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ABSTRACT

A computer program has been developed to simulate the availability of
three-state systems with three-state components. The program utilizes a Monte
Carlo method and systems trees. While the three-state model is useful to ob-
tain more detailed performance prediction of systems, there are three major
problems: lack of data on state transition probabilities, difficulty in ob-
taining gate logic, and high computing cost due to the use of a Monte Carlo

method.



1. INTRODUCTION

An availability analysis of a system is usually performed by assuming the
system and its subsystems are in either good (success) or had (failed) states.
This assumption leads to a simpler system model and consequently makes the
problems analytically solvable by means of well-developed methods such as the
Kinetic Tree Theory (KITT) [1].

When we 1look 1into system behavior more carefu]]y; we discover that in
many cases states of systems cannot be categorized into either good or bad.
Let's consider a few examples. A fusion reactor plant is operated at full
capacity (success state), and sometimes it completely fails to generate power
(fajiled state). On many occasions, the plant may produce power partially,
that is, at 40%, 60%, or 80% of the full capacity for some reason. These
states (called degraded states) should be included in an availability analysis
in order to estimate the plant availability with good accuracy and to predict
the cost of electricity. At subsystem levels, it is reasonable to foresee
that subsystems such as plasma heating systems (neutral beam injectors, wave
heating systems) and magnetic coils will frequently go to degraded states. We
may be able to say that the more sophisticated the system is the more likely
the system will operate at least some of the time in degraded states. On the
other hand, states of components which have rather simple structure can be
easily divided into either good or bad states. As examples, consider electri-
cal switches, pipes for liquid transportation, valves, and electric wires.

The necessity of availability analysis methods for systems with more
than two states has been long recognized and investigated for the past ten
years [2-34,65]. In Table 1, this literature is classified into four cate-

gories: general reliability analysis methods, availability analysis methods



Table 1. Classification of Literature on Reliability and

Availability Analysis Methods for Multistate Systems

Category

References

Reliability analysis method

8, 9, 11, 13, 15, 25, 26, 31-34

Availability analysis method
(repairable system)

2-4, 10, 14, 16, 18-21, 23, 27, 29, 30

Mathematical reliability theory

5, 8, 11, 17, 22, 24, 28, 65

Fault tree based reliability
analysis method

6, 7, 12, 25, 32, 33




that are used to analyze reparable systems, mathematical theory of system
reliability, and reliability analysis methods based on fault trees. There are
few applications of the methods to complex systems except methods described in
Refs. [19-21].

We are concerned with availability analysis of very Tlarge and complex
systems such as future fusion reactor power plants. Also, detailed system
operation modeling capability is desired. For these reasons, simulations by a
Monte Carlo method have been carried out [35,36]. These programs employ a
binary state system model; hence, in this paper we shall develop a system and
operation model and a computer program utilizing a Monte Carlo method for
multistate systems.

Going from binary state to multistate models in a Monte Carlo simulation
is rather straightforward. However, larger computing cost and uncertainty of
solutions due to data uncertainty might reduce the value of such a detailed
simulation. Hence, we shall specifically address the following two topics in
the present paper:

1. techniques to reduce the simulation cost,
2. advantages of multistate modeling.

In Chapter 2, a difference between continuous simulations and an availa-
bility simulation will first be clarified. Second, a governing equation for a
one component system with a continuous state will be derived. The multistate
equation will be considered as one of the special cases. To construct a
system model containing many components and simulate it, we shall use a fault
tree and the tree will be called the systems tree. The tree consists of gates
and components. Several gates specific to three-state models will be pro-

posed. Finally, the simulation methodology using Monte Carlo will be dis-



cussed. Chapter 3 will describe a computer program PROPA, utilizing the
method discussed in Chapter 2. The program will be tested for a system with
two gates and three components. The advantages of three-state models will be
emphasized. A computing cost estimate will also be made for more complex
systems. Chapter 4 will deal with programming improvements taking advantage
of new computer hardware such as vector processing and multiprocessing capa-
bilities of the Cray XMP and Cray 2 to reduce computing cost of the simula-
tion. Further reduction of computing cost will be achieved by using variance
reduction techniques. Chapter 5 will discuss the possible variance reduction
techniques. Finally, Chapter 6 will conclude this work. Many future exten-

sions will be suggested.



2. MODEL

2.1 Simulation and Availability Analysis

First we define basic terminologies used in this report.

system everything in this world,

component = a system that composes the system being analyzed and whose inter-

nal structure is not considered,

subsystem = a system that is a subunit of the system being analyzed but is not
a component.

Consider a system consisting of M components. Let xm(t) represent the
state of component m. t is used to emphasize the time dependence of the
state. A state of the system is associated with a vector x(t) = (x;(t),...,

xv(t)). The state of the system, z(t), is given by
z(t) = ¢(x(t)) . (2.1)

In reliability theory, the function ¢ is called the structure function [1].
The time variation of the vector x can be obtained by solving a set of

equations:
t ) _ .
Fj(xl(t),xz(t),...,xM(t),cl(t),...,cL(t)) =0 j=1,2,...,9 (2.2)

where ¢, (t) (¢ = 1,2,...,L) are parameters representing the time variation of
the quality of a system. The superscript t of F indicates that the expression
of the function Fj can vary. This represents a structural variation of a

system.



In general two distinctive simulations are performed by using Eqs. (2.1)
and (2.2). First, we assume that the time-variation of cz(t) and FE is negli-
gihle for the time interval of interest. This is the simulation usually
called time-dependent system simulation. For the second type of simulation,
we assume the time variation of xm(t) due to the internal structure of a
system is not important and consider the variation due to a quality change of
the system, cz(t). This 1is the simulation usually called a reliability and
availability analysis. There is a third type of simulation that simulates the
time variation of a system due to the change of the system structure. This
simulation is, however, not frequently performed, particularly in engineering.
In the future this will become important if a machine can change its own
structure to adapt to different environments or for other reasons.

Example. In order to clarify the above discussion, let us consider a
simple electrical system illustrated in Fig. 2.1(a). The state of the system
is the brightness of the lamp, W. Components are an electric battery V, a
resistance R, an inductance L, and a resistance inside the lamp r. For this

model, Eq. (2.2) becomes

V(t) = L(t) d;ét) + R (1) i(t) (2.3)
where R (t) = ( T )-1
0 R(tY * r(t):

and i(t) is the electric current. Equation (2.1) is given by

(2.4)



-

Fig. 2.1. Schematic diagram of an electric circuit.



where o 1is the constant converting the unit from power consumption rate to
brightness.

For a standard simulation we assume that R, L, V, and r are independent
of time. Then Eq. (2.3) can be solved by using an initial condition, for
example, i(0) = 0. Substituting the solution of i(t) into Eq. (2.4), we have

2 R

W(t) = o [1 - exp(- fg t)]2 . (2.5)

1|<

The time variation of the brightness induced by turning the switch on and off
js illustrated in Fig. 2.2. In the above analysis Fj is invariant; in other
words, the circuit does not change its structure from one shown in Fig. 2.1(a)
to a different structure such as one shown in Fig. 2.1(b).

Assuming the invariant Fj, let us take into account the time variations
of L, V, R, and r. These variations are due to degradation of the components
and repair of failed components. In this case Egqs. (2.3) and (2.4) can be
solved. To simplify the analysis, however, we choose a representative state
of the system; for example, W(t) at t = T given in Fig. 2.2. Here W(t) is

given by

v(t) _ - 2
W(t) = NON [1 exp U-t-T—T ] . (2.6)
This equation can be used for the availability simulation.
2.2 General Model of Component State Transition
Let us define
wix>y;t): transition probability of the system from state x to state y at

time t.
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Fig. 2.2, Time variation of function W(t).



K(y,s|x,t): transition probability of the system from state y at time s to

state x at time t for the first time.

f(x,t): state probability density that the system is in state x at time

t.

Then the following equation can be obtained:

af(x,t) . [ w(zaxst) dz - [ w(xsyst) dy
ot D D
t
where wix»y;t) = [ ds [ dz K(x,s|y,t) w(z+x,s)
0 D

and D is the range of the state variable.

