigid” treatments of linear hose
instability. In Section 7.2 a general warm-Vlasov theory is presented for the case
of a beam whose transverse orbits are precessing ellipses. The circle-orbit limit
of the final result is also calculated. A beam with circular transverse orbits is a
cold beam. Utilizing the result of the circle-orbit limit, we employ a variational
principle to estimate the growth rate and compute an approximate dispersion
relation. We prove in subsequent work that this result, the circle-limit of the warm
Vlasov theory, is identical to the cold Vlasov theory, the energy-group model,
and the spread-mass model. In Section 7.3 we compute the perturbed current

Jp1 tncluding orbit perturbations (which are absent in a Vlasov calculation).
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The resulting current perturbation differs substantially from the circle-limit of
the warm Vlasov beam. We suggest that the rigorous method of computing the
perturbed current for the warm beam with precessing elliptical transverse orbits is
to carry out a similar calculation including orbit perturbations. Such a calculation
will be very involved technically however. In Section 7.4 we specialize to a radially
uniform beam, in order to bring more emphasis to the boundary conditions, and
study a cold beam propagating in a plasma channel surrounded by cold gas, and
in a plasma surrounded by a steel tank. Again, we use a general Green function
approach. One interesting result which we obtain involves stabilization of hose
instability by the image currents in the steel tank wall.

In Chapter 8 we study, what we propose calling, “multiple-oscillator” models
of hose instability. In Section 8.1 we introduce the basic physical and mathe-
matical ideas. In Section 8.2 we look at the spread-mass model. In Section 8.2
we develop the general multiple-oscillator equations and specialize to the energy-
group model. In Section 8.3 we specialize the general multiple-oscillator equations
to the multicomponent model. Our treatment makes it clear that it is only the
choice of oscillator component radial profile which distinguishes the energy-group
from the multicomponent model. We clarify and deepen the understanding of the
relationship between these two models.

In Chapter 9 we shift gears and discuss fluid, and fluid-kinetic models. In
Section 9.1 we introduce the motivation for developing reduced descriptions. In
Section 9.2 we present an original, careful, and complete formalism for an ultra-

relativistic fluid electron beam. We start with the coupled, covariant Maxwell
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and Vlasov equations, in four-vector notation, and derive the resulting fluid hi-
erarchy by computing moments of the Vlasov equation. Discarding a third order
cumulant we close the cumulant hierarchy. We discuss an apparent discrepancy
between the number of unknowns and the number of equations in terms of gauge-
fixing. We methodically introduce a series of four natural approximations which
build into the hierarchy a “beamlike” character. Finally, we arrive at a tractable
set of 8 fluid plus EMPULSE equations. We argue that, albeit useful, a fully fluid
approach does not build into the theory enough of the important kinetic features
of a beam . In particular, phase-mix damping is not included a prior: . In Section
9.3 we come to the point and derive an adiabatic, or drift-kinetic, or fluid-kinetic
hybrid, theory. We reduce the transverse dynamics to that of a spiral and a vor-
tex oscillation. We average out the oscillation to arrive at a picture of the beam
as a superposition of two counter rotating fluids. This treatment is formulated
in terms of action-angle variables. We compare the conditions for the beam to
be isothermal and find they differ from the predictions of Section 9.2. This point
constitutes a definite disagreement between the fluid and the adiabatic theories.
In Section 9.4 we investigate the modification of the transverse invariants, upon
which the adiabatic theory is founded. We render the equilibrium Hamiltonian
in action-angle variables, using the method of Lie transforms, and compute the
perturbation due to the hose instability. We consider a low-frequency hose in-
stability. After computing the perturbed Hamiltonian, which involves a double
Fourier series of terms coupling the circular and the vortex ocsillations, we use

Poincaré section mappings to graphically study the coupling resonances. Hamil-
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ton’s equations of motion are integrated around the phase space torus and the
point of intersection with a “section” recorded each pass.

In Chapter 10 we present the conclusions we have drawn from this work. The
main conclusion, regarding the adiabatic theory, is that the coupling resonances,
while they definitely modify the actions, do not totally undercut the foundations
of the theory. Well enough preserved KAM tori apparently persist, bounding the
actions, and preventing excessive transfer of energy between the circular-drift and
the vortex-gyration.

By demonstrating that the cold Vlasov (circle-orbit) dispersion relation is
the same as both the spread-mass and the energy-group models, we have also
shown that circle-orbits do yield phase mix damping. This fact has been of some
confusion in the literature.

We believe that our investigation of the foundations of adiabatic theory in
the context of beams undergoing nonaxisymmetric perturbations is the first of its
kind. Also, the methods we have employed are novel. Our detailed treatment of
the covariant fluid hierarchy for a beam is also, to our knowlege, unique. These
facets of our work, plus those original contributions delineated in the synopsis in

Section 1.4, and mentioned earlier in Chapter 1, form the core of this thesis.
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Chapter 2

Basic Physical Assumptions

In this thesis we are concerned with a well collimated electron beam with v > 1
and v; /v, € 1, such a beam is called an ultra-relativistic (y > 1) paraxial

(vi/v; < 1) beam. The paraxiality may be expressed formally by

~ Inet) % vy
~ ~ 1 2.1
aQlg ( I, o < (2.1)
vy=c—0 (ﬁ%az) (2.2)

where I, is the Alfvén current, I, = I + I, the net current and ﬁg is the
transverse betatron wavenumber.

To order the fields E, , E; , B, , and B, we introduce the charge neutraliza-
tion parameter ¢/(4roa) which relates fundamental periods of interest ~ a/c to
the basic time scale 1/(47o) upon which the ambient plasma electrons rearrange
themselves so as to charge neutralize the primary beam electrons. In this thesis,
for reasons given in detail later, we shall always assume that a/(4moc) < 1. The

27
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charge neutrality parameter and the paraxiality parameter are sufficient to order

the fields and various derivatives. Formally the order scheme is

4ra 15)

B, ~ —;—Jb‘z ~ g~ 1 (2.3)
B, ~ 5’;Jbl~a<%)g~ ';—l (2.4)
E, ~ 47;;1% (2.5)
E,~a (6%), ~ 47:“ . (2.6)
Notice that the orderings of ad/dr and ad/dz result in
(%{;—’)g ~ a1V Jy (2.7)

which indicates stronger radial gradients than the “time” evolution in z .

The region of the beam under consideration in this work is the “beam body”
!, The beam body is the region beginning just behind the “pinch-point” (where
the E, spike initiates avalanche 2 ionization), and extending back to a point in
the “tail” of the beam. In the tail recombination and plasma cooling establish
a balance with beam driven ionization and heating. Self-consistent conductivity
generation by beam impact ionization is included in our model. The conductivity
therefore increases linearly in the slice-variable ¢.

The slice variable is not an ignorable coordinate when conductivity generation

is included. A related ignorable coordinate is n = log(¢/¢,) where ¢, is a reference

1¢f. Fig. 2.1.
2See Chapter 4
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slice just behind the pinch point. Fourier components are therefore given in terms
of exp(—iwn—1iQz/Bc) where w is a dimensionless frequency. Exponential growth
in n corresponds to power law growth in ¢ .

Conventional hose theory is primarily formulated in terms of the following

dimensionless parameters

e monopole current neutralization fraction fn,, = Jp/Jp where J, and J, are
plasma and beam current density respectively, —1 < f, < 0 (physically
fm = fm(r,0,¢,2) but it is usual and useful to approximate f,, as a con-

stant)

e charge neutralization fraction f. = p,/p, where p, and p; are plasma and
beam charge densities respectively, —1 < f. < 0 (physically f. = f.(r,9,¢, 2)

but it is usual and useful to approximate f. as a constant)

e paraxiality (Ip/I4)(1 + fm) where ((Ip/I4)(1 + fm) < 1 implies v, > v, ),
where I4 = Bymc3/q = 178~ kAmp is the Alfvén current

Conventional hose theory also depends upon the following dimensional scale

factors
e charge neutralization time scale 7.(sec)

e monopole decay time 7,(sec)

dipole decay time 7 (sec)

betatron wavenumber g(em™1) = Qg/Bc



30

e Bennett radius a(cm)

In terms of the slice variable ¢ the decay times become lengths ¢, <o, ¢i-

An approximate charge neutralization time scale 7. for neutralization of the
beam charge by ambient plasma electrons (they are radially expelled from the
beam region, leaving behind a core of stationary positive ions) may be derived

by combining charge continuity, Poisson’s equation, and the plasma Ohm’s law

o
- . = 2.8
,Bcag&p +V.6J=0 (2.8)
V.6E = 4rbp (2.9)
§J = §(cE) (2.10)

where § denotes an excitation away from charge, current, and field free (plasma)
equilibrium. Neglecting conductivity gradients and perturbations yields the ap-

proximate free decay of charge excitations
(,Bc2 + 47r6) 6p=0 (2.11)
24y

where & is a radially averaged conductivity, hence ép ~ 6p, exp(—¢/¢:) where ¢ =
Bere = Bef/4na is the charge decay length. In this work good charge neutrality
(47 > c/a) is assumed, therefore f, ~ —1. For example, a 100 Amp beam of 300
nsec duration propagating in 1 Torr Ha produces o ~ 10'2 sec™! with electron
temperatures ~ 1 eV, for a 1 cm beam 4ro ~ 102 whereas ¢/a ~ 10°. For higher
current beams (I, ~ 100 kAmp) in 760 Torr air the situation regarding charge

neutralization is even more favorable.
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An approximate decay length ¢, for free decay of monopole excitations may

be derived by looking at the beam (of radius a) within a plasma region (of radius
b > a ) as a coaxial cable. The inductance per unit length of such a coaxial cable

is L = (4/c?)log(b/a) . A radially averaged “Lenz law” reads
be = —Lﬂcicﬂ R —Lﬂcirazaée (2.12)
= ac° !~ B¢ .

where d¢ is the induced emf due to a monopole current excitation §I. The emf
is e ~ ¢, exp(—¢/s,) where ¢, = LBcra®s = (B4wa®s/c)log(b/a) . Typically
log(b/a) ~ 10, so for the parameters above ¢, ~ 300 cm, whereas the beam pulse
length is ¢ ~ 10* cm. In general the monopole decay length is f47a?5/c times a
dimensionless geometrical factor (a “form factor”).

An approximate dipole decay length ¢; (also known as the resistive skin depth)

is derived from the source-free (for free decay) linearized Ampére equation

——-—_r —

(dld 4 i
dr r dr c”"ag

) A =0 (2.13)

where o, is the conductivity monopole, and A; the axial vector potential dipole.

The fundamental radial mode is

Ay ~ 4, exp (—i) + .- (2.14)
dr

- where A, is the axial vector potential monopole. With the help of the monopole

Ampére equation the dipole equation becomes

dJ, 1dA,

- —Z°_0. 2.15
dr ﬂoogl dr 0 ( )
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Writing o,(r) = o0,x (function of r) and noting that , dimensionally, 4, ~
(ra®/c)J, ,a radial average of the dipole equation yields ¢, = Bma%0,/c times
a form factor.

An important scaling conclusion is that dipole fields decay much more rapidly
than monopole fields 7, ~ (logb/a)m; > 7 since, generally b >> a. For the Ben-
nett beam 7, = (4log(b/a))r; where 4log(b/a) ~ 10 typically. Considering dipole
perturbations, the monopole fields remain unchanged on the relevant dipole time
scale. These decay lengths apply only for a “fat” beam which fills its plasma chan-
nel the conductivity of which is peaked on axis and decreases monotonically with
radius. Thin beams in unusual plasma conductivity profiles cannot realistically
be described in terms of the simple decay rates 3 .

Finite plasma conductivity is crucial to the rapid growth (on the dipole time
scale) of the hose instability. If ¢ ~ co monopole and dipole fields are “frozen”
in the plasma. Growth periods scale not with m, but with the Alfvén time 74 ~
a,/mp/Bg > 1 (where n, is the plasma density, By the magnetic field strength)
which governs magneto-hydrodynamic motion. For example, with I, = 100 amp,
a=1cm, ¢ = 10* cm, and np = 1012 cm—3 | using v4 &~ 2.2 % 10“Bo/\/n_'p where
for a beam By = 0.2I/a we have 14 = 1/k va ~ a/va = 2.3 x 1071a? /5 /I
therefore 74 = 1077 sec whereas 7, = 102 sec. For a beam- plasma system the
magnetic Reynolds number is S = 71 /74 < 1 which puts this system in quite a
different regime than, for example, a tokamak with § = 108 .

Resistivity enables fields to decouple from plasma motion partially by “field-

3This point is made explicit in Chapter 6
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slippage”. It is just this slippage that causes the first type of hose instability. As
for the second, the magnetic repulsion of two current filaments is apparently not

dependent upon resistivity.
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Figure 2.1: The region of the beam under consideration in this work is the “beam
body”. This figure depicts a beam along with the usual terminology used to

describe the physically distinct regions of the beam,



Chapter 3

Relativistic Beam Equilibrium

3.1 Introduction

An electron beam will always have a spread in particle momentum, due to ran-
dom fluctuations in the forces that accelerated the beam. Further randomizing
effects are particle collisions with ambient plasma electrons, ions, and molecules.
Generally collisions between beam electrons are not a dominant effect since the
beam is comparatively sparse.

Dispersion of the phase space distribution f will arise from cumulative random
events. Statistically we anticipate an evolution to a “quasi- steady” state f, . Over
and above the secular development of the distribution, small, rapid variations
away from the mean will exhibit the Gaussianity typical of such fluctuations. We
may safely assume that the time scale of fluctuations due to scattering is short

compared to the secular scale over which large changes in the mean occur. The
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natural formalism to apply to such a system is the Boltzmann H-theorem [3.1].

3.2 Momentum Distribution

Before considering the general case it is interesting to look at a spatially uniform
situation for which the distribution is of momentum only. Denoting by f the

single-particle momentum distribution function, the H-function is defined as

h(f) = [ dpsiogs . (3.1)

This functional of f has the well-known property dh/dt < 0 as time evolves.
Quasi-steady-state f, is such that variation f, + 8 f yields a first order variation
6h = 0. This variation must be carried out subject to 6U = §G = én = 0 where U
, G , and n are the mean energy, momentum, and number densities respectively.
Carrying out this constrained variation by means of Lagrange multipliers a and
1/T yields
fo=exp (o= 7 (H -v,-p)) (3.2)
where H = ~4mc? is the Hamiltonian and v, = v,z the beam electron fluid
velocity.
To bring out the spectrum of small, rapid fluctuations away from quasi-steady
state we expand to second order in the fluctuation amplitude. Expanding p =
PoZ + qz + Q1 , where q denotes a rapid, small, random fluctuation away from

Po , yields a Maxwellian

2
o= o (2nyomT)? (23mT) " exp (—% (—qi + i)) +0(7) (33)

YoM 'Yg m
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where 772 = 1 — v2/c? . An important result is that the effective axial mass is
43m , therefore we may neglect axial single particle dynamics. Furthermore, the

large axial energy results in a microcanonical distribution

. 2
(21!"7ng)"1 exp <——2T('17“2m) ~ 6 (q”) (3.4)

which means physically that the axial degree of freedom is effectively cold.

3.3 Phase Space Distribution

Having examined the momentum distribution now we consider the entire phase
space distribution. We consider a superposition of two charged particle streams,
electron and ion, each with fluid velocity directed along the z-axis of the accel-
erator frame. It is useful to rewrite the Maxwell-Boltzmann distribution in the

relativistically covariant form
fo = Ny exp(—aj,P}) (3.5)

which in fact is a Lorentz scalar. The label o denotes particle species and will
be omitted upon occasion. In the lab frame the four-vectors a and P have con-

travariant components

p— (L Yo 3.6
ad (T010701 Ta) ( * )
Pe=(22,0,0,P7) (37)

where T is the temperature, v the fluid velocity, H = ymc? + q¢ the Hamiltonian,

and P* = p* + (q/c) A* the canonical momentum. The vector a is timelike (with
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metric convention g = diag(1,—1,—1,—1) ) in the lab frame:
auat = (— (3.8)

and is thus timelike in any frame.
The distribution 3.5 may be explicitly factored in Maxwell and Boltzmann
components (momentum and spatial distributions respectively). To accomplish

this we note that P* = p* + (g/c)A* thus
f = Nexp(—a,p*) exp (-—g-a“A“) (3.9)

where the first factor is the momentum distribution and the second the spatial
distribution. To see this explicitly we use p* = (ymc,p) and A* = (4, A) to

calculate the exponents

a,pt = % ('7(mc2 -V, p) (3.10)

q q Vo
-— A”’ —_— — — A 3-11
PR T (¢ p > ( )

therefore exp (—a,p*) is the distribution we previously considered, while the
Boltzmann factor is exp (—(g/c)a,A*) . The total phase space distribution may
be written, making use of the results 3.3 and 3.4 as

2

- Y4 q .
fo = 1,6 (P; — YomcB,) (2myomT) ! exp (_210J7;LT) exp (—zauA") . (3.12)

The contraction of a, with the four-vector potential A# we call the covariant

pinch potential ¥
v, = %—A,,a“ : (3.13)
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Note that ¥ is —g, /T, times the pinch potential 1 = SA, — ¢ which we ordinarily

use. The determination of the equilibrium phase space distribution now devolves
to calculation of the covariant pinch potential.

In the fluid rest frame of the species labeled by o the vector a¥ has no spacelike

components and the covariant pinch potential is
9o
¥, = —¢. 3.14
o (3.14)
Contrariwise, in a frame for which ¢ = 0 the beam is said to be in a “pure pinch”

v, = —%”—ﬁ,,Az . (3.15)
o

Doubtlessly both of these conventions are frame dependent, nevertheless, we shall
be interested ultimately in the case for which the beam is a pure pinch with respect
to the accelerator rest frame.

Calculation of the covariant pinch potential is accomplished by solving the
self-consistent field and source problem for the inhomogeneous Maxwell equation.

The current density four vector for the sigma species is defined as

7 = (necqo,ds) (3.16)
ng = / &, (3.17)
I, = qac/d3pfap(p2 +m2c?)77 . (3.18)

Calculating j# explicitly yields the result

J}ff = C‘]aNaQaage‘\I’a . (319)
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2

4rm3c
) Q. = —ai-;'g—Kz (mdc‘/azaﬁ’ (3.20)

where K is the modified Bessel function of the second order. In this formula all

terms are manifestly covariant and one therefore writes the total current in an

arbitrary frame (with z axis along that of the lab and streams) as

g# = Z]# . (3.21)
o

The total current provides the source in the inhomogeneous Maxwell equation:

(3 9rg! — 8#8,)AY = 47" 7. (3.22)

If we contract the inhomogeneous Maxwell equation (in the Lorentz gauge) with

i

the four vector £a, we get a nonlinear equation for the pinch potential

M
1d d 47 _w,
it [t ; G N-Qoalal'e (3.23)

where we assume an axisymmetric ground state and treat the hypothetical case
of a long beam so that /32 = 0. To get Bennett equilibria we invoke an ansatz
which converts this equation into the Poisson-Boltzmann equation. To this end
let us force the covariant pinch potentials of the streams to be related to one

another by
e Ve = pye Vo - (3.24)

where b, is to be determined by forcing self-consistency, that is, forcing ¥g to

solve the Poisson-Boltzmann equation

1d d —¥o __
;JTE\I’O — 2e =0. | (325)
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This equation results only if we have

2
= 2 9aNoQobsajal = ~1 (3.26)
-4

so that if we define the matrix m

27
Mg = _TQGQINcQaaZa;‘ (3.27)

we may solve for the unknown coefficients by inversion of the system of linear
equations

bs = (m™Y)oily . (3.28)

The vector potential A, is gotten by inverting the system

9o
U =Laar, (3.29)

If we explicitly refer to ions and electrons ¢ = (7,e) we arrive at the following

formulza for the scalar and vector potentials:

¢ at — g.al
Ag = ( q: ? q:. i) Yo=¢ (3.30)
di9e \ Qpa3 — Apa3

c geal — gial

A5 = — (a:a;’ — a:.a"e) Vo= -4, . (3.31)
te 0*3 0“3

From the relation 3.30 for the scalar potential we can see under what conditions

a pure pinch (¢ = 0) results in the frame with respect to which this formula is

defined, namely

Vele q:Vy
e _ 212 3.32
T. = T (3.32)

in terms of physical variables. This is the same as the condition one arrives at in a

nonrelativistic treatment. Notice that a pure pinch involves counter- streaming of
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the ion and electron beams. Nonrelativistically one can show that the pure pinch
results in the same three-vector current density in all three frames of reference,
lab, ion fluid, and electron fluid rest frames; it is of course this net current which
provides the pinch force. If the second particle stream is also an electron beam

then the pure pinch occurs when

Vel Ta
—_ = 3.33
Ve2 Tea ( )

where beam 1 is the primary electron beam and beam 2 is the plasma return
current which partially current neutralizes the primary current. In this case the

two beams are co-streaming.

3.4 Bennett Equilibrium

The Poisson-Boltzmann equation 3.25 is a “classical” equation of mathematical
physics [3.2] and admits a class of self-similar solutions [3.3] which are invariant

under the one parameter (a) Lie group of transformations

r = exp(—%a)r (3.34)
Uy=¥o+a. (3.35)

Here we find the mathematical basis for the self-similar expansion, that is, the
Nordsiéck expansion, of self-pinched particle beams [3.4]. The most general solu-
tion yielding a positive density n = nge~¥° is

2 2
%zzlog( R2x + S x+1)_
VV LI Rx -V Rx

(3.36)
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where x is an arbitrary harmonic function V2x = 0 , with R and & denoting the
real and imaginary parts respectively. Generalized Bennett solutions, gotten by

taking the most general case of axisymmetry
rn
Rx = (=) cosnd (3.37)
a

r.ono,
Yx = (;) sin nf (3.38)

¥, = 2log -2% ((g)ngl + (2) "H) (3.39)

where a and n are arbitrary positive real numbers. The self-similarity is apparent,

are given by

providing the scale radius a scales as r, since r scales as exp(—a/2) under the
invariance group, the Nordsiéck expansion of a with time preserves the group
invariance.

Taking n = 1 we get the “classical” Bennett solution (dropping constants)
,’.2
Vo=2log|1l+—] . (3.40)
a

Taking n > 1 yields hollow equilibria [3.7]; however in this thesis we are only
concerned with the classical Bennett distribution.

Given the pinch potential for the Bennett distribution we may easily compute
the important properties of the equilibrium. The current density of the Bennett
equilibrium is

I, I 2\
Joo(r) = —z exp(-¥) = —5 | 1 + (3.41)
ma na a
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and the vector potential is

Azo(T) = —(1 + fm)% log (1 + ;—Z) (3.42)

while the squared betatron wavenumber is
2\ —1

02(r) = (13, (1 + 25) . (3.43)
The squared betatron wavenumber has a mean value ﬁ% = 2 o/2 and is dis-
tributed uniformly on the interval (0,32 o) ; in this sense the Bennett potential
is maximally anharmonic. The Bennett equilibrium has the property that one
half the total current is carried within one Bennett radius. Also, the wings of the
distribution are wider than a Gaussian; in fact, the mean square radius is infinite,
Fig. 3.1.

The Bennett equilibrium is the natural quasi-equilibrium to which a beam will
evolve. Experimentally this is found to be true to a high degree of accuracy, as
shown in Fig. 3.2 with depicts results for a 5.2 MeV, 220 Amp electron beam after
propagation through 2 meters of 40 Torr nitrogen gas. Apparently the Bennett
equilibrium is attained very rapidly.

The Bennett temperature, which physically is a condition for radial force

balance between expansive thermal pressure and compressive magnetic pinch,

may easily be computed by means of the virial theorem of Clausius [3.7]

T= %'ymc2,82((~2%r2) = —;-'ymczﬂzfderbo(r)Q%rz . (3.44)

In terms of the current and charge neutralization factors f,, , f. , with the help

of the Poisson and Ampére equations, we may express the equilibrium pinch
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potential 1, solely in terms of the axial vector potential A,,
V2¢o = —4m (1+ fe) Pbo (3.45)

4
Vidso = —— (1+ fm) Joo (3.46)

combining these equations we arrive at

2 ____:1__7_7_ . i 1+fc
Vi =~ (1+ fm) (1 ﬂ21+fm)J,,,, (3.47)

therefore ¥, = fAA;, where A = 1—1/8%(1+ f.)/(1 + fm) , so that the squared

betatron wavenumber is

¢ 1dA,

oy 1
Qﬂ(r) ~ AmfB2c2r dr

(3.48)

From this, using the result 3.42 for A,, , the squared betatron wavenumber on
axis is
| A2 2¢1,A(1 + frm)

2
Vo = =i (3.49)

Computing the virial moment in terms of this expression yields the Bennett tem-

perature
2c
A fully current neutral equilibrium exists only if f, = —1 since otherwise T < 0,

therefore the f,, = —1 equilibrium is cold T =0 .
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Figure 3.1: Radial profile of a 5.2 MeV, 220 Amp electron beam after propagating

2 meters through 40 Torr N; gas, data from the Astron accelerator (1974) [3.5,3.6].
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3.5 Paraxial Transverse Hamiltonian

The paraxial nature of our electron beam may be exploited to derive a useful
form for the Hamiltonian. The single particle Hamiltonian for a particle in the

beam (not just an equilibrium beam) is
1
H = ymc? + ¢ = ((mc?)? + (pc)?)” + ¢ . (3.51)

Introducing the canonical momentum P = p + £A we may expand the Hamilto-

nian as follows

+qp+--- (3.52)

P} ) _gAP;

1
H = 2 2
Torme” + 29om (p,. + r2 ~Nomc

where the “fluid gamma” ~, is defined as (y,mc?)? = (mc?)%+(P,c)? and terms of
order A2/(~4,mc)? have been dropped. Noting that P, = 4,mcf, and introducing

the pinch potential ¥, = 8,4, — ¢ the Hamiltonian becomes

H =~,mc* +

2
2 (pr + ‘}')_) = q¥o - (3.53)
Yo

In the remainder of the thesis we shall only be interested in the transverse
Hamiltonian H; = H — ymc? which reads
H, = 271m (pr + P’) —q¥ (3.54)
where we have dropped the subscript o from ~,.
Hamilton’s equations yield the equation of motion for the transverse variables

(r,0)

d dr\ 9y
2’5("’”’&?) ey (3.55)
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If scattering is considered to be important, then a small—angie scattering term 6F
should really be present on the right hand side of the 3.55. We may neglect the
axial dynamics so that dy/dt = 0 on the time scale of propagation for several

betatron wavelengths. In terms of beam variables the force law becomes

0%r qg Oy
— k4 .56
9z  ympB2c? or (3.56)
which, written out explicitly is just
d?r do\? qg Oy
—_—r=) = _-Z 3.57
(&) ~ema @57
(L0 pdrdd g 109 (3.58)

dz? + dzdz  ~ymc2B%r 00
Anticipating more detailed work, presented in Chapter 9, on the single particle

dynamics in the Bennett equilibrium, here some simple results concerning the

transverse orbits and the concept of near-circularity will be discussed.

For the axisymmetric equilibrium 9 = ¥(r) 3.56 reduces to

d’r

52—2 + f)%(r)r =0 (3'59)
which corresponds to
d? do\? - .
d_z;- -r (Z;) + Q%(r)r =0 (3.60)
d? dr df

Equations 3.60 and 3.61 admit two integrals of motion, that is, the axisymmetric
transverse Hamiltonian is a nonlinear integrable system; it is in fact just mo-

tion in a central potential. For the Bennett equilibrium the energy and angular
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momentum integrals are (p = r/a)

1 P21 1 ~
) R 5me*g%a*(1}, log (1+0%) (362)

1 dp\?
H: = —~mc? 5822 (__) 1
1 =5me pla dz 2 yma?

Py = ymBea®p*((p) . (3.63)

The effective potential for radial motion is

5 1 2.2 2692 [ L 2
V= 1me B*a*Qg, ;—2-+log (1+p) (3.64)

where | = P2/ (7mcﬂa2f230)2 . The potential-minimum radius p, upon which
circle orbits revolve and about which near-circle orbits oscillate, for particles

with Py = ymBeca®p2Q(p,) , is given by

pE = %l (1 + \/1 + %) (3.65)

and the squared ratio of the angular to radial frequencies for near-circle orbits

centered at p, is
Q 1
0z 2(1+2p3)

where we have used 02(p,) = (1/yma?)d?V /dp? and Q2(p,) = Bzczﬁ%(po) . Fig.

(3.66)

3.3 depicts /2, and ma2Jpo(p,)/I, plotted versus p, . According to this plot
most particles on near-circle orbits have {3/}, <« 1 , which means that the
radial “vortex gyration” may be treated as a high frequency degree of freedom
and averaged out of the problem. What will be missing are various high frequency

effects.
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Figure 3.2: Most particles on near-circle orbits have (13/(, < 1 as depicted in

this plot of 5/, and 7a%Jy,(po)/ I, plotted versus p, .
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Chapter 4
Conductivity Generation

4.1 Introduction

Intricate and subtle effects are likely associated with the details of conductivity
generation in the ambient gas during passage of the beam. Careful treatment
of conductivity generation is necessary to correctly understand the physics of
beam propagation. The problem is to accurately account for the interactions of
relativistic electrons with the ambient molecules, ions, electrons, and photons as
well as the subsequent interactions amongst the molecules, ions, electrons, and
photons themselves.

