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EFFECTS OF IRRADIATION AND HIGH HEAT FLUX

ON THE LIFETIME PERFORMANCE OF
FERRITIC AND 316 STAINLESS STEELS

Bruce B. Glasgow

Under the supervision of Professor W. G. Wolfer

Research into controlled thermonuclear fusion has reached an engineer-
ing phase where specific reactor designs and material selections are exten-
sively examined. One material which has been included in several fusion
reactor first wall designs is 316 stainless steel. The effort of this thesis is
concentrated on comparing 316 stainless steel to ferritic steel for high heat
flux and irradiation conditions expected in fusion reactors.

Under irradiation, metals form small bubbles within their grains; and
because of (n, a) reactions, helium is usually concentrated within these bub-
bles. To model the pressure of the helium in a bubble, an Equation of State
for helium has been developed. The results are used as input into a void (or
bubble) swelling model. With the void swelling model, swelling rates for the
two steels have been calculated. The ferritic steel is calculated to swell at
a rate of about 0.3%/dpa; whereag, 316 stainless steel is calculated to swell
at a rate of about 1%/dpa. Experimental results for 316 stainless steel show
excellent agreement with the model.

Other aspects of high heat flux and irradiation are the potentially steep
thermal stresses. There is also the evolution of the stress distribution as a

result of swelling, and irradiation and thermal creep. A model to calculate
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the stress distribution in a thin shell element has been developed. The proce-
dure is used along with assumed swelling and creep laws to model the stress
distribution as a function of time. The results show that ferritic steel has a
lower maximum stress by a factor of about 2 due to the better thermal and
swelling properties.

Finally, the stress distribution is used as input to a crack growth and
failure model. Failure is assumed when brittle fracture occurs or when the
structure fails by plastic collapse. The results indicate that 316 stainless
steel is much more susceptible to failure by crack growth than is ferritic
steel. Further, failure in 316 stainless steel will be by brittle fracture; but,
failure in ferritic steel will be by a combination of brittle and plastic failure
due to the lower flow stress of ferritic steel. Ferritic steel is calculated to

outlast 316 stainless steel from a crack growth standpoint by a factor of 10.

Approved:

Professor Wilhelm G. Wolfer

Nuclear Engineering
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Chapter 1
INTRODUCTION

Research into controlled thermonuclear fusion has been conducted since the
early 1950’s. Many scientists now believe that fusion research is in a process
of tran§ition from a basic research phase into an engineering phase. Some
fusion reactor designers anticipate the growth to a commercialization phase
sometime in the early 21% century. Before the commercialization of fusion
reactors is realized, fusion reactors must be shown to be economically compet-
itive with other power sources and to be environmentally acceptable. While
the initial capital cost of a commercial fusion reactor will be in the billions of
dollars, the initial cost may still be acceptable if the fusion reactors compo-
nents are long lived. Or if long life is not possible, then replacement should
be inexpensive and relatively easy. For the structural component designers
the challenge presented by fusion reactors is particularly intriguing.

Past work by material structural designers has concentrated on the fu-
sion reactor first wall. Being immediately next to the hot plasma, the first
wall will be subject to neutron bombardment, plasma disruptions, high heat
fluxes, and high temperatures. Because of the high heat fluxes, most first
wall designs specify thin (~ 10 mm) first walls. Since the first wall is lo-
cated at the inner most part of the reactor it is not expected to be replaced.
Therefore, a first wall with ~ 30 year lifetime is desired. There are also other
components that have recently been included in fusion reactor designs which

will be adjacent to the plasma. These include some type of impurity control
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device such as a limiter or divertor and, because of the plasma physics trend
toward Radio Frequency (RF) heating, RF power launchers. The limiter,

divertor, and RF launcher will also be subject to neutron flux, plasma dis-

* ruptions, and high heat fluxes. Most designs for limiters and divertors assume

a 24 year lifetime with relatively easy replacement. Once again because of
the high heat flux thin walled structures are envisioned.

One consequence of neutron irradiation is radiation induced void
swelling of the material. Excessive swelling of components can limit their
lifetime because of dimensional changes and structural degradation. Because
316 stainless steel was an early choice for breeder reactors there is some
long term swelliné data available. However, for other materials under re-
cent consideration for these high heat flux components such as ferritic steel
and copper there is little data. In an effort to predict the swelling behav-
ior of alternate materials as well as 316 stainless steel, a theoretical swelling
model has been developed. And because the helium gas pressure inside the
voids or bubbles can affect the swelling behavior, an equation of state for
helium was also developed to accurately predict pressures at high densities
and temperatures.