For discrete states,

t
w.i(t) = E IO Kji(slt) wk.(s) ds

J J
where fi(t) = f(Xi,t)
wij(t) = w(x1+xj;t)
and Kij(tls) = K(xi,t|xj,s) .

Integrating Eq. (2.9) over [0,t] with respect to t, we have

fo(t) = § W..(t) - ) Nm(t)+f1.(0)
2

i ;i
Jj#i L#i
t
W,..(t) = w..(s) ds .
where 1J( ) IO 1J( )

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)



Equation (2.11) is identical to Eq. (5) in Ref. [3]. Equations (2.9) and
(2.10) lead to a set of basic equations for binary state models (see Appendix
A).

Returning to the continuous state equation (2.7), we shall show that
under some assumptions this equation becomes the neutron slowing down equation
well known 1in nuclear reactor theory. Let us assume that the transition

probability is proportional to the state probability density at the state:

w(z+x;t) = b(z+x) f(z,t) . (2.12)

Furthermore, assume that the state always decreases (or degrades): b(z»x) =20

for z < x. Also, let a(x) be defined by

X
a(x) = IO b(x+y) dy . (2.13)

Then Eq. (2.7) becomes
2 t(xot) *+alx) flxt) = [ blysx) fly,t) dy . (2.14)

ot
X

This is the fast neutron transport equation in an infinite medium [37].
Now let C(t) be defined by
C(t) =/ fx,t) dx . (2.15)
C(t) must be constant so that f(x,t) given by Eq. (2.14) actually represents
the state probability density. The constancy of the C(t) is proven as fol-

11



lows. Multiply Eq. (2.13) by f(x,t) and integrate it with respect to x over
[0,o). Then we have

fO a(x) f(x,t) dx = f: dx fm dy b(y»x) f(y,t) . (2.16)
X

Then by Egs. (2.14) and (2.16),

o) = f f(x,t)dt =0, (2.17)
Thus C(t) is constant.

We can obtain analytical solutions for special cases using a standard
technique. Such solutions are useful to see how a state probability density
function of a nonreparable component varies. The solutions are obtained and a
picture of f(x,t) is given in Appendix B.

2.3 Three-State Model

As a specific case, let us consider a three discrete state model. Those
states are good, degraded, and bad states and are denoted by 2, 1, and 0, re-
spectively. The state transition diagram of a system is shown in Fig. 2.3.
Transitions from 2 to 1, 2 to 0, and 1 to O are due to degradation, while
transitions from 0 to 2, 0 to 1, and 1 to 2 are due to repair or replacement.

Although non-Markov processes will be considered in our Monte Carlo simu-
lation model, let us assume that the transition is Markovian in the remainder
of this section. For this case, Aij (i # j) is the failure rate from state i
to j and Yij (i # j) is the repair rate from state i to j (see Fig. 2.3). Let
Pi(t) be the state probability that the system is in state i at time t. Then

the following equations can be obtained:

12



,uo/ \zu
I
Ao 12
—_T
@ Hor @
S
Mo
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a - (e ¥ HgR)pg * APy + AgPo

FE " Ho1Po - (Rpp *upp)ey * Anp, (2.18)

Fo T MoePo t PPy - (gt Aqdp,

Since a general solution of Eqs. (2.18) 1is rather complicated, in this

section we shall present a solution for a special case: no repair, Mij = 0

and initially pO(O) = pl(O) = 0, p2(0) = 1, The solution is

A Sy it
21 10
palt) =1 + = - e
0 Mo " A20 T 21
S SN Mo*21 )e'(lzoﬂzl)t
Aog * hgp 200 A = g - Agg
(2.19)
i A1 Aot m(gytagy it
P1(t) = % oo 1 ve J
10 - 220 " A1
-(AontA,, )t
207721
pz(t) = .

See Appendix C for more general solutions.

2.4 Systems Tree and Gates

In this section a system consisting of components will be discussed. As
discussed in Section 2.1, the state of a system is given by using a structure
function ¢ as a function of the component state vector x, Eq. (2.1). Hence,
in principle we can find the system state variation hy knowing the components'

state variation x(t) and the function ¢.

14



Since the structure function ¢ becomes very complicated for large systems
and on many occasions ¢ cannot be obtained, we shall take a different approach
utilizing fault trees [1]. 1In our work we call tree systems tree. We assume
that the state of a system is represented by one variable. Gates (i.e.,
nodes) and the lowest branches in a tree are associated with a system, either
components or subsystems. The top gate (there 1is only one top gate)
represents the state of the entire system.

To construct a systems tree, first the state of a system must be defined.
Then subsystems affecting the system state are identified. Subsystems of the
subsystem are identified next. This procedure is continued until the compo-
nent level is reached.

An example of a systems tree is illustrated in Fig. 2.4. System A is
composed of components 1 to 10. Components 1 and 2 are parts of subsystem B,
components 3, 4, and 5 of subsystem C. Components 7 and 8 and components 9
and 10 make up subsystems E and F, respectively. Subsystem D is composed of
component 6 and subsystems E and F. The second level of system A consists of
subsystems B, C, and D. There are four levels. Symbol O denotes a component.
Symbol < represents a subsystem. This symbol is called a gate. A gate is
associated with a specific logic which relates the system state (i.e., output

state) with input states. This is a generalization of the binary gates such

as "and" and "or" gates.

Since a gate and its inputs make a subsystem, the output state is repre-
sented by an equation similar to Eq. (2.1). The state of the entire system is
represented by a function of states of components and subsystems that are
inputs to the gate. At the next level, similar equations are obtained. The

equation, in general, can be represented as

15
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Fig. 2.4. Systems tree.
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FalZidX 53X yeue,X 12 3Z seeesZ ) =0 (2.20)
TP Pz Pk, i1 942 AL,

where x_ . is the state of component p.., z. . is the state of subsystem (or
Pij M W9
gate) Ai 5 In Eq. (2.20), ) Ki =N, J Li = M - 1 where N is the number of
i=1 i=1

components and M is the number of gates. and 953 denote the j-th compo-

Pij
nent for the i-th gate and the j-th gate for the i-th gate, respectively.

For many cases Eq. (2.20) can be solved for z; to give

Z.i = ¢1( ¢ ) (2021)

where the arguments of $; are the same as those in Eq. (2.20) except z We

i
call a gate having this property an explicit gate; otherwise it is called an
implicit gate. For a continuous state model, Eq. (2.20) must be solved if it
is implicit; otherwise z; can be computed by using Eq. (2.21). For a discrete
state model, a table can be given for possible combinations of {Xi’zi}' In
particular, AND, OR, and m-out-n voting gate logic tables have been con-
structed for a binary state model. For a multistate model, some multilogic
gates have been used [7].

For convenience, we create three types of gates for multistate cases.

Let a gate have I inputs and one output as illustrated in Fig. 2.5. The input

1,2,...,1), where x; ¢ {0,1,...,m}. The output

states are denoted by x; (1 i

state y is also one of the m + 1 states.

An AND gate is defined by the following logic:

y = min {x;} . (2.22)
i

17
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Fig. 2.5, Symbol of gate.
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A SUM gate is defined as follows:
I
< ) X, €S, (2.23)

where sj (j=l,¢..,m*l) depends on the model. The OR gate in the binary state
model is a type of SUM gate having Sg = S = 0 and sp = L.

A MAX gate is defined as:

y = max {Xi} . (2.24)
i

In addition to these standard gates, the concept of a virtual gate is
useful. When there are some identical components in operation, this group of
components is considered as one system and has one output state quantity; the
output state is determined by the logic of the gate whose inputs are the
states of the components. This gate 1is not included in the systems tree

explicitly; hence this is called a virtual gate.

2.5 Computational Method

There are two types of computational methods for system availability
analysis: deterministic methods and Monte Carlo methods [1]. The Monte Carlo
methods have advantages as well as disadvantages. One of the advantages is
the possibility of sophisticated modeling of large complex systems. A dis-
advantage 1is the computing cost needed to obtain sufficient accuracy for the
solutions. In particular, obtaining the unreliability or unavailability of

very highly reliable systems is extremely costly.