Conductivity is determined by the free electron distribution in the gas. The
evolution of the non-equilibrium electron energy distribution results from interac-
tion of electrons with other electrons, gas molecules, ions, and the fields generated

by the primary beam current as well as the beam electrons themselves. This de-

52
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scription may be formalized by a Boltzmann equation [4.1]. In a gaseous media
many different atomic and molecular processes contribute to the collision opera-
tor in the Boltzmann equation. We shall have to content ourselves with a simple
thermally averaged model. Detailed “gas chemistry” can hardly be incorporated
within the simple fra.mework- of an analytical model such as developed in this
thesis. For a comprehensive discussion of air chemistry in relation to electron

beam propagation a good source, with many references, is [4.2].

4.2 Phenomenological Conductivity Model

A phenomenological model of conductivity evolution at fixed z due to passage of
the beam is [4.3]
do

3 =kdp + 9—620 — B,o? (4.1)

which accounts for beam-driven impact ionization k , avalanche ionization af |,
and recombination 3, . These production and loss mechanisms are the dominant
physical processes for creating and destroying free electrons. Physically, , ag
and (§, depend upon plasma electron temperature T.. One may neglect this

temperature dependence and consider the coefficients to be thermally averaged.

4.3 Impact Ionization

The impact ionization coefficient x is

2
qg° One 1
- — 4.2
* mvy, 9¢ Jp (42)
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where vy, is the effective plasma electron-molecule collision frequency, n, is the
plasma (free) electron number density, g is the electron charge, and m the electron
rest mass. In air, for plasma temperatures 0.5¢V < T, < 1.0eV , £ = 8.5 x 104

cm/statcoulomb [4.3].

4.4 Avalanche Ionization

The avalanche coefficient is

= ApyS° -1
®E = T Bs 1057+ DS ¢ )

(4.3)

where § = E2/ pg y Pg is the air density in atmospheres, and E, (statcoulomb)
is the inductively generated axial electric field. The ezperimentally determined
constants are A = 1.42x 107" , B =9.18 x 107® , C = 2,66 x 1071° , D =
2.82 x 10717 [4.3].

4.5 Recombination
The recombination coefficient is 8, = 7.1 X 107%%p,/p, (sec/cm) where p, is the
STP density of air and py is the air density in the experiment [4.3].

4.6 Local Conductivity Approximation

Within the beam body we neglect avalanche ionization (which is important only
near the pinch point E, spike) and plasma electron-ion recombination (which

depends quadratically upon n.). Conductivity generation is due only to direct
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beam-driven impact ionization. Nonlocal impact ionization (knock-on effects of
high-energy secondary electrons) which causes spatial spreading of conductivity
is not considered either. Such a “local conductivity approximation” is generally
valid above a threshold gas pressure and is certainly reasonable in STP air. The

conductivity equation is therefore

do
— = . 4
ER kJp (4.4)
This may be integrated simply
S
7(r,0,6,2) = 5 [ ¢ Ju(r,0,6',2) + (7,6, (45)
0

where 7 is conductivity due to any residual plasma electrons generated by previous
pulses, or intentionally by a laser, prior to injection of the lead pulse. Usually it
is a reasonable to assume, for widely spaced pulses, that the gas is fully relaxed
and & ~ 0. In any case, residual conductivity will be important only for the head
of the pulse since the pulse will rapidly generate a plasma electron density far
in excess of any residual free electrons due to pre-excited air. If the time spread
between pulses is long compared to the de-excitation period then even for the
head & ~ 0 . To quantify these simple arguments requires detailed investigation

of relaxation rates for de-excitation of air after passage of a pulse of electrons.

4.7 References

4.1 S.S.Yu, “Boltzmann Approach to Conductivity Calculations”, UCID-17907
(1978)



56
4.2 AW.Alj, “On Electron Beam Ionization of Air and Chemical Reactions for

Disturbed Air Deionization”, NRL-Report No. 4619 (1981)

4.3 M.Lampe, W.Sharp, R.F.Hubbard, E.P.Lee, R.J.Briggs, “Current and Con-
ductivity Effects on Hose Instability”, Phys. Fluids 27,2921 (1984)



Chapter 5
Field Equations

5.1 Introduction

It is the purpose of Chapter 5 to present a derivation of the basic field equation
we use to describe the dipole fields generated by a linear hose instability of an
ultra-relativistic, paraxial electron beam immersed in an Ohmic plasma. Our

starting point is with the full Maxwell equations

—62A+V(V.A+l?-?)=4—”.1 (5.1)
c ot c

19 19¢
_a?e+ 19 (v.a4192) 5.2
a¢+cat(v A+cat) arp (5.2)

where 92 = 1/c29%/0t? — V? and the fields E and B are given by

19A
- _vg_ 1A 5.
E=-Vé—-— (5.3)
B=VxA. (5.4)
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The plasma is treated as a simple Ohmic medium so the induced plasma current
is J, = cE . In the Maxwell equations J and p are the total current and charge
densities respectively.

A relativistic transformation from the accelerator rest frame into the beam
rest frame is not useful since the plasma, which is at rest in the accelerator rest
frame, would become a relativistic entity. Although it is possible to transform
conductivity relativistically, we do not find such a transformation to be necessary.
Beam variables are used instead:{z,t) — (z, ¢) defined by ¢ = Bct—z. The partial

derivatives transform according to

{(3),4(3),

2)-(2)-().
It is impoftant to clearly understand that this transformation is not a relativis-
tic transformation to the beam frame; in fact, all equations are written for an
observer in the accelerator rest frame. In this thesis we will work in the Lorentz
gauge V- A +1/c8¢/dt = 0. In this gauge, with the beam variables, the full set

of equations reads

%A, = —fc’-r-J,, (5.7)
A =-T3, (5.8)
3¢ = —drmp (5.9)

3¢ DA, 08A,
o9 _ A, =0 5.10
3¢ + B Ep 3¢ +Vi-A (5.10)
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ap an _ an

65;+V_L-JJ_+62 ER =0 (5.11)
_ a¢ 9¢ 0A;

J.=J e +06§ c 3 (5.12)
J, =—0oV, ¢— aﬂaAl (5.13)

I
5.2 EMPULSE Field Equations

A key approximation facilitating rigorous derivation of useful field equations is
the decoupling of the transverse vector potential A from the determination of
the scalar potential ¢ and axial vector potential A, by setting dA ; /3¢ to zero in
the transverse induced current J; . It is important to note that simply setting
A to zero is much too strong since this implies oV ¢ = 0 which leaves in fact
little physics. Also notice that the transverse vector potential is still coupled
to the axial vector and scalar potentials through the Lorentz gauge condition.
Single particle dynamics will turn out not to depend upon the transverse vector
potential for a paraxial beam so we need never actually compute A .

Combining the equations with incorporation of this approximation yields

209 _ 4x ( . _9, .12
80P =T (Vo (oYt - ot ang) (5.14)
0 4 o g
_ 9¢ Y
Jz = Jb "'.0'5-; - U-é—g— (516)
o 1 0
5?(1/)+;§¢)—£(1/)+¢)+,3V1_-A_L=0. (5.17)
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A second key approximation, the “frozen field” approximation, concerns the
relative magnitudes of 3/9¢ and 3/8z . We assume that the z dependence is
much weaker than the ¢ dependence. Physically this is reasonable since the fields
are expected to look like fixed patterns translating in the z direction, evolving
only slowly in the “time” variable z, whereas the dependence upon the “slice”

variable ¢ may be strong if there is axial field structure in the beam frame. Our

#).<3)

and we will set 8/8z = 0 in the field equations, therefore 32 = V2 +1/~428%/8¢%

assumption is that

As we are interested only in low frequency modes we drop displacement terms

8%2/8¢% « V2 ~ 1/a? also. The field equations are therefore

Vi+¢)= —ﬂéchz (5.19)
20 (g 19
Av v = (v R CaY% lq&)+72 ang) , (5.20)

Finally, we drop 1/~2 terms for ultra-relativistic beams (we keep 8 displayed even

though 3 ~ 1 ). The result is the well known EMPULSE equations of Lee [5.1].

2 [
Vi +e) - <% = Jy (5.21)
Viz_‘é’ = %’rv 1-(6V1g) . (5.22)

Note that one cannot set ¢ = 0 in these equations consistently; however one may

have ¢ ~ 0 as an approximation.
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In order to study the linear hose instability, which is an m = 1 nonaxisymmetric

mode, we expand J, , 0 , ¢ and ¢ up to'dipt‘)le terms
Jp = Jb(r) + Jo1(r, ¢, 2)cosb
o = 0,(r) + o1(r, ¢, z)cost
¥ = to(r) + ¥1(r, ¢, 2)cosd
¢ = @o(r) + ¢1(r, s, 2)cosd

and linearize the field equations to arrive at

19 0 4
o (Yo + ¢0) = - (Jbo -0

o)

18 03¢, 4119 __ 34,

rdr 9r 8¢ cror ° 8¢

9190 ar Oy, 4w 4 O,
375 (Y1 + 1) — —o0, 5 = —Jut—o B¢
01000 1o, (40, 50 br, 0%y 414
arror ¢ ~rar \¢c 5 c L or c rt’

(5.23)

(5.24)
(5.25)

(5.26)

(5.27)

(5.28)
(5.29)

(5.30)

Physically meaningful solutions are selected by appropriate boundary condi-

tions. These conditions are: regularity at the origin r = 0 and vacuum boundary

conditions at r = R . By vacuum boundary conditions we mean boundary condi-

tions linking the solution in the plasma to the solution in the cold gas surrounding

the plasma. This gas is considered to resist breakdown for the field strengths of in-

terest and therefore acts electromagnetically as a vacuum (the dielectric constant

and magnetic permeability are those of vacuum).
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We could also use infinite conductivity conditions at » = R , in which case

the potentials vanish at » = R . This is the case for propagation in a tank with

a stainless steel wall, the conductivity of which is typically six to ten orders of
magnitude greater than that of a plasma [5.2].

Boundary conditions for the vacuum case are

8o, 80,

5, (0)=—5-(0)=0 (5.31)

¥1(0) = ¢1(0) =0 (5.32)

Yo(R) = ¢o(R) =0 (5.33)

%%r (¥1+¢1)(R)=0 (5.34)
(%%%wl SR = aa"f) (R)=0. (5.35)

In the vacuum region the scalar and pinch potentials have the simple forms

Yo =0 (5.36)
o % (5.37)
b0 x log (%) (5.38)
b1 % (5.39)

where the constant coefficients are gotten by matching with the solutions for

r < R by means of the jump conditions at r = R

(o] = 0 (5.40)



63

[41] =0 (5.41)

[aa‘br" + aad:"] =0 | (5.42)
10

=571+ 1)l =0. (5.43)

5.4 Pure Pinch Field Equations

If we are considering a well charge-neutralized beam for which f, ~ —1 then
A~1and ¢ ~ 0. Such a beam equilibrium is said to be a “pure pinch”; for
this situation the full field equations simplify considerably. The field equations

collapse to Ampére’s equation

4r = 0 4w

Employing the dipole expansions as before we may linearize the Ampére equa-

tion
4dr o 4
1 4r o 4r 4r O0A
2 __ == _ = —— —_ 201 . 5.46
(Vr p cﬂaoag)Al —Ju + cﬂag o1 (5.46)

We employ a few simple tricks to eliminate the dipole conductivity o, . First,
notice that f0A,/0¢ = —E,, = —Jpo/00 = —Jpo/Jbo/S = —fm/¢ , where we have
made use of the conductivity law do /8¢ = kJp which results in g, = k¢Jpo for
the monopole if we neglect any conductivity present prior to passage of the pulse

under consideration. Next, apply 1 + d/8¢ to the dipole equation to get

0 190 4 0 4 0o
(1 + S'—ag) (—ar;'—arr - —c ﬂJbo(r)'cg_as') A = ——-—c (1 + fm + §—a§) Jbl
(5.47)
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which is the basic field equation employed in subsequent work work involving
plasma current and conductivity generation.

For various hose models which neglect conductivity generation effects the

appropriate field equation is just

0 4
ﬂd’o-a-z) A1 = -—-C—Jbl (548)

___r —_—

(818 :4_7_r
\Orror c

where 0, = 0,(r) is independent of slice position in the beam, perhaps even
interpreted as a radial average, or radially uniform profile.

There are essentially as many distinct models of linear hose instability as
distinct methods of computing the perturbed current source Jp; which appears

in the basic field equations 5.47 and 5.48.

5.5 References

5.1 E.P.Lee, “The New Field Equations”, UCID-17286 (1976)

5.2 E.P.Lee, “Hose Theory”, Lawrence Livermore National Laboratory, UCID-
16268 (1973)



Chapter 6

Rigid-Beam Model

6.1 Introduction

Early work on the hose instability exploited the fact that a great deal of the
relevant physics is contained in the simple picture of the beam bending as an
internally rigid rod. Since the rigid-beam hose model is historically the first
treatment of linear hose instability, and since the development of this theory is not
readily available in the literature, we will present an original and fairly complete
account here. Rigid-hose ideas form the basis for much of our subsequent work
and a full understanding of these ideas will prove beneficial later.

As implied by the name, in rigid-beam theory the fundamental assumption is
that particles maintain the same relative positions with respect to one another
in the hosing beam as in the unperturbed beam. The beam undergoes hose

instability as a single entity, with a single response frequency, since the particles

65
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all respond identically.

The basic mechanism for the hose instability, in the context of rigid-beam
theory, may be described as follows. (i) The electron beam suffers a lateral
displacement with respect to its equilibrium position; (ii) As a result, dipole
fields are induced in the plasma; (iii) Dipole fields result in a restoring force the
strength of which is proportional to the relative displacement between the beam
current and the monopole field axes; (iv) The monopole field axis tries to rejoin
the beam current axis, but may only do so on a resistive monopole decay time
scale; (v) By the time the field axis has diffused towards the displaced current
axis, the current is already responding to the restoring force and is swinging
back; (vi) The current and field displacements get out of phase and the result is
an underdamped oscillation, or, in the case of instability, an overstable oscillation
in which the beam is always drawn back to the axis but overshoots with a greater
amplitude each swing.

Without loss of any key physics we will investigate a charge neutral f, = —1
beam with no plasma current f,, = 0 . For this situation plasma generation
effects play no part in the description of the instability. The equations which
form the basis of the rigid-beam model are the single particle force equation and

the Ampére monopole and dipole equations with constant conductivity

o*r g O0A
= - 6.1
922  ~ymc?B Or (6.1)
10 8 4rao, 8 4T
-——p— — — = —— 6.2
(pap ap c 85‘) 4o c Joo (6.2)
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8138  4rmac, O ar 4
———p— — = —-— . 6.3
(appap” - ag) Ay Pl Jb1 (6.3)

In general a hosing beam will displace transversely in two directions in a com-
plicated pattern. For simplicity we will consider a plane polarized hose instability.
For this case it suffices to consider lateral displacement in the z direction. To get
the z displacement of the beam center of mass we must ensemble average the z
component of the force equation 6.1 over the distribution J; of particles in the

beam, this yields

3y 1 q 2ma? [ dA, dJbo
_1 _ 4
822  2~mc?Ba I, /0 dpp (Jbl dp 4 dp ) (6-4)

where we have defined y to be the center of mass of the beam. This is the basic
force equation we will use. This equation is not specific to the rigid-beam model;
in fact it is quite generic, having no particular assumptions built into it at this
point in the development. The model specificity enters in the calculation of A;
and Jy; .

Now we must incorporate the crucial assumption of rigid-beam theory, that
the beam displaces laterally as an internally rigid but bendable rod. Mathemat-
ically, a rigid displacement of a function f(r) in the direction x is described by

f(r) — f(r — x) = f*(r) which, when linearized yields

re=r@-x Ly (65)

By means of this formula the perturbed current for a rigid beam displacement is

1dJ
Jor = —y(s, 2)2732 (6.6)

where y is the lateral displacement of the beam center of mass in the z direction.
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6.2 Continuous Rigid Beam

In Section 6.2 we will consider the case of a continuous, rigid beam. A continuous
beam is one for which the current is independent of ¢ . Such a beam is a long
continuous current pulse. The distinction here is between a single long pulse and
a sequence of short pulses.

The simplest method of computing A; is to assume that the field undergoes
a rigid displacement also
1dA,

A = ;d(gaz); dp

(6.7)

where d is the lateral displacement of the field axis. It is not necessary to model A4,
in this fashion for a rigid beam displacement and we will ultimately calculate A,
from Jp; ¢ however, this simple fundamental mode expression has been used and
yields several interesting results. This model should rightly be called the “Lewis
model” since it was developed by H.W.Lewis in unpublished work. Historically,
this is probably the first model of hose instability. Despite its inherent simplicity
the Lewis model contains much of the relevant physics. Aside from its simple
structure the main importance of the Lewis model is that an initial value problem
may be easily posed which is immediately applicable to experiment [6.1].

Introducing the expression 6.7 for A; in 6.4 yields the rigid beam 6.7 force
equation

9%y

E;+ﬁﬂy—@=0 (6.8)

where (1, denotes the rigid-beam “shaking” frequency and Q, the corresponding
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wavenumber defined by

a2 = 1 gq 2ma? [ dJpo dA,
87 24me2Ba I, Jo P dp dp

(6.9)

Likewise, in terms of the assumed forms for J,; and A; the field equation 6.3

becomes

od
o¢
where ¢ is the “rigid-beam dipole decay length”, defined by

271'a2 1 /°° 7 deo dp
a I oo PPlbo s dA,

+ -y =0 (6.10)
§1

(6.11)

Specializing to the Bennett equilibrium we have the shaking wavenumber ﬁ§ =
(12,/3 and the rigid dipole decay length ¢; = (37a%0,)/c . In terms of these

quantities the rigid-beam hose equations are

d%y 2
52 Y+ (y-d)=0 (6.12)
ad 1

+—(d-y)=0. 6.13
3t d-v)= (6.13)

These equations have an immediate physical interpretation. The force equation
6.12 states that the beam center of mass undergoes driven harmonic oscillations
with restoring force proportional to the relative displacemen_t of the current and
field axes; when y — d = 0 the beam axis is unaccelerated. The field equation
6.13 states that the field axis tries to follow the current axis but may only do so
diffusively.

Integrating the field equation for d and substituting in the force equation

results in the “hose equation” for a continuous rigid beam

%_'_023!_02/ d§ e:l(f -¢) ( ) (614)
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where the term on the right side is a defocussing term due to the induced dipole
field and the term 2y on the left hand side is a focussing term due to the
monopole fields.

We may easily solve the hose equation 6.14 by means of Laplace transforms
for a situation of experimental interest. Consider modulating the beam at z = 0
as it streams past. Suppose that the ends of the beam not displaced. Then the
correct initial conditions are easily seen to be y(¢,0) = exp (—iws¢/Bc) where wy
is the forcing (driving) frequency, y(é‘, z) = 0 for ¢ < O (since the beam head is
¢ = 0), and y(0, z) = constant . The solution satisfying these initial and boundary

_1
N 2
y(¢,2) = exp (—id’);g‘ +1 (1 + .L) ) (6.15)

conditions is

wgs1

for ¢/¢1 > ﬁgz which means physically that enough of the beam has streamed
past the point z that any transients have died out. This result was apparently
first derived, but never published, by Lewis. Mathematically detailed results !
concerning the solutions of the hose equation 6.14 were obtained by Yadavalli
[6.2].

Introducing the Fourier dependence y ~ d ~ exp (—i&’:g — zflz) equation 6.14
yields the rigid-beam dispersion relation

. 0?2
—wWwe = W . (616)

This dispersion relation is plotted in Fig. 6.1 for real {1 . A more usual experimen-

tal situation to consider is that of a beam which is modulated at a fixed position

lef. also [6.10], [6.11] , and [6.12].
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z in the laboratory as it streams past. The driver frequency is w which is real
and the growth in 2z as a given slice streams away from the point of modulation
is determined by I'm (k(w)) . Since k always occurs in conjugate pairs we always

consider the root with Im (k(w)) < O since this root yields growth for z > 0 .

Solving 6.16 for Im? (k(w)) = Im? (ﬁ) results in

~ 1= w27l w372
Im*Q = =-02 ,/ 1 __ L ) 6.17
m 2 ® ( 14+ w?r 1+ w2 ( )

From this equation we may compute the driver frequency w, which yields the

maximum growth in z . Setting dIm(k)/dw, = O results in w,m = +/1/3 .
The corresponding growth rate is max(Im(k))=y/1/8(, . In Fig. 6.2 is plotted
ImQ/Qg, versus wry , where, recall that (2 o = 302 . Notice that the growth rate
approaches zero asymptotically as the driver frequency is increased. On physical
grounds, one expects there to be high frequency cutoff, a driver frequency beyond
which the positive growth becomes negative (damped). Such a cutoff was first
predicted theoretically by Lee [6.3], and was first experimentally discovered in
a series of experiments with Astron in 1976 [6.4]. It is a major failing of the
rigid-beam model that no such cutoff is predicted.

In Figs. 6.2,6.3, and 6.4 experimental data from the Astron 2 experiment is

2 Astron was a controlled nuclear fusion program conceived by N.C.Cristofilos [6.5] in 1958. The
key idea of Astron was the creation of a cylidrical layer of relativistic electrons by injecting
long pulses into a tank with a strong solenoidal field B, . The injection was to be tangential to
the circumference of a cylinder plus a slight axial component. The beam would therefore wrap
itself around in a cylinder. The axial motion of the rotating cylinder of electrons was to be

slowed by a system of resistors. Mirror trapping of the electrons would be accomplished and
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compared with the rigid-beam model predictions. In the experiments a 300 nsec
6 MeV electron pulse was modulated sinusoidally as it passed through a 30 cm
parallel-plate transmission line. The electric and magnetic fields of the electro-
magnetic wave deflected the beam to a maximum amplitude of 0.2 mradians. The
resulting response of the beam as it streamed through a 12 meter tank filled with
H; was analyzed to determine the growth rate dependence upon driver frequency
(10’s of MHz).

The dispersion relation 6.16 predicts infinite resonance as {2 — {1, from be-
low as indicated in Fig. 6.1. This is an unfortunate state of affairs since one never
expects infinite resonance in a real system, such resonance would predict infinite
growth rates. Another consequence of the infinite resonance is the prediction of
absolute instability in the beam frame of reference, experimentally the growth is
known to be convective [6.4]. Physically, the source of the infinite resonance may
be traced to the fact that in the rigid-beam theory all particles respond at the
rigid response frequency. It is the prediction of a unique response frequency that

mathematically results in infinite resonance. M.N.Rosenbluth realized 3 that a

the electron current would provide magnetic field reversal. Plasma could be trapped within the
cylinder and be heated to thermonuclear energies by Coulomb collisions with the relativistic
electrons. Field reversal with high efficiency was never attained and this fusion concept was
eventually superceded by others. The Astron-I accelerator however operated many years
1963-1968 at which time an upgraded Astron-II came on line which in turn operated many
years 1968-1978 at which time Astron was finally dismantled. Astron paved the way for the
current state-of-the-art induction linac the ATA (Advanced Test Accelerator) [6.6].

3 Unpublished
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spread in betatron frequency would have the effect of resolving the infinite res-
onance. Physically such a frequency spread may arise due to relativistic mass
spread amongst the particles of the beam, or due to anharmonicity of the pinch
potential. Assuming, for simplicity, that the betatron frequency is spread with a
half-width A, the dispersion relation should more properly read

Q2

(6.18)

— 1w =

so that, as {} — (2, we have —i&¢; < 2,/2A8, . This translates into a minimum
growth length of order (2AQ,/Q,)ra%0,/c as indicated in Fig. 6.6 which depicts
qualitatively what the dispersion relation should look like with phase mixing

effects included.
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RIGID-BEAM DISPERSION RELATION
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Figure 6.1: Dispersion relation for the continuous rigid beam. This result is

dependable-only in the low frequency limit Q/ 5, << 1.
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DOPPLER~-SHIFTED HOSE FREQUENCY
VERSUS
REAL DRIVER FREQUENCY: RIGID BEAM
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Figure 6.2: Normalized growth rate Im(Q2/ QF"') plotted versus normalized driver

frequency wm .
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RIGID-BEAM HOSE GROWTH RATE
COMPARED WITH EXPERIMENT
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Figure 6.3: Comparison of Astron data with rigid-beam theory: A 6 MeV 110
Amp electron beam propagating in Hy gas was sinusoidally perturbed with a
driver frequency of 50 MHz and 65 MHz as it streamed through a 30 cm long
parallel-plate transmission line. Maximum deflection amplitude was 0.2 mradian.

Gas pressure was 1-2 Torr [6.1].
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RIGID-BEAM HOSE GROWTH RATE
COMPARED WITH EXPERIMENT
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Figure 6.4: Comparison of Astron data with rigid-beam theory: A 6 MeV 200

Amp electron beam propagating in Hy gas was sinusoidally perturbed with a

driver frequency of 35 MHz and 50 MHz as it streamed through a 30 cm long

parallel-plate transmission line. Maximum deflection amplitude was 0.2 mradian.

Gas pressure was 1-2 Torr [6.1].
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RIGID-BEAM HOSE GROWTH RATE
COMPARED WITH EXPERIMENT
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Figure 6.5: Comparison of Astron data with rigid-beam theory: A 6 MeV 200
Amp electron beam propagating in Hs gas was sinusoidally perturbed with a
driver frequency of 125 MHz as it streamed through a 30 cm long parallel-plate

transmission line. Maximum deflection amplitude was 0.2 mradian. Gas pressure

was 1-2 Torr [6.1].
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RIGID BEAM WITH DISTRIBUTED
BETATRON FREQUENCIES

RESPONSE FREQUENCY -lwr,

Figure 6.6: Dispersion relation for a continuous rigid beam with distributed beta-

tron frequencies. Note the cutoff frequency beyond which the growth is damped.
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6.3  Rotating Rigid Beam

The formalism developed in Section 6.2 may easily be generalized to include the
effects of an applied solenoidal magnetic field B, . This is important for several
reasons. First, it is sometimes advantageous to apply a strong magnetic field
in the accelerator to help overcome space charge effects which would otherwise

4, Second, it is found that a strong solenoidal field can con-

destroy the beam
siderably lessen the severity of hose instability. Experimentally, one is interested
in injecting the beam into a gas region which does not contain a B, field. Con-
servation of canonical § momentum shows that the beam must begin rotating as
it leaves the accelerator [6.7]. It is for this reason that we refer here to rotating
beams. The beam is not necessarily rotating within the accelerator, although
with B, a natural equilibrium does involve rotation.

The basic field equation 6.13 is unchanged by the presence of the applied
magnetic field. The force equation 6.12 however must be changed to include the
force due to B, . Also, whereas we considered a plane polarized hose in Section
6.2, which was justifiable since the two transverse directions were not coupled in
that case, now we cannot do this. We need to consider a general hose displacement
in the transverse plane.

The main effect of the solenoidal field is to introduce another frequency into

the problem. This frequency is related to the cyclotron frequency of the electrons

4 A solenoidal field within the accelerator is also used to limit the destructiveness of the beam
breakup instability. Beam breakup in the accelerator is caused by beam coupling to dipole

cavity modes which impart a lateral displacement to the beam, cf. Chapter 1.
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spiraling around the B, field lines. We assume that the field strength B, is
uniform across the beam cross-section. This is reasonable since B, is applied
by a magnet structure the characteristic scale length of which is much greater
than the beam radius. We also consider a charge neutral beam, as in Section 6.2,
therefore the beam is in a pure magnetic pinch. Hence the Lorentz force is

d*r _ q
922 ymp2c3

(vi+v:)xB (6.19)

where B = By + B, . The perpendicular velocity v, is now of consequence due
to the strong field B, . Obviously the ensemble averaged force equation is the
same as in Section 6.2 with the addition of a term due to the cyclotron force

R
822

— +PZR- d)+%5xﬁc=o (6.20)

where the cyclotron vector €2, is defined by

a, = 8, (6.21)
'7mc

and the vector R is the centroid of the beam in the transverse plane. In place
of the real vector R we prefer, following Lee [6.7], to introduce a complex scalar
called a phasor, y = y; + 1y, where y denotes the centroid of the beam in the
complex plane. The use of a phasor implies circular polarization, which is general
enough for our immediate purposes. In terms of this phasor, after integrating the

field equation for d as in Section 6.2, we get the rotating beam hose equation

Py dy &2 _ &2 (c'=¢)/
5————20 d—+Q y = 02 / dg‘——e‘ sy (¢ 2) . (6.22)
22
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Introducing the Fourier dependence y ~ d ~ exp (—itf)g — iﬁz) we arrive at the

rigid beam dispersion relation for a rotating beam

Q2 + 0Q,
Q202 -0,

(6.23)

—wn =

This dispersion relation is plotted in Fig. 6.7 for real 2/}, . Again, a more

useful point of view is to consider real w . Solving for k yields

1 402%iwn
- o 2_ "8~ 7. .24
Bck w+2(ﬂci\/ﬂc l—iwrl) (6.24)
Considering the limit 1,/}, < 1 we expand this result getting
1 202 twn
R - - 6.25
Bck w+2(ﬂciﬂc(1 ) l—iwrl)) ( )

from which we identify the growth rate
Q. (Q,)z Wty
B)=—— | — ] ————ee . 6.26
Im(k) Be \Q./ 1+ w?r? (6:26)
Computing the maximum growth for real driver frequency w, as before we find
wemy = 1 for which
19, /Q,

Im(k) = =5 3¢ (9—)2 . (6.27)

For the beam without B, we found that the maximum growth rate was max(Im(k))
= 0.35355 (1, . Here we find that this growth rate has been reduced by the factor
2,/Q: < 1. This explains why an applied B, field is interesting. By apply-
ing a large enough field one can assure that 2,/{); < 1 and stabilize the hose

considerably.
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Dispersion relation for a rigid beam immersed in a solenoidal magnetic
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6.4 Chopped Rigid Beam

Experimentally it is observed that the hose instability is convective in nature.
The maximum amplitude moves back from the head to the tail of the beam pulse,
growing in amplitude and wavelength. A natural idea therefore is to attempt to
limit the destructiveness of the mode by using pulses which are so short that
appreciable growth cannot occur over the pulse length. There is no reflection of
the hose “wave” at the beam tail so the instability is rendered harmless, it simply
convects out of the beam before growing too large.