Stress cycling and high temperatures can cause cracks to grow in size
and the growth may result in brittle fracture of components or a leak through
a pressure boundary. Based on linear elastic fracture mechanics and collapse
load considerations a theoretical and numerical model has been developed

to follow crack growth and predict if brittle fracture, or leak through, or
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plastic collapse would occur. As part of the crack growth model the time
evolution of the stress distribution through the thickness must be followed.
A separate analytical and numerical approach has been developed for the
stress distribution evolution.

As part of as overall effort to study ferritic steels as a potential structural
material in fusion reactors, this thesis examines the effects of irradiation and
high heat flux on the lifetime performance of a ferritic steel structure and
compares the results to an identical -analysis done using 316 stainless steel.
The areas of study can be divided into 6 separate investigations:

1. As previously stated, neutron irradiation results in microstructural
changes in metals. One of these changes is the nucleation and growth
of helium filled bubbles. The density of helium atoms in these bubbles
could become quite large; and consequently, the helium gas would no
longer obey the ideal gas law. Therefore, in order to more accurately
predict the pressure in the bubbles, an Equation of State was developed
for dense helium gas and liquid helium. The pressure within these bub-
bles is an important parameter in predicting early growth behavior of
the bubbles.

2. Another microstructural change which occurs as a result of irradiation
is the evolution of the dislocation network. Cold-worked and annealed
dislocation networks evolve with irradiation until some steady state den-
sity is reached. The importance of the dislocation network evolution is

that the network is a major sink for point defects which are created as
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a result of irradiation. The strength of this sink for point defects will
affect the swelling behavior of the material.

. The results of the previous two models are used as input to a void
swelling model which calculates the swelling rate of metals under irra-
diation. The void swelling model is based on rate theory and includes
time-dependent sink strengths and bias factors. The swelling rate as
a function of time gives one of the inelastic strains rates which can be
used in stress analysis of the structure.

. In order to predict the stress levels in a thin-walled shell subjected to
a fusion type environment, principal stress equations were developed
for a thin shell element with arbitrary membrane loads and bending
moments as boundary conditions. Further, understanding the time-
dependent inelastic strain rates (swelling and creep rates), allows the
calculation of a time-dependent stress distribution.

. The time-dependent stress distribution is used as input into a crack
propagation model based on Linear Elastic Fracture Mechanics. The
LEFM model calculates how a crack will grow with time and, given the
stress distribution and crack geometry, when brittle fracture or leak-
through would occur. Either of these two conditions would result in
failure of the structure.

. The LEFM model does not take into account a potentially important

failure mode — plastic collapse. In the final section of this thesis, incor-
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poration of plastic collapse into the LEFM methodology is derived and

the effect on predicted lifetime is discussed.

The overall scope of this research is to develop an analysis methodology
for comparing different materials and different thermo-physical conditions of
thin-walled structures. The analysis can be used as a tool in performing
scoping studies on different materials and different assumed thermo-physical

conditions.



Chapter 2
HELIUM EQUATION OF STATE

2.1. Introduction

Helium produced by (n,a) reactions or injected into metals is essentially in-
soluble. Therefore, it has the natural tendency to precipitate and to form
bubbles. The pressure in small bubbles can be extremely large, and a real-
istic equation of state (EOS) is required to evaluate it. Unfortunately, the
experimentally determined EOS for helium does not completely cover the
range of temperatures and pressures of interest. This is illustrated in Figure
2.1 where the various regions are shown in which experimental data have
been obtained. It is seen that only the recent measurements by Mills et al.
[2.1] cover the range of high pressures equal to 2v/r when r is small, where
~ is the surface energy and r the radius o.f the bubble. A typical value for
~ is 2 J/m?. EOS measurements at elevated temi)eratures are still lacking.
Empirical equations of state, such as the Van der Waals law, which have been
fit to the experimental data, cannot be extrapolated with any confidence to
the high pressures existing in small bubbles. The more theoretically based
virial equation of state, being a power series expansion in the density of gas
atoms, is naturally restricted to low values of the densities. Again, its extrap-
olation to high pressures is not possible. It is therefore of interest to develop

a theoretical EOS which can be used for all temperatures and pressures of
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interest. Accordingly, a theoretical EOS has been developed for gaseous and
solid helium.