19



In Monte Carlo methods the reliability or availability of an entire
system (i.e., the top event) can be obtained by using fault trees [35,36],
system block diagrams [1,45], or the system state space [47].

There are two distinctive approaches for advancing time in a Monte Carlo
simulation. In the first method, timesteps are chosen as the duration between
times when a component changes 1its state [1,36]. In the second method, a
fixed timestep is used [35,44].

In this work a Monte Carlo simulation method utilizing fixed timesteps
and a systems tree will be developed for three-state systems with three-state
components. The entire time duration for which a system is in operation, T,
is partitioned into small time intervals with length At.

A simulation can be performed in the following way. Suppose we know the
states of all components at a time ty. Then the states of the components at
ty + At (= t2+1) are obtained by using the following method. If a component
is in state 2, a random number, r, is generated and the next state j is deter-

mined by:

0 if r < Poo
j=11 if Pog ST < Pyg ¥ Py - (2.25)
2 otherwise

When a component is in state 1, there are two options: it is either repaired
(or replaced) or not repaired. If it is not repaired, the next state j is

determined by

0 ifr<p
j = { 10 (2.26)
1 otherwise

20



If it is repaired with a certain repair rate, the next state j is determined

by
2 ifr<p
j= 12 (2.27)
1 otherwise
When a component is in state O,
2 105y €T <Py * Pp2
=11 if r < Po1 . (2.28)
0 otherwise
In Eqs. (2.25)-(2.28), Pj; Ts defined by
(t )
P21 = X,TE, 5 ¥ AZl(t 1L - exp[-(ayg(ty) + 2y () at]}
20 e[y (t) + a (£,)) o]
Prn = - {1 - expl-(A,a(t,) + A, (L At
20 20(tl) + A21(t25 20" "% 21' "2
Pig=1- exp(-Ap4(t,) At) (2.29)
u01(t2)

Po1 = Uy TE) F ug,(E,) {1 - exp[-(ugy(t,) + up,(t,)) at]}

uoz(t )

Pop = e ¥y (6T {1 - exp[-(up () +mug,(t,)) at]}

where Aij(tz) and uij(tz) indicate failure and repair rates at time t,. If a

21



component is repaired with a fixed time period, the next state j is set to a
specific state when the fixed time period has passed since the last transition
into the present state.

States of all components at time t,.; are obtained in this way. Next the
states of the gates are consecutively obtained by using the input states and
the gate logic beginning at the lowest level of the systems tree. Finally the
state of the top gate that is equivalent to the system state can be obtained.

After this, the c¢lock is advanced by At and the same procedure is
repeated. If a scheduled maintenance period is encountered, the state of a
component is forced to become a specified state. At the end of the mainte-
nance, normal operation is resumed. One history of a simulation ends after
time T has passed.

Then the i-th state availability of gates and components is computed by

using

- t1’
A, = rr-—' (2.30)

where t; is the total time duration for which the system is in state i and n
denotes the history number. Using an’ the average i-th state availability up
to the n-th history is obtained by computing a sample mean [48]
A
i

J

K? (2.31)

no~13

3’

1

The uncertainty of the i-th state availability, C?, is given by

¢ = /S?/n (2.32)

1

22



where the sample variance is ij

(f - )
.%_ “TT‘ (2.33)

s N
II ~13

The confidence interval of the sample mean of the state availability K?
can be derived according to the arguments in 9.2.2 of Ref. [48]. The confi-
dence interval (L,U) is defined as an interval which satisfies

=N

P(L<A1.<U)>1-a, 0 <a <1 (2.34)

where P 1is the probability that K? is in the interval (L,U). By means of the

uncertainty C?, L and U are given as follows:

v L n
L=Ay = Y21 G

(2.35)
u=A" + n

i+ Yi-a/2;n-1 G
where tl—a/Z'n-l is the value at t = 1 - a/2 of the cumulative distribution
function of the students t-distribution with n degree of freedom.

As an example, let us calculate the 95% confidence interval. Now o is
0.05. Since n is usually bigger than 100, it is reasonable to choose 1.980 as

a value of t0.975:n-1" Thus the 95% confidence interval is given by

(R%-1.980 c?,ﬂ?+1.980 c?) . (2.36)

23



The effective availability A is defined by

= _ =N N =
A = aA2 + BA + ¥R, (2.37)
where 0<a, B, Yy<1l.

The variance of A is given by

V) = AV(AY) + 8AV(AY) + YPV(RY

0) + 2a8 Cov(AN,A") + 28y Cov(K?,Kg)

2’1
(2.38)
=N =
+ 2ya COV(AO’AZ)

where Cov(x,y) = E(xy) - E(x) E(y) . (2.39)

24



3.

COMPUTER PROGRAM PROPA

3.1

System Model

A computer program PROPA (Probabilistic Performance Analysis Program) has

been developed utilizing the following system model.

1.

Systems assume three states: good, degraded, and bad states. Good, de-
graded, and bad states are denoted by 2, 1, and 0, respectively.

A component fails from state 2 to 1, 2 to 0, and 1 to O with failure rates
Ap1s Apgs and Aqq.

A component can be repaired from state 0 to 1, O to 2, and 1 to 2 with
specified fixed repair time 141, 102, and t1p. Note that only one of two
repairs (from state 0 to 1 and 0 to 2) is possible at a time.

A component may be replaced by a new unit within a certain time interval.
Subsystems (i.e., gates) can be replaced within a specific time interval.
At present, however, replaceable gates can contain only components.

Spare systems are supplied within a specific time interval; in other
words, some systems may be lacking spares in some period.

Out-of-line spare parts are not subject to normal degradation.

If there are n identical units, they can be treated as a subsystem com-
posed of these n units. The logic of the virtual gate is specified by the
modeler.

Scheduled maintenance can be carried out for components separately.

During maintenance the component is in one of three states.
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3.2 Program Features

A. Input Data

a.

Selection of options

1.
2.
3.

flag for systems tree plotting
flag for capital cost calculation

flag for variance reduction techniques

Simulation data

1.

the total number of histories for a simulation

total time duration for one history

timestep length

an integer specifying the frequency of output (top event avail-

ability) during a simulation: NPRNT

System specification data

1.

2.

the number of components

the number of gates

the number of levels

gate ID number, name, level, number of inputs, gate type, sy and
Sy for SUM gate, replacement option flag, number of spares

gate ID number, numbers of gate inputs and component inputs, input
gate ID numbers, input component ID numbers

component ID number, name, type of virtual gate, 1 and s, for SUM
gate, state after repair, the number of spares, the number of
scheduled maintenance

time interval for renewal of spares
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d. Reliability and repair data for components
L. A20- 2215 210
2. Tg1s Tz, T12» Too (time required to replace a bad component), 7y
(time required to replace a degraded component)
3. source of the data
e. Scheduled maintenance data for components
1. start time of maintenance
2. end time of maintenance
3. component state during maintenance
f. Cost data
1. component capital cost
2. scheduled maintenance cost for components
Output
a. Input data
b. A picture of the systems tree
c. Capital cost of the system
d. Top event state availabilities printed every NPRNT histories
e. Final results
1. state availabilities and uncertainties of components and gates
2. effective availabilities and uncertainties for components and
gates
3. ranking of gates and components according to their effective

availabilities
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Computing time in seconds

central processor unit time
input and output

system

C. Special Feature -- To make a continued run possible, state availabilities,

their uncertainties, and the Tast random number generated are written in a

binary file OFILE. This file can be used for the next run by renaming if

BFILE to continue the simulation when better accuracy is required.

3.3 Program Structure

A flow diagram and a block diagram of the PROPA program are shown in

Figs. 3.1 and 3.2, respectively. The functions of subroutines are as follows:

PROPA:
TREE:
PLTTRE:
PLGAT:
GATEDAT:
RELDAT:

MAINTDAT:

CALC:

HIST:

STATE:

NGATE33:

main program

reads systems tree data and find the top gate ID number

draws the systems tree

draws a picture of a gate

reads data on gates

reads data on failure and repair/replacement, and computes transi-
tion probabilities

reads data on scheduled maintenance

repeats the Monte Carlo simulation and computes state availabili-
ties and uncertainties

computes states of components/units and gates at a timestep
computes state of components/units for the next timestep by playing
a Monte Carlo game

computes gate output state from input states
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Fig. 3.1.