During early work attempting to understand the hose instability and to find
techniques for curing it researchers conceived the idea of “chopping” the beam
into short segments. Chopping a beam potentially cures the low frequency range
of the hose spectrum. What chopping cannot cure is the short wavelength (high
frequency) spectrum. Short wavelength growth may obviously destroy even a
short pulse. Furthermore, chopping introduces some deleterious effects which are
absent in a continuous beam, these include transmission of dipole fields from pulse
to pulse, and low frequency resonant effects due to coupling between the pulses.

The continuous rigid-beam formalism may be easily modified to include beam
chopping. We may consider a very long train made up of many short pulses.
Fixing our attention upon a representative pulse somewhere in the train we must
modify the formalism so that monopole and dipole fields from the pulses pre-
ceeding the pulse under observation are accounted for. It is usually ® reasonable

to assume that higher modes decay rapidly enough that only the monopole and

5¢f., however, the result 6.60.
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dipole fields from previous pulses are important.

Mathematically we may consider a chopped beam to be a very long continuous
beam with current strongly modulated in ¢ . This modulation will be described
by a function f(¢) called the “chopping function”. For an evenly chopped beam
the chopping function is periodic in the slice variable ¢ . We may be interested
in chopping the beam in variable chop lengths t;) cure any resonant coupling
effects between pulses due to steady periodicity. Physically, the accelerator may
be operated with a random or programed variability in chop frequency.

Equilibrium beam current in a chopped beam is Jy, = Jpo(r)f(¢) . Using
this current the dipole field equation may easily be modified to include chopping.

First notice that the perturbed current density Jj; is

1 dJiy

2 (6.28)

Jbl(pa S’,Z) = —d(g,z)f(g)

therefore the field equation, following the argument used for the continuous beam,
is replaced by
ad 1

5E+El‘(d—fy)=0- (6.29)

Integrating this equation for d yields

S 1 -
d= [ de—er I p(¢hy(c) (630
—o0  §1
where the integration runs to —oo as opposed to 0 in the continuous beam case.
In the force equation, the term yﬁg on the left hand side is a focussing force

due to the monopole fields. For a chopped beam the monopole fields at any (¢, 2)

will be those generated by the pulse at that location, plus any residual undecayed
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fields from previous pulses. Formally, this means this term must be replaced
according to

M2 =2 [* b1 Ler—g) o
o — 2 [ af=en (s (6.31)
—oo  So
Using the expressions 6.30 and 6.31 in the force equation 6.8 we get a heuristic
form of the Weinberg equation [6.9] for a rigid chopped beam undergoing hose
instability
Ay . xy [ 1 1(o_ no [ 1 Lo
[ a Ry = [ afen Iy (832)
F4 -0 So —oo 1
The structure of the rigid chopped beam force equation may be shown to be
of this form, quite generally, without use of the assumed form 6.7 for A; . To

accomplish this we will solve the monopole and dipole equations including the ¢

dependence directly.

6.5 General Structure of Chopped Rigid Beam Hose

Equations

In order to bring out the overall structure of rigid-beam theory we have developed
a Green function treatment to calculate dA4,/3p and A; which are the necessary
ingredients in the force equation. The basic set of equations which must be solved

is

19 8 4ma?0, 8 4r 4
-———p— - — = —— 6.33
(pap ap c ag) A, c a”fJbo ( )

A} = —afy—t (6.34)

_—_—p —

dppdp c 4

( 219 4ralo, 8) 47 dJy,
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%y 1 gq 2ma? (> y BA,,) dJyo
— = —= dpp | Ay + = —_—. 6.35
922 - 2~mc2Ba I /o PP ( 1t ( )

Notice that we really need to calculate not A, but dA,/3p . We will prove that
A; and 9A4,/3p both have the same Green function. First, if we apply 9/dp to
6.33 we find that

o129 47ra20,,2 0A,  4m 5 _dJy
dp pdp ¢ O¢

therefore both A; and 8A4,/dp obey equations with the same partial differential
operator. Notice that the independence of conductivity upon radius is crucial
to this result. A solution, which we employed previously, is indeed that A; and
0A,/8p are proportional to one another. In fact, a particular solution is simply
Ay = —(y/a)0A,/3p , as can be seen by inspecting the source terms on the
right hand sides of equations 6.34 and 6.36. This special solution corresponds to
unaccelerated lateral displacement of the beam since the right hand side of the
force equation 6.35 vanishes identically.

We have learned that the Green functions for A; and 8A4,/3dp differ from one
another, if at all, only because of differing boundary conditions. We will prove
that A; and 8A,/8p in fact have the same boundary conditions and therefore
the same Green function G (p,¢';¢,¢') in a moment. For now let us assume this
fact and complete the argument concerning the structure of the chopped hose
equation.

In terms of the Green function the solutions for A; and 8A4,/3p are given by

0A 4r oo 0 dJ,
Vet =2, / dp'p' / d¢'G (p, 05 6,¢") F(sy(s) =22 (6.37)
c Jo () dp’

a dp
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= ———a / dy’ /0 T &G (pr35,6) f (c’)y(g')?—p,"" (6.38)

where the crucial point to notice is the dependence upon f(¢) and y(¢) , in fact,
inserting these expressions into the force equation 6.35 we see that the overall
structure is the same as the heuristic result 6.32. To see this explicitly we will

define the current profile in terms of a dimensionless shape function j,(p) by

writing Jio(p) = (Ip/ma?)jso(p) , the resulting force equation reads

0%y 00 7]
ot [ dpp e / dpld 50 / &G (p,055,6') F() . (6.39)

= 62 [ appdie / dp 'd""’/ 4G (o, '36,¢) 1(¢)(s")

which displays the advertized structure.

To calculate the Green function, and prove the assertions above, let us now
describe the types of boundary conditions of interest in more detail. As men-
tioned earlier, conductivity generation effects are not accounted for in rigid-beam
theory. Certainly, to lowest order in theory, the dominant “term” is uniform
conductivity out to some radius beyond which beam current is negligible. This is
exactly the case for propagation in a plasma filled tank, and is quite reasonable
even for propagation in gas since the conductivity will vanish at a radial posi-
tion for which the beam current is insufficient to generate free electrons, and as
this radius is larger than the radial extent within which the current is primarly
carried the bulk of the beam current is exposed to conductivity which is, to a
good approximation, radially uniform. On the basis of these arguments we may

state that the generic situation of interest is that of a beam propagating in a
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radially uniform conductivity channel which extends at least some distance be-
yond the bulk of the beam. It is only a slight idealization to model this as a beam
propagating in a radially uniform conductivity channel which extends beyond the
radius at which the beam current vanishes.

The question now is, what boundary conditions are to be placed upon the
potentials at the edge of the conductivity channel? Three cases arise. First, for a
plasma channel which fills a stainless steel tank, the potentials must vanish at the
tank wall. Second, for a plasma channel surrounded by cold gas, the potentials
must match by jump conditions with the vacuum solutions in the gas. Third,
there is a possibility thai; the plasma region is effectively infinite, in which case
the fields must behave properly at infinity. We will not deal with this case in this
work.

For cases one and two we now discuss the boundary conditions and show that
for A; and dA,/8p they are the same. For the conducting tank wall all potentials
and their radial derivatives vanish on the wall. For this situation the boundary
conditions are clearly the same for A; and 8A,/8p since at the origin they both
vanish also. For the second case, we need only show that the conditions at the
plasma -gas interface are the same since again they clearly are at the origin. The
azimuthal magnetic field must be continuous across the gas-plasma interface. In
the gas the vacuum solution for the mondpole magnetic field is By = (2I/c)/r
therefore the logarithmic derivative at the interface is (1/Bg)dBy/dR = —1/R .
Within the plasma the monopole field is By = —3A,/9r therefore the logarithmic

derivative of dA4,/3p at the interface is equal to —a/R . But this is the same as
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the boundary condition on A; . Therefore, we have shown that A; and 9A,/dp
have the same boundary conditions for p.

To calculate the Green function we Laplace transform according to

N oo
Jo) = [ dse e 1(s) (6.40)
0
whereupon the Laplace transform G of the Green function satisfies
dld 2 ) A 1 ,
———p—q°(8) ) G=—=-6(p— 6.41
(dppdpp q°(s) p (o= ¢ (6.41)

where ¢%(s) = 4ra®0,s/c . The Green function may thus immediately be written
as a product of the independent solutions ; and 1 of the homogeneous equation

(Ed;—,l;-;;p - qz(s)) ¥v=0 (6.42)

with the result being of the form

G (p, 7' 8) = ¥1 (a(s)p<) ¥2 (a(8)p5) (6.43)

where 1 (q(s)p<) satisfies the boundary condition for p < p' and 2 (g(s)p>)
satisfies the boundary condition for p > p' . The functions ¥, and 2 must be

normalized so that G exhibits the jump in derivative implied by 6.41

(&) &) e
dp pte dp p—¢ P

Specifically, we find that

G (p, s 8) = I (a(s)p<) (K1 (a(s)p>) — e (q(s)) In (q(s)p>)) - (6.45)

where I; is the modified Bessel function of the first kind of order one, K is the

modified Bessel function of the second kind of order one, and a(g) must be chosen
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so that the second factor in G satisfies the boundary condition at p = a/R . Here
p< and ps refer to the lesser and greater of p and p' as usual.

In Chapter 6 we will only consider the case of propagation in a channel sur-
rounded by cold gas, reserving for a discussion (in Chapter 7) of the effects of
wall stabilization the case of a channel bounded by a conducting tank. For the
case of plasma surrounded by gas, denoting by 12 the second factor in G , the
boundary condition at p = R/a is d93/3p = —(a/R)y . Using this to calculate

a results in

K, (q(s)E
G (p,';8) = I (a(s)p<) K1 (a(s)p>) + —%17) (g(s)p) 11 (g(3)p') - (6.46)

The Laplace transformed equations for A; and dA, /dp may now be solved in

terms of the Laplace transformed Green function. These equations are

d1d ) dA, 23

—_———p — s =———a J] 6.47
(7550 7®) 7 (647

dld ) - 47 dJpo

—— )| A ———a —_— 6.48
<dp,,d,,f’ #9) A = Zafy e (6.48)

Solving these equations for A; and dA, /3p and formally inverting the Laplace

transforms we arrive at

A, _4m 5 [, ,dJ] bof p [T ds s(s—<")¢; !,
= ~a [ dfp o wIE [T e IG (o, 5) (649

80+100
=——a/ d'p"”d,;"/ ds‘f(c)y(s)/a 48 os~)G (p,4';3) -

—i00 o2t
(6.50)
From these we identify the Green function G
8o+100
G(p,pi¢—¢) = / 49 ols~ 1G (p,p'; 8) (6.51)
80—100 27”
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where G is given by 6.46. We may anticipate that this Laplace inversion will
involve a sum over residues of poles of G in the complex s-plane. These poles will
therefore appear in the theory as reciprocal decay lengths.

Physically, the response of a given beam slice cannot be influenced by following
slices. This is because the slices do not interact with one another directly, only
through the intermediary of the fields they generate. These fields remain in the
plasma at the fixed position z where they were generated therefore they may
influence succeeding slices which pass that z position but not preceeding slices.
Eventually the fields at a given z excited by a given slice decay away, first the
dipole field decays and then the monopole.

Mathematically, the response of a given beam slice will not be influenced by
succeeding slices if G(p,p';¢ —¢') =0 when ¢ — ¢’ < 0. When ¢ — ¢ < 0 we
may close the integration contour on the infinite half-circle in the positive real-
s half-plane. The response is due to any singularities enclosed by the contour.
Therefore, the constant 3, must be chosen so that there are no singularities to
the right of s, + 700 .

When ¢ —¢' > 0 we may close the contour on the infinite half-circle in the neg-
ative real-s half-plane. Contributions from any poles and branches will contribute
to the response according to the Cauchy residue theorem.

Mathematically, the operator in 6.41 is not self-adjoint, in the ¢ dependence
© it is anti-hermitian. The Green function therefore satisfies a reciprocity relation

of the form

G(pr;6,¢")=G(p,p;—¢",—¢) (6.52)
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which physically is a result of the fact that there is a preferred direction in ¢ as
discussed above.

Let us now calculate the Green function. We define a new integration variable
w = 3¢, where ¢, is the monopole decay length. In terms of w the Green function
is

e (=V%G (p, o' w) (6.53)

1 [wetioo dy
G(p,p g—'f) /

So

wo—100 27”

where the Laplace transformed Green function G reads
Ko (vug)
L (virg)

The functions I, and I; are single valued and regular in the entire finite plane

G (p,p'5w) = I (Vwp<) Ky (Vops) + ———=<-I1 (Vwp) I (Vwp') . (6.54)

(they are entire functions) whereas both K, and K; are multiple valued functions,
which are single valued and regular on the entire plane cut from the branch point
at the origin along the negative real axis. It is perhaps somewhat remarkable that
although the functions K, and K; are multiple valued the Laplace transformed
Green function G is in fact single valued. This is due to a felicitous branch
cancelation. On branch 1 G is just equation 6.54. To see what G looks like on

branch 2 we use the analytic continuations of K, and K, defined by
K, (e™w) = K, (w) — 27, (w) (6.55)

Ky (¢2™w) = Ki (w) + 2mily (w) (6.56)

substituting these expressions into 6.54 we get back 6.54 unchanged. This proves

the single valuedness of G .
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Since G is single valued the only contribution to the integral comes from
residues of poles. Clearly the only poles are points w, at which I,( VWnR/a) =0
.Using the relation Iy(w) = J,(iw) where J, is the Bessel function of the first
kind of zeroth order, we find that the poles lie on the negative real axis in the

w-plane and in terms of the zeros v, of J, are given by

2

a
wy, = —ﬁu,% : (6.57)
The residue of 1/, at w, is
1 Wy a

Res(wy) = (6.58)

L(yw,2) 2 R
therefore, upon using some simple Bessel function identities and defining the

higher order decay lengths ¢,

R2
gﬂv = ang §o (6.59)
we arrive at the Green function G
00 a a .t
G o is—¢) =Y Le e 2 linf) 1 (vafd) (6.60)

n=l 1 (202 - 1)} (va)
where, for all practical purposes we may replace 2v2 — 1 with 202 . This Green
function may be constucted in a somewhat more direct fashion. Note that the

eigenfunctions of the problem are of the form

a?v? a
up, (p,§) = exp (— R s‘) N (Vnﬁp) (6.61)
therefore the Green function must be

G (P, P’; ¢— SJ) = Z gnlin (p;¢) Uun (P', _SJ) (6.62)

n=1
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which, upon forcing the correct jump condition, yields 6.60.

One interesting result which we may deduce from the Green function 6.60
concerns the sufficiency of the monopole and dipole decay lengths to fully describe
the field relaxation. According to 6.60 an infinite hierarchy of decay lengths
6 > 1 > ¢2 > --- is necessary to describe the monopole and dipole vector
potentials. Since v, is an increasing “function” of n the decay lengths ¢, decrease
with n . Therefore, only those values of n for which ¢, is not too much smaller
than ¢, are important. Examining the formula 6.59 for ¢, we find that for thin
beams a <« R higher decay lengths may be very significant. This makes quite
explicit the somewhat cryptic remark in Chapter 2 concerning the sufficiency
of the monopole and dipole decay lengths. For thin beams they simply aren’t

sufficient.
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Chapter 7

The Vlasov (Nonrigid) Beam

7.1 Introduction

Rigid-beam theory is based upon the fundamental assumption that all electrons
respond to the transverse hose displacement the same. This means the electrons
maintain the same position, relative to one another, in the displaced hosing beam
as in the equilibrium.

On general physical grounds, however, one expects an electron to couple to
the hose perturbation in a fashion which is dependent upon the relation between
the characteristic frequency of the perturbation and the frequencies of the degrees
of freedom of the electron. In particular, those electrons which have a frequency
nearly in resonance with the perturbation will couple strongly and therefore re-
spond greatly to the perturbation, those electrons whose frequencies are widely

disparate from the perturbing frequency will not couple strongly and will there-

98
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fore not respond greatly ! . Physically, the response is dominated by the class
of resonant electrons. One therefore expects a plastic deformation of the beam
transversely as opposed to a rigid displacement.

In order to develop a more accurate treatment of the hose instability we shall
have to approach the problem from a particle point of view, that is, we shall have
to solve a Vlasov equation to determine the perturbed beam electron distribu-
tion function and then integrate over velocity to get the perturbed beam current
source for the dipole field equation. This procedure, while seemingly straight-
forward, yields severe mathematical difficulties. It is the purpose of Chapter 7 to
investigate various methods of coping with this problem. Emphasis is ultimately
placed upon the circular helix model, a tractable and useful approach which leads
naturally into the ideas of adiabatic beam theory.'

In Chapter 7, as in Chapter 6, we shall not consider plasma current effects,
therefore f,, = 0 throughout. This assumption is not made for technical reasons,
we simply feel that the logical clarity of the entire development is superior if
plasma effects are neglected until a point in the theory at which the essential
relationships between the various models have been brought out 2. In Section
8.4, the effects of plasma current and plasma conductivity generation will be

introduced, and the results compared and contrasted with previous results.

1When we speak of the hose perturbation we are .refering to the dipole fields in the plasma to
which the electrons in a given slice are exposed as that slice streams past. The dipole fields
are generated by previous slices of the beam.

%It turns out that “many” of the models are equivalent and our presentation of the current

and conductivity effects thereby achieves a certain economy.
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7.2 Elliptical Helices: General Profile

Transverse orbits in a general axisymmetric equilibrium beam resemble precess-
ing ellipses (“rosettes”) [7..1]. There are two isolating integrals of motion but
the orbits cannot be characterized more precisely than rosettes without detailed
solution of the orbit equations 3.60 and 3.61 . Here we do not need to actually
compute the orbits and therefore will not.

The equilibrium phase space distribution function fp, may be written as any
normalizable function of the invariants of motion. As we consider only nonro-
tating beams (B, = 0) the distribution depends only upon H, and P, . The
distribution function therefore reads fy, = foo(Hy,P;) . This fi, is the general
nonrotating, paraxial, axisymmetric equilibrium.

The equilibrium beam current Jy,(r) is an integral over the momentum vari-

ables (pf, pa)
o o] e o]
Jbo(r) = qBc /o dp.p, / dpe foo(T; Pr, D) - (7.1)
—o0

It is more convenient to write this in terms of the invariants H;, and Py . The
Jacobian of the transformation (p,,ps) — (H.,Py) is easily computed to be

~m/rp, , whence the current may be written as

1 oo o 1
Ju(r) = aBct f dP / dH, — > . (H 7.2
bo(r) qfe- L S 'L'v,-(r;H_L,Po)be( 1) (7.2)

where the radial velocity v, is

P2 2
vr(r; Hy, Pp) = (2(H¢ ~V(r) -2 ) (7.3)

~mr?
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and U(R, Py) is defined to be effective radial potential evaluated at the radial

turning point R where v, =0

2
R2

U(R, Py) = - q¥(R) . (7.4)

The H, integral is over both branches of v, , that is, we integrate from the
minimum radius to the maximum and back to the minimum, this is twice the

result of integration along one branch, therefore we have

% 1
dP / dH H). (15
6 U(r,Pg) -Ll v,(r;Pg, HJ.) lbe( -L) ( )

1 [o o}
Joo(r) = 2qpc- [

—o0
Since in linear theory we integrate along unperturbed orbits to invert the evo-
lution operator the current perturbation Jj; is also given by this integral by
replacing fp, with fp; .

The evolution of the phase space distribution function f; is determined by the

Vlasov equation, providing collisions are not a dominating effect, which reads

8 dr 8 dp o
ar o 7.6
(6t+dt or T dt p)fb (7.6)

Henceforth we will denote v = dr/dt and F = dp/dt where F is the Lorentz force.
Equilibrium quantities will be denoted by a subscript 0 and linear perturbation
terms by subscript 1. Writing f, = fpo + fss and F = F, + F, and linearizing the

Vlasov equation yields

dfpn 0 foo
= "Fo 5 (1.7)

therefore, integrating upon the unperturbed orbits, we may write

fo = —/t dt' (Fo : ag:o)' (7.8)

—C0
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where the prime denotes the unperturbed position at ¢ of a particle which reaches
r,0,z at time t.

The paraxiality of the beam results in a microcanonical axial momentum
distribution §(P, - P,) so the integration over p, yields no contribution (due to the
gradient of fy, ). This simplifies the problem somewhat, only the perpendicular
component of F, is needed, so the axial perturbed electric field E,; does not
appear. The perpendicular Lorentz force is ¢3% x By . Recall that paraxial
ordering also enables us to neglect B, therefore the necessary fields are determined
solely by the perturbed axial vector potential A,; (henceforth we drop the z

subscript and refer to A; )

184,
=—— 7.9
Ty o8 (7.9)
Bg, = _o4 . (7.10)
or
As usual we Fourier analyze in terms of the beam variables z, ¢
N 0 w
- (0 — — 5 — = 7.11
A; = A(r) exp1 (0 ,Bcz ﬂcg) ( )
similarly for f3; . The perturbed perpendicular Lorentz force thus reads
F, =3 a0+ 824 (7.12)
r or
The perpendicular gradient of fy, is
o _ 1 1 0fbo (7.13)

P1L—
op. pL Opy

Combining these results the perturbed fj; reads

1 3f [? JA )
fbl = —gaapi /;oo dZ’ (pr—arll + ppgA]_) (714)
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where we have elected to work in terms of z in place of ¢ . Introducing the Fourier
components, taking cognizance of the fact that ¢ is a constant of motion in an

ultra-relativistic beam, we have

; 1 Ofvo [* A i . . 0
2 L dz' (p,.g;; + ;pgA) exp1t (0’ —-0— (- Z)BZ) :
(7.15)
A simple subterfuge enables us to express the radial derivative of A along an orbit
as a more convenient axial derivative by means of the chain rule

A ~vm dA

Using the fact that p, = Beym and py = ymr(ls where (s is the betatron

frequency, and the previous result, we arrive at

+ __4p:0fe (7, (dA 0, ( Q )
=152 7J0o — 2 -0 - —(2 - 7.17
Tl o 9ps ) o dz ( ol ﬂcA expvz 6 ﬁc(z 2) (7.17)

here {13 has been pulled in front of the integral since on the unperturbed orbits
it is an invariant dQg/dz = —(1/p;)0H ) /3ps = 0 . Integrating the first term in

7.17 by parts cancels the second term and yields 2

5 q Pz 9 fbo ( .0 )
=220 4 44T 7.18
[n1 cpL Bpy Be (7.18)

where the orbit integral T is

I(r;Hy,Py) = /_z dZ'A(r') expi (0’ -6- ﬂgé(zl - z)) : (7.19)

3For a rotating beam P2 =p? + (pe — ~mrwy)? and tracing through the same argument as for
the nonrotating beam yields the same result providing only that (2 is replaced with Q — w; .
Here w; is the Lagrange multiplier that appears in a calculation of the Maxwell-Boltzmann

distribution involving Py dependence.
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We may express the perpendicular momentum gradient of fbo in terms of a gra-

dient with respect to H; . By use of the chain rule

Ofvo _ dfso OHy _ dfse , PL

= = 7.20
dpL  dH, dp. _ dH.’p, (7.20)

so that

Dz afl:oo dfbo
—_— = fBe——— . 7.21
pLOpy dH (7:21)

To get the current perturbation we integrate over the invariants H, and Py as

follows

- 1 [ © 1 dfee (A .QA)
= —2¢28%- [ 4 . LN iy G Rl .
o 29°5 cr /;oo Po/('J | ve |dH 4 zﬂcI (7.22)

where now the orbit integral is written as an explicit sum over the two branches

of v, with an appropriate factor of 1/2 to cancel the overall factor of 2 in 7.22
I= 12/z dZ' A(r!.) expi (0’ -0- E(z’ - z)) (7.23)
29 ) * * Bc |

To reiterate, the primed quantities r/, and 6/, specify the unperturbed transverse
location at 2/ < z of a particle (with invariants H, and P;) that ends up at r and
0 when 2’ = z . The subscript + selects the branch of v, , that is, r/, corresponds
to the particle that started out on branch v, = :!: | v | , likewise for & .

The orbit integral may be reduced by exploiting the underlying periodicity of
the integrand. Physically the orbit integral represents the accumulated effect of
the perturbation upon particles with H; and P; . We expect however that the
integral may be evaluated over one period of the motion.

We define the phase ¢4+(2) = 0+(z) — (/Bc)z in terms of which the orbit
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integrals L. and I_ read

La(r)exp (i62(2)) = [ d/Alrl) exp (i6L) - (7.24)

Now, for r; we have v, > 0 and the particle is moving from 7,,;, out to 7y
, whereas, for r_ we have v, < 0 and the particle is moving from ry,qz in to rmin
. We should be able to relate the values of I, (r,z) to their values at the previous
radial turning points (the values at the turning points simply repeat themselves
periodically in the integral from —oo to z ). For v, > 0 we write

I (r) exp (i¢+) = L4 (rmin) exp (i¢;,-n) + [ d2'A(r') exp (i¢', ()  (7.25)

Zmin
and for v, < 0

I_(r)exp (i¢-) = I_(rmaz) exp (id7q,) + ’ dZA(r'_)exp (i¢__())  (7.26)

Zmaz

where ¢j,'.in = ¢4 (Tmin) and ¢,,.,. = ¢—(Tmaez) . These equations give the values of
I+ as their values at the previous turning points plus an increment attained during
partial transit to the next turning point. It is convenient to change variables of

integration to r' in place of 2’ , this is accomplished by

1
dZ’ = ﬂcdr':t—vr(—r,) . (727)

In terms of the variable of integration r’ equations 7.25 and 7.26 read
. . . X T . 1 .
Ly (r) exp (i64) = Iy (rmin) exp (g7, ) +B¢ / dr' A(ry) oy oxp (144 (2)
Tmin r
(7.28)

I_(r)exp(ig_) = I_(*maz) exp (tPmmaz) —Bc /'r dr'.:i(r'_)| v,(lr’) | exp (1¢__(2')) .
(7.29)




To save writing we will define dA’ as follows

\ 1
dA' = Bedr' A(r') ————
PRy

in terms of which the orbit integrals read

I(r) exp (i¢4) = It (rmin) exp (i¢j,'n-n) + /r dA’ exp (14, (2'))

Tmin

I_(r)exp (i¢-) = I_(rmaz) exp (id7mas) — ’ dA' exp (14’ (2')) .

Tfmaz
Explicitly, the phase may be written as
z d
8+(r) = bolrmin) + [ a2 %t

Zmin

6(r) = o_(rmes) + [ d2' %=

!
Zmoaz dZ
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(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

Next we will demonstrate that the relative phase between ¢, and ¢_ is invariant.

To see this notice that

déy (d0+__ n)__g&_
Pege =P\ ~5:) =@

de¢_ g Q) _do_
b = (T 5) = @

hence we may write the phases as

r

$4(r) = b4 (rmin) + dﬁ () - 9)

Tmin

6_(r) = b—(Fmas) — / dr’l—vﬁ (Qa(r') - Q) .

Replacing rpqz With 74,y in 7.38 and adding the result to 7.37 yields

¢+(T) + ¢_(1') = ¢+(7'min) + ¢— (rmin)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)
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this says that ¢, (r) — ¢4 (rmin) = —(#-(r) — #—(min)) - The conclusion we
draw is that we are free to fix the relative phase between the two branches since
it is invariant. Let us therefore write ¢_(rmin) = @+(Tmin) = Pmin , With this
convention we have ¢_(r) = 2dmin — ¢+(7) .