It has recently become feasible to directly measure the density of helium
in small bubbles. In fact, two techniques have been employed for this task:
electron loss spectroscopy and vacuum ultra-violet absorption. In both cases
helium is detected by the excitation of the orbital electrons. The energy
levels involved in the transition of the orbital electrons is shifted by different
amounts depending on the density of helium. Jiger et al. [2.2] have carried
out experiments on nickel and aluminum implanted at room temperature
with helium to concentrations somewhat below the critical value to produce
blistering. The analysis of the orbital electron transitions revealed that the
pressure in the helium bubbles was on the order of 50 GPa in the case of
nickel and about 13 GPa in the case of aluminum. Note that the ratio of the
pressure in the bubble to the shear modulus of the host metal is 0.64 and
0.52, respectively.

The ultra-violet absorption measurement of Rife et al. [2.3] in aluminum
films bombarded at room temperature with 5 keV helium ions yielded a
density of 7 to 14 x10%% cm™3, or a helium to vacancy ratio of 1 to 2 in
bubbles about 5 nm in diameter. The measurement by Jiger et al. gave a
helium density of 14 x 1022 ¢cm™3. It is most likely that helium is in the
solid form at these densities at room temperature. In fact, there exists at
least one data point which confirms this. Besson and Pinceaux [2.4] have

solidified helium at room temperature in a diamond anvil cell and observed
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the actual melting process as well as grain boundaries in the solid phase.
The pressure at melting and room temperature was determined to be ~ 11.5
GPa, and the density at melting was estimated to be about 15 x 1022 cm™3.
In the electron microscopy analysis of helium-implanted molybdenum Evans
et al. [2.5] have identified helium platelets. The formation of non-spherical
precipitates is again an indication that these platelets consist of solid helium.

The above examples show that indeed the densities and pressures within
helium bubbles can be quite large and, in fact, solid helium can be formed.
As stated previously, ex1:ra.§olation of low density equations of state is not
considered adequate. In the following sections of this chapter two different
theoretical helium equations of state will be developed: one for gaseous he-
lium and one for solid helium. A comparison to the Mills [21] empirical

equation of state for low temperatures is also presented.

2.2. The Gaseous EOS Based On Perturbation Theory

One of the most successful approaches to model a liquid or a dense gas is by
the so-called perturbation theory [2.6]. The fluid is modeled as a system of
hard spheres. However, in order to account for the “softness”, or finite steep-
ness, of the repulsive part of the actual interatomic potential, the diameter
d of the particles is made to depend on temperature and density according

to Verlet and Weiss [2.7]

d = dp(T)[1 + 8(T)¥(y) (2.1)
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where y = (%)dsg is the packing fraction and NV is the number of helium
particles in a volume V. If the interatomic potential U(z) is expressed in
terms of the dimensionless distance z = r/o, where o is the distance r where

U becomes repulsive and ¢ is the depth of the potential well (see Figure 2.2),

then
dg(T) /o = /:m {1 — exp[—(U + ¢€)/kT]} dz (2.2)
[1+6(T)|(d/o)? = 2/:"' {1 —exp[—(U +€)/kT)} z dz (2.3)
Zm denotes the location of the minimum of U(z), ie. U(z,) = —e. The

function %(y) which is given in References [2.7,2.8] makes Equation 2.1 an
implicit relationship for d, and numerical solution is required. Once d, and
hence y, are known, the compressibility factor z = pV/NkT is given by
Carnahan and Starling [2.9] as

zus=(1+y+y2 -y3)/(1 -y)3 (2.4)

Several corrections to this equation are, however, required to account for

quantum effects and for the attractive part of the interatomic potential.

2.3. The Quantum Correction

For a fluid comprised of light atoms, quantum corrections are important
[2.6]. These corrections give rise to an additional term to the compressibility

factor. If A, represents the free energy of the fluid treated with classical
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statistical mechanics, the inclusion of quantum corrections gives the following
expression for the total free energy [2.6]

h2N?