&

READ DATA

£

n=n-+1

£

t=t+4At

!

Compute states of
components and gates

go to next timestep

NO

YES

Compute state availability
and uncertainty

Simplified flowchart of the PROPA program.
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ADJST: computes adjusted time duration for components and gates using

weights of a variance reduction technique

EDIT: prints the final results on availability and uncertainty

RANDNO: generates random numbers using the recursive congruential method
[35]

CCOST: reads cost data and computes the system cost

3.4 Program Testing

To demonstrate the PROPA program, we simulate the performance of the
illumination system illustrated in Fig. 2.1(a). Since we are interested in
steady-state operation, the effect of resistance r and inductance L can be ne-
glected. Then there are three components in this system: resistance r,
battery V, and switch S. The systems tree is shown in Fig. 3.3. We introduce
two gates: gate 1 represents the system output, i.e. the brightness of the
light bulb, and gate 2 represents the power consumption rate, W, when the
switch is working properly.

The logic of gate 2 can be determined by examining a diagram of W as a
function of r and V as shown in Fig. 3.4. Now suppose an operating point is
located at point A in Fig. 3.4, As we see, decrease of V affects W signifi-
cantly, while a reduction in r affects W less. Clearly, zero r is destructive
for the system. Hence, the logic shown in Table 3.1(a) can be derived.

To find the logic of gate 1, first it is noted that the state of the
switch should be binary: good (2) or bad (0), because a degraded switch is
most likely to make the system unusable. Hence, we obtain the logic shown in

Table 3.2.
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Table 3.1. Logic of Gate 2

v v
a) P\ o1z b) r\ o !
0 0 0 O 0 0 0
0 1
2 1 2 2 1
Table 3.2. Logic of Gate 1
S
W 0o 1 2
0 -0
2 - 2
Table 3.3. Reliability and Repair Time Data
Component >\20 >\21 )\10 T02 T12
1 1.0E-5 2.0E-5 2.0E-5 24.0 N.A.
2 4.0E-4 8.0E-4 8.0E-4 240.0 N.A.
3 2.0E-3 N.A. N.A. 24.0 N.A.

Note: failure rate A [1/hr], repair time t [hr]
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Fig. 3.3. Systems tree of sample problem.
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Fig. 3.4. W versus r and V, Wy < Wy < Wy < Wg.
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We use the reliability and repair time data shown in Table 3.3. unless
otherwise stated. A series of simulations are carried out by varying some
variables.

First, a computation for a binary state model is performed by setting Arq
to 1.0 x 10'99 for the resistance and the battery. This is case 1. Cases 2
to 12 will now be discussed.

Case 2 (base case): Al1 components in state 0 are repaired to state 2. No
scheduled maintenance is performed.

Case 3: Same as case 2 except a battery in state 0 is replaced by a new unit
within 24 hours.

Case 4: Same as case 3 except a battery in state 1 is also replaced by a new
unit within 24 hours.

Case 5: Same as case 4 except a hattery in state 1 is replaced by a new unit
instantaneously.

Case 6: Same as case 2 except now there are two identical batteries connected
in parallel. The gate used to obtain the state of these batteries as one
system is a MAX gate.

Case 7: Same as case 6 except that there are three identical batteries.

Case 8: Same as case 6 except that there are four identical batteries.

Case 9: Same as case 2 but scheduled maintenance is performed. Maintenance
of length 100 hours is carried out once a year, six months from start for
all components. The state during maintenance is set to 0. In addition,
the battery is maintenanced every month with one day duration.

Case 10: Same as case 9 except the monthly maintenance of the battery is

carried out by setting the state to 1.
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Case 11: Same as case 2, but the operating point of the resistance and the
battery is chosen at point B in Fig. 3.4. Consequently the logic shown in
Table 3.1(b) is used for gate 2.

For cases 1 to 11, 1000 trial runs are carried out for 8760 hours (1
year) of operation. For case 12, 200 trial runs are carried out for 87600
hours (10 years) using the same data as the base case. For all the cases the
timestep for the Monte Carlo simulations is 24 hours. For convenience, data
on the battery is shown in Table 3.4. Effective availabilities of components
and gates (notice gate 1 is the entire system) are shown in Table 3.5. Since
state availabilities have uncertainties less than 5%, the accuracy of effec-
tive availabilities is good enough to make comparisons among different cases.

Observations of the results lead to the following conclusions:

1. The binary state model results in much higher availability (compare case 1
with case 2).

2. Replacement of a failed battery instead of repair slightly increases the
system availability. A more effective way, however, is to replace a de-
graded battery. Instantaneous replacement does not significantly improve
the system availability compared with one day replacement (compare cases 2
through 5).

3. Adding redundant batteries in parallel is a very effective way to improve
availability (compare cases 2, 6, 7, and 8).

4, Frequent short scheduled maintenance of the battery, in fact, increases
the system availability. The state of the battery during the maintenance
is insignificant because the total 1length of the maintenance is much

shorter than the total operation time (compare cases 2, 9, and 10).
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Table 3.4. Data on Battery

Repair Replacement Replacement Number State at
Time, 1q, Time, Tqg Time, tq11 of Scheduled
Case hrs hrs hrs Units Maintenance
1 240. N.A. N.A. 1 N.A.
2 240. N.A. N.A. 1 N.A.
3 N.A. 24, N.A. 1 N.A.
4 N.A. 24, 24, 1 N.A.
5 N.A. 24, 0. 1 N.A.
6 240. N.A. N.A. 2 N.A.
7 240. N.A. N.A. 3 N.A.
8 240, N.A. N.A. 4 N.A.
9 240. N.A. N.A. 1 0
10 240, N.A. N.A. 1 1
11 240, N.A. N.A. 1 N.A.
12 240, N.A. N.A. 1 NA.
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Table 3.5.

Effective Availability

Resistance

Case Resistance Battery Switch + battery System
1 99.981 91.4 95.6 91.3 87.3
2 95.8 67.8 95.6 67.8 64.8
3 96.4 75.5 95.6 75.5 72.2
4 96.6 98.2 95.6 98.1 93.8
5 96.2 99.1 95.6 99.0 94.7
6 95.6 82.3 95.6 85.2 81.5
7 95.4 92.3 95.6 92.3 88.2
8 96.6 95.9 95.5 95.9 91.6
9 96.3 78.4 95.3 78.4 76.2
10 96.3 80.6 95.3 80.6 76.3
11 95.9 67.6 95.6 65.8 63.0
12 80.5 65.9 95.6 65.8 63.0

AVSYS® 99,98 91.5 95.5 91.5 87.4

*The solution of the AVSYS program (a binary state model) [35].
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5. Increasing the total length of simulation from one year to 10 years re-
sults in a very different availability of the resistance. Since the mean-
time-to-failure of this component is about 10 years, one year is too short
to observe a failure of the resistance. Fortunately, the system availa-
bility does not change much for the longer length of simulation; hence,
the discussions so far are still correct.

6. There is a possibility of finding the best operating point of a system
from the availability point of view by using this program as indicated in
case 11; operating point A is better than operating point B although the
difference is small,

Central processor times are shown in Table 3.6 for the 12 cases. These
are measured by calling a utility routine TIMEUSED in the FORTLIB Tlibrary on
Cray 1 computers at the National Magnetic Fusion Energy Computer Center.

The input and output files of the PROPA program for case 9 are reproduced
in Figs. 3.5 and 3.6.

3.5 Computing Cost

Central Processor Unit (CPU) time for a simulation, Tc’ can be estimated

by the following formula:

= ; 3.1
T. aNSNhNgNC + 8 [minutes] (3.1)

where o and B are constants, NS is the total number of timesteps, Nh is the

total number of histories, Ng is the total number of gates, NC is the total
number of components.
To compute a and B, consider two very different systems: the first

system is case 2 discussed in Section 3.4, and the second case is a fusion
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Table 3.6. CPU Seconds

Case CPU
33.
33.
33.
33.
33.
39.
42.
46.
32.
32.