Now we will calculate the values I (min) and I (maz) , the values of the orbit
integrals at the turning points r,,;, . These will enable us to compute f_(r) and
I, (r) and therefore the orbit integral I . First, notice that the continuity of the

orbits implies

r_-l-ig,l,,,-,. I(r.) = r+1_i’x}'1m_n I{ry) = Lnin (7.40)
r-li»lrn,,..., I(r_) = ”_li’r’_x'lmz 1(r4) = Imas - (7.41)

Using these results, along with the result ¢_(r) = 2¢min — ¢+(r) , evaluating 7.31

and 7.32 at ry,,, and r,,,, respectively, yields

maz

Iaz exp i (8105 — Smin) = Imin + dA' expi (8] — Gmin) (7.42)
Tmin
- jmaz exp —t (¢;az - ¢min) = —jmin + dA' €xp -1 (¢,+ - ¢min) . (743)
Making the following definition
A¢ = ¢rtmz - ¢;in (7'44)
let us explicitly compute A¢
A¢=1fm'l (Qp(r') - Q) (7.45)
2 ve(r')
which in turn, by direct calculation yields
Q- 0

Ap=r—te (7.46)

r
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where the orbit averaged radial frequency (), is

= dr \1
r = . 4
Q, =27 (}( v,(r)) (7.47)
The orbit averaged betatron frequency (15 is
= Qg(r) ( f‘ dr )_1
= d 7.48
s f. vy (r) ’ v (r) ( )
in terms of 2, and Py = ymr2Q5 this becomes
= ﬁr Po f dT
= — . 7.49
s 2rym J r?vu,(r) (7.49)

Performing the algebra we may easily solve for the turning point values of the
orbit integrals J_ and I, from 7.42 and 7.43 and substitute the results in 7.31

and 7.32 to get

1(r) = / " A expi (8, — é4) (7.50)
1 Tmaz ' /oy T
+m - dA' (expi (4], — ¢4 — Ag) + exp —i (¢, + ¢4 — A9))
I_(r)= /r dA'exp —i (¢!, — ¢+) (7.51)
1 Tmes T, (o
+m - dA' (expi (¢, + ¢4+ — Ag) + exp—i (¢, — ¢4 + A9)).

These may now be combined to yield the final result [7.2] for T

cos ¢ cos ¢'

N . maz d ! “
I(T) = —zﬁc/ r A(’I‘) (m (752)

Tmin | 'U,-(T’) |

+H(r — r')sin ¢ cos ¢’ + H(r — r') sin ¢' cos QS)



109

where
r _ [ ! Qg(r) -
¢()-1[mnd _ﬁZUﬁT— (7.53)

is the phase change in traveling from r,,;,, to r and H(r —r') is the usual Heaviside
step function.

Having derived this result, for the orbit integral involving only one funda-
mental period of the motion, we may now determine which class of electrons
contributes maximally to the perturbation. It will come as no surprise that those
electrons having a frequency in resonance with the perturbation dominate the
response.

Inspection of 7.52 indicates immediately that the major contribution will come

from the term involving 1/tan A¢ in case tan A¢ ~ 0 . This occurs when

5 -0

r

Ap=m A nw (7.54)

where n is an integer, solving the resonance condition we get 2 ~ (15 — nQ),
This result is of extreme significance in relation to the prominent theme of
this thesis, as will become clearer as we proceed. Physically, one expects that a
perturbation which drives a two degree of freedom dynamical system at a beat
frequency will have a pronounced effect upon the evolution of the system.
We may approximate the orbit integral near the resonance by dropping the
second and third terms. Approximating tan A¢ ~ A¢ ~ 7(Qs — Q)/Q, the near

resonance orbit integral reads

s Q, rmaz  dr! /
I(r) ~ —zﬂc; f,-0 cos ¢(r) [mm (o () II(r ) cos ¢(r') . (7.55)
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Next, we define the orbit average of A as

D, e dp N
A=?Kmizwﬂ“””““* (7.56)

The orbit average A is a function only of the invariants (Hy,Py) of motion. In

terms of A we have
1

25— 0

I(r) ~ —ifc Acos ¢(r) . (7.57)

Since the betatron frequency is a function of the orbit invariants (H,,Pj)
(the dependence upon the invariants is suppressed for notational convenience)
the perturbed current has a logarithmic singularity due to the simple pole in the
perturbed distribution (recall that fy; is given by f ~ A + i(Q/Bc)I and the
current is an integral of }bl over (H,, Py)).

This thesis is concerned with a circle of questions surrounding the adiabatic
approach to beam physics. The adiabatic approach is an extension for small
“gyro-radius” of the cold laminar model, in which transverse orbits are circular.
In adiabatic theory the orbits are near circular (vortex radius something less than
half the circular drift radius). It is therefore of great interest to investigate the
circle limit of the general elliptical theory just developed. To this end, let us
return to our result for }'1,1 and determine what simplifications arise for circle

orbits. For convenience we quote the result f;; here

v _ G dfee [+ .04
Fu=-2pee (A+zEI) . (7.58)

Suppose the orbits are circular, then r'(2') = r is constant, therefore A(r') may
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be removed from the orbit integral
N P 0
I(r;H,,Py) = A(r)/ dz' exp (0’ -0- E(z' - z)) . (7.59)
—o0

On the equilibrium orbits 6(z) = Q32/8c¢ therefore, carrying out the orbit integral

we arrive at
—1fc
15 -0 )

Substituting this into }bl yields the perturbed distribution for the cold beam

I(r) = A(r) (7.60)

Y 9, G 4 Qg
Jo = cﬂcdH_LAQﬂ —q- (7.61)

Introducing Py = ymr?(lg and integrating over the invariants to obtain the cur-

rent perturbation we get

j 1 [ * 1 dfoo 4 Py ( Py )'1
= —2¢°42%c- -0 . (762
Jon 2q°8 - /_oo by /[.f dHll v, | dH _LA7mr2 ~mr? ( )

For a nonrotating beam the equilibrium distribution f}, is an even function of
Py , therefore, multiplying the numerator and denominator of the integrand by

Py/ymr? + Q) and keeping only the term which is even in Py gives

. A 1 o 1 dfs, ( Py )2
= oA 1 . (763
T Zqﬂcr%_m/_mdpo/v Ay o (e (7.63)

Now notice the following

( Py )2 oo _ 1 dH_ dfte _ 1 dfs (7.64)
ymr2) dH, = ~mr dr dH, ~ymr dr )

therefore, our result for the current perturbation in the laminar beam is

Qﬂ 1 1 deoA

z . 7.65
m Q% —-02r dr ( )

Jp =
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Perhaps at this juncture it is well to remind the reader that the betatron

frequency Qg(r) is given in terms of the equilibrium current Jj, by
Q%(r) = ———-——/ dr'r' Jyo(r') (7.66)

which is easily derived from the definition 1.1 of {13 and the monopole Ampére

equation. In terms of (15 the current perturbation reads

4r. 1d (1d 1 .
2 gy = - (___ (v 29%,)) 7= A (7.67)

c rdr \rdr

which is in a form useful for comparison with the results of the Section 7.3.
Anticipating, we will show that the Vlasov calculation is incomplete, it does
not yield the correct form of .71,1 in the circle limit. This is because in a Vlasov
calculation one inverts the partial differential operator on the unperturbed orbits.
In Section 7.3 we will calculate the circle orbit current perturbation in a fashion
which is superior in that it includes the orbit perturbations.

We may use our result 7.65 for the current perturbation Jp1 to formulate an
eigenvalue problem for w({2) . Inserting 7.65 into the Ampére equation, including
radially dependent conductivity o,{p) (p = r/a ) we have

i _4n qB 1 1dJy,

0 =-— = A . 7.68
o(p)) c'ymﬂg—ﬂzp dpA (7.68)

(d 1d 4miw
dpp dpp c2
We will use a variational technique to approximate the eigenvalue w({}) deter-

mined by this equation. To accomplish this we multiply the eigenequation by A

and integrate over [;° dpp

© ~dld ~ 4w, [ - —4m gB [ 1 dJy -
dpA—=—pA— — (p)A2=""T97 .

(7.69)
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Next, we insert a trial eigenfunction A and solve for w . The difference between the
exact eigenvalue @ and the approximate eigenvalue w is w and is 0(6,:12) where
6A is the difference between the exact eigenfunction A and the approximate
eigenfunction A . We use as a trial eigenfunction the rigid-beam fundamental

mode A = dA,/dp . After integrating, with the fundamental mode, we find

w [ dA,\? % dA, dJy, 2
il B ) = / dppe . .

Let us specialize to the Bennett equilibrium

-2
Jso(p) = (1 +0%) 7. (1.711)
Assuming local conductivity generation ( o,(p) ~ Jio(p) )
Aolp) = 2 10g (1+7) (7.72)

-2
oo(p) =00 (1+%) " . (1.13)
The dispersion relation now reads

2 roo 3 0o 3 2
. OoTa 2p /‘ 2p Q0
1w dp———— = d . 7.74

2¢2 /0 U+l Parpfar-ag (7.74)

If we define a new variable of integration v = (1 + p?)~! and introduce the dipole

decay time 7 = o,ma?/2c?* we have the dispersion relation, as predicted by the

circle-limit of the exact Vlasov theory

1

m . (7-75)

(e o}
—twr = (22/ dvbr(1l - v)
0

We will prove in Section 7.4 that this is the same as the prediction of the cold-
Vlasov theory. In Chapter 8 we will prove that this is also the same as the result

predicted by the spread-mass and energy-group multiple-oscillator models.
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7.3 Circular Helices: General Profile

In Section 7.1 we developed a general linearized Vlasov theory for the current
perturbation .7,,1 . We also investigated the circle orbit limit of the elliptical
theory. In Section 7.4 we wish to examine the circle orbit case from a slightly
different point of view [7.3] which will deepen our understanding of the significance
of our results in Section 7.1.

An equilibrium beam with a cold transverse phase space has circular trans-
verse orbits. When such a beam undergoes hose instability the orbits acquire
a radial component. This means that although the equilibrium transverse dis-
tribution is one dimensional it is not sufficient to work with a one dimensional
distribution. Since the current is a momentum integral of the distribution it is
not necessary to work with a distribution in phase space at all. In Section 7.4 we
will compute the current perturbation by computing the linearized perturbed or-
bits (that is, the linear differences between the exact orbits and the unperturbed
orbits). We will then form the current by adding up all the orbits directly.

As usual for a paraxial beam we assume dv/dt = 0 so, in component form,

the orbit equations, as discussed in Chapter 3, read

d?r dg\? qg oY
— (= = — X 7.76
di? (dt) T Am Or ( )

20 _drdd g 18¢
- kit e Vi
e +2dt dt ~ ~Amr 80 (7.77)
L (7.78)

dt?
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These equations will be linearized about circular helices. To this end we will
write the exact orbit as (7,0,%) and the unperturbed helices as (r,0,z) . The

exact orbits are therefore

#(r,0,2;t) = r + D,(r,0, z;t) (7.79)
é(r, 0,z;t) =0+ Qp(r)t + -}Dg(r,O, z;t) (7.80)
Z(r,0,2;t) = 2 + Bet (7.81)

where we have explicitly denoted the underlying variable t (we could express
everything in terms of z by paraxiality but choose not to here). The terms D,
and Dy are assumed small so we will neglect quadratic terms O(D?) . The first

time derivatives of 7,0, Z are

di _ dD,

- = 7.82
dt dt ( )
do 1dD,
—_— = -— 7.83
Al (7.83)
dz
—_= 7.84
L pe (7.84
and the second time derivatives are
d*¢¥ d’D,
=T 7.85
dt? i’ (7.85)
20 1 d’Dy
== , 7.86
dt2  r di? (7.86)
d*z
—_—=0. 7.87
dt? (7.87)
Writing the equations of motion in terms of the exact orbits we have
2 (db\? ) 1 -
— — | — | #=-FQ%(F)+ —F.((7,0,3; 7.88
T (dt) ¥ FQ5(7) + '7mF 1(7,0, ;) ( )
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£ d_
dt? dtdt ~ ~m
where the forces are defined F,; = ¢9v/07 and Fy; = (q/¥)9¢/88 . We have

Fp1 (7,0, %) (7.89)

used the fact that the equilibrium 1), is axisymmetric 8,/ 86 =0. Introducing

the derivatives listed above and linearizing the equations of motion yields

Froa Qp(r)D, — 295(1’)—‘? =-= (rﬂﬂ(r)) D, + :y—r;z_F'l (r,0+Qgt, z + Bet)
2 (7.90)
Dy dD, 1
= T2 Qp(r) = %FOI(T,e + Qgt, z + Bet) . (7.91)

As usual we Fourier analyze the perturbed quantities according to
Fi(7,8,%t) = F(7) expi (i + k% — iwt) . (7.92)

In the phase we replace the exact quantities by the unperturbed quantities as

follows

0+ k3 —wt=0—(Q—Qa(r))t + k2 (7.93)

where we have used § = 8 + Qst + O(D) and % = z + Bct and have recalled the
definition of the Doppler-shifted hose frequency ! = w — kB¢ . Henceforth, to
save writing we will suppress the argument of 23 . The Fourier transform now

reads

F(7,0,%t) = F(r)exps (—(Q — Qg)t + 1kz + 0) (7.94)

where F may be E, , Fy , D, , Or Dy (we drop the subscript 1 on F). In terms
of the Fourier transformed axial vector potential dipole A the force coinponents

read F, = g8dA/dr and Fy = qf(i/r)A for a pure pinch. In terms of the Fourier



transformed quantities the equations of motion read

d A . .
(E; (rﬂ%) - (- Qp)z - QE) D, + (21Q5 (2 — Qg)) Dy = F,

A

u 2\ . 1
@0 b+ (e (1-8)") o= L.
(—2¢ ﬂ( Qﬁ))D +( Z(Q Qﬂ) Dy 7mFa

Solving these linear equations for D, and Dy results in the following

A 1 A . QB A
ymD, = D (F, + 220 — 0 Fo)
A _ 1 . Qﬂ 2 1 d 2 L3
ymDy = D ( 2zn — nﬁF, + (1 o Qﬂ)zrdrﬂﬂ) Fg)

where the denominator D is

d
D =405 — (0 - 0p)° +r—0F.
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(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

Now that we have computed the perturbed orbit components we may compute

the current perturbation. Before carrying out the perturbed density calculation

let us discuss the problem at hand in some generality.

Let r’ be the position of a particle at t = —oco . Denote by ¥(r';t) the function

which determines the ezact position at time ¢ of a particle which started at r’ at

t = —oco . Denote by J(r;t) the exact density at r at time ¢ (here r is a point in

space, not an orbit) and by j(r) the unperturbed density. Clearly

J(r;t) = /dr'j(r')& (F(r';t) —r)

(7.100)

the density at r,t is the integral of all the initial conditions which “launch”

particles that arrive at r when the time is ¢t . The Dirac delta says £(r';t) —r =0
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This determines a function r'(r;t). That is, the initial position as a function of
the final position on the exact orbits. Recall that for a function f with a zero at

z, we have

6(f(z)) =6 (f(a:o) + d‘g (z = zo) + - ) , (7.101)

o

=6(£‘:0(:r—zo)+---) = (z-o)‘lé(z—xo)-k--

so for our problem (a vector function) we have

!
§(x(r';t) —r) =| %;_— | 6(r' —1'(r;t)) (7.102)
and the exact density is
3 N 4 ' '
J(r;) =/dr_7(r) | S 180 = ¥ (x:2)) (7.103)
This yields immediately the final result for the exact current density
' !
J(et) = 5 0) | 25 (7.104)
or
The initial condition r' may be written as
r'(r;t) = r + v(r)t + 6r'(r;t) . (7.105)

This is substituted in the expression for the exact current J which is then lin-
earized, the current perturbation J; may then be identified as the term propor-
tional to &r' .

Having sketched the general procedure let us turn back to the specific problem
at hand. Writing the exact current as an integral over initial conditions of all

particles that make it to a given space point at a given time we have

rdy(r,0,2t) = / dr’ / do’ / 42 Joo(r)6(F — 1)6(6 — 0)6(3 — 2)  (7.106)
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in this integral the arguments of the delta functions are explicitly 7(r',8',2';t) —r

and similarly for 0 and 3 . The Dirac delta functions say that

r'=r—-D,(0,2;t) (7.107)
6 = 0 — Q(r')t — %Do(r', ¢, 25 1) (7.108)
2 = z— Bet (7.109)

where, in linear theory we must expand Qg(r') , D, (', 0, 2';t) , and Dy(+',¢', 2';¢)

to order O(D) . Carrying out this Taylor expansion

v =r — D,(r,0,z;t) (7.110)

, 1 d
6" =6 —Qp(r)t - ;Dg(r,a,z; t) + tD,(r,0,z; t)z;ﬂﬂ(r) (7.111)
2 =z—Pct ‘ (7.112)

from which we may compute the Jacobian | dr'/dr | , with the result being

or' =1- dD,
or ' dr

+ ;Dg . (7.113)

Linearizing the unperturbed current Jy,(7') gives

d

. (rJso(r)) - (7.114)

r'Jbo(r') = ero('r) - D

Now that we have the linearized Jacobian determinant, and Jp, , we may linearize

the exact current .71,0 as given by 7.104

~ 1 d d )
Jb(r’ 0,2;t) = Jpo(r) — ;Dra (rJbo(r)) _Jbo(r)'d_r'Dr - ;Jbo(T)Do'i" -+ . (7.115)
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The exact current is J, = Jbo + Jb1 + ---. We therefore identify the Fourier

transformed current perturbation Jj; as

1d
T =—>= (rDrdbo) - —Don,, (7.116)

It is convenient to express the equilibrium current Jj, in terms of the betatron

frequency Q5 as follows
Jo(r) =2 c1d (r03) . (7.117)

The formula for jbl now reads

4T » _7m1dAd22) i~d22)
—Ju(r) = qﬁr(dr (D,dr (r*03) +-Dp—(r*0})) . (7.118)

In terms of the Fourier amplitude A , the results 7.98 and 7.97 for ﬁ, and ]:79

read
~ _ gB Qs A
7.119
Dr = 1mD(dr ZQ Qgr ( )
. g8l .. Q5 dA 1 d_,\ A |
- - -1 . 7.120
Dy = 7mD( ~2o— nﬂdr‘L 1 (Q_Qﬂ)zrdrnﬂ - (7.120)
Substituting these into the result for .71,1 results in
4 - dzA d .
_7’.],,1 =153 (Z + d_f) + (g + iz) A (7.121)
r r) dr r
where the coefficients are written in terms of f(r) and g(r)
_ 7.122
10) =25 (%) pa— 8D0N0, (7.122)

2 1 o d 03
- 123
9(r) = -0y ( 2 (D2 —8D00, (7.123)
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d (1d D - 2Q0
2= (22 (202 T ik
5L (1a (%) m —smnﬁ)

1
D=0} -0 +2005 + ;;; (rzn;;) : (7.124)

where

The result 7.121 is to be contrasted and compared with the Vlasov result in
the circle limit 7.67. Obviously something is missing in the Vlasov result. We
believe that the rigorous approach in the general precessing elliptical helix case
is to carry out a calculation analogous to the one we have just completed. Such
a calculation presents mathematical complexities however due to the fact that
the equilibrium orbits r(¢) and 6(¢) must be determined by solving the orbit
equations. Furthermore, the equilibrium radial motion will have nonzero time
derivative resulting in a more cumbersome calculation.

Substituting 7.121 into the Ampére dipole equation results in the following

eigen-equation for A

d1ld . d*A 1d, ,dA AW
(Frar-d@)a=sGrrigeng -(svh)a 0w

where f and g are given above. Given the monopole equilibrium radial profile
(that is, given Qg(r) ) this equation may be solved for A subject to the imposed
boundary conditions. Generally, a solution satisfying the boundary conditions
will exist only for a definite pair of frequencies {2 and w . Therefore, given the
real driver frequency w the Doppler-shifted hose frequency 2(w) determined by
forcing satisfaction of the boundary condition constitutes the dispersion relation.

There is one case for which we may rightly expect the solution to be attainable

by analytical means. In the low frequency limit ! — w — 0 this theory should
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reduce to the rigid-beam theory. In rigid-beam theory the solution A is the
fundamental radial mode A ~ dA,/dr . In terms of the equilibrium betatron
frequency Qg this is A~ rQ?, . To verify that this is indeed a solution we
investigate the low-frequency limit of the eigen-equation. Setting £ = w = 0 the

functions f and g collapse to

fr) = sz (7.126)

(7.127)

where the function x is defined to be x = (1/r)d(r?Q%)/dr . The eigen-equation

becomes

r2(1—f)§§+r(l— —Z—’;)%‘;—(l—f—rzg),&:o. (7.128)
From this equation it is a matter of algebra to demonstrate that A ~ rQ% is a
solution.

The low frequency solution A ~ rﬂ% may be motivated from yet another point
of view. Recall that in this limit the beam responds by undergoing a rigid lateral
displacement. This means that the two linear perturbations D, and f)a should be

constants in this limit so that the displacement will be the same for all particles.

It is easy enough to show that this is the case, in the zero frequency limit we have

p,=931 (1‘1 + 2§) (7.129)
Am D \ dr r

S g8 1 ( dA | 1 d_,\4
_9B1 _ L1, 4|4 7.130
D= omD (2’ o T\ y (7.130)
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where
D=0+ -l-i(r2n2) (7.131)
BT rdr Bl '
Upon substituting A ~ rQ?, into these equations we find that D, ~ (¢8/4m) and
Dy ~ 7(gB/ym) . In terms of D, and ﬁy we have ﬁy = D,sin6 + Dgcos6 and

A

Dy =D, cosb — Dgsing , which is a rigid displacement in the direction (1,1) .

7.4 Circular Helices: Uniform Profile

In Section 7.1 we derived Jb1 for a general beam on the basis of a Vlasov cal-
culation, inverting the evolution operator on the unperturbed orbits. We also
specialized to the circle limit (cold transverse phase space) and arrived at

qﬂ 1 1 deo -

Ju(r) = m B — P dr Av(r) . (7.132)

In Section 7.4 we wish first to rederive this result from a slightly different per-
spective which will improve our understanding of its significance. Second, we will
specialize to a beam with a uniform radial profile and sharp edge at r = a propa-
gating within a uniform conductivity channel. For this beam we will investigate

two cases of boundary conditions

1. G: plasma surrounded by a cold gas

2. W: plasma surrounded by a steel tank

Case W is interesting because it involves the concept of wall stabilization.
Now, let us consider a cold laminar beam with arbitrary radial profile. Here, as

opposed to Section 7.1, we will incorporate the assumption of a cold transverse
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phase space at the outset (circle orbits). In this case the distribution is one

dimensional in momentum space and reads

foo = foo(Po)6(P; — Py) (7.133)

where Py = '7mrzﬂg is the canonical angular momentum . The transverse particle
energy H) is given in terms of P; by.

H = _sar). (7.134)

ymr?

As before, the distribution perturbation is determined by
fo1 = _qﬁ / dt' (z x By)j . (7.135)
By direct calculation (z x B;)y = (i/r)A so that
dfbo [ '
For = —qﬂ A / dt'expt (Qp(t' —t) + kBe(t' —t) —w(t' —¢t))  (7.136)

which yields

. Adfs, 1
= —gB=12 7.137
for = —qB— dps (1 — 01 ( )
Integrating over py to get Jb1 yields
o d -
Joy = / dpo 32 f"" 2 (25 - )" (7.138)

The distribution f3, for an unpolarized (nonrotating) beam is an even function
of ps . Multiplying the numerator and denominator of the integrand by Q3 + Q

and keeping only the term which is even we have

A 1 o dfbo Peo
212
Jbl = —q¢“B°c ' Q% oy /_ dpyg ( ) (7.139)

*dpg \ymr
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finally, using (pg/r)d foo/OPs = —O8 fro/dr We arrive at

- qﬂ 1 1 deo -
Jpp = — .
b1 m = g7 A (7.140)

or, entirely in terms of (g

4r - 1 d /1d 1 A
il |
¢ pdp (p dp (p Qﬂ)) 0 —0fa? (7.141)

which is, naturally, the same as the result of Section 7.1 in the circle limit. This
tells us that the circle limit of the warm Vlasov beam is the same as the cold
Vlasov beam 7.65.

Let us now use our result for Jp; to investigate the dispersion relations for
various boundary conditions at the plasma channel edge. We already treated
the case of the fundamental mode A ~ dA,/dp , wherein boundary conditions
were slighted, and we know that the cold-Vlasov beam will duplicate the previous
results of the circle-limit of the warm- Vlasov beam.Therefore, let us now make
different simplifying assumptions which will enable us to fully work out two ex-
amples involving boundary effects: we assume that the conductivity is radially
uniform out to the gas-plasma interface. Recall that the Fourier transformed

dipole Ampére equation is

a 1 a 2 - 47'r 2%
———p— A= —— 7.142
(557500~ @) A= -l (7.142)
where ¢?(w) = —iwr with 7 = 4n0,a?/Bc? an effective dipole decay constant.

Since we consider only the case of uniform conductivity o, # o,(r) , hence, we

may solve the field equation in terms of a Green function G (p,P';9)

1d

/2 ;“ /
g dp (p’dp el )) Q%(p,)_mA(p). (7.143)

A(p) = / dp'p'G(p, p'; Q)
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This equation amounts to an eigen-equation for A . At this point in the develop-

ment only two major assumptions have been made
1. circular helices
2. uniform conductivity

Next, in order to facilitate working out some examples, we will specialize to a
beam with a uniform radial profile out to radius r = a at which point it has a

sharp edge
3. uniform beam with sharp edge

For this beam the current density is Jp, = (I/7a?)H(p — 1) where H is the
Heaviside step function. From the result 7.132 we calculate the following current

perturbation for this beam

or Q1) AQ)
— -1). 7.144
c 03(1) - 02 a? 5(=1) ( )
Hence, in terms of G
. . 02(1) oo R
B8 ) ’ ’
= S - A N . _ 7.145
A(p) 2A(1)n§(1) —02/0 dp'o'G(p,p';9)6(p' — 1) (7.145)
from which
- R 02(1) R
B
A(p) = 2A(1) ————=0G(p,1;9q) . (7.146)
(1) =240 77— (e, 1)

The dispersion relation is gotten by evaluating this at p =1

3(1)
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which is our general dispersion relation for a uniform circular helix Vlasov beam
propagating in a uniform conductivity channel.

Boundary condition effects are built into the Green function G (p,p';q) . Here

we will investigate two special cases
G: uniform conductivity channel of radius r = R surrounded by a cold gas
W: uniform conductivity channel of radius r = R surrounded by a steel tank

For case G the Green function has already been derived in Chapter 6. Evaluating

6.46 at p = p' = 1 and substituting in 7.147 yields the dispersion relation

02 K,(q )
1= 29 — Oz (11(‘1)K1( )+ To(q R) ——2-I}(q) (7.148)
where ¢ = —iwr . This is the dispersion relation for a circular helix beam with a

uniform profile and sharp edge at radius a propagating in a uniform conductivity
channel of radius R surrounded by cold gas.
For case W the potential vanishes at r = R , the Green function is easily

computed from 6.45 for this boundary condition

Ki(q%)

mh(qk)-’l(qb) : (7.149)

G(p,p';9) = Ii(gp<)K1(gp>) —

Evaluating this at p = p' = 1 and substituting in 7.147 yields

92
=250 (niamita) - 2o (7.150)

the dispersion relation for a circular helix beam with a uniform profile and a sharp

edge at r = a propagating in a uniform conductivity channel of radius r = R
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surrounded by a steel tank (effectively infinite conductivity). The condition that
A = 0 at the wall means that an image current (of infinite density if o, = o0
) is generated on the inner surface of the wall. This image current is equal and
opposite to the net current [, and reacts back upon the beam. This is a stabilizing
effect (since opposite currents repel, the beam is pushed back towards the center
of the tank). Notice that if @ = R then the dispersion relation 7.150 says that
(1 = £Q5 so the oscillations are stable.

Generally, we expect that low frequency modeé (/95 <« 1) will be strongly
affected by the wall when a < R , while the high frequency modes will be less
affected.

Both cases G and W have a dispersion relation of the form
2
5

n___% = ch‘;(q) (7.151)

1=

where G(q) = 2G(1,1;q) . Solving for Q2 as a function of g2 = —iwr results
in 0% = Q3(1 - G(q)) so that the normalized growth rate in z is Im(R2/Q3) =
~ImG(q) with growth occuring if Im(2/23) > 0 . Since in both cases G and
W G involves the functions I,, I, , K, , and K; with argument /—%\/wr the
imaginary part may be obtained through the use of the Kelvin functions [7.4]
ber(y/wt) and bei(y/wr) . In both cases G and W we will assume that the growth
rate —twr as a function of 2/Qg is less than one (this is linear theory after all)
so we may expand é(q) in powers of ¢2 = —iwr .

The functions G(q) for cases G and W respectively are

R
Gota) = 2ria) 42 4 2ol1g) ) (7.152)
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(7.153)

&w(q) = 212(q) (K“") K‘("’g’) .

L(q) L(qE)

Notice that in the limit R/a — oo the two functions become one in the same
G(q) = 21 (9) K1 () (7.154)

since both K, and K vanish, while I, and I; become infinite when qR/a — oo .
If we expand the Bessel functions in powers of g to order ¢% we find G = 1+ q*/8

so that, to the same order in g , we have the dispersion relation

L (7.155)
—_— iw‘r = 8-—2-—-—— 7155

where we have recalled that ¢> = —iwr . Redefining + — 7/8 we have arrived
at the rigid-beam dispersion relation. Actually, this is as it should be since the
| boundary conditions have been moved off to infinity and we have assumed low
frequency response.