A=Aat 24rmkTV

g(r)V2U (r)r? dr (2.5)

where h is Planck’s constant, m the atomic mass, and g(r) is the radial
distribution function. An exact solution exists for the radial distribution
function in the Percus-Yevick solution [2.10]. However, this analytical form
is too cumbersome to use; therefore, a recent approximation to it developed

by Shinomoto [2.11] is used instead

0 for z < g
9(z,y) = { explzy(cg —2)*(z§ +4)] for $ <z <24 (2.6)
1 for z > 23
As Shinomoto has shown, the hard sphere EOS derived with this radial dis-
tribution function agrees quite well with the molecular dynamics results.
The form of the radial distribution function in Equation 2.6 has the
advantage that the derivative (3A/3V') can be obtained prior to solving the

integral in Equation 2.5. The compressibility factor can be written as

oV V 0A _ B(A/NKT)
*SNET - NETov VT 5y et (2.7)
where
h? o 0
2Q = meT)7o7 Y Ea_y[y B(y)] (2.8)
and

dU o\2 [%¥° ( dU\ 8¢
B(y) =g(1,y) (—§;>z=d/a+(2) /d/a (—E) gzzda: (2.9)
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Using the above expressions

et (3) (2
- (okT)? d 2" PA2? Az / 1—d/4

2
+ gyfl (—(—:g) 2+ y¥ ()] g (p,y) (0% - 2) p* dp] (2.10)

For a give interatomic potential U(z) the integral in Equation 2.10 can be

evaluated numerically.

2.4. The Contribution From The Potential Well

So far the gaseous helium has been treated as a system of hard spheres, i.e. as
a fluid system whose particles possess only a repulsive interaction. However,
it is the attractive forces that actually give rise to the liquid phase. Since
the depth of the potential well € is small for helium it is approximated by
a square well of the same depth and of width d,, — d. The value for d,, is
chosen to be 0.35 nm to approximate the actual shape of the potential well
calculated by Beck [2.12] and Young et al. [2.13].

For a square well potential Reijnhart [2.14] has derived the following

EOS for the attractive potential

24 = —dy (%‘ﬂ)sg ("Fwy) [1 — exp(—e/KT)] (2.11)

Once again the radial distribution function of Shinomoto is used to evaluate

Equation 2.11.
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2.5. Evaluation Of The Gaseous EOS

The total compressibility factor is taken to be
2=2s+zq+ 24 (2.12)

In evaluating z, the interatomic potentials U(z) of both Beck [2.12] and
Young et al. [2.13] were utilized. As Figure 2.2 shows the two potentials
differ only significantly for very small interatomic distances. As pointed out
by Young et al., the reduction of the interatomic potential reflects the many-
body interactions at high densities and temperatures, an affect not accounted
for in the Beck potential.

Figure 2.3 shows the predicted results for the Beck and Young potential.
The EOS for the gaseous state is represented by the curve below the break
points, whereas the solid EOS, discussed in the following section, is shown
by the curves above the break points. The empirical EOS of Mills et al. [2.1],
valid for temperatures at or below 300°K, is also shown for comparison at

200°K.

2.6. The Solid EOS For Helium

The interatomic potential, see Figure 2.2, of helium has a very shallow po-
tential well with a depth of about 10°K. At the same time, it is a very light
element. As a result of these two facts, the zero point vibrations are large,
and helium does not solidify at atmospheric pressures. In fact, the solid
phase of helium exists only for pressures greater than about 2.5 MPa (~ 25

atmospheres).
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In the quasi-harmonic approximation of the solid helium, the free energy
is the sum of the potential energy A, of an ideal lattice with all atoms located
at their equilibrium positions plus a vibrational free energy A,. As a result of
this division, the pressure may also be written as a sum of two contributions,
Po + Ph, where p, = A4,/3V and pp, = 9A,/8V.

The evaluation of p, or A4, for solid helium requires extensive quantum
mechanical computations for the following reasons. First, the interatomic
interaction in a non-iomic solid is determined by the electronic structure of
the valence and conduction bands at high densities. Second, in the case of
solid helium, the ground state vibrations (at 0°K) are no longer negligible,
and the nucleus must be described by a wave function rather than by a
point charge fixed at the ideal lattice point. The latter aspect is particularly
important at low densities of the solid when the average interatomic distance
is larger than the atomic diameter o, i.e. when the packing fraction is less
than one.