O 0O N O OO B W N =

= A N NN W R W

[ S ey
- O
[}
!
|

66.2

p—
N

Table 3.7

Case Ng Ny, Nq N Te (minutes)

365 1000 2 3 0.55
2 365 100 12 109 1.15
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reactor model. Four parameters for these systems and CPU times on a Cray 1

are shown in Tahle 3.7.

Using values in Table 3.7, we obtain the following values of a and B8:

1.32 x 1075 (3.2a)

Q
1}

B = 0.52 . (3.2b)

As an example of the largest systems, let us consider a system with Ng = 100,
NC = 1000, Then Eq. (3.1) becomes

3

T = 1.32 x 1077 NN+ 0.52 . (3.3)

h

There are two controllable parameters Ns and Nh' NS is actually determined by

N =— (3.4)

where T is the total time length of a history, and At is the timestep length.
The timestep should be chosen so that time variation of the system is clari-
fied. The minimum characteristic time scale such as the minimum repair time
and mean-time-to-failure is the best choice. At = 24 hours may be sufficient-
ly small for most system simulations.

The total time length of a simulation should be longer than the time at
which the system reaches steady state. For a system which has a very long
characteristic time such as the mean-time-to-failure of a very reliable compo-
nent, T may be very long; 10 years or more. Sometimes it must be simulated

over the Tlifetime of the system. If T is 10 years (= 3650 days), then
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Ng = 3650 and Eq. (3.3) becomes

TC = 4.82 Nh (3.5)
where the second term is neglected because the first term is much larger than
that for Ny >> 1. For Ny = 100, T, = 482 minutes (~ 8 hours). For N, = 1000,
TC = 80 hours. Nh is determined by requirement for the accuracy of results.
For systems with moderately high availability, 100 histories might be enough
to get an error of 10% or less. If one needs unavailability of very highly
available system, however, Nh must become very large.

In any case, the computing efficiency of the present simulation program
is too low to perform a detailed simulation of large systems even on a super-
computer such as a Cray 1. A 1000 times faster computer is required to reduce
CPU usage down to the order of 10 minutes. To overcome the difficulties
associated with computing cost, several approaches can be proposed. Reducing
complexity of the model is not the desirable path because one of the advan-
tages of a Monte Carlo simulation resides in the complex modeling capability.
Hence, we fix the timestep to 1 day. There are three approaches:

1. reduce the computing time for a timestep in a history,

2. reduce T,

3. reduce Ng.

Approach (1) is closely related to computer programming, computing algorithm,
and computer hardware. Among these taking advantage of computer power of new
types of computers such as vectorization and parallel processing is the most
important task. Approaches (2) and (3) can be achieved by employing variance

reduction techniques.
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4. VECTOR AND PARALLEL PROCESSING

4.1 Introduction

Modern supercomputers such as the Cray 1 and Cyber 205 utilize vector
processing capability [49]. Computer programs taking advantage of this
feature may run many times faster than non-vectorized programs. Since at
present, a compiler takes care of the vectorization [50], what a programmer
should do mainly is to get rid of portions in a program for which vectoriza-
tion is prohibited.

Another feature, which is beginning to appear in the new generation of
computers, is multiprocessing (parallel processing) capability [49]. There
are many different architectural approaches to accomplish parallel processing.
Since we have easy access to a Cray XMP (with 2 processors) and a Cray 2 (with
4 processors), it is worth investigating a way to take advantage of the paral-
lel processing capability of the Crays. The Crays are equipped with very few,
but very fast processors compared with other parallel processing machines such
as HEP and others shown in Table 4.1.

4.2 Limit of Vectorization

In this section we shall discuss vectorization of the PROPA program.
However, the following discussion is appropriate only for the program on the
Cray 1 computer with the CFT compiler. For programs on different vector com-
puters such as the Cyber 205, the effect of vectorization may be different.

There are three levels of approach to vectorization as discussed in Ref.
[51]. The first step is to look at a program written for scalar computers and
to modify portions which cannot be vectorized. Vectorization can be done for
the innermost DO loops if the loops satisfy the specific conditions given in

Ref. [50]. The second level is to look for algorithms which are effectively
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Table 4.1. Parallel Computers

Machine Developer

Cray XMP CRI

Cray 2 CRI

HEP Denelcor

MPP Goodyear Aerospace

Connection Thinking Machines

NonVon N.Y. Univ.

IPSC Intel

Butterfly Bolt Beranek
and Newman

Sigma 1 Japan's National
Electrotechnical
Laboratory

Cedar Univ. of ITlinois

Number of Cycle Time Maximum Year
Processors nanoseconds Speed Memory Operational
2 9.5 300 MFLOPS!  shared 1983
4 4 800 MFLOPS shared 1985
16
16,384 100 6.5 BIPSZ dist. 1983
64,000 1000 10 BIPS dist. 1985
8,000 1500 16 BIPS dist. ?
32-128 100 2-8 MFLOPS dist. 1985
to 128 ? to 200 MIPS3 shared 1984
256 100 100 MFLOPS dist. 1986
32 100 10 MFLOPS shared 1985

1Mi11ion floating-point operations per second

28i11ion instructions per second

3Mi11ion instructions per second
References [59,60]
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vectorized. The third level is to rearrange the entire structure of a program
into the form suitable for vectorization.

A few attempts have been made to vectorize Monte Carlo simulation pro-
grams in the field of neutron transport [52,53] and availability analysis
[54]. The speedup factor by vectorization ranges from 1.2 to 50. Naturally
the most successful result is obtained by working up to the third level of
vectorization [53].

So far we have done only the first level of vectorization. Figure 4.1
shows DO loops included in program routines computing system availability in
the PROPA program. Loops 2, 3, 5, 6, 9, and 10 can be vectorized. However,
loops 7 and 8, which are the most important in terms of computing time, are
not vectorizable. Loop 7, which finds component states at the timestep by
using the states from the previous timestep, includes GO TO, IF-THEN-ELSE-IF,
and CALL statements. Loop 8, which computes the states of the gates by
tracing the systems tree, includes IF-THEN-ELSE-IF statements and vector sub-
scripts which themselves are vectors.

As an example, the CPU times for the problem discussed in Section 3.4 are
shown in Table 4.2, The original program requires 33 seconds. By modifying
DO loops so that these are vectorized, a 7% speedup is accomplished (row 2).
Row 4 shows the CPU by a non-vectorized program made by the CFT compiler with
off = v option. This is much faster than the vectorized program. A reason is
that the setup time of vectorization surpasses the gain by vectorization of DO
loops. The present problem has very few gates and components. Since almost
all the vectorized DO 1loops are for repetitive computation with respect to
gates and components, significant speedup will be observed for problems with

very large numbers of gates and components.

48



Table 4.2,

CPU Gain®

Comments

CPU (seconds)

Gain Factor

1)
2)

4)

Base program
Level-2 vectorization
Use RANF®

Non-vectorization

33.24
30.94
28.67

25.90

1.0

1.07
1.16
1.28

*3 gates, 6 components, 365 timesteps, 1000 histories
The CFT 111g compiler is used.
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- component state

- DO 8

- gate state

~D0 9

L component availability

-D0 10

L gate availability

Fig. 4.1. Simplified structure of a major PROPA algorithm.
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The algorithms in DO loops 7 and 8 must be modified to accomplish further
speedup. Also, a more efficient random number generator should be used. For
example, using the utility random number generator, RANF, instead of our
generator, leads to a 10% reduction of computing time as shown at low 3 in
Table 4.2, Without the third level of vectorization, however, a factor of 10
speedup may be the largest gain. Hence, we need to depend on speedup hy other
means.