To proceed in the bounded case R/a < oo we utilize the small argument

expansions of the Bessel functions

2
L) =1+ 114_ +... (7.156)
2
q g g g q g
- _9 q 9_4 g LI 7.157
K,(q) 2(1+2)log2 2(1+2)'7+4+ ( )
3
Ii(q) = % + % e (7.158)

1
Kl(q)=2(7+logg) +'E—§-+-~ (7.159)
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- where here v = 0.5772156646 - - - is the Euler-Macheroni number [7.4]. To order

¢? the functions G are

A 2 R 1

Gglg) =1~ % (log —+ Z) + O(g*) (7.160)
. a2 2 R2 a2
Gw(g) =1- " -q; (log = 1+ Ef) +0(g") . (7.161)

Notice that the two functions Gg and Gy as expanded here do not become equal
when R/a — oo . This is of course due to the fact that in this limit the expansion
is invalid for the terms in each function G which involve R /a.

Solving for the growth rate to lowest order in ¢*

. 0?
—WWTg = ﬁ—g‘_—ni (7162)
: 0? — ($0)°
where we have defined effective dipole decay constants g and mnw for the gas and
wall cases
2 a 8
R
=i (28a ) (7.165)
2 \1- %7

In the limit R/a — oo the dispersion relations are the same except that the decay
times do not properly agree with one another as we pointed out previously. Notice
that for 02 < (a2/ R?)(2% the wall stabilizes the hose mode [7.5]. Therefore, the
low frequency spectrum is indeed stabilized by the conducting wall, as indicated

in 7.163.
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It is interesting to work backward from the dispersion relation 7.163 for the
conducting wall case to the field and force equations that are implied. A moments
contemplation reveals that the rigid-beam equations 6.12 and 6.13 need only be
modified by adding a term (a?/R?)d on the right-hand side of the force equation
6.12 in order to yield the dispersion relation 7.163 upon Fourier transforming.

Specifically, the equations are

L - a? -

o+ Wy - d) = 50 (7.166)
ad 1
3—§+§_1(d—y) =0. (7°167)

The wall effect therefore appears in the rigid-beam theory as a focussing force,
the strength of which depends upon the ratio of the beam to the wall radius. If
the beam is very thin (equivalently the tank is very large) then the effectiveness
of the wall force is minimal. In the limit a — R the wall term just equals the
focussing term ﬁgd on the left-hand side of the force equation. Therefore in this
limit the effectiveness of the fields is twice as great in focussing the beam as in

the case without a wall.
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Chapter 8

Multiple-Oscillator Models

8.1 Introduction

Prior to investigating the adiabatic theory in detail it is useful to place this work
in the perspective of the multiple-oscillator models: the spread-mass, energy-
group, and multi-component models [8.1, 8.2, 8.3]. Multiple-oscillator models
provide an efficient means of numerically simulating beams undergoing linear
hose instability. If such an approach is not used then one has recourse to es-
sentially two other methods. First, one may follow large ensembles of particles.
Such particle following is used in several beam simulation computer programs in
existence including Ringbearer-II, a linearized monopole/dipole hose simulator
implemented at Lawrence Livermore National Laboratories [8.4, 8.5]. Second,
one may use adiabatic theory to develop a fluid model of hose instability from

which a “hydro-code” may be built.

133
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Let us now discuss the physical motivation behind multiple-oscillator models.

As indicated in Chapter 1, and proved in Chapter 3, the effective mass, as far as
axial dynamics is concerned, is m~3 . This means that the slice variable ¢ of a
particle, at injection into the tank, is a single particle constant of motion. For
this reason we may, conceptually, divide the beam into a succession of “slices”
of width 6¢ « fBery = ¢ . Each such segment of the beam is comprized of
particles undergoing transverse betatron oscillations. From the point of view of
the rest frame of the slice the particles are axially at rest and are orbiting in
the transverse plane, in general on precessing elliptical orbits. These transverse
orbits have two important frequencies associated with them: radial frequency (2,
and azimuthal frequency {05 . As shown in Chapter 3 ! the radial frequency is
typically larger than the azimuthal (bétatron) frequency. Transverse dynamics in
an axisymmetric paraxial beam equilibrium is completely determined (in absence
of strong collisional effects) by the pinch potential ¢ . If, as is usual, this potential
is anharmonic, then frequencies {2, and 25 depend upon the instantaneous radial
position of the particle. For such radially dependent frequencies one may define,
as we did in Chapter 7, the orbit averaged frequencies Q, and ﬁg , 7.47 and 7.48
respectively. Physically, any applied perturbation having a Fourier decomposition
on the beam variables ¢ and z of the form f(r,0,¢,2) = }'(r) expi(0 — w¢/Bec —
Qz/fc) will couple maximally to those particles having (5 ~ 2 . Under these
circumstances one should expect the beam response to be dominated by the

class of resonant particles resulting in a plastic deformation, as opposed to the

1cf. Fig. 3.2 for the particular case of a Bennett equilibrium
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rigid displacement of the rigid-beam theory. This plastic deformation is more
pronounced for high-frequency (2 ~ Q5 perturbations.

For an ultra-relativistic electron beam which is generated by a non-isoenergetic
source, there will be a spread in axial energy of the particles within the beam.
Consequently, the betatron frequencies will be spread, even in a beam with a har-
monic pinch potential. Again, the beam segment resolves into classes of particles
according to particle mass and certain particles may resonate with a perturbation
by virtue of their particular relativistic mass.

The discussion above leads us to consider resolving the beam, for theoretical
purposes, into distinct classes of particles; in fact each beam segment will be
thought of as being composed of distinct classes of particles. Each class will have
particles with a certain common property, that is : mass, transverse energy, or
azimuthal frequency, as the case may be. In fact, we may further idealize in
the following manner: let us think of each class of particles in the segment as a
distinct entity with no internal “structure” of its own; then, the beam segment
is composed not of particles but of some number N of sub—segments which we
have proposed calling “oscillator components”. On this line of thought we have
arrived at the general “multiple-oscillator” approach to hose physics.

It is extremely useful to consider that each oscillator component responds lin-
early to a hose perturbation ~ expi(§ — Qz/8c — w¢/Bc) . From this viewpoint
let us now consider the following illuminating gedanken experiment. Suppose as
the beam streams past a certain z position in the laboratory it is subjected to a

so-called “tickling” perturbation. In this thought experiment let us further sup-
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pose that the tickling is applied only to one thin segment of the beam. Since the
segment thickness in ¢ is assumed much less than the monopole and dipole decay
lengths the displacement of this slice transversely cannot affect the fields. There-
fore, as the slice streams away from the point at which it was perturbed it will
oscillate in some fashion in the unperturbed fields. Initially all sub-segments were
displaced equally so the initial transverse displacement of the segment centroid
was the same as the individual displacements of the sub-segments; that is, the
segment was displaced rigidly. However, as the segment travels downstream the
sub-segments oscillate harmonically at distinct fundamental frequencies. There-
fore, the sub-segments, which were initially in phase, get out of phase with one
another ; randomizing of the relative phases implies that the centroid of the seg-
ment damps back to the axis. This basic phenomenon is known as phase mix
damping.

Mathematically, the preceeding ideas may be expressed as follows: we denote
by y(z) the transverse displacement in the direction x of the centroid of a given
beam segment ¢ , the centroid displacement of the n** oscillator component will
be denoted y, where y, = y® cos(f1,2) with ), the characteristic response
frequency, the oscillator mass will be denoted m,, . The lateral displacement of
the segment centroid is

N N -1
Y= Mnyn (Z mn) - (8.1)
n=1 n=1
At z = 0 the oscillators are therefore displaced by unity (since yp, = ynr ) .

Subsequently the terms tend to cancel since the phases have randomized. Of
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course, with a finite number of oscillators, the response y(z) will be conditionally
periodic; if the frequencies are rationally related there will be a long “time”
periodicity in z ; if the frequencies are irrationally related then strictly speaking
the system is aperiodic; however, certain clusters of oscillators may be nearly
rationally related and again one may see a long term periodicity 2.

A dispersion relation for a beam with g variation may be gotten from any of
the previous results for .71,1 which we have derived, simply, by averaging over (15
weighted by a distribution which reflects the distribution of {15 over the particles
in the beam. For example, the general result for the circular helix beam, with

uniform radial profile, propagating in a uniform conductivity channel

92 -~
1= Q%—_ﬂﬁgG(fI) (8.2)
may be modified to read
. e 2
- — P .3
1=6) [ 000 2 (53)

which form may be derived, by tracing through the arguments utilized in Chapter
7, for the extended single particle distribution fp,(Py, 23) . The function g(23)
is the distribution of {13 amongst the particles of the beam. The distribution
g(923) has a maximum at (Q03) and half-width AQg assuming that the generic
distribution g is a Gaussian or Lorentzian type function (bell shaped). Notice
that if the width vanishes ( so g is effectively a Dirac delta function 6(Q2g — (€23))

) then the dispersion relation 8.3 reduces to the rigid-beam model as it should.

2This periodicity is actually seen in numerical simulations, cf. [8.6].
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Taking the limit 2 — 0 in the integral 8.3 results in

1= /0 d059(05) - (8.4)
Now, using
2 02
B -
A v (8.5)
along with 8.4 we get
G 1402 [ dge(Q ! 8.6
(9 =1+ /0 a9( ﬂ)'ﬁ%“:“ﬁ‘g" (8.6)
Recall that for both the cases G and W of Chapter 7 we had G=1+ 0(q?) ,
explicitly
A _ 1TG 2
Geg=1 2"_q-i— (8.7)
P a? lw ,
Gw—(l—ﬁ)( —E—T-q)'f'"' (88)

where 7¢ and nw are given by 7.164 and 7.165 respectively. Let us consider only
the gas case. We have G = 1 + twTg/2 so that Gl=1- twrg/2 ,and the

dispersion relation 8.6 is

ciwre = [ 1
wrg = /0 ngg(Q@)Qg — (8.9)

The integral may be written as a residue contribution plus a Cauchy principal

value integral as follows

' 0@+ P [~ d9(p) =5 8.10
- iur = ig0g(®) + P [ d09(00) 57— - (8.10)

For a g(Qg) of finite width, contemplation of the dispersion relation 8.10 convinces
us there is a cutoff frequency at about (Q2) and an upper bound on the growth

rate of (23)/2A04 as shown in Fig. 6.6.
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8.2 Spread-Mass Model

Historically, the spread-mass (distributed-mass) model was the first multiple-
oécillator model of an electron beam undergoing hose instability. The spread-
mass model was developed, along with the basic multiple-oscillator concept, by
E. P. Lee [8.1].

Physically, the motivation behind the spread-mass model is the fact that the
betatron frequency, even in a harmonic pinch potential, will be distributed in
some fashion if the beam has a ~ variation 3. This is because (15 depends directly
upon the relativistic mass 4ym . In order to realistically treat hose instability, in
a harmonic pinch potential, one should account for this spread in particle mass
and the resulting spread in betatron frequency. This has the effect of eliminating
the unique response frequency, and resulting infinite resonance, of the rigid-beam
model. |

For a beam with an anharmonic pinch potential a strong betatron frequency
distributing effect is the nonlinearity of the potential. This spreading effect is
completely independent of mass spread and will therefore occur even in a mono-
energetic beam. However, even in a strongly anharmonic beam, with gamma
variation, most of the particles may be located near the axis in a region which is
locally radially uniform (and therefore harmonic) and here again the mass spread

will be significant 4.

3M. N. Rosenbluth was the first to realize the importance of such betatron frequency spread
in the context of hose instability.

*Private communication, M.N. Rosenbluth
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Consider a thin segment of the beam. Suppose the segment is made up of
overlapping wafers, each having the same radial profile as the unperturbed beam
(Bennett profile) and each comprised of particles having a given mass. Let us
denote the oscillator components (wafers) with a continuous subscript v , where
0 < v <1 ; the lateral displacement of the v oscillator is denoted y,(z,¢) . The

rigid-response frequency of the v oscillator is assumed to be
02 =v03, (8.11)

so that the response frequencies of the oscillators vary from 0 , corresponding to
particles far from axis, to {1g, corresponding to particles on axis. In terms of the

rigid-response “shaking” frequency (1, of the entire segment we define

02 =02, (8.12)

174 my
These two equations may be combined to show that the wafer mass m, is related
to the electron rest mass m by

1
v = . 8-13
m 3 ‘ ( )

The basic equations we will use are the rigid-beam force and field equations,

6.12 and 6.13 respectively, written for each separate oscillator

9%y ~

57+l —d) =0 (8.14)
ad 1 ~
5c T (@) (8.15)
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where y is the average of y, over the distribution of oscillators. Introducing

02 = (13 » and Fourier transforming results in
(v013, — ?) y, — v13,d =0 (8.16)

(1—twr)d—y=0. (8.17)

Solving the force equation for y, and averaging over v yields
1 V(12
y=4d /0 dug(v)m (8.18)
where, here we have explicitly denoted the distribution of oscillators by g(v)
which is analogous to g(f13) in the Section 8.1. Substituting into the field

equation yields the dispersion relation

. 1 Vnzo
1—wr = ‘/0- dl/g(l/)m (819)

which bears a strong similarity to the dispersion relation 8.3 of Section 8.1.

So far, other than defining Q2 = v0%, and Q2 = (m/m, )% , we have said
little more than we did in Section 8.1. The essential theoretical content of the
spread-mass model is introduced by selecting a specific form of the distribution
function g(v) . Any such distribution must obey certain natural conditions,

namely
/01 dvg(v) =1 (8.20)
g(0)=0 (8.21)

g(v) 20 (8.22)
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/1 dvg(v)m, =m. (8.23)
0

The specific form for g(v) , chosen by Lee [8.1], is a quadratic polynomial,
the lowest order polynomial with enough free constants to satisfy the conditions

listed above. Lee uses

g(v) =6v(1-v) (8.24)
which is easily seen to be sufficient. The dispersion relation reads

1 1
. — 02
—wr =) [) dl/6l/(1 - V)m

(8.25)
which is in fact identical to the result 7.75 of the circle-limit of the warm-Vlasov
beam, which result in turn is identical to the cold-Vlasov beam. In Section 8.3 we
shall find that the energy-group model also yields the same dispersion relation.
All of these identifications hold for the Bennett beam, which is our particular

example in this thesis. In terms of the normalized frequency a = Q/Qpg, , upon

carrying out the integration, 8.25 yields —iwr = F(a) where

F(a) = 6a? (-;— —ao? +a%(1 -0 (log 1 a2a2 + m)) (8.26)

for 0 < a €1 and a real. The real and imaginary parts of F(«) are plotted in

Fig. 8.2; notice that there is a cutoff frequency 5.

5Note also that there is a zero frequency mode, that is, a nontrivial mode with both 0 and w
equal to zero. This zero frequency mode exists because the rigid-beam equations of motion
have a symmetry (lateral displacement) which a particular solution does not share. Physically,
the mode is a uniform lateral displacement of the beam (the beam remains straight) followed

by propagation at the new (displaced) position. Mathematically, the existence of the mode is
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It is interesting to consider the gedanken experiment again in terms of the
spread-mass model. Suppose a single slice is perturbed at z = 0 such that the v
oscillator responds according to y,(z) = cos(2,z/Bc) . The centroid (center of
mass) of the disk is given by y.m = ((m,/m)y,) , which is yem = (y,/3v) , where

() denotes averaging over g(v) . Explicitly, the centroid response is

Yom(2) = /o " dv2(1 - 1) cos (ﬁﬂgzz) (8.27)

which works out, in terms of the variable £ = g,2/8¢c which measures axial

distance in betatron  wavelengths, to be

Yem(E) = gg (— (% + 1) + g-sinﬁ + (% - 2) cos 5) : (8.28)

Hence, for large ¢ we find yem ~ 1/€2 which indicates phase mix damping.

understood on the basis of the Goldstone theorem, cf. [8.7]. Plasma current fm # 0 “breaks”
the symmetry of the equations and the zero-frequency mode disappears, as we shall see in

Section 8.5.
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Figure 8.1: Real F, and imaginary F; parts of the spread-mass model dispersion
relation F(a) = —iwr . Note in particular the maximum growth-rate F, ~ 0.8

and the high-frequency cutoff F;(a) =0 at a = 2/Qg, ~ 0.7 .
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‘8.3 Energy-Group Model

In Section 8.3 we wish to present an original, streamlined, development of the
energ'y-gr'oup model of linear hose instability of an ultra-relativistic electron beam
propagating in resistive plasma. The intention is to bring to the forefront the
essential aspects of this model, emphasizing, in particular, the close formal sim-
ilarity to the spread-mass model. The energy-group model‘was developed by H.
S. Uhm and M. Lampe in 1980 [8.2]; their treatment included plasma current
effects f,, and an applied axial magnetic guide field B, . We will not consider
either of these.

Before delving into the energy-group model in detail let us develop, in general,
the basic multiple-oscillator equations which we will need. The starting point of

thg energy-group model, as with all hose models, is with the basic field and force

equations
d12d 4r 7, 4r
(rraer = T80 55) Ar = =T (8:29)
d’r ¢B oA
— =2 =" 8.30
822 ~ym dr (8:30)

In multiple-oscillator models the current Jy,(r) is considered to be a superposition
of partial currents each associated with one of the oscillators. Generally, in order
to resolve radially dependent resonances, the sub-segments will all have differing
radii. Let us therefore denote the sub-segment label by R . This is meant to

have underlying functional dependence upon the physical property ¢ which dis-

$For the spread-mass, energy-group, and multi-component models, the physical properties are

mass, transverse energy, and betatron frequency, respectively.
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tinguishes one oscillator from another. Denoting the partial current by Ju(r; R)
( the current density at r due to the R oscillator) we may write the total current

density Jp(r) as an integral over the components
Jo(r) = / dRJy(r; R) . (8.31)
0

Once again we define the lateral displacement of the R oscillator as y(R) , which
obeys the linearized Newton’s law, averaged over the component profile. Averag-
ing the x component of 8.30 over the current Jy(r,8; R) = Jpo(r; R)+Jb1(r; R) cos 0

as we did in both the rigid-beam and spread-mass models, we have

?y(R) g8 = [ dA, d. |
T = A T [ arr (Jbl(r R E;Jbo(r,R)) (8.32)

where I(R) is the total current due to the R component
R 27 :
I(R) = / drr / d0Jy(r,0; R) . (8.33)
0 0

Next, as always, we assume each component displaces rigidly, therefore

d

Jn(ri B) = —y(R) 3

Joo(r; R) . (8.34)

Inserting this into the linearized, averaged Newton’s law we arrive at the generic

multiple-oscillator equation

where the oscillator-component frequency Q:(R) is

gy =2 _T

Am I Jo Jbo(r R) . (8.36)
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Fourier transforming 8.35 and solving for y(R) yields

_ g8 1 T R -~ d .
y(R) = " m (R IR /0 drrA—Jpo(r; R) . (8.37)

At this point the development is completely general and any multiple- oscillator
model may be constructed from this equation; model specificity consists in select-
ing the particular form of Jy,(r; R) , and of course, in the interpretation of the
physical meaning of the oscillator component label R .

Now let us specialize to the energy-group model. The transverse energy of a

particle in the beam is
1 (P,
H) —2 T Pr | —aBA.(r). (8.38)

In the energy-group model we divide a thin segment of the beam into sub-
segments, each of which contains particles with a given transverse energy; the
radial profile of each sub-segment is uniform out to a radius R(H,) which de-
pends upon the energy of the particles in the sub-segment. Henceforth we will
suppress the H; dependence of R(H, ) for notational convenience. The radius
R is the maximum radial turning point possible for a particle with transverse
energy H) and is defined by

il

1= 2ymR? —gBAL(R) . (8.39)

In the energy-group model each energy-group contributes a partial current density

which is flat out to an energy-dependent radius R(H )

Jbo(r; R) = Juo(0; R)H (R — 1) | (8.40)
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where Ji,(0; R) is the partial density at the center of the beam. For this compo-
nent shape I(R) is

| I(R) = ngJbo(O; R). (8.41)

Working out Q.(R) and y(R) as given by 8.36 and 8.35 respectively, for the

energy-group Jp,(r; R) 8.40 , we find

_e¢8 1 A
1dA,
n(r) = -L 2ok (8.43)

The source term Jp; in the dipole Ampére equation is now constructed, as usual
in the rigid-beam theory, from 8.34 , so that in terms of our explicit form of

y(H ) we have the current perturbation Jy;(r; R)

qB 1 A(R) dJso
ym 0% - Q4(R) R dr

Ju(r; R) = — (r;R) . (8.44)

The source term we need is J (r) , the total perturbed current at the radius r .

This current is the integral of Jy; (r; R) over R
A~ m A
J(r) = / dRJy(r;R) . (8.45)
0

In terms of the rigid-beam formula 8.34 this reads

dJy,
dr

Ju() =~ [ ary(m) &), (8.46)

Introducing 8.40 for Jp,(r; R) and 8.42 for y(R) results in

-~

N o 1 A
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To proceed we need to calculate J;,(0; R) , this is accomplished with
[ o]
Joo(r) = / dRJs0(0; R)H(R — 1) (8.48)
0 .

which, after differentiating with respect to r once, yields upon evaluation at r = R

dJb
i R)=———. 4
Joo(0; R) = =52 (8.49)
Substituting this in 8.47 and noting the Dirac delta function, we find
Jary=-__ 1 1dJ, (8.50)

ym 02 — Q3(r) rdr
Remarkably, this is the same as the circle-limit of the general Vlasov treatment,
and also the same as the cold-Vlasov treatment.

Fourier transforming the field equation 8.29 , working in terms of the variable

p =r/a , and inserting the perturbed current Jy1 we have the eigen-equation

dld ir 4 N\ A 4T qB 1 1dJpo ~
2,4+ =T Z . 8.51
(dppdpp+ =0 ao(p)zw) A e ym (2 —Q%p a5 A (8.51)

To approximate the eigenvalue w we will use a variational technique. The method
consists of multiplying the eigen-equation by A and integrating the resulting
equation with [;° dpp . A trial function A is then inserted to get the approximate
eigenvalue. Multiplying by A and integrating yields
© .dld .~ a%*4rw [ N 4 oo 1 dJ, -
/ dppA———pA + — w/‘ dppo,A? = _4rab dp—s—s — 2 42
0 0

dppdp c c ym Jo pﬂz—-ﬂg dp
(8.52)

A natural candidate for a trial eigenfunction is the fundamental mode A ~ dA, /dp

which we use in rigid-beam theory. Substituting this eigenfunction and integrat-
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ing by parts results in the dispersion relation

w [ dA,\? (> dA,dJy, 02
—_ — 1 = d . .
c ) o) () = [ B

This dispersion relation is good for any beam equilibrium J,, and also allows for

conductivity o, which is radially dependent and perhaps shaped differently than
the current profile.
Now let us specialize to the Bennett distribution and assume that the con-

ductivity is locally produced. Then the ingredients we need are

Joolp) = =25 (1477 (8.54)
Aolp) =~ log (1+ 4*) (8.55)
co(p) =00 (14+42) ™ . (8.56)

as derived in Chapter 3. Substituting these into the dispersion relation yields

2 0o 3 00 3 2
. OoTa 2p / 2p Q
Al dp——— o = d . 8.57
e /o A+ b U+ -3 (8:57)

Now, if we define a new variable of integration v = (1 + p?)~! and introduce the

dipole decay time 71 = o,ma?/2c? we find

1

o

1
—wry = Q2/ dvér(1
0

which is the same as the spread-mass model 8.25 . We conclude, therefore, that
the energy-group and spread-mass models are formally the same and differ es-

sentially only in the p.hysica.l interpretation which underlies them. Furthermore,
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since we have shown that the energy-group prediction 8.50 for the perturbed cur-
rent Jp; is the same as the circle-limit 7.65 of the exact Vlasov theory and also
is the same as the cold-Vlasov theory 7.140, there appears to be a direct link
between the spread-mass model and the circle-orbit model. This is an indication
that the circle-orbit model contains the essential physics of the hose instability,
at least, to the same extent that the spread-mass and energy-group models do.
These interrelationships, between the various models, appear not to have been

noticed prior to our work.

8.4 Multi-Component Model

Having resolved the beam into classes of particles according to mass, and then
having resolved the beam into classes according to transverse energy, and having
found that these two approaches are essentially the same, we now consider the
resolution according to betatron frequency {23 . On the face of it, this seems as
if it will be a more fruitful approach due to the fact that the betatron frequency
determines the coupling of a particle to the hose perturbation. The multiple-
oscillator model which results from dividing each beam segment into sub-segments
according to betatron frequency is called the multi-component model. The multi-

component model was developed by W. M. Sharp, M. Lampe, and H. S. Uhm in

1982 [8.3].
In the multi-component model we assume a component profile which is parabolic
’2
Jbo(r; R) = Jpo(0; R) (1 - ﬁ) H(R-r) (8.59)
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where H is the Heaviside step function. This particular shape is a special case of
the more general shape

m

Joo(r3 R) = Jbo(0; R) (1 - %) H(R-r) (8.60)

which may range from a step function m = oo as in the energy-group model, to a
triangle function m = 1. The particular choice of m = 2 is motivated by the fact
that this choice gives an eigenequation with analytic properties close to those of
the general Vlasov result 7.

Now that we have chosen a profile Jy,(r; R) we may explicitly compute the

perturbed total current Jy;(r) . First, the quantity J(R) turns out to be
I(R) = ngJ,,,,(o; R) (8.61)
next, to calculate Jp,(0; R) we set up the total current

Joo(r) = fo ~ dR (1 - ;—22) Joo(0; RYH(R — 1) (8.62)

"In this regard, it is only the choice of oscillator-component radial profile (which choice is
actually quite ad hoc , aside from the heuristic arguments involving the analytic properties
of the singularity predicted by the Vlasov theory, which, itself, is not the whole story) which
makes the multi-component model differ at all from the energy-group model. In particu-
lar, nowhere does the distinction between classes of particles according to transverse energy
(energy-group), and classes of particles according to angular momentum (multi-component),
acquire an operational significance (the distinction never shows up in a calculational differ-
ence in the formalisms). It is, therefore, somewhat misleading to emphasize the underlying

functional dependence of the oscillator-component label R ; all that really matters is the shape

Jso(r; R) .
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from which, by differentiating twice with respect to r and then evaluating the

result at r = R yields

1 By,  dJp,
S | bo _ GJbo ) 63
Jio(0; R) = 7 (R 2 " ab ) (8.63)
Inserting I(R) and Jpe(r; R) into 8.36 and integrating by parts once we get
4r g8 2 / R r?
2 _ e———— - . 4
Q:(R) e m R o drrdi(r) [ 1 7 (8.64)

with the help of the Ampére monopole equation. Likewise, 8.35 becomes, after

integrating by parts twice,

1
y(R) = fn R -ER / drr?A(r) . | - (8.65)

To calculate the total perturbed current density Jy;(r) we have

Fou(r) = /0 ~ dRJy (r; R) (8.66)

so, in terms of the rigid displacement 8.34

A o0 d

In(r) == [ dRy(R) 3 Juo(ri R) (8.67)
Introducing the explicit form of Jp,(r; R) this reduces to

F(r) = 2r / * dRy(R)Jpo(0; R) — (8.68)

R?
Substituting our results 8.65 for y(R) and 8.63 for Jy,(0; R) we find the perturbed
current Jy; (r) as predicted by the multi- component model, to be

J _2—— / dR— (}.‘””0) 1 / @A) (8.69)
bu(r RYdR\R dR ) Q2(R) - (2 Jo '
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where (22(R) is given by 8.64. Substituting this in the Ampére dipole equation
8.29 we get the multi-component hose eigenvalue problem.

Up to this point our development has been for an arbitrary equilibrium beam
Jio(r) ; now let us specialize to the Bennett equilibrium. As in Section 8.2, we
will consider only local conductivity generation so that o,(r) and Jp,(r) have the
same radial shape. For the Bennett profile the component frequency Q.(R) given

by 8.64 works out to be

9 2 a2 R2
Q%(R) = 2QﬂoR2 1~ log 1+ 5], (8.70)

where we have recalled that 02 o 18

2q461,
2 = . 71
0, = S (8.71)

The perturbed current Jy; (r) given by 8.69 reduces to the integral

24at 1
RS (02+R2)4 92(

o oo R -
Ju(r) = 2—/ 5 / dr'r’" A(r') . (8.72)
-2 Jo

Next, assuming a test eigenfunction A= dA,/dr , the fundamental mode, we find

that
2 5 [ p2 a’ |
/ dri?A(r) = =2 (R + a®log " R2) . (8.73)

Introducing the variable p = r/a and inserting the previous result into Jp we

have

N °° z 02(z

From this equation we see that Jy; has a logarithmic singularity , not a pole as

predicted by the Vlasov circle-orbit, spread-mass, or energy-group models.
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A variational approximation for the eigenvalue, following the procedure em-

ployed previously, is

: © p /°° z - Qz)
- = — d d . 8.75
wr 1+36/‘; p1+p2 ] x(1+x2)403(x)—n2 (8.75)

8.5 Conductivity Effects On Multiple-Oscillator
Models

In Section 8.5 we wish to investigate the modifications required of the previous
work to account both for conductivity generation and for induced plasma current.
Mathematically, this means that the field equation we must use is 5.47 , not 5.48
as we have been using. Field equation 5.47 is

( +a") (3PP3P caﬁJb"(p)nan)Al P 1+fm+ar, Jh

where n = log(¢/¢,) with ¢, a reference slice behind the pinch-point, and the
Fourier phase is expi (§ — wn — Q2z/8c) with w being a dimensionless frequency,

since 7 is dimensionless. Fourier transforming gives

0190 4T o o\ A 4 2( Im ) 5
—_— == = —— . a7
(8pp8pp+ —a ﬂJbo(p)mw) A —a 1+ - JIh1 (8.77)

Using a variational principle, now familiar, with test eigenfunction A =dA, /dp ,

we find the approximate eigenvalue for the Bennett beam

o fm ) /°° 60 Ju1(p)
zw‘r—1+(1+1_iw A dp1+P2Jbo(0) (8.78)
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where, here, 7 = I1x83/c is a dimensionless dipole decay “time”. Inserting the
Vlasov circle-orbit, spread-mass, and energy-group predictions of .71,1 (all the

same) the dispersion relation becomes

—wr = F(a) + 7 {";w (14 F(a)) (8.79)

where a = (1/Q3, and F(a) is the function 8.26

a2

F(a) = 6a? (-;— - a? +a?(1-a?) (log 1-o + m')) (8.80)

which we first encountered in the spread-mass model 8.