Ground state pressures for this case have been obtained by Hansen and
Pollock [2.15], and their results are shown in Figure 2.4. For higher densi-
ties, both Young et al. {2.13] and Zeller [2.16] have carried out electron band
structure calculations, and their results are also indicated in Figure 2.4. Fi-
nally, Trinkaus [2.17] evaluated the static lattice energy for a face centered
cubic helium crystal assuming that the pair-interaction is given by Beck’s
potential. The derived ground state pressure is remarkably close to the elec-

tron band structure results of Young et al. and to the results of Hansen
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and Pollock for medium densities. Deviations at very high densities are as
expected, since the Young potential is softer than the Beck potential.
Both the low-density results of Hansen and Pollock [2.15] and the high-

density results of Young et al. {2.13] can be fit to a smooth function of the

form
po(MPa) = [a + b]® (2.13)
where
1 1/3
a= [531/2 + Q1/2] (2.14)
1 1/3
b= [531/2 - Q1/2] (2.15)
1 3, 00172, 1p 2
Q= 57(3 JA) A+ ZBy" (2.16)

A and B are two constants with the values indicated in Figure 2.4.

It must be noted that Equation 2.13 is not entirely consistent as the
results by Young et al. contain no contributions of the ground state vibrations
to p,. However, for high packing fractions, vibrations contribute relatively
little to the total pressure.

In order to estimate the pressure contribution of lattice vibrations at
finite temperatures, the Debye theory is employed together with a volume
dependent Debye temperature to give the vibrational frequency spectrum.

The Debye temperature is given by

HD(V, T) = gDm(T)(Vm/V)'7 (2.17)
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Figure 2.4. The ground-state pressure of solid helium at 0°K as a function
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where 0p,, is the Debye temperature at melting and given by the Lindemann

law

ODm = 16.15931 T1/2 y1/3 (2.18)

the form of which has been shown to be valid [2.18] for several rare gas solids.
The packing fraction at melting, yom, is based on the theoretical results of

Young et al. [2.13] which can be expressed by the equation

173 = 0.15542 T9-3%9 4 1.1292 x 108 71903 (2.19)

Yom

and the Griineisen constant v can be obtained by taking the derivative

(:‘fiﬂ%@‘?ﬂ) of Equation 2.18 and the following equation is obtained

_0.269T-0641 4 1 953 x 10~7 T0-%03
7= 0.0965 T-9-641 { 3.7165 x 10—7 T9.903

- (2.20)

The pressure contribution by thermal vibrations is then obtained from
N 0p/T ‘
pn = YT (7) (T/8p)? /0 /(e = 1) ds (2.21)
where the term due to ground state vibrations has been omitted as it is
already included in pq.
The compressibility factor for the above EOS for solid helium is shown

in the upper parts of Figure 2.3.

2.7. Conclusions

A numerical solution for the EOS of helium has been developed. For the
gaseous phase, the total compressibility is taken to be the sum of three com-

ponents: 1) an attractive component, 2) a quantum mechanical component,
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and 3) a hard-sphere component. The attractive component [2.14] and the
quantum correction component (2.6] use the helium radial distribution func-
tion derived by Shinomoto [2.11]. The hard-sphere component is given by
the Carnahan-Starling [2.9] approximation, Equation 2.4, which is explicit
in the packing fraction y. The packing fraction is, in turn, dependent on
the diameter of the so-called “hard-sphere” helium atom. The diameter is,
however, allowed to vary as a function of temperature and density.

For the solid phase of helium, the total compressibility is taken to be
the sum of a ground state and a vibrational state of the lattice atoms. The
ground state compressibility is determined by a fit to the results of various
theoretical approaches reported in the literature as shown in Figure 2.4. The
lattice vibration contribution is found by the Debye theory where the Debye
temperature is taken to be a function of temperature and volume.

It was assumed that the phase transition between gaseous and solid he-
lium occurs whenever the compressibility factors for the gas aﬁd the solid
phases become equal. In other words, the phase with the lowest compress-
ibility factor is the one which exists for a given temperature and volume. It
should be noted that this is only approximately correct as the phase change
at constant pressure is accompanied by a small volume change typically on
the order of about 4%. Also, the Young potential is chosen over the Beck
potential because of better accuracy at small interatomic distances.

By using the gaseous and solid EOS described above, a comprehensive

EOS is derived as shown in Figure 2.3 This EOS can be used in void swelling
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calculations where the pressure