4.3 Parallel Processing

As we discussed in Chapter 3, Monte Carlo simulations must be performed
1000 times faster than the present program so that large and complex systems
can be modeled and sufficiently accurate solutions can be obtained. To ac-
complish this goal by using only new computer hardware, we need a 100 GFLOPS
(100 billion floating-point operations per second) machine since the Cray 1
achieves 100 MFLOPS. |

Suppose ten times faster processors, i.e. processors with one nanosecond
clock period, are developed. If the speed of computation is proportional to
the number of processors, then 100 processors are required to achieve 100
GFLOPS. In fact the cost of 100 processors with such a clock period will be
too high; hence, it is better to assume that 1000 processors with 10 nano-
second clock periods will be used. A simultaneous use of 1000 processors can
be accomplished by making 1000 identical tasks in an execution. In a Monte
Carlo simulation, perform 1000 histories concurrently. Since each task re-
quires its own data arrays whose data keeps varying during a simulation, much
memory is needed for such multiprocessing. For example, 20 M words of memory
is required to store the variable arrays for the present problem (see Fig.

4.2). If the speed of the processors is slower, more memory is required.
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AVAILG(3,ngate), STDVG(3,ngate), GSTATE(3,ngate)
AVAILC(3,ncomp), STDVC(3,ncomp), CSTATE(3,ncomp)
STOCC(ncomp) TGATE(3,ngate)
STOCG(ngate) TCOMP (3,ncomp)

KKK (ncomp)

ELPSCT (ncomp)

ELPSGT(ngate)

ELPSGT(nnunt)

The total memory required to store these arrays
3 x ncomp x 4 + ncomp x 3 + 3 x ngate x 4 + ngate x 2 + nnunt x 2
15 x ncomp + 14 x ngate + 2 x nnunt
15 x 1000 + 14 x 100 + 2 x 1000
18,400

for ncomp = nnunt = 1000 and ngate = 100

Fig. 4.2. History dependent variable arrays in the PROPA program.
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It should be noted, however, that the order of 10 M words memory will be
available only on computers with very high speed processors. Unfortunately,
such machines won't utilize as many as 100 processors.

Now we can imagine two types of future computers which will meet our
needs. One is a computer with a 1 nanosecond clock period, 100 processors and
100 M words of memory. The other is a computer with a 100 nanosecond clock
period, 10,000 processors, and 10 G words of memory. The former will be very
expensive, while the latter requires an unrealistic amount of memory. In the
remainder of this section, we shall discuss utilization of the multiprocessing
capability of a Cray XMP and Cray 2.

Since the innermost DO loops are efficiently vectorizable, the best ap-
proach to multiprocessing is to process the outermost DO loops concurrently
(e.g., DO Toop 1 in Fig. 4.1). If there are N processors, N histories, which
we call N tasks [55], can be simulated concurrently. Thus a factor N speedup
can be accomplished.

At this point several cautions should be noted:

Since there are variable arrays dependent on a particular history, N
copies of the variables must be made. For the problem we are talking
about, 20 x N K words are required just to save these variables (see Fig.
4.2).

We use the recursive congruential random number generation [35]. This
generator requires a seed number to create a new random number. Since N
tasks use the same random number generator without any regular order, a
seed for a task may not be one that the task generated at the previous
call to the generator. In other words, there is no deterministic recur-

siveness for a particular task. Hence, the uniformness of the random num-
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bers is not guaranteed. To overcome this difficulty, random number gener-
ators for parallel processors have been proposed [56,57].

In the timesharing environment, a factor of N gain would be rarely accom-
plished [58]. One reason is that a specific program cannot occupy all the
processors for the entire execution. During some periods only one pro-
cessor may be available.

Since all the tasks do not finish simultaneously, creating multitasks in a
task results in a more efficient use of multiprocessors.

In the PROPA program, DO loops 2 and 3, 5 and 6, and 9 and 10 can he con-
currently processed by two processors because these are independent. Further-
more, the algorithm in DO loop 8 can be modified so that multitasking is ef-
fectively utilized. For example, paths A-C, A-B-E, and A-B-D-F in the systems
tree shown in Fig. 4.3 can be concurrently processed.

The techniques proposed above will be implemented in the PROPA program
and tested on the Cray XMP and the Cray 2 in the future.

Since N = 2 and 4 for the Cray XMP and the Cray 2, respectively, a factor
of 4 speedup will be the best attainable. Hence, only a 40 times faster pro-
gram will be made by utilizing both vector and multiprocessing capabilities.
Hence, a 25 times reduction must be attained by other means. In the next

chapter variance reduction techniques will be discussed to gain such a speed-

up.

54



Fig. 4.3. A systems tree.
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5. VARIANCE REDUCTION TECHNIQUES

5.1 Introduction

The uncertainty of results by a Monte Carlo simulation can be reduced by
either increasing the number of histories or reducing the variance as we see
by Eq. (2.32). If the same uncertainty is required, reducing the variance
leads to a smaller number of histories, and consequently shorter computing
time.

Several variance reduction techniques have been proposed for system reli-
ability and availability simulations [1,45,47,61,62]. In this chapter we
shall discuss fundamental mathematics behind the variance reduction tech-
niques. Also, some methods will be proposed in the case of binary state
models. Then suggestions will be made about an extension of the techniques to
multistate models.

5.2 Unavailability Estimate of Reparable Components

We consider a component with binary states and assume the component is
repaired within a fixed time t. The purpose for the simulation is to obtain
the unavailability of the component during a time period [0,T].

Obviously the total number of failures during [0,T] is a random variable.
Let this random variable, K, have a probability distribution function

(p.d.f.), p(K). The function p(K) satisfies

kzo p(K=k) = 1 (5.1a)

p(K=k) > 0 0 <k <=, (5.1b)

The expected value of K is given by
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Also the variance of K is

(5.3)

In order to reduce the variance, consider a different p.d.f., B(K).

We introduce the weight w(k) so that the expected value by the new p.d.f.

is the same as E(K):

E(K) = § w(k) kp(K=k) = J kp(K=k) = E(K)
k=0 k=0
hence w(k) = .(K=k) . (5.4)
p(K=k)

For this p.d.f., the variance is

VIKD = T w(k)K)Z pik=k) - E(K)Z = 3 E%Efi% kZp(K=k) - E(K)? .
e

We see that V[ﬁ] =0 if B(K) = (k/E(K)) p(K). However, this technique is of

no use because E(K), as well as p(K), is unknown.

The unavailability, &, is also a random variable and represented by means

of K as

(5.5)

[aa]
]
—|
=~

An unbijased estimation of £ is
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61 -1
Elel = & 3 (5.6)
where g is the £ by the 2-th trial.
5.3 Time-Dependent Unavailability Estimate
The time-dependent unavailability, Q(t), is given by
t
Q(t) = IO [w(s) - v(s)] ds (5.7)
where the failure density w(t) is a solution of
t-1
w(t) = [ K(t,s) w(s) ds + f(t) (5.8)
-T
and the repair density is given by
v(t) = wit - 2) . (5.9)

Here we see that once w(t) is estimated, Q(t) can be computed by Egs. (5.7)
and (5.9). Hence, we must solve Eq. (5.8). We solve Eq. (5.8) by a Monte
Carlo simulation. As discussed in Ref. [63], we can use the following theorem
to obtain an estimate of w(t).

Theorem. For any given vector h
- (k)
Efn (N)] = <hu'*/(£)> (5.10)

where the r.v. nk(h) is defined on the Markov chain ty >ty > e >ty such

that
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hit]) &
nk(h) = BTEIj'mzl wmf(tm) (5.11)
K(tsto) Kltp,tg) woe Kt q,t.)

m = Pl ,t,) P(E,,tq) +vs PE 5t ) (5.12)

and W, =1.