8Notice that the plasma current fm # 0 breaks the symmetry and eliminates the zero frequency

mode. If fm # 0 then as a — 0 we find that —iwr = fm /(1 — iw) instead of —iwr =0.
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Chapter 9

Adiabatic Beam Theory

9.1 Introduction

In Chapter 9 we are going to investigate fluid and drift-kinetic theories of hose
instability in ultra-relativistic electron beams. Prior to this, all of our work has
been essentially kinetic, that is, we have explicitly solved the Vlasov equation for
the perturbed current, or have approximated or modeled the perturbed current
based upon an underlying kinetic description. Now we wish to determine to what
extent a reduced description, in terms of a moment hierarchy, is able to reproduce
the important features of a fully kinetic treatment. Most importantly, a reduced
treatment should not leave out the phase mixing effects.

Our reasons for studying reduced descriptions of relativistic particle beams
are both academic and pragmatic. It is widely believed that fluid or fluid- kinetic

treatments will provide more efficient methods for simulating beam propagation

158
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over many betatron wavelengths. From a more theoretical perspective , however,
it is of great interest to determine if a closure of the exact moment equations
can be derived which incorporates into the hierarchy the salient kinetic features

“while providing a theoretically tractable and numerically efficient formalism. It
is not at all clear, a prior: , that the important kinetic properties, such as phase
mix damping of nonaxisymmetric perturbations, will survive the“fluidizing” of
all the degrees of freedom of the system, which results if one uses a fluid equation
hierarchy with higher order moment discard closure, combined with assumptions
concerning the pressure tensor. It is for this reason that we investigate a fluid-
kinetic “hybrid” approach, that is, a drift-kinetic equation. We derive a drift
kinetic equation which is gotten from the exact Vlasov equation by “fluidizing”
two of the degrees of freedom, leaving one important kinetic degree of ffeedom in-
tact. As we mentioned in Chapter 1, this procedure follows long traditions in fluid
dynamics in that the exact moment equations are used and all approximations

are built into the closure relation, the so-called equation of state.

9.2 Fluid Approach to Beam Simulation

The natural starting point for a development of the fluid equations for an ultra-
relativistic electron beam is with the coupled covariant Vlasov and Maxwell equa-

tions

o q d
b % L S puw @) p_ )

(v ozH + mF"v Bv“) f=0 (9-1)
(0%Bag — 3#9,) AY = 4—“q / divfut . (9.2)

[
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where v# = (¢, v4) is the single-particle four-velocity, f = f(z,v) is the extended
phase-space single-particle distribution function, A* = (¢, A) is the four-vector
potential, g¥ = diag(1, -1, -1, —1) is the metric tensor, and F¥ = 9*A, — 0YA,
is the Faraday electromagnetic field tensor. In terms of the three-space electric
field E and magnetic field B the components of the Faraday tensor are: F% =
~F¥% = (0,E) and FY = ¢7*B, where ¢ is the Levi-Civita alternating tensor
1. We have also defined the single-particle gamma v2 = 1 — v - v/c? as usual.
Transition between the cotangent and tangent bundles (raising and lowering of
indices) is accomplished by means of the metric tensor: v# = g**v, , v, = g, V¥

and F,, = guag,,ﬂF"ﬁ , with g, g™ = oL .

In order to construct a moment hierarchy we define the following four-velocity

moments
1% = /d"va“ (9.3)
T8 = m/d%fv“vﬂ (9.4)
HoAY = m/dﬁ;fv"‘vﬂv" (9.5)

where 7% is the particle-current-density four-vector, T®? is the stress-energy ten-
sor, and H%?7 is the heat-flow tensor. Next we apply [d*vf , m [ d*vfv® , and
m [ d*fv®vP to the covariant Vlasov equation 9.1 to get the first three moment

equations

9
oz>

'We are using the convention that Greek indices run over 0,1,2,3, while Latin indices run over

@ =0 (9.6)

1,2,3.
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0 3 -
a—zaT“ﬂ = qFf]"‘ (9.7)

3
S H = %Fg (g21?7 + gija'f) . (9.8)

To proceed further we now define the fluid four-velocity u# = (cT,ul’) (not
to be confused with the single-particle four-velocity v# ). In terms of the fluid
three-velocity u we define the fluid-gamma I''? = 1 —u-u/c? . The proper-time
7 of a fluid element is related to the laboratory time ¢t by I'r = t . There are
two equivalent ways of defining the fluid four-velocity. First, it is the proper-time

derivative of the fluid element position z*

oz

and, second, it is related to the particle-current-density four-vector j# by
¥ = nu# (9.10)

where n is the proper fluid density. From the relation g,,j#7¥ = ¢? we find
n? = g,,7#7¥/c% . Later on we shall need the following relation between the total

time derivative in the laboratory d/dt , and the covariant derivative 8/9z#

d 1 .8
—_—= gyt . .
dt TV 9zn (9.11)

Analogous to the decomposition of the three-velocity into an ensemble average
and a fluctuating part, we will now make what turns out to be an extremely

useful decomposition of the single-particle four-velocity

vh = Aut 4 €. (9.12)
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Pursuing the analogy with the three-velocity case, we will force the “thermal”

term £# to average to zero

/ dlvfer =0. (9.13)

Applying [ d*vf to the velocity v* 9.12 we find that A must satisfy

A=n (/d“vf) - (9.14)

where we have used the relation j# = nu# . Now that we have split v* into fluid

and thermal components, let us write the moments 7% , T®? | and H%%" in terms

of u# ¥ and A . We find that

ja = nu® (915)
T°% = mniu®uP + P28 (9.16)
HP1 = AT*Pu" + A (PP7u® + P27u) 4 m / dufeeefe (9.17)

where we have defined P*# | the “pressure tensor”
PP =m [ divfeaes . (9.18)

In what amounts to, on the face of it, a seemingly innocuous approximation, we

will employ a third order cumulant discard and drop the term

[atorenere (9.19)

from the heat tensor H28" ,
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Substituting the relations for 7 , T®? | and H*#" in terms of u® , A and P2
into the moment equations, after a fair amount of algebra (in the case of the heat

equation) we find

aa?(nua) =0 (9.20)
-a—i-& (P"‘ﬂ + z\mnu"‘uﬂ) = qnFPyu® (9.21)
9 (ruePP) = L2 (PP + g2P"7) - P () - P8 9 (o)
dze m- Y K w dzv ozV
(9.22)
(0%8agl — 8%8,) A¥ = %’Eqnu“ (9.23)

where we have now explicitly included the necessary Maxwell equation 9.23 in the
system. These equations express conservation of mass, momentum, and energy
of a relativistic fluid interacting with an electromagnetic field created by the fluid
itself. At this point in the development the equations are completely general;
later we will incorporate various assumptions which reflect the fact that we are
studying a paraxial beam.

We wish now to briefly discuss an apparent discrepancy between the number of
independent equations and the number of independent unknowns in our system.
It is easy to see that the pressure tensor P*? is symmetric; therefore, P®% has
10 independent components. Counting the number of equations then we find 19.
The quantities to be determined: A , n , P®® | A%  and u® , are 20 in number.
The apparent discrepancy between the number of equations and unknowns is
resolved by noting that, as yet, we have not specified a gauge condition; that is,

the Maxwell equation 9.23 is written for arbitrary gauge.
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As written, the Maxwell equation 9.23 admits no solution. Since this fact is
not widely appreciated we will prove it [9.1] and thereby deepen our understanding
of the fluid equations. That no solution exists is shown if we demonstrate that
the operator 0%9,g% — 8#3, is not invertible, that is, has no Green function. The

Green function, supposed for the moment to exist, would satisfy
(0%8agl — 8#8,) G¥%(z — ') = 6¥6(z — ') (9.24)

where z — z' is short for (z — z')# . We Fourier analyze as follows

d*k

Gi(z~-1') = WGZ(IC) exp —tk(z — z') (9.25)
z—2) = / (Z:r'; exp —ik(z — z') (9.26)

where k(z — z') = k#(z — 2'),, . Using these, the Maxwell equation 9.24 for the

Green function becomes
(k#ky — k%g2) G (k) = &% . (9.27)

We realize that there are only two independent two-tensors available in the space-
time machinery, namely g¥ and z*z, and scalar multiples thereof, after Fourier
transforming; therefore, we only have the tensors g# and k#k, from which to build

GY(k) . If for some A(k) and B(k) we are able to write
G% (k) = A(k)k%g% + B(k)k" ko (9.28)

(the factor k2 in front of A(k) is for convenience only) then we shall have found

our Green function, provided it satisfies the Maxwell equation. Substituting G¥,
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into the Maxwell equation 9.27 we find
(k#k, — K2glt) G4 = A(k)K? (k264 + kik) # 82 , (9.29)

Therefore, we conclude that no such G4 exists.
In this thesis we work in the Lorentz gauge d,A4* = 0 . This gauge condition
provides the 20" equation and, thereby, a well posed system. For the Lorentz

gauge the Green function is easily shown to exist and is
y74
Gé(k) = - (9.30)

which is the Feynman propagator. There is, however, another gauge which is
particularly intriguing from the point of view of plasma physics, that is, the

Landau gauge. In the Landau gauge the Green function works out to be

Ga(k) =~ (st - 53 (9.31)

k2

which is familiar, in structure, from the theory of the Landau collision operator,
which involves the three-space version of the same tensor. This tensor is a “per-
pendicular projector”; that is, it projects a four-vector v# to its component which
is perpendicular to k* . Note also that k,G% = 0 (k has no part perpendicular
to itself ) which is of the same form as the Lorentz gauge condition.

The system of fluid-Maxwell equations 9.20, 9.21, 9.22, and 9.23 which we
have derived is fully general. The only approximation we made was the third
order cumulant discard. Now we wish to incbrporate the natural simplifying

assumptions which derive from the fact that we are, after all, studying a beam
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system. We shall be able, for an ultra-relativistic beam, to reduce the fluid
equations to a very useful form by means of natural approximations.

Before reducing the equations for a beam, let us rewrite the energy equation

using the following identity

3 [\ apas) _ xd (,\r [,7)
o (\ueP?) =N 7 (7P (9.32)

where N = n[ is the particle density in the laboratory frame 2. The full set of

fluid equations therefore reads

8 (N,
5;; (FU ) =0 (933)
ou® o o
B B afd B
Amnu 3ga T u® pyes (Amu”) + 'é;;P = gnF7u® (9.34)
d (AT af) _ 4 u (B pav a pvfB va 0 Je) vB 0 a

(9.35)

The first important approximation we will make is that the relativistic fluid

is monoenergetic; that is, the single-particle 4 is the same for all particles. If we
recall that v* = (cv,v~) and u* = (cI',ul’') and also that v* = Au¥ + £# , then
a moments contemplation reveals that £€° = 0 . This says that cy = AcT" + €0 =
Acl', Therefore, for a monoenergetic fluid v = AI' . Also, the pressure tensor
P# = m [ dv* f€#¢Y vanishes for u = 0 or v = 0, that is P% = 0 . The basic

simplifications for a monoenergetic fluid are therefore

~= AT (9.36)

2The proof of this identity involves the continuity equation 9.20 and the relation 9.11 between

the total time derivative d/dt in the laboratory and the covariant derivative 9/9z* .
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P% =0, (9.37)

These conditions reduce the fluid equations to the following

5 (V) =0 (9.38)
o : 9 . 4 . . .
a('ymNu') + @(7mNu'u-7) + EEPJ’ =qN (cF(; + ukF,:) (9.39)
d .
Na (yme) = qFu (9.40)

d'Yij)__Qikj 9 Lipki  pki O 5 kj O i

These are 11 equations for the 11 functions: v , N , u* , and P* 3.

To make subsequent simplifications easier to carry out it is worth the effort
to write these fluid and field equations out in full component form in cylindrical
(r,0,2z) coordinates. The monoenergetic relativistic fluid and field equations in

cylindrical coordinates are

dN 10 10uy Buz)
— = (ru,) + - — = 9.42
dt +N(r8r(ru)+r60+az 0 (9.42)
d
g (Yme) = g (urEr + upEg + u,E;) (9.43)
d 19 19 9 1 up
N (ymue) + == (rPry) + -~ er + 5 Per = —Pog —ymN— =
gN (E + %Bz - %iBo) (9.44)
d 10 10 0 1 ugly
N = (ymug) + e (rPrg) + s ggFoe t 5,0+ —FPor +ymN— =

3The fields are gotten from the Maxwell equations %F" = %ngug (in the Lorentz gauge)

which are a closed set themselves, given ug .
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gN (E,, + ﬁB, - ﬁBz) | (9.45)
d 19 19 d
N"'i'z (Vmuz)f (TPrz)+ 69P0z+ aZPzz =
gN (E + ?'Bo - 73,) (9.46)
Ni(lp) = L (2ByP,, — 2B, P,q)
d\N'TT =~ m 0L rz zL'rl

1'1' ar (7”7) 2Pr0 (%%(7’”’7) - ’7%2) - 2Prz%(7u‘r) (9.47)

d
N (—-Pro> = L (B,P,, — B,P,, — B,Psy + ByPy,)
—Prr - (vug) — Por (1 Z5(7u0) +1%) — Pz (yue)
—Po & (vur) = Poo (L5 (vur) — v%2) — Po & (7ur) (9.48)

d
Na (%Prz) _='q‘(_BoPrr+B Pro—B P03+BOPZZ)
rrb_('Yuz) r0 r 30 ('7“:) Prz%('Yuz)
- zrgg(’Yur) — P,y (;3—0(’711,.) - '7_,-") - Pzzéa;('Yur) (9'49)
d (~ — 9 —
NS (NP”) = 4 (2B,P,s - 2B,P;,)
—2Py, 2 (yug) — 2Pgg (r 39(vue) + 7-‘) — 2Py, £ (us)(9.50)
d
N (%p‘,z) = L (B,P,; — B,P,, — ByPyy + B,Py)

‘P0r‘[9"3;('7uz) - PM'}-‘%('Yuz) - Pﬂz%(')'uz)
—P,, & (u0) — Pog (1 5 (vue) +v%) — Paz2o(vyug) (9.51)

d [~ _q
N—d—t— (NPZZ> _ =L (—2BgP,; + 2B, Py,)



—2P,, & (vu.) — 2P, & (us) — 2P;. & (u,)

¢ 104,
Er=-% "o
106 104
EBo=-1%36 "¢ o
¢ 10A,
E. "9z ¢ Ot
_ 184, 34,
T 90 oz
DA, OA,
Bo = dz - or
18 10A,
B. = -5, (rde) — - 755

19 a¢+laz¢+a2¢__1_62¢
ror or | 12 8902 922 2 9t?

1l 2 (1028) 1 4rl 2 (s128) 4 0 2 (,22)

rOr or r 00 r 06 oz oz
‘_111_?_( 3A,)+i151_3_(8A9)+4r8(6A2>
c ror re ot c rof "at c Oz "at

7]
= 47rqa—Nu,. + 47rql%Nua + 41rq56-z-Nuz

10 8A,  10%4, 0%°A, 204 A, 10%4,
ror or /o 92 Aol 7 & or
4r o0 0A, 4w 99
cc Ot c Or

10 aAo 10%49 0%Ay 20A, Ay 198%Ag

r6r or +r_2 86° 82% + r2 96 r2 ¢ 942
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(9.52)

(9.53)
(9.54)
(9.55)
(9.56)
(9.57)

(9.58)

(9.59)

(9.60)



4m 0 0Ay 47ral d¢ 4r

19 04, 10%4A, 0%A, 10%A, 4rocdA, 4r 8¢

ror o TP oP T @a? cco e o (96D
do

These are the complete equations describing a collisionless * monoenergetic
relativistic fluid interacting self-consistently with its own electromagnetic fields.
The fluid is immersed in an Ohmic plasma, at rest with respect to the laboratory
frame (in which the equations are written). Since the fluid is immersed in an
Ohmic plasma there are fields generated by currents induced in the plasma by
the fluid. |

The equations listed above are too general to be of any practical use. We
should rightly expect to be able to simplify the system by éliminating terms which
are negligible for a beam ; that is, we can build into the equations a “beam-like”
character. The most important, and obvious, feature of a beam is its directional-
ity. The second important approximation we will make, therefore, is that we have
an ultra-relativistic beam propagating in the z direction. In Chapter 3 we pre-
sented arguments, based upon the relativistic Maxwell-Boltzmann distribution,
that the axial degree of freedom is effectively cold (due to the 43m effective axial

mass) in an ultra-relativistic beam. Mathematically, that the beam is axially-cold

*Since local conductivity generation by direct beam impact ionization is occuring the fluid is

not quite collisionless. There are, however, no self- collisions (beam-beam).
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means that £, = 0. This says that the pressure tensor simplifies further: P¥ =0
for © = 3 or j = 3 . Since the axial mass is effectively y3m we drop the axial
dynamics as well:0u, /82 =0 .

Dropping the z momentum equation and the P,, , Py, , and P,, energy
equations we have the “monoenergetic azially-cold fluid equations” ® which are
7 in number, for the 7 functions: v, N , u, , ug , P,, , Prg , and Py .

Next, we shall build in the paraxial field ordering. With paraxial field order-
ing we also have the “frozen-field” approximation. Therefore, the field equations
reduce to the EMPULSE equations which we derived in Chapter 5. In keeping
with paraxial field ordering we will assume that all fields are obtainable from
the scalar ¢ and pinch ¢ = ﬁAzb — ¢ potentials & This is our third important

approximation. Written in terms of beam variables (z,¢ = Bct — z) with u, = B¢

(). -(3),

®Before, we used the appelation “monoenergetic fluid equations”, now we further specialize

, with the addition of another adjective, to “monoenergetic azially-cold fluid equations”.
Next we will incorporate the paraxial ordering of the fields and further specialize to the
“monoenergetic, axially-cold parazial fluid equations”. Then, we will set P,y = 0 to arrive
at the “monoenergetic, axially-cold, paraxial isotropic fluid equations”. Finally, we shall
consider an axisymmetric /96 = 0 irrotational us = 0 equilibrium d/dt = 0 and recover the
Bennett equilibrium as the special isothermal ( P,, = Pgs ) case. The Bennett equilibrium
is therefore a “monoenergetic, a.xia.ily-cold, paraxial, isotropic, axisymmetric, irrotational,
isothermal” fluid beam (solution by means of “adjective increment”.).

®Since any rotational current, due to ug, provides a source for B, , strictly speaking, we should
work with a radial vector potential A, as well as A, . We shall not do this since in this thesis

we will assume that B; < By .
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#)-(3)-3),
o 10

d 7]
Be— = Bc (—-—) +up— +ug—— (9.66)
dz oz /. "or r 96 -

the monoenergetic, axially-cold, paraxial fluid and field beam equations are

,Bcg]X +N (laa (ru,) + %%%g) =0 (9.67)
e (vme) = —¢ (w32 + e ) (9.68)
Nget (ymug) + 22 (P + 2 2P, Loy qmi = v (069)
NBe - (ymus) + 2 (rPrg) + %PM ~Py, +mN Y — g9 (9.10)
Nel (Pr) = ~2Pu-(rur) — 2P (T aplrur) = v22) (071
NBe g (3Pe) = ~Prr gz o) = Po (5 5 r0) +9° ) = Pur )

— Py (%%(qu,) - q%) (9.72)
di ( Poo) = ~2Por‘§-(’7w) 2Py (1 :0 (yus) +v— ) (9.73)
12 §(¢ )+ ;; (%+6) - ﬂa%{- = —4ngNB  (o.14)

2
g—z = kqNpfc. (9.76)

These equations, the monoenergetic, axially-cold, paraxial fluid, field, and

conductivity equations, provide a quite rigorous 7 description of an ultra-relativistic

"Provided that the rotational current qNu, is small enough that B, is still much weaker than

Ba and Ez .
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electron fluid beam propagating in the z direction in an Ohmic plasma, generated
locally through direct beam impact ionization.

Mathematically, the equations are a set of 10 coupled, nonlinear, partial dif-
ferential equations for the 10 functions: v , N , u, ,ug , P,y , Prg , Pog , ¥ , & ,
and o .

A set of equations which is general enough to use for hose instability problems,
while being reasonable from the point of view of implementation as a numerical
calculation, consists of the previous set of equations with Py, = 0 which is our
fourth important approximation. Furthermore, for propagation over a reason-
ably small number of betatron wavelengths, we may drop the secular evolution of
7 as well, that is, dy/dz ~ 0 . Likewise, ~ is taken to be independent of r and 6
. The energy factor « is therefore, with these approximations, a known constant.
The set of equations reduces to 8, in number, for the 8 functions: u, , ug , P,y ,
Py , N , 9, ¢,and o . At the risk of infuriating the reader, we will write out
explicitly the fluid, field, and conductivity equations for the hose problem of a

monoenergetic, axially-cold, paraxial, beam with diagonal pressure

ﬁcfg + N%g;(ru,) + N%%’;—ﬂ —0 (9.77)

Npmer2e 1 2P~ L (P, - Pog) - v = v Y (9.78)
N,Bmc'y;; (mug) + %%ng +ymN uoru' = qN%g—:ﬁ (9.79)
Nﬂc'ydiiz- (P—A'rr-) + 2’7P"% =0 (9.80)

d Poa) 1 3U9 U,
— | — ]+ —-—— + _ = .81
N,BC’y ( N 2'7ngr EY 2’7ng r 0 (9 8 )



174

19 8 1 9° dr Oy
;5;"5(¢+¢')+;§50—2(¢+¢) "% T —4mgNB (9.82)
10 99y 1020y 4rd 04 4r1 8 ¢
191 9rds PaPas cor'or T craeen 0%
do
—a—g = kqNfc . (9.84)

In Chapter 5 we presented the linearized version 5.27 , 5.28 ,5.29, and 5.30
of the EMPULSE field equations. If we expand the quantities N , u, , ugp , B,y ,
and Pyg up to dipole terms also and linearize the continuity equation 9.77, radial
and angular momentum equations 9.78 and 9.79, and the two energy equations
(equations of state) 9.80 and 9.81, then we will have a linearized monopole/dipole
fluid model for the hose instability. However, there is a serious objection which
we may raise at this point: namely, there is no way of knowing if the system
will exhibit phase mix damping or not. Our approximations, while seemingly
harmless enough, have not been of the type that would build into the system the
important kinetic properties. We have simply discarded a third order cumulant 8,
and made several cogent assumptions ? about the pressure tensor. The question
is: is this good enough? Even an irrotational beam will have two counter-rotating
streams; hence there are two polarizations of ug . This means there will be a fluid
stress between the two oppositely rotating fluid streams. Has our fluid hierarchy
erased this feature? Let us defer these questions to Section 9.3. For now, we
content ourselves with demonstrating that the Bennett equilibrium is contained

in our system as a special case.

8 Explicitly: mfdv‘fﬁ"{pﬁ" =0.
gExplicitly: Pge = Pn = Pog = Pgt = P,-g = Pa, = Pzg = P,-o =0.
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The Bennett equilibrium, which we derived in Chapter 3, by means of the co-
variant Maxwell-Boltzmann distribution, is an axisymmetric (8/86 = 0 ),isother-
mal ( P,, = Pyg ),irrotational ( ug = 0 ) equilibrium ( d/dz = 0 ). In terms of
the plasma neutralization fractions fn, , fo,and A = 1—1/8%2(1+ f.)/(1 + fm) (
this usage of the symbol ) is not as in the previous work in Chapter 9; it is the

A introduced in Chapter 3 ) the fluid and field equations reduce to

dp,, dA,

- = aNBA—- (9.85)
1d dA, 4
St =~ —(L+ fm)eNpe. (9.86)

Introducing the kinetic transverse temperature by the relation P,, = NT and

converting to the dimensionless variable p = r/a , integration of 9.85 yields

N = N,y exp (g—'g,iAq) . (9.87)

Substituting this into 9.86 we find the Poisson-Boltzmann equation

1d df 448(1 + fm)Ay 4
—_— e ) — T — g- 8
pdppdp cT ¢ (9-88)

where we have used N, = I,/(ra%qB3) and have defined f = (¢8)\/T)A, . By
substitution we verify that the function f = —2log(1 + p?) solves this equation,

provided that

7 = 20 ;cf’")’u” . (9.89)

This is the Bennett temperature which we derived in Chapter 3 by means of
the virial of Clausius. The temperature appears here as a condition that an

isothermal, axisymmetric, radial equilibrium exists.
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9.3 Drift-Kinetic Approach to Beam Simulation

Simulation of an ultra-relativistic electron beam undergoing linear hose instability
must reproduce the essential phase mixing effects. Phase mixing damps the mode
at a fixed slice postion, causing the mode be convective rather than absolute in
character. A hose instability should convect from the head to the tail of the
beam, growing in amplitude and in wavelength as it does. Experimentally, such
convective behavior of small amplitude lateral displacements is well known. In the
absence of phase mixing, due to the nonlinear pinch potential, theory predicts,
in contrast to experiment, absolute growth in the beam slice rest frame.

In Section 9.2 we developed a fluid description of a paraxial monoenergetic
electron beam; however, we did not build into the theory the important kinetic
features associated with the details of single- particle orbits. We may say that the
theory of Section 9.2 is not “beam-like” enough. It is the purpose of Section 9.3
to determine whether or not it is possible to do a little better. Generally, it isn’t
feasible to use a fully kinetic treatment since there are just too many variables,
some of which are not crucial to the hose instability. On the other hand, a
fully fluid model washes out too many of the speciﬁcally “beam-like” properties.
Therefore, we wish to develop an intermediate, “hybrid”, theory, wherein two
degrees of freedom are washed out, that is, fluidized, while the degree of freedom
of crucial importance to the hose instability is dealt with kinetically.

In the fluid theory the pressure tensor is determined by solving the second ve-
locity moment equations. However, the definition of the pressure tensor suggests

a slightly different method of computing the stresses. Suppose we use the exact
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continuity and momentum equations, as in Section 9.2, but instead of using an
approximate energy equation to determine the pressure, suppose we approximate
the kinetic equation itself and determine the pressure as a second moment of
the modified single particle distribution function? Such a modified distribution
function is called a drift-kinetic distribution function, and the evolution equation
which it obeys, a drift-kinetic equation.

Adiabatic beam theory is based upon an analogy with the adiabatic fluid-
kinetic theory of Chew, Gdldberger, and Low [9.2]. The gyration about field lines
in the CGL theory is identified with the betatron vortex gyration of the transverse
orbit in a beam. Contrary to the physical situation envisaged in the CGL theory,
in a beam there is no strong field about which the particles gyrate 1°.

The basic ideas of adiabatic beam theory were first worked out by J. Mark [9.3]
in the context of heavy-ion beams. For certain applications of beams comprised
of heavy ions, such as heavy-ion fusion, one is interested in axially bunching the
beam by means of a gradient in beam energy from the head to the tail of the
beam (the tail catches up with the head) which axially compresses the beam.
For such applications the details of axial kinetics are more important than the
details of transverse dynamics. For ultra-relativistic electron beams, however,
axial dynamics drops out since the beams are usually, effectively, monoenergetic
and axially-cold. In this case it is the transverse dynamics which is of primary
interest. For purposes of numerical simulation it is still useful to develop an

adiabatic theory for electron beams since by this means a drift-kinetic treatment

1°Except in the case of a beam with a strong applied axial field B, .
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which reproduces the phase mix damping effects is possible.

To provide proper closure of the fluid equations it is not necessary to follow
all of the transverse dynamics, only that part which is important for the hose
instability. As we have demonstrated (abundantly, we hope) in previous Chapters
the circle orbits are of extreme importance for the hose instability. In order to
motivate the adiabatic beam theory let us consider the “near-circle” orbits,
those orbits centered at r, with small radial oscillations of amplitude §r , in an
axisymmetric equilibrium. The orbit equations 3.60 and 3.61 may be combined

to yield the radial equation

5:____1_(Pf))2_*_ g dy, (9.90)

3 \ym ~Nm dr

where Py = ymr?Q4(r) with Q3(r) = (g/vym)(—1/r)dy,/dr , and ¥, is the equi-
librium pinch potential. Expanding this equation about r, with r — r, + ér we

find, to lowest order, the harmonic oscillator
6% + Q%(r,)6r =0 (9.91)

where the frequency ,(r,) is determined by

1 d
0(re) = 55 (305() - (9.92)

The radial oscillation is therefore 67 = —(A/f),) cos £ where & = ), . Associated
with this oscillator is an exact invariant J, defined by J, = (1/2x) § p,dr , which
works out to be J, = (ym/2)A%/Q, . Using Hamilton’s equations of motion it
is easily proved that J, = 0 on the orbit. This means that we may use J, to

“eliminate” the radial oscillation from our considerations. Realize, however, that
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any elliptical orbit may be thought of as a circular orbit, plus a radial (and perhaps
angular) oscillation, providing only that the orbit is not too highly elliptical, that
is, providing ér/r, < 1.

Suppose now that the beam is expanding, or hosing in some fashion, such
that the reference radius r, has some underlying z dependence r,(z) . In this case
the frequency §,(r,(z)) has a slow evolution in z (slow compared to the other
slow frequency Qg(r,) ). It is well known, however, that even for slowly varying
frequencies, the quantity J, = (1/2x) § p,dr is an “adiabatic” action invariant
of motion. If the radius of the beam is expanding slowly, then the situation is
exactly that of a harmonic pendulum, the length of the string of which is slowly
varying. Our invariant J, = (ym/2)A2/(), is nothing but the energy of the radial
oscillator divided by its frequency, which has been known since 1911 (when it was
pointed out by Einstein [9.4]) to be an adiabatic invariant (think of g =N 2%
where h is Planck’s constant and N the number of quanta.)

In order to treat the general case of a particle in a nonaxisymmetric nonequi-
librium beam undergoing a radial drift at velocity u,(r,0,z;¢) , an azimuthal
drift with angular velocity rQ¢(r,8, z;¢) , and radial and azimuthal oscillations
superimposed upon the drifts, we transform to new momentum variables which

are explicitly resolved into drift and oscillation components.

po = ymrfa(r,6,7;) + ym= ao(r,0, ) cos €(r, 6, z;) (9.94)

where a, is the linear momentum of the radial oscillator and oy is the angular
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momentum of the azimuthal oscillator. In the following work, since we have a
monoenergetic, axially-cold beam, we shall drop the slice label ¢ from the argu-
ments of the various functions we are working with. In terms of these variables,

the transverse Hamiltonian H, = (1/2ym)(p? + p3) — q¥ reads

1
H, = 2Tm (uf + r293) + ymu,a, sin € + ymQgag cos £ — qp (9.95)

1 1 2
+—'7maf sin? £ + Eqm%’

2 cos? § .

From this Hamiltonian we compute the total time derivatives of p, and Py = rpy

as p, = —8H, /3r and Py = —8H, /80 respectively, which yields explicitly

. d 1
Dr = qa—:/‘) — ymrQ3 + ;Eqmag cos? ¢ (9.96)
. 7]
By = qa_'g . (9.97)

There is another method of computing the derivatives as well. This involves the
direct differentiation of the definitions of p, and pgy , 9.93 and 9.94 respectively,

using the total derivative

d o o a

Carrying out these differentiations we arrive at

ou,
o0

. du, ) ou, ag
pr = '7mﬁc32— + ym (u, + a, sin &) . +ym (Qg + — cos E) (9.99)
+ma, sin € + 7ma,.é cos &

» T 0 2 : 0 2
Py = 'ym,@c—a—; (r Qg) + ym (u, + a, sin &) o (r Qo) (9.100)
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+ym (Qa + %22 cos E) -(,;—95 (rzﬂo) + ymag cos £ — 'ymaoésin £ .
These derivatives will prove useful later on. In particular, we shall equate the
corresponding results to obtain equations to determine a, , ag , Uy , and u, .
The construction of an adiabatic beam theory is based fundamentally upon
several important ordering assumptions. Underlying these ordering assumptions
is the concept of near-circularity. We shall assume that the transverse orbits are
near-circle, in the sense that ér/r, ~ ¢ where ¢ < 1 and r, is the mean radius
of the orbit. This assumption excludes orbits of near-zero angular momentum,
that is, orbits which pass nearly through the origin on highly elliptical orbits.
We shall argue that such orbits constitute a negligible fraction of the particles in
the beam. Indeed, in thermal equilibrium, equipartition between the transverse
degrees of freedom should obtain; therefore, most particles will have at least as
much angular momentum as radial momentum. We will find that the requirement
6r/ro ~ € is not really too demanding, in the sense‘that this ratio need only be
something less than 1/2 .
By analogy with the simple near-circle case discussed above, wherein no radial
drift was considered u, = 0 , we shall require that the oscillation angle ¢ satisfy,

for the case u, ~ ¢,

€=0,+0(e) . | (9.101)
We shall also assume, since we are dealing with near-circle orbits, that
a, ~ag~€ (9.102)

Q9 ~1. (9.103)
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Clearly, in physical systems with large gradients, or with rapid variation of phys-
ical parameters with time, one cannot expect to find adiabatic invariants, there-

fore, we postulate the following (not severely restrictive) orderings of derivatives

o 19

In order to determine what the drift velocities u, and 7y are in terms of the
pinch potential ¢ , as well as determining the relation, if any, between «, and oy

we equate 9.96 with 9.99 , and equate 9.97 with 9.100 , and then solve for E to

get
E=E_1e71 + &€ + O(e) (9.105)
where
: 1 q oY 2)
q=———-" .106
§-1 o (vm 5 + rQ (9.10 )
: 1 (d o, qa¢). Qpag 5., 1 Pa, .,
= — (= - 7 — = - — . (9.107
o ao( ((70e) = D gg SR E T 2T oS et g o, S € (9:107)

Now, recall that our fundamental assumption was that £ = Q, + O(e) where,
as in the non-drifting, near-circle case, we define (22 = (1/r3)3(r*(1%)/8r. Hence,
we must force the term é_l = 0 and eliminate the £ dependence from the &o
term. Setting the order ¢! term to zero we recover our usual definition 1.2 of

the betatron frequency

Mw=-1_°Y (9.108)

To eliminate the angular dependence of the order €® term notice that the co-

efficient of sin £ term vanishes of its own accord, since it is simply an angular
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momentum balance

oy

5 (9.109)

(’7mrzﬂg) =qg—

Since (g and 9 are known functions, we solve 9.109 for the radial drift velocity

u,

_ 20y ( q Y

0o
- ,.Qz m 86 _IBC—(T2QO) 0—55(7‘200)) . (9.110)

All we need to do now is eliminate the cos? ¢ and sin® ¢ terms, but clearly this is

achieved, non-trivially, if we set

2 ana r Qea,
. 9.111
rQ rQy 299&9 ! ( )

with the required result

E=0Q,+0(c) . (9.112)

Solving 9.111 for ay in terms of a, we find the fundamental relation between o,

and oy
1 Q,

9.113
3" 0, (9-113)

Qg =

At this point in the development we have gotten u, and {0y as functions of the
known pinch potential ¢y . We have also related ay to a, ; therefore, the only

independent variables are o, and £ . The momenta p, and py are

Pr = YMu, + Yma, sin £ ' (9.114)
1

po = ymr{lg + zym _—o, cos § (9.115)
2

therefore, the mathematical effect of our deliberations has been to replace the

two momenta variables (p,, pg) — (a,, &) . For future reference, we wish to point
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out that (a2, £) may well be thought of as the action and angle, respectively, of
an oscillator.

It is important to note that our theory allows for two polarizations, that is,
+(y , which correspond physically to the two senses of rotation which are required
in an unpolarized (non-rotating) beam. For a non-rotating beam we must have an
equal number of particles with +{2y and with —Qp . The beam is a superposition
of counter-rotating streams.

We have succeeded in recasting the single-particle transverse dynamics into
the form of an aperiodic motion (the “spiral” (u,,7{}y) ) and a one degree of
freedom oscillation (the “elliptically polarized” oscillator (ay,&) ). In order to
construcf a drift-kinetic equation we may average the oscillation out of the prob-
lem, leaving only the spiral motion. Does this remove all the kinetics? The
answer, of course, is no. We still have two counter-rotating streams of particles.
In the fully fluid theory of Section 9.2 we didn’t have even the angular drift (of
two possible senses) left. Put another way, the azimuthal motion was fluidized
along with the oscillation. Now wé have the possibility of fluidizing only the
oscillation.

In the sequel, dealing specifically with the hose instability, we will neglect the
radial drift (due physically, perhaps, to Nordsiéck expansion of the beam, and
therefore negligible on time scale of hose development) and concentrate upon the
adiabatic evolution of the frequencies due only to the hosing motion. In this
case we will think of the azimuthal motion 0y as an oscillator. We therefore

think of two oscillators: the “circular oscillator” and the “vortex oscillator”. The
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oscillator a,, £ is called the vortex oscillator by analogy with a fluid which has a
macroscopic rotation (our {2y ) with smaller comoving vortices (our £ ).

In Section 9.2 we discovered that for a monoenergetic, axially-cold ultra-
relativistic electron beam, the covariant Vlasov equation reduced to a standard
“two-space plus time” form, with the only proviso that the mass be replaced
with the appropriate relativistic mass ym . Since we carefully delineated the ap-
proximations involved in the reduction in Section 9.2, here we shall simply start
with the Vlasov equation (written for the particular slice under consideration)
in a simple two-space plus time form. Therefore, in terms of the single-particle
phase space distribution f = f(r,9, J,,&; z) , where o = 20,J,/ym defines the

action variable J, , we have the Vlasov equation

8 8+ + 2Q,J,.S, ¢ 8+ Q_{__1_52_, 2Q'J'cos§ 148
P tr ym il = it 29\ m r 36

(9.116)

g ke ) 1 =0
Now let us derive the drift-kinetic equation obeyed by our single-particle
phase-space distribution f(r,8,J,,§;z) . First, the particle density n(r,8;z) is
given by

n(r,0;z) = /dprprdPOf(Ta 0, pr, po; 2) - (9.117)

From the results 9.114 and 9.115, for p, and py , in terms of J, and £ , we calculate
the Jacobian of the transformation (p,,pg) — (Jr, £) and find | 3(p,, ps)/3(J+, &) |=

(1/2)(ym) (022 /) therefore, the particle density in terms of our new distribution
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(we use the same symbol f) is

1 2
n(r,0;z) = §fymn—;¢~:2/dJ,d§f(r,9,J,,E; z) -~ (9.118)

where we have explicitly included the ordering parameter €2 associated with the
factor J, . Obviously, the particle density must be of order unity n(r,0;2) ~ O(1);
therefore, the correct expansion of the phase space distribution is €2f = f, +

efi+€efa+--
In terms of the action and angle variables (J,, &) the transverse oscillatory

Hamiltonian (drop the fluid motion contribution) is

H; = u.\/2ymJ,(, sm£+ rQ Vv 2ymdJd, Q. cos £+, J, sin £+-—rg2ﬂ J,cos? €.
(9.119)

From this we calculate the time derivative J, = —8H /€ and find that the
angle average (Jr)f = 0 (J, is an adiabatic invariant) and that J, = O(e?) .
Upon substituting the distribution €2f = f, 4+ €f; +-- - into the Vlasov equation,

and using that J, = O(€2?) we get for the € order, the following equations

dfo
= 9.120
d a .0 f1
A r o - . 9.121
(ﬂcaz+ua + Qo )f +é52 3 = (9.121)
Therefore, upon averaging over the fast angle ¢ , we have our drift- kinetic equation
a 2

The kinetic pressure is due to the thermal (non-fluid) components of the

transverse momenta p, and py. Let us denote these by ép, and épyg , respectively.
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Explicitly, we have

6py = V2ymQ,J,sin £ (9.123)

Opg = 10, 2ymQ,J, cos € . (9.124)
2y

The pressure tensor components are: P,, = (6p,6p,) , Pr¢ = Py, = (6p,6pg) , and
Pyg = (6pgbpg) , where () = %7m§1—)=:62 JdJ.dEfo(r,0,J,,E;2) . Working these out
we find

P,, = 2ymQ, (J, sin? €) (9:125)

Pyg=PFy =0 (9.126)
102

Py = za“g”" . (9.127)

It is interesting to determine under what conditions the beam is isothermal
P,, = Py . Setting 22 = 402 we find Qg = 1, or, in terms of the pinch
potential, ¥y = —(ym/2q)r? .Therefore, from the Ampére monopole equation,
Jo(r) = (Aym/qB)(c/2x)1/(1 + fn) which is a beam with uniform net current
11 Such a beam has a harmonic potential. That is, the betatron frequency is
independent or radial position (23 = 1 ) so there are no phase mixing effects.
Now that we have determined the pressure tensor in terms of the distribution
f(r,8,J.,&; 2) we may formulate the adiabatic fluid model of the beam. We

use the exact continuity and momentum equations (exact in the monoenergetic,

axially-cold beam) combined with the drift-kinetic equation, the EMPULSE field

'Recall that in Section 9.2 we determined that an isothermal beam P,, = Ps has a Bennett
profile net current Jy(r) ~ (1 4+ r*)"3(1 + fm)~! . This is a definite point of disagreement

between the fluid and adiabatic theories, one which favors the fluid theory.
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equations, and the conductivity equation

ﬂcﬂ + N——( u) + Nl%%ﬂ =0 (9.128)

Nomer 2+ L(p) L (P - Py - amN i = V2 (129
Nﬂmc'yd— (mug) + _1_630 Pyg + ymN totr _ ng—:ﬁ (9.130)

Pyg = ig: P, (9.131)

P, = (’1m)2-g—; / dJ,J,d€f,sin® £ (9.132)

(ﬂc% + up— aa + Qp— ) fo= (9.133)

Q2 = —%%Z—f (9.134)

02 = ,.%% r02) (9.135)

%58; 2(¢> + ) + 12::2 (¥+¢)— fcfa%'éi = —4mgNp (9.136)
g—z = kqNpBc . (9.138)

This is a set of 11 equations to determine the 11 functions: N , u, , ug, fo , Prr

+Pog , Qg , Qr , ¥, ¢, and o in the adiabatic beam theory.
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9.4 Resonant Modification of Transverse Invariants

In Section 9.3 we developed an “adiabatic” theory describing an ultra-relativistic
electron beam. Fundamentally, the theory rests firmly upon the existence of an
adiabatic action invariant J, which enables us to separate the vortex-gyration
from the spiral drift motion of the transverse particle orbit.

We are, at this juncture, compelled to ask: just how robust is this action
invariant? Clearly, the action is an adiabatic invariant for an axisymmetric,
slowly expanding beam, but what happens in a nonaxisymmetric, linearly hosing
beam? Does the invariant undergo a modification under these circumstances? It
is to the resolution of these questions that we now address ourselves, indeed, it is
the purpose of Section 9.4 to apply “modern” ideas of KAM theory [9.8] to the
study of the adiabatic theory of a linearly hosing electron beam.

As mentioned in Section 9.3, for physical events which occur on the time scale
(Qp 1) of the hose instability, we may neglect the radial drift motion u, and
reduce the spiral (u,,r{)y) to the circle r{l¢ . In this case, both motions are

periodic, therefore, we have two oscillators: circle and vortex. Expanding the

transverse Hamiltonian
1
H, = ——(p? + p2) — , 9.139
L 27m(Pr+Po) q ( )

about a reference circle orbit, with r = r, + ér and p, = ép, , we get a system of

two linear oscillators for the circle and vortex degrees of freedom.

H, = QgJp + 0Q,J, + O(%) (9.140)
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where the action-angle variables (J,, §) and (Jy,0) are defined by

[

2 \z _1
or=¢e ( ) J# sin § (9.141)
AmSl,
1 4
épr = €(2ymQ,)2 J? cos & _ (9.142)

and (Jy,0) = (P?/(2ymr2Qg),0) . As in Section 9.3, the frequencies are defined
to be Q% = —(g/ym)(1/r,)d¥/dr, and Q2 = (1/r3)d(ri02)/dr, .

If we use the lowest order Hamiltonian 9.140, and perturb it with a linear hose
pérturbation, we get a nonlinear coupling of the two degrees of freedom which
is, technically, very delicate to study since the “ground state” fails to satisfy the
“sufficient nonlinearity” condition of the KAM theorem (about which we shall
have more to say later) . This linearity of the ground state is not inherent in the
physical system, but is a relic of the linearization (expansion to lowest order in
noncircularity). In this work we are investigating the breakdown of adiabaticity
and find it necessary to expand the ground state to higher order to expose the
inherent nonlinearity. Expanding H, to fourth order in the noncircularity € , in
terms of the action-angle variables 9.141 and 9.142 for the linearized Hamiltonian,

we find
3
H, = Q¢Jp + E€0,J, + €0Q3J2 sin® £+ 64Q4J,2 sinffé+..- (9.143)

where (13 and (24 are

1 d% 032
— — 144
(6q drd +2ym o (9 )

2 2
Q, = _< 1 ) (1 @'v mqmﬂo) . (9.145)

éq drd E

2
w
I
I
—~
3
5 '\
~——
[N
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Using the Hamiltonian 9.143 alleviates the problem of the weak nonlinearity, that
is, the linear ground state, and results in fulfillment of the conditions of the KAM
theorem in its strongest form. Note that the action-angle variables (J,, £) are not
really action -angle variables for the Hamiltonian to order €¢* , only to order €? .
To get the action-angle variables to the requisite order we will employ Deprit’s
version [9.6] of canonical Lie transform perturbation theory !2.
The azimuthal contribution to the Hamiltonian yJy is already in its exact
action-angle variables. In what follows we shall only be concerned with the radial

contribution

3
H, = €Q,J, + €Q3J7 sin® € + €', J2sin* € . (9.146)

Before calculating the action-angle variables, let us say a few words about the
method we are using. In the physical literature the operator that one calls a Lie
transform is geometrically a “pullback by a flow”. To carry out a Lie transform
calculation in Hamiltonian mechanics involving a perturbation of some zeroth
order H, we need the flow of H, , the pullback, and the pushoqt ‘by the flow.
The pullback is used to invert the inhomogeneous Liouville operator which occurs
at each order of the perturbation calculation, on the orbits of the H, flow. One
selects, at each order, a function, whose vector field generates a flow, the pullback
by which yields the new variables, from the old, at that order. This function is

»

called the “Lie generating function ”, and the pushout by its flow yields the

2Lie transforms operate directly upon the functions defined on the phase space manifold, and
thereby avoid the well-known problem of the canonical Poincaré, Von-Zeipel perturbation

theory, cf. [9.5], that is, mixing together the old and new variables.
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new Hamiltonian, from the old. A general operator formalism was first used, in
plasma physics [9.7], by Dewar, , but here we follow Fermi’s dictum: “when in
doubt...expand!, to get Deprit’s version of the formalism, which in fact preceeded
Dewar’s more general treatment. To this end, we expand everything in Sight in
powers of € .

Now we will present the essentials of the canonical perturbation theory for
the time dependent generating function necessary to deal with a time dependent
Hamiltonian. In terms of the generating function w the Lie derivative L is defined,

in terms of the canonical Poisson bracket, as

ow o ow 0

where z = (p, q) are canonical momentum and coordinate variables. The deriva-
tive of the pullback T with respect to the parameter ¢ which labels the generating

function w, , is
aT

= 9.148
de TL ( )
and the derivative of the pushout 771 is
dr—1
= ) 9.149
—— =1LT (9.149)

Integrating the derivative of the pullback with respect to ¢ one arrives at the

formal expression for the pullback

T(e) = exp (— /0 e de’L(we)) (9.150)

where, we must think of this as an e-ordered product, since the Lie derivatives do

not necessarily commute at different values of ¢ . This result gives us the element
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T in the Lie group of transformations as the exponential of the “generator” L in

the Lie algebra. In terms of the pullback, the new variables Z = (P, Q) are
Z=Tz. (9.151)

The new Hamiltonian K is related to the old Hamiltonian H by the formula

€
K=T1H+ T"I/ de’T(e’)aa—:)(e',t) . (9.152)
0

Deprit formulated a canonical perturbation theory, in 1969, in terms of Lie trans-
forms in the case in which one has a small parameter in which one is able to
expand. Dewar’s treatment, in 1976, amounts to a generalization of Deprit’s,
to the case of possibly nonanalytic functions, that is, where series developments
may not exist. We find it efficient to motivate things by going chronologically in
reverse; therefore, we next expand all the objects K , H , L , T , and w in the
small parameter € . In terms of the expansion of the generating function w the
derivative along the flow of w is

n—1 00
2 Y wm } ==L, (9.153)

de n=0 n=0

Likewise, the formulae for the pullback and pushout are given recursively

1 n—1
Tpo=-=)Y TmLly-m (9.154)
n m=0 .
1 n—1
T, != - > Lp-mT;!. (9.155)
m=0

Explicitly, the formulae we shall use in our calculation are

Tol=1 (9.156)
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T =1L, (9.157)
-1_ 1 1.2
Ty =5l + 5L (9.158)

At each order in the calculation the Lie generating function w, is the solution of
the following inhomogeneous Liouville equation
a n—1
m—1
where the new Hamiltonian K, is chosen to eliminate secularities. Explicitly, the

formulae we shall use in our calculation are

(-g—t — {H,, }) wy = K; — Hy (9.160)

(% —qH,, }) wy = 2(Ky — Hy) — Li(Ky + H) . (9.161)

The differential operator of the left-hand-side is inverted by integrating along the
flow lines of H, . The explicit formula for this inversion, in terms of arbitrary

phase-space functions f and ¢ , is
7]
= —{Ho }) =g (9.162)

F= ) [ alFsal) + (). (0163

In 9.163 F} is the pullback by the flow of H, and, (F;')™! is the pushout by the
flow of H, . The flow F; of H,, that is, the “time development mapping”, is
defined by its action upon phase-space coordinates (J,, £) and, for our system, it
is given by

Fu(J,, &) = (Jn, €+ Q) . (9.164)
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The pullback F;' by the H, flow, that is, the “time development operator”, is

defined by its action upon an arbitrary phase-space function f
F; f(Jr,€) = fo Fy(Jr, &) = f(Jr, E + Qst) . (9.165)

The first term of our generating function w is gotten from the equation 9.160 ,

which, upon inverting the Liouville operator yields
t
wy = / dt' (K1 (J, €+ Q' = 8) — Hy (Jy, €+ (¢ — 1)) . (9.166)

To rid w; of secular terms we define K; to be the time average of H; on an H,

orbit
_
T 2n

2x/Q,
K / dtH (], € +Q,8), (9.167)
0

hence, to this order we have
K1 =0. | (9.168)

1Q;- _ _
w = oo (9cos & - cos 32) (9.169)

The old variables (J,, £) in terms of the new (J,, ) are
Jp = Jr + €{wy, J; } (9.170)

£€=8&—e{wy,E}. (9.171)

We also compute the updated version of §r , in terms of the new action-angle
variables, leaving out the computations we tabulate the results of the order ¢

perturbation

K = Q,J, (9.172)
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1Q3-3
w= 1+eﬁn—r 2 (9cos§—cos3£) (9.173)
- 103-3 . = P
Jr=Jr + e300 ( sin3E - 3sinE) (9.174)
= 1Qz-1 ¢ .- . =
§=E+egpd ( sin3¢ - 9sin 3 (9.175)
2 I - 10Q3-1 -
ér = 2 : Pl &)
r (7m0,) J; (smE STk (3+cos2§)) . (9.176)

What is significant is that the Hamiltonian has not changed. Evidently, we need
to go to higher order yet in order to expose the nonlinearity of the ground state.
The second order contribution to the generating function is given by equation

9.161 , which, in light of our previous results, reads

0 1 - 02 _
(at {H,, }) wy = 2Ky — EJ? (404 + 35%) cos 4§ (9.177)
+—-J2 160, — 12Ezj cos 2€ — —J2 120, — 159—2
16" 0, 167" 0,

We choose K3 to eliminate secularity, and invert the Liouville operator on the H,

flow, to arrive at

3., 5 Q2
~223 17
Ky =T} (n 49) (9.178)

1 =2 Q4 392 2 Q4 Q
— — = - 9.179
wy = 16J' (Q 40") sin 4¢ + 16J 8Q 60,_ sin 2€ . ( )

The second order contributions to the action-angle variables, in terms of the new

variables, are computed from the formulae

8w1 }

1 a'wg

35 (9.180)

_{ wy, 7=
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_ ___{ ow; 1 6w2
“‘, 287,

(9.181)

After a fair amount of algebra, one arrives at the results

2 2
Jo ——l—Jz( ( 4—%-%6(—2—) cos4g+(69—-24&) cos2§+150>

32 9] 02 Q, 02 02
(9.182)
1 - 02 Q4 02 < Q4 0?2 -
= — — —= | si — == |sin2€ )] .
& 128J' ( Q2 3 sin6& + (8Q +1802>sm4£+ ( 64Q —+-27Qz sin 2§
(9.183)

Inserting the results for J, and € into ér and expanding to order 2 we get the

result for ér in terms of the second order correct action-angle variables

1 1
6r(7m)i(nl) : J,% sin £ — eigﬁ (52—) ’ Jr (cos2€ + 3)

_ 3 2 9
+62——1—— (-2-) o (ﬂ sin7§ — 199—— sin5§ + ( 16—(2—4 +69—Q—) sin3£>

256 \ 0, 02 02 0, 02
1 /2\7 .3 Q 0

where we have now dropped the overbar from the new action-angle variables. The

Hamiltonian, correct to fourth order, is
H, = QJs + €0Q,J, + €*03J2 - (9.185)
where we have defined a new “frequency” (13 by
Q=g — == (9.186)

The Hamiltonian 9.185 is in a form which is very convenient for carrying out
theoretical investigations. This Hamiltonian is that of two uncoupled oscillators,

one which is linear Q4Js and one which is nonlinear €2QyJ, + €*Q3J2 . Time
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evolution of two-degree of freedom dynamical systems may be described as a
toral flow, on a two-torus whose major and minor radii are actions and whose
toroidal and poloidal angles are the corresponding angles 3. When one considers
the collection of tori, parameterized by the ranges of actions consistent with the
total energy, one arrives at a family of nested two-tori *. It is interesting that
the behavior of the phase space orbits in this family of tori is perfectly analogous
to the behavior of magnetic field lines in a tokamak. This is because one may,
in fact, arrive at a description of field line behavior as a two-degree of freedom
Hamiltonian system [9.8].

Prior to looking at the beam system from the point of view of Hamiltonian
systems, let us indulge in a brief, and necessarily sketchy, historical interlude.
Toral flows have been investigated since the time of Jacobi, who, in 1835, proved
that orbits with irrational winding numbers densely cover the torus [9.9]. The
modern “qualitative” period of dynamics was initiated by Poincaré in the late
1880’s. This work continued with developments by Birkhoff and others, including
Kolmogorov, whose fundamental paper of 1954 [9.10], followed by work of Arnold
[9.11], and Moser [9.12], in the early 1960’s resulted in KAM theory. This theory
resolved the long-standing problem of small denominators, which had plagued
celestial mechanics ever since Poincaré had pointed it out, nearly one hundred
years earlier. Chirikov [9.13], and others, began introducing these ideas into

plasma physics in the late 1950’s. In 1966, a paper appeared in which these ideas

13¢f., Fig. 9.1.

1 An idea which, apparently, may be traced back to Lagrange in 1762 [0.14].
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were applied directly to the physics of tokamaks 15 [9.8].

With this brief bit of lore behind us, we move on to describe the tori of the
classical Bennett “ground state”. It is nice to introduce some dimensionless vari-
ables at this point in our work. We may easily non-dimensionalize the problem,
and by so doing scale away any mention of the transverse temperature T and
the Bennett radius a . To this end, we shall measure action in units of avT ,
frequency in units of T'/a? , energy in units of T , and length in units of a . The

scaling of frequency, energy, and action, is therefore

, T a\:
¥==(35) "0 (9.187)
T’
,—-__...
E'=%E (9.188)
, d T'\
= — | = 9.1
J a(T) J (9.189)

We therefore have the near-circle Hamiltonian
Hy =QgJy + €Q,J, + € QJ2 (9.190)

where the various quantities have the same meaning as before, but are now pure
numbers.
For the Bennett equilibrium, we may explicitly work out the various frequen-

cies, with the result being
1
2

=4 9.191

!®These ideas must have seemed all the more compelling for tokamak physicists, in light of the
direct analogy between the toral flow and the field lines in a tokamak. In fact, one might
look at this aspect of tokamak physics as a particularly beautiful physical manifestation of an

otherwise abstract concept, that is, Hamiltonian systems as toral flows!
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02 =8—"Fo_ 240 (9.192)
(1+p2)?
Q= 1 Q‘2’11;)‘, + 6603 + 129p2 + 72 (9.193)
% (2+42)*

Since (2, is manifestly negative, the ground state system is of the “weak spring”
type, that is, 32H /3J3 < 0, so that the “twist mapping” in the (J,, ) plane is
such that larger actions revolve more slowly than smaller actions. The fact that
the ground state Hamiltonian depends linearly upon Jy is of some consequence,
resulting in primary resonances that are separated by a frequency interval which is
independent of the action, and therefore the same for all adjacent pairs of primary
(integer) resonances. Of course, one only considers primary resonances which
actually ezist , and in general there are only finitely many primary resonances
consistent with allowable winding numbers.