The main point for use of this theorem is to choose a proper Markov chain.
Suppose a component is in state 1 at t = 0. It fails at t = t;. Then it
is repaired for period 1, but it fails again at t = to, and so on. Hence, a

time sequence
{tl,tz,...,tk} (5.13)

represents a Markov random walk process. Here t; is the time when the i-th
failure occurs. Let us assume a constant failure rate, A. Then the proba-

bility for the first failure

-\t
p(ty) = 2e (5.14)

and the transition probability between ti and tiy1 can he given by

“a(t,  -t.-T)
_ i+l i .
P(tist1+1) = Xe . (5.15)

Since [ p(t) dt =1 and | P(ti,t) dt = 1, the random walk (5.13) satisfies
0 0

necessary conditions. Having known K(ti,t1+1) = P(ti,t1+1), we have
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(h) h(tl)'i (t) (5.16)
n,(h) = = - f(t . 5.16
k plty) 2 °m

Now the inner product in Eq. (5.10) is estimated by a Monte Carlo simulation

using the following estimator

N
T i) (h (5.17)

(2)
k

In order to reduce the variance, we use A for the simulation. Now a new

where n (h) is for the 2-th trial.

r.v., nk(h), is given by

R h(tl) k
nk(h) = x ) W F(tm) (5.18)
D(tl) m=1
R K(t,,.t,) Kt ,,t )
where o= = 1' 2 mllm (5.19)
P(t;,t,) P(t _1-t,)
R ~ TAEy
p(tl) = Ae (5.20)
) o At -t -T)
- i+l i

Since the new random walk process is also a Markov chain, the expected
value of the random variable Ny is identical to that of the r.v. n, by the

above theorem:
E[nk] = E[nk] . (5.22)

We need to prove the variance of n, is smaller than that of U

k
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V[nk] < V[nk] . (5.23)
However, what we can show is that no Markov chain can be found so that in-
equality (5.23) always holds. To prove this, we shall use the following
equation:
2 0 2 L
xi) = ) Xy +2 D) XiXs o (5.24)
Now we start the proof. By Eq. (5.22), we need to show

. ) |
Elng] < Eln ] (5.25)

to prove the inequality (5.23).

) h(t)) , )
Eln, 1 = flfz...fk (BTEIT) (mzl it ))plty POty t,).. Pt .t ) dtdt,...dt,
5, (7—-,(”) (1 ¢
= £t )
12 plt m=1
k k
+-2§§ flt;) ﬂt)}Mt) POty,t)) Pt .t ) dtdt,...dt,
k h(tl) 2 2
= mzl flfz ] (ETEIT) (t ) plty) Plt;,t).. Pt .t ) dtdt,...dt
k Kk h(tl) 2
Zizl 1zlflf2---fi(srfzy) HCLICIEICTDLIC O P A M PO L LI L. 1 3
i>J
k h(ty)
+ 2121 32111 ) (_T"Y) DFEIR(EIP(E,8y) L PlE, )Lt )t dE, . dt
i< (5.26)
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©o

where we use [/ P(t,s) ds = 1. Meanwhile,
0
Elncl = [ [ ... (h(tl))z{ L Fe 12t Pt B )
n, 1 = o (= W f(t p(t,) P(t,,t,)...P(t, _,,t, ) dt....dt
k 12" kpiey) mel m'om 1 1°°2 k-1°"k 1 k
h(t,) k .
=] G Y WA ) w2 T T W) ()
12 koplt) ml J J
% plt) Pty ). P(t, ;1) dt;...dt,
k p(t,) 2 P(t,,t,)...P(t_.,t)
= z f ---f A 1 h 2f2(tm)a 1 ‘. _ m-1°"m
m=l 12 mp(t)) p(t)) P(t,,t,). . P(t .t )
p(t,) h(tl) 5

* plt,) Plt,,t,)...P(t_.,t)dt....dt_+2) 7 [ [ ...[] = (
1 1°°2 m-1°'m’ %1 m P32 g bt p(t,)
( Yo P(ts ,,t.) T
P(t,,t,)...P(t, .,t.

* FlEf(t) = 1”2 Lt S

P(tl,tz)...P(t. t;)

p(t;) P(tl,tz)...P(tj_l,tj) dt,...dt,

i-1° 74
p(t,) h(t,) P(t,,t,)...P(t, . t.)
22D 00— Grey)® fleey) it AT
i ip(ty) 1 P(tl,tz)...P(tj_l,tj)
1>]
*p(ty) Plt,t,) Pl _,t.) dtg .. dt, . (5.27)
p(t,) -AAt
Since —i =2 (5.28)
p(t1 A
P(t, ,,t;) -0 (t,-t, ,-T) .
— i A, il =<0, (5.29)
P(t. {-t5) A

comparing Eq. (5.27) with Eq. (5.26) suggests that if A is chosen so that
p(t;)/p(ty) <1 and (P(ti_l,ti)/P(ti_l,ti)) <1 for any i (= 2,3,4,...,k),
then E[n:] < E[n2]: hence V[nZ] < V[nZ]. That is, by Eqs. (5.28) and (5.29)

the following inequalities are sufficient.
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—(A-i)tl

A
~(A-) (t, -t -T)
A sl ot g (5.31)
A
Now let us define a function g(x) by
g(x) = % eta(x-1) (5.32)
A
where x =3
Aty for Eq. (5.30)
a =
Mty -t - 1) for Eq. (5.31)

The function g(x) assumes the minimum at x = 1/a and g(1) = 1, 1im g(x) =

1im g(x) = =, The graphs of g(x) are drawn in Figs. 5.1(a) ;:g)(b) for the
é;:e of 1/a > 1 and 1/a < 1, respectively. For a given 2, i is chosen: i.e. x
is chosen. Since ti's are random variables, a is a r.v. Hence the corre-
sponding g(x) may be given by either Fig. 5.1(a) or (b). If the x happens to
be in [1,xq] or [xq,1], the inequality (5.30) or (5.31) holds. There is, how-
ever, no prediction about when all the inequalities hold. To satisfy the in-
equality (5.23), Egs. (5.29) and (5.30) do not need to hold at the same time.

But any A cannot be chosen in advance so that Eq. (5.23) holds. The only way

to find an optimal A is to perform numerical experiments.
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Sketches of function g(x).

Fig. 5.1.
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For a multistate model, the failure density w(t) is replaced by a state

density function fi(t) and a similar variance reduction technique can be

developed.

5.4 System Availability Estimate

We consider a multistate model of a system with M multistate components.

Let a sequence of discrete times with timestep At be denoted by {to,tl,...,tk}.

We define notation as follows:

ka:

C - {21’22"'.’Zk}:
= {x

¢(X1k,X2k,...,ka):

ml’Xm2""’ka}:

the random variable (r.v.) of the state of component
m at time t,

the r.v. of system state at time ty

the total number of histories (or trials)

the number of components

the total number of timesteps

the total time period being simulated

timestep

a random walk process for the system

a random walk process for component m

the probability density function (p.d.f.) for the
random walk C

the p.d.f. for the random walk Cm

a value of the r.v. X, Xk € {0,1,...,1}

a value of the r.v. 7, z, € {0,1,...,1}

the structure function of the system and

z), = ¢(X1k’x2k""’xmk) . (5.33)
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Now we introduce the following r.v.:

st K _
ni(C) =T ; G(Zk -d9) . (5.34)
k=1
The expected value of ni(C) is given by
Ai = E[ni(C)] = [ ni(C) f(C) dC (5.35)

where Ai can be considered as the i-th state availability of the system. An

estimator for Ai can be given by
N
7 i) (5.36)

where n denotes the n-th trial in a Monte Carlo simulation. For components
equations similar to Eqs. (5.34) (5.35) and (5.36) can be obtained.

In a possible variance reduction technique, the p.d.f. for components,
fm(Cm), will be altered so that state transitions which otherwise rarely occur
take place more frequently. Since f(C) can be constructed by using fm(Cm),
the p.d.f. f(C) itself is altered. An explicit form of f(C) must be known to
modify ni(C) so that Ai is invariant under the new fm(Cm). Unfortunately, ob-

taining f(C) from fm(C cannot be accomplished, in particular, for large com-

m)
plex systems. Therefore, proving the effectiveness of variance reduction
techniques mathematically cannot be carried out even though some variance re-
duction techniques will turn out to be effective. However, it might be worth-
while to mathematically demonstrate the actual effectiveness of a certain

variance reduction technique for simple systems. This will be done in the

future.
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6. CONCLUSIONS AND FUTURE WORK

We have developed a Monte Carlo simulation method for three-state systems
with three-state components. A computer program PROPA has been written. The
program 1is quite useful for obtaining detailed performance prediction for
systems and it may be regarded as the first step towards more detailed system
simulations.