For the Bennett beam, in the ground state, the actions and winding number

of a given torus are explicitly given by

1
Jo(po) = 593”0(/’0) (9.194)
P
0 (,_,0 :
w(pa, Hy) = o (1 ~ 453 (. - pznz)) (9.196)

where, in deriving J, we have selected the branch which goes to zero as the radial
energy goes to zero: H, — 2poQ2 The winding numbers are bounded above by

a p, dependent maximum {2,/Qy , and this upper-bound itself is constrained to
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fall within the range /2 < 2,/ < 2 . This restricts the primary resonances to
w = 1,2 which are equally separated from one another.

At any finite radius, the only resonance of importance is the w = 1 resonance.
The “sidebands” of secondary resonances ranging on either side of w = 1 are
w = 1+ m/n where m < n , so the sidebands form a dense set of resonances.

When we look at coupling resonances, driven by linear hose instability, we
shall be interested in whether or not the islands associated with the secondary
resonances “overlap” one another. Technically, the “smoothness” condition of the
KAM theorem requires good separation of these islands if invariant tori are to
persist despite the perturbation.

If the radial action J, ceases to be a good invariant, due to any coupling
resonance overlaps, then the particle orbits will “diffuse” to other reference radii.
This is because there is a one-to-one relationship between the reference radius
and the azimuthal action Jy . In fact, we could think of (p,,J,) as the invariants
of the ground state system, as well as (Jy,J,) , so that diffusion in action is
equivalent to radial diffusion.

Inverting the winding number resonance condition 9.196 yields the resonant

energy spectrum

1,0, 103 le) p?
E —p202 4+ = _ 1
Pq 2Po 0 402 Q% q2 (9 97)

where p and g are integers, and their ratio is of the form unity plus or minus a
fraction less than unity. We naturally speak of such an energy spectrum as there
are many particles at any reference radius, and these particles have a distribution

in energy; the Bennett equilibrium is characterized by a transverse temperature
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16, Changing our point of view, any particle with a given fixed energy has a
nested tori family as orbit space. A torus in this family may be thought of as
being parameterized by radius of the orbit.

For the two degree of freedom system, as with all such systems, resonant tori
are densely distributed in the energetically accessible region of action space. We
have a dense distribution in radius, at fixed energy, of resonant tori, or a dense
distribution in energy at a fixed radius.

Resonance structure in action-space tends to enhance the diffusive effects of
weak, extrinsic random noise. We are not explicitly considering the effects of ex-
trinsic diffusion, such as caused by elastic collisions of beam electrons with plasma
ions, which tend to cause radial diffusion (by changing the balance of p, and pg ).
Collisions can remove a phase point from a nonresonant torus and place it on a
resonant torus or “island”. Such resonant diffusion, taking place in the absence of
intrinsic resonant island-island interaction, amounts to an enhancement over the
nonresonant extrinsic diffusion, since the islands provide “stepping stones” for a
phase point to random walk about phase space, propelled from island to island
by the collisions. Even KAM tori cannot prevent such diffusion: the particle is

able to “hop over” the tori. In this work, for ultra-relativistic electron beams,

*Introducing the transverse energy spread described by T into our considerations, we have a
one parameter family of nested tori families, a so-called “VAK nest” (for “Vague Attracter
of Kolmogorov”) [9.14]. The true dynamical system is the four-manifold and a nested tori
family corresponding to an energy level submanifold is a “slice” of the four-manifold. For a
description of the bewildering variety of bifurcational processes which may occur as one varies

the energy parameter in such a system, we refer the reader to [9.14].



203
we may neglect extrinsic diffusion and concentrate only upon intrinsic diffusion
driven by interaction of neighboring islands.

The KAM theorem establishes the fact that “most” of the tori bearing in-
commensurate frequencies !7 (irrational winding numbers) survive with only a
small distortion, a small nonintegrable perturbation. By a “small distortion”, we
mean one without any ripping or topological changes. That is, we end up with
a deformed manifold which is topologically a torus. One the other hand, tori
bearing periodic orbits, or nearly periodic orbits, that is, incommensurate but
with winding number approximated extremely well by n/m (where n and m are
relatively small integers) are grossly, that is to say, topologically deformed.

Now let us consider the effect of a linear hose instability upon the Bennett
equilibrium. In the rest frame of a slice of the beam, the passage of a hose
instability, propagating from the head to the tail of the beam, results in a nonax-

isymmetric perturbation with sinusoidal time dependence. For the approximately

autonomous case {1 < Qg(p,) , where 1 is the Doppler shifted hose frequency, we

17Ultimately, the distinction between rational and irrational winding numbers is meaningful only
in a time asymptotic sense and has no physical significance for finite times. Mathematically,
one distinguishes between the concepts of an orbit and a trajéctory . An orbit is a geometrical
concept, independent of time. An orbit is the set of phase space points which may be gottne
from one another by action of the flow map or its inverse. A trajectory is the act of evolution
along an orbit. Periodic orbits whose winding numbers are the ratios of very large, relatively
prime numbers, tend to look very much like irrational orbits, that is, tend to cover the torus

very well and close upon themselves only after a very great, but finite path length [9.15].
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shall prove that the perturbation is of the form

§H =) _ 6Hf, cos(l& — mb) + > §Hf, sin(l§ — md) . (9.198)

im . im

In this Hamiltonian, the angle 6 is that of circular-drift, and the angle £ is that
of vortex-gyration. It is seen that the linear hose instability couples these two
oscillators nonlinearly. Before deriving the detailed form of § Hf,, and 6 H},, let
us discuss the problem of resonance from a general point of view, based upon our
perturbed Hamiltonian 9.198.

The unperturbed Hamiltonian 9.190 is “integrable”. Will the perturbed
Hamiltonian H = H; + 6H also be integrable? Poincaré and Birkhoff realized
that very few two degree of freedom Hamiltonian systems possess two indepen-
dent invariants (for H, they are Jy and J, ); that is, classical Hamilton-Jacobi
theory [9.16] fails for most systems. Therefore, nonintegrable systems are prop-
erly thought of as “garden-variety” systems. This means that one may write
down any Hamiltonian involving only actions, and perturb it with any perturba-
tion involving angles, at random, so to speak, and be reasonably certain that the
combined system is nonintegrable 18,

On the one hand, for “garden-variety” perturbations of integrable systems,

one has the celebrated theorems of Kolmogorov, Arnold, and Moser to fall back

181n fact, physicists are rather astounded if it turns out to be integrable, as in the case of the
Toda lattice [9.17] which suprized Ford et al. [9.18] when they numerically found evidence of
its integrability, which was analytically verified by Henon [9.19] who, inspired by Ford’s work,
sought and found » independent invariants for the n particle lattice, showing that the Toda

lattice is indeed, to quote Ford, “a jewel in physics”.
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upon. The existence of invariant tori enables one to effectively study a wide class
of otherwise intractable systems. These systems may be thought of as those for
which perturbation theory succeeds, if done correctly. On the other hand, as
one moves a system further and further from an integrable system, the
KAM tori begin to disintegrate; that is, perturbation theory fails outright. If one
pushes a system far enough in this direction, one may fall back upon essentially
statistical methods [9.5].

Of particular interest is the behavior of a system undergoing transition be-
tween near-integrability and non-integrability. For two degree of freedom systems,
such as the one we are studying, the computation of the threshold of stochasticity
involves determination of the critical perturbation strength at which all the KAM
tori disintegrate. The breakup and dissappearance of the last KAM torus triggers
“global stochasticity” 19.

In the late 1950’s Chirikov [9.13] began formulating a practical method of
discerning and quantifying the point at which the last KAM torus between two
fundamental resonances is destroyed, the “overlap criteria”. Although the overlap
criterion is neither necessary, nor sufficient [9.5] for destruction of the torus, it is
easy to apply and has great intuitive appeal [9.13].

At “resonance” between the two oscillators the frequencies of the resonant

9Even after the destruction of the KAM tori there are structures which appear to provide
resistance to global diffusion; invariant Cantor sets, the “Cantori”, stubborn remnants of
KAM tori which impede global diffusion of actions and result in a divided or clumpy phase
space. These partial barriers to diffusion are of considerable current interest in plasma physics

[9.20].
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term are related in such a fashion that the phase is stationary. All other terms
have rapidly varying phases when the actions (Jy,J,) yield a stationary phase
of a given term, so they tend to average away as high-frequency perturbations.

Mathematically, therefore, the condition of “coupling resonance” is
d (n€—s0)~0 (9.199)
dt ~7 . -

Since the resonant term dominates when (J,,Jp) are such that nf —80 =0 ,
where § = 0H, [/3J, and § = OH | [8Jy , with H| = QgJg + €2Q,J, + €'03J2 .
Let us look only at the resonant term § H,, . Without loss of generality, for this

discussion, let us suppose that 6 H;, =0, then
H = H, + §H;, cos(n — sb) . (9.200)

If this Hamiltonian is nearly integrable we should be able to construct a canonical
near-identity transformation which eliminates the angular dependence to lowest

order. Supposing this to be possible, we use the near-identity generator
S = J,€ + Jg8 + Sna(J,, Jg) sin(né — s6) (9.201)

where Sy, is to be determined by forcing angular terms in the new Hamiltonian

H to vanish. The new Hamiltonian is computed to be

A A A o o A A A A
H=H,(1,,J9)+|[n Hy _ OH, Sna(Jp, Jo) + 6HE(J,, Jg) | cos(ne—36) .
aJ, aJg
(9.202)
Therefore, the angle dependent term vanishes if we define
-1
A a A A oH; oH,
Sns(Jpy Jg) = —6Hps(J,, Jg) | n—x= — 8= : 9.203
(p 0) ns(p 0)( aJ, BJo) ( )
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provided the denominator is not vanishingly small compared to the numerator.
Immediately we realize that this perturbation method fails near resonance. Phys-
ically, this means that near resonance the motion is greatly perturbed away from
the unperturbed motion. This is true even if the perturbation is very small.
Mathematically, that the motion is grossly perturbed even by a small §H is indi-
cated by the fact that, near resonance, the transformation S is not near-identity.

In order to study the motion near resonance we must use a different ap-
proach. To proceed near resonance we must transform to “island-variables”
which “resolve” the resonance. In island-variables we will demonstrate that the
near-resonance Hamiltonian is approximately integrable. Let us begin with the
hose Hamiltonian 9.198 and transform to island-variables. Introducing the near-

identity generating function
S = (n& —s8)J, +0Jp (9.204)

we may eliminate one of the actions and resolve the resonance. In terms of this

S the new and old variables are related by

_95 _ .3

Jo=7 = nJ, (9.205)
a8 . .
Jo =25 = Jo — sJ, (9.206)
. 8§ /
=—— =nf—sb 9.207
&= 7, ¢ (9.207)
§=95 _y. (9.208)
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Substituting for the old variables in 9.198 we find
6H = ZéHfmcos (££+ (li - m) 9) + Z&Hi’msin <££+ (li - m) é) .
- n n = n n _
(9.209)
We want to average over @ since it is now the fast angle (before the variable
transformation § was the slow variable). Expanding the sine and cosine by means
of the multiple angle formulae, we see that upon averaging over ] only terms for
which ls — mn = 0 survive. Since for the surviving terms ls — mn = 0 let us
define p = [/n , then m = sp and | = np . The angle-averaged Hamiltonian § H
becomes, near the (n, 3) resonance
§Hoy =Y 6H, ,pc0Splns + 3 6HYy ,, 510 plny (9.210)
p=1 p=1 :
where é’,,,, =nf — s6 .

The Hamiltonian H = H J;(.AI,,,.Alg) + 6H,, has a second (besides H itself)
invariant. To see this we compute J,=-0H /9¢ and Jo = —0H /00 . This yields
8J, = —nJy hence I = 8J, + nJy is the second invariant. This demonstrates the
integrability of the isolated resonance.

If one considers a region in action-space, in which there is a resonance between
two degrees of freedom, with no other resonances nearby, then all terms, save the
resonant term, have rapidly varying phases and so tend to average away on the
time scale of the resonant term. Such an “isolated resonance” is in fact integrable
(approximately), that is, an invariant besides the energy exists, enabling one to
easily study the properties of the given isolated coupling resonance betwen the

two degrees of freedom.
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If we examine the perturbed Hamiltonian 9.198, we immediately realize that

» 20 coupling reso-

there will be many pairs of interacting, that is, “overlapping
nances, when the hose perturbation exceeds a certain strength. Can one hope to
retain good invariants in such a situation? It is to the study of these resonances
that we shall turn our attention in the sequel.

In order to study the effects of the coupling resonances, we will numerically
integrate the Hamiltonian equations of motion, following a trajectory around the
two-torus. Our basic method is to look at the “punch plot”, that is, the Poincaré
section map induced by the flow on the energy level torus as it intersects a § =
constant cross-section. For a given point on the section, the Poincaré map is the
“first return map”, which takes the point of intersection at one time to the point
of intersection one unit of time later (the frequencies are suitably normalized to
accomplish this). If the winding number on a torus is irrational, the images of
a single point will densely cover the circle of intersection of the torus with the
section as one iterates the map infinitely many times. For intersections with
rational tori, the images of a single point will repeat themselves eventually.

In order to calculate, and investigate the effect of the hose instability upon,
the orbits, we must compute the explicit form of 6 H . The passage of a lateral dis-
placement manifests itself, as far as a beam slice is concerned, by the appearance

of a factor
69 (p,0) ~ 6¢(p) expib (9.211)

in the pinch potential. This is only correct for a low frequency perturbation,

20Resonances never literally “overlap” (private communication J.D.Meiss)



210
where (1 < (15, . For a high frequency Q2 ~ g, perturbation there is explicit
time dependence.

Let us now consider the effect, of a rigid lateral displacement of a beam
slice, upon the near-circle orbits. When we carried out the calculations which
follow, we used the convention (which will be maintained in this presentation)
that the mass factor ym (without loss of any physics) is set to unity 2!. We
denote by p = p, + 6p the (dimensionless) radius of a near-circle orbit with
respect to the center of the displaced beam, where 8p is given by 9.212, and
by ¢' = po + 8p' the (dimensionless) radial position with respect to the center
of the unperturbed beam. In order to compute the perturbed Hamiltonian for
a weakly hosing, near-circle beam, we need to relate §p to §p' . The geometry
of the situation is depicted in Fig. 9.4. If we denote by éz the (dimensionless)
amplitude of the lateral displacement, in the z-direction, then using the law of

cosines p2 = p? + 622 + 2pbz cosf we have, after expanding to order §z*, the

result
5 6zt 1623 1 6zt 1622
P =227 el il =% 0s20
p 64 5 cos40+8 7 cos 30 + 16 53 cos 20 i, cos
1623 16zt 1622
—g?cosa+5xcoso+-6—4-—;§—+z—p—+--- (9.212)

Next, we insert p = p, + 6p , expand p' to order 6p? , and set 6p' = p' — p, to get

6p = 4—;369:2 (62:6pcost9 + (pa6p - 5p2) cos 20 — ézxbpcos30 + - - ) . (9.213)
o

2114 is easy enough to trace through and replace the factors of ym if desired.
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We shall also need 6p? which works out to be

60 = 5—-2-52:5p ((4p§ - 52:2) cos 0 + (6z6p — 6zp,) cos 20 + 6x% cos 30 + - - )
' 0
(9.214)
where ellipses denote terms of higher order, and terms with no £ dependence.

The hose perturbation of the Hamiltonian works out to be
6H = p 0380 + 5 (n - 303) 69 + - (9.215)

If we substitute our expressions for 6o’ and 6p' into 6 H , we get the double
Fourier expansion 9.198 in harmonics of £ and 8 , after quite a considerable

amount of algebra

1. 9 02 304\ .2
6Hyy = 4hyJ7 sin(0 — €) + €hy (355 — 55— | J7 sin(d — €) (9.216)
a2 Q,,
Q3 g, 02
6Hyy = -—eh1Q Jpcos(6 — 2€) + -e hi = 02 J,, sin(d — 2£) (9.217)
6Hy3 = €2 0 1
Hy3 =e¢*hy— @ Jp sin(6 — 3¢€) (9.218)

1
4 Qs [ 2 23 s
5 = | - A - 20-2
Hy ( ha a, + ehgponp (Qp) ) Jpcos(20—2€) —¢ QZ J,, cos( £)

(9.219)

1

2 3
+ 523h2-Q—J2 cos(20 — 2€) — ¢ lthog“ (Q—) JZ sin(20 — 2¢)
P P
Q2

a2
2\ 3
-3 (-(%) ) Ji sin(20-—3£)+62%h29—J2 cos(20-3¢)
p

Q2

03 2
5H23 = €4h2—— +¢€ hgpo
( Q,2, N2z °

(9.220)
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1
2
6Hzy = —eh3£3- (—2-) J,cos(30 — 2€) + czlh;;& (-?-

1
2
in(36 — 2
0, \ 0, 440, n,,) Josin(36 — 2¢)

(9.221)

where s = 6z /p, is the “hose strength”, and h; , hy , and h3 are defined as

1
— 1 2 2 2 2 1 3
— 1 2 2 2
ha = 358 (02 - 40}) (9.223)
hs = poshs . (9.224)

Having derived the hose perturbations, it is a matter of numerical integration
to solve Hamilton’s equations of motion for the orbit. Explicitly, we have J,, =
~He , & =Hy, ,Jg = —Hp , and § = H,, , where H; denotes the partial
derivative 3H/Jf . It is favorable that @ turns out to be independent of J, , Jyp ,
and £ . For the Hamiltonian H = H, +6H , with H;, = QpJp + ezﬂpJp+e4ﬂ2J3
, and 6 H the sum of the perturbations § Hy,,, listed above, we have numerically
investigated the coupling resonances and their overlaps. As mentioned previously,
the method consists in following a given trajectory as it winds around the torus
and recording where it “punches” through a given cross-section. Since the angle
6 evolves at a uniform rate (the frequency is constant), it is convenient to use
as the “toroidal” angle and to define a Poincaré section to be § = constant. We
chose § = 0 for convenience, a different choice simply rotates the pictures (since
the island “filaments” themselves wind around the torus).

To numerically integrate the equations of motion, a simple fourth order Runga-

Kutta scheme was employed, the details of which we shall not even mention. It
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was found that the higher harmonic contributions were negligible (as theoreti-
cally predicted) compared to the lower harmonics. Precisely, only the following
harmonics were important: §Hy; , 6Hy3 , and 6H;3 . Therefore, only the 6
fundamental and the fundamental and first two harmonics of £ were included.

In the numerical calculations, nine orbits were launched for each case studied.
Each of the ¢solated resonances 6 Hy; , §H3 , and § Hy 3 were plotted separately
(to look at the isolated coupling resonance) for various values of reference radius
Po and various hose strengfhs 8 . Then the isolated coupling resonances were
combined pairwise: § Hyy + 6Hy2 , §Hyy + 6 Hy3 , and 6 Hy3 + 6 Hy3 to determine
the pairwise interactions. Finally, all three were included together: § H;, +6Hy2 +
6Hy3 .

The numerical results are depicted in a series of figures. Rather than describe
the individual results here we refer to the figure captions wherein a “running

commentary” is presented.
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Figure 9.1: The orbit-space of the transverse dynamics in the equilibrium beam
consists of a collection of nested tori. The action-angle variables form a set of

coordinates for the tori.
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Figure 9.2: Geometry of the effect of a lateral displacement of a beam slice upon
the near-circle orbits. C denotes the center of the undisplaced beam and éz is

the amplitude of the lateral displacement.



216

One-One Hose Perturbation

Jy y—action
g

-3 Y T T T
-3 -2 -1 0 1 2 3

Jx x—action

Figure 9.3: Depicting the growth of a primary island with elliptic point at £ = 7 /2
and hyperbolic point at £ = —37w/2 . The actual separatrix orbit is not shown.

For this plot the hose strength is s = 0.01 and the reference radius is po = 0.5 .
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One—bne Hose Perturbation

Jy y—action
2

-2 -

-3 11 Ll T T
-3 -2 -1 0o 1
Jx x-action

0 4
(2]

Figure 9.4: Depicting the growth of a primary island with elliptic point at § = 7 /2
and hyperbolic point at £ = —37/2 . The actual separatrix orbit is not shown.
For this plot the hose strength is s = 0.01 and the reference radius is p, = 1.0,
cf. Fig. 9.3.
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One~-Two Hose Perturbation

Jy y—action
s

-1

-2

-3 T T T v
-3 -2 -1 0 1 2 3

Jx x—action

Figure 9.5: Depicting the islands of the 6H 12 isolated resonance. In this result

the reference radius is p, = 1.0 and the hose strength is s = 0.01 .
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One-Three Hose Perturbation

Jy y—action
(-]
5

-1

-2

-3 T T T
-3 -2 -1 0 1

Jx x—action

~n
w

Figure 9.6: Depicting the islands of the § H,3 isolated resonance. In this result

the reference radius is p, = 0.5 and the hose strength is s = 0.01 .
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One-Three Hose Perturbation

24

Jy y—action
2

-] -

-2 B N )

-3 T y T T
-3 -2 -1 0 1 2 3

Jx x—action

Figure 9.7: Depicting, again, the islands of the § H;3 isolated coupling resonance.
In this result the reference radius is p, = 1.0 and the hose strength is s = 0.01 .

Comparing with Fig. 9.6, the resonance is stronger at larger radii.
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One-0One One~Two Resonance Interaction

Jy y—action
2

-1

-3 T T T Y
-3 -2 -1 0 t 2 3

Jx x—-action

Figure 9.8: Depicting the interaction of the § H1; and 8 H,3 coupling resonances.
In this result p, = 1.0 and s = 0.0005 . A thin stochastic layer around the

unstable hyperbolic point is emerging.
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One—One One-Two Resonance Interaction
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Figure 9.9: Depicting the 6 Hy; and 6 Hy3 resonance interaction. In this result
Po = 1.0 and s = 0.0006 . Island interaction has generated visible satellite islands

and the island width has increased compared with Fig. 9.8.
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One-0One One~Two Resonance Interaction

Jy y—action
s

-1

-2

-3 T v 1 1

-3 -2 -1 0 1 2 3
Jx x—action

Figure 9.10: Depicting the § Hy; and 6§ H;5 resonance interaction. ‘In this result
Po = 1.0 and s = 0.0007 . Further widening of the stochastic layer is apparent,

and more satellite stucture is visible.
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Figure 9.11: Depicting the § H;; and 6§ Hy2 resonance interaction. In this result

po = 1.0 and s = 0.001 . The one-two islands have shrunken out of visibility,

a wide stochastic layer surrounds the one-one island, but the layer is still well

bounded by KAM tori.
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One—0One One—-Two Resonance Interaction

Jy y—action
S

-2

-3 Y T T Y
-3 -2 -1 0 1 2 3

Jx x—action

Figure 9.12: Depicting the 6 H;; and 6 H,2 resonance interaction. In this result
po = 1.0 and s = 0.01 . The inner tori are shrinking as the stochastic region
encompasses more, and more of the section. One can see very thin remnants of

the one-two islands.
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One—One One—-Three Resonance Interaction
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Jy y—action
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Figure 9.13: Depicting the 6 H;; and 6 H,3 resonance interaction. In this result
Po = 1.0 and s = 0.0003 . One can see some instability around the separatrices

of the one-three island chain, bounded as yet by unaffected tori.
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One-Two One-Three Resonance Interaction

14

Jy y—action
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Jx x—-action
Figure 9.14: Depicting the 6 H;; and § H3 resonance interaction. In this result
po = 1.0 and s = 0.001 . Interaction has generated satellites but there is no

apparent instability yet. The resonance interaction is weaker than for the one-one,

one-two interaction, since the harmonic is higher.
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Figure 9.15: Depicting the § H;; and § H 3 resonance interaction. In this result

Po = 1.0 and s = 0.01 . Here, compared with Fig. 9.14, the situation has changed

dramatically, although good tori are still bounding the action quite effectively.
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Figure 9.16: Depicting the 6 Hyo
po = 1.0 and s = 0.007 .

and 6 H;3 resonance interaction. In this result
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One-Two One~Three Resonance Interaction
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Figure 9.17: Depicting the § H;2 and 6 H;3 resonance interaction. In this result
po = 1.0 and s = 0.01 . The one-two islands are not yet even visible, there is

some instability near the separatrices of the one-three islands.
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One-Two One~Three Resonance Interaction

Jy y—action
e

-2

-3

-4

-6 T T T T T T T

-8 -5 -4 -3 -2 -1 0 1 2 3 4 s 8
Jx x-action

Figure 9.18: Depicting the 6 H12 and 6§ H;3 resonance interaction. In this result
po = 1.0 and s = 0.1 . The nine orbits are very unstable, but, and this is the

significant point, are still bounded within a region of action-space.
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One—-0One One—Two One—-Three Resonance Interaction
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Figure 9.19: Depicting the 6 Hy; , 6 Hy2 , and 6 Hy3 resonance interactions. In
this result p, = 1.0 and s = 0.01 . The orbits are very unstable, but are stzll

bounded by good tori.
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One-0One One-Two One—-Three Resonance Interaction
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Figure 9.20: Depicting the 6 Hy, , 6H;2 , and 6 H,3 resonance interactions. In this
result p, = 1.0 and s = 0.03 . The outer tori are expanding, indicating increasing
transfer of energy from the azimuthal to the radial motion. We have found that

this continues as the lateral displacement increases.
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Chapter 10

Conclusions and Future Work

This thesis documents our theoretical investigations of the linear hose instability
of an ultra-relativistic electron beam propagating in resistive plasma. Linear
hose instability has been long recognized and studied by plasma physicists. The
purpose of Chapter 10 is to summarize our contributions to this ongoing process
of theoretical illumination, clarification, and refinement. Also, several intriguing
avenues of future research which have been revealed by our work will be marked.
Some of our work has wider ramifications, than just the linear hose instability,
impinging upon the general problem of numerical simulation of electron beams
propagating over many betatron wavelengths. In this regard, our introduction of
modern Hamiltonian system theory, to the study of electron beam problems, is a
new and hopefully fruitfull development.

The primary observations, and, conclusions which we have drawn during the

course of our inquiry, are as follows:

237
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1. The theoretical significance of the circle-orbits far transcends any previous

realization of their importance. We have discovered that

1.1 The circle-limit of the general Vlasov theory is the same as the cold

Vlasov theory.

1.2 The cold Vlasov theory results in the same dispersion relation as the

spread-mass model.

1.3 The energy-group model results in the same dispersion relation as the
spread-mass model.

1.4 Circle-orbits (a circular-helix beam) do yield phase-mix damping. More-

over, a circular-helix beam is tantamount to a spread-mass beam.

1.5 An orbit-perturbation calculation, which builds up the perturbed cur-
rent in the mathematical form of an integral over initial conditions
which launch particles which arrive at a given space point, at a given
time, on the linearly perturbed orbits, predicts quite a different result
than any of the equivalent circle-orbit Vlasov theories or multiple-

oscillator models.

2. A general elliptical-helix beam theory, including linear orbit perturbation
effects, can be developed. This calculation will involve a nontrivial unper-
turbed orbit, as opposed to the circular-helix beam, wherein the unper-

turbed orbits are easily specified analytically.

3. The spread-mass, and energy-group models are operationally perfectly equiv-

alent. Only the underlying, but calculationally irrelevent, interpretation as
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to the meaning of the models differ.

- Stronger than Item 3, only the choice of oscillator-component radial profile
distinguishes, operationally, between the multipl'e-oséillator models. We
discovered this by means of our formulation of the general multiple-oscillator

equations.

. It is possible, starting from the coupled covariant Vlasov and Maxwell equa-
tions, to construct a fluid moment hierarchy. Truncating the hierarchy at
third order, by means of a third order cumulant discard, a series of four
natural approximations strips away all but a beamlike character from the
system. A fully self-consistent set of 8 coupled, nonlinear partial differen-
tial equations describing a relativistic, fluid electron beam propagating in

resistive plasma results.

. Apparently, the fluid and adiabatic theories disagree as to the physical
condition under which a beam is isothermal P,, = Py in the transverse
plane. The fluid model predicts a Bennett profile, while the adiabatic model

predicts a uniform profile.

. Low frequency linear hose instability results in a nonaxisymmetric pinch
potential which couples the circular-drift and vortex-gyration oscillators.
The coupling of these oscillators results in coupling resonances. Modifica-
tion of the transverse adiabatic action invariant (diffusion in action-space)
results. Using methods of KAM theory we have determined that the action

invariant upon which adiabatic beam theory is built holds up quite well for
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lateral displacements of the order §y/d ~ 10~8 — 10~* typically considered
in linear theory. We view this as justification for the adiabatic theory in

the linear regime.
8. In the nonlinear regime, adiabatic theory will not work.

During the course of our work we have come upon several areas which could

yield interesting results, pending further work:

1. The elliptical-helix beam undergoing hose instability: A calculation of the
perturbed current including orbit perturbation effects would be quite in-
teresting. Also, the resulting eigenvalue problem should be compared with
numerical results of the multicomponent model, which also deals with the

elliptical-helix beam.

2. It was never our intention to numerically implement the fluid or adiabatic
models, however, there is no gainsaying that such a program is advisable.
The systems of equations we have carefully derived and motivated form the
basis for rigorous numerical investigations of beam propagation over long

distances.

3. It would be instructive to extend the low-frequency results concerning the
modification of the transverse invariant, to higher hose frequencies. This
would result in a time dependent Hamiltonian system of 5/2 degrees of
freedom. KAM theory is capable of dealing with such a nonautonomous

case.