There are many areas for further investigation. As for the computing
cost of simulations:

1. Find an efficient algorithm to obtain the next states of the components.

2. Find an efficient algorithm to obtain the states of the gates in a systems
tree.

3. Use a more efficient random number generator.

4, Devise variance reduction techniques; when the techniques actually reduce
the variance should be theoretically and experimentally clarified.

5. Restructure the program so that the vector and multiprocessing capabili-
ties of the Cray 2 computer are fully utilized.

As for the system model, the following models should be added:

a. time-dependent transition probability;

b. sophisticated maintenance scheme including deferred maintenance;

c. dependent components;

d. more than one state variable for systems.

A general m-state model can be easily constructed; however, at first the power

of the three-state model must be further investigated through simulations of

more complex and large systems. In the future, a fusion reactor power plant

will be simulated by the PROPA program.
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APPENDIX A, DERIVATION OF BASIC EQUATIONS FOR BINARY STATE MODELS

Suppose 0 and 1 denote the failed and success states of a system, respec-

tively. For the binary state model, Eq. (2.10) becomes

t t

wlo(t) = fo Klo(slt) wOl(S) ds + IO Klo(s|t) wll(s) ds (A.1)
t t

w01(t) = fo K01(5|t) wlo(s) ds + IO KOl(slt) WOO(S) ds . (A.2)

Assume that the system is in state 1 at time t = 0, then Eqs. (A.1l) and (A.2)

become

t

Wlo(t) = IO K10(5|t) WOI(S) ds + f(t) (A.3)
t

wOl(t) = fO KOl(slt) wlo(s) ds (A.4)

where f(t) is the first failure density. Equations (A.3) and (A.4) are
jdentical to Eqs. (4-64) in Ref. [11].

As a special case, suppose that Klo(s|t) and KOl(S’t) depend only on
t - s. Also assume a constant fajilure rate A and a fixed repair time t. For

such a system, K;4 and K01 can be given by the following:

Kiglslt) = reA(t-s) (A.5)
1 if x>0
where H(x) = .
0 if x <0
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APPENDIX B. SOLUTIONS OF EQUATION (2,14)

%E-f(x,t) + a(x) f(x,t) = fw b(y+x) f(y,t) dy . (2.14)
X

If we Laplace transform in time for Eq. (2.14), we have

0
A

[s + alx))] F(x,8) = [ bly»x) Fly,s) dy + f(x,0) . (B.1)
X

Solving for %,

~

[ bly»x) fly,s) dy

p _ f(x,0) (B.2)
F(x,s) = = s + a(x) *3 Exa(x) :
Let us assume b(y+x) = b(y) (B.3)
and define ﬂ(x,s) by
h(x,s) = [ b(x) F(x,s) dx . (B.4)
X

Now multiply Eq. (B.2) by b(x+z) and integrate with respect to x over [x,=).

Using the assumption (B.3) and ﬁ(x,s) for this equation leads to

- _ 7 b(x) h(x,s) “ b(x) f(x,0)
h(x,s) fx s alx) dx + fx sl (B.5)
Differentiating Eq. (B.5) with respect to x, we have
XS] = g(x,) Alx,s) + E(x,5) F(x,0) (8.6)
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where £(x,s) =-§-%£§%;7 .

Equation (B.6) is easily integrated. The result is
" X X y
hix,s) = exp[-[ &(y) dy] x {C + [ &(y) f(y,0) exp[[ ¢&(z) dz] dy} (B.7)

where C is a constant. Equations (B.1) and (B.4) give

Fx,5) = cpberey lxs) + Zokadle (5.8)

Thus, the function f(x,t) is obtained by performing inverse Laplace transfor-
mation for f by using Egs. (B.7) and (B.8).

Example. Let us apply the method to the following problem:

f(x,0) = 6(x - z) , the initial state is z (B.9)
a(x) = ax (B.10)
b(x) =a . (B.11)
Then Eq. (B.7) becomes a(x s) = C+a_ (B.12)
. : ’ s +ax ° '
. . p _C+a §(x - z)
Equation (B.8) is f(x,s) = vt s T A (B.13)

The inverse Laplace transform of f is easily obtained:

F(x,t) = [(C + a)t + &8(x - 2)] e Xt | (B.14)



To determine the constant C, we use a condition for f(x,t):

-]

J f(x,t) dx = 1. (B.15)
0
By using Eqs. (B.14) and (B.15), we have C = 0. Thus the solution is
f(x,t) = [at + 6(x - z)] e”¥t | (B.16)

Note here that x < z since the state can only decrease by the nature of Eq.
(2.14). Observing Eq. (B.16), we see f approaches a &§-function as time goes
on; that is, a system in perfect state, z, at time O dies out an infinite time
later. The behavior of the state between these extreme cases can be seen in

Fig. B.l.

B-3



DENSITY FUNCTION

STATE DENSITY FUNCTION F(X,T)

Fig. B.1.

0.0 0.2 0.4 0.6
STATE X

Sketch of function f(x,t) given by Eq. (B.16).
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APPENDIX C. SOLUTIONS OF EQUATION (2.18)

We solve the following differential equation:

d _
aah=AP (C.1)
) T
P(0) = (0,0,1) (€.2)
where P(t) = (p (t),p,(t),p,(t)T
— 0 s 1 bl 2 ’
A= {aij}
and ap = gy Hugp) Ay = A Ay T,
81 THor 0 2 T g tupn) Ay =,

i
|
—_
>

431 Moz > %3 THp s 233 7

First Tet us consider an equation

IQ - B;I =0 (C.3)
This is expanded and rearranged to give a cubic equation
2
B(B™ + CZB + Cl) =0 (C.4)
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where C] = 3178p9 * 399333 * 319333 = A313y3 7 315351 " 337393

cy = -(agy + ay, + agg) .

Let D be defined by D=¢C (C.5)
If D> 0, Eq. (C.4) has three real roots. If D < 0, Eq. (C.4) has one real
root (8 = 0) and a pair of complex roots (complex conjugates of each other).
According to the sign of D, we use two different methods for the solution:

1. Eigenvector expansion method if D > O,

2. Laplace transformation method if D < 0.

Readers should consult any standard applied mathematics book about these
methods; for example Ref. [C.1].

Eigenvector expansion method. Suppose that real eigenvalues B; (i=1,2,3)

and three independent eigenvectors Xx; (i=1,2,3) have been found. Make a

matrix B by setting vectors x; to rows in the matrix. Multiplying Eq. (C.1)

by Efl from the left, we have

1y gl -1

0o

x>

o]

We

|©
.

d_
dt

Since g'l A B is a diagonal matrix with 8. as the elements, this equation is

easily integrated
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Multiplying this by B from the left and using the initial condition, the
solution vector P(t) 1is obtained.

Laplace transformation method. Let the Laplace transform of a function f

be denoted by f. Then the Laplace transform of Eq. (C.1) can be represented

by
B(s) = A B(s) + P(0) (c.6)
where P(s) = (50,51,52)T ,
o = (aggs + ajpay; = ay3ay,)/n
Py = (ag3s + ay30) - ay3ay3)/8
by = (s = (ag) * 25)s * apayy - a3p2,)/0
and A = s(s2 + Czs + Cl) (Eq. (C.4)) .

The inverse Laplace transforms of these functions are easily obtained if
D < 0. See for example Appendix A in Ref, [C.1]. A computer program has been
developed by utilizing the methods discussed above. The time-dependent state
probabilities po(t) (state 0), pl(t) (state 1), and p2(t) (state 2) are
plotted in Figs C.1 and C.2 for a nonreparable case and a reparable case.
Reference

C.l. L.,A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and
Physicists, 3rd Edition, McGraw-Hill, Kogakusha, Tokyo (1970).
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STATE PROBABILITY V S. TIME

o_
\‘ >\
w. Ay
7] LEGEND *10~*
o T
-4
CSargp 4000
8.00*10™*
©
> O
=
=
2 MU
o
&:Q‘— 0.00
° 0.00
. 0.00
o
i
q """"""""""""""""""""""""""""""""""""""
© I T | I S R
0.0 720.0 1440.0 2160.0 2880.0 3600.0 4320.0
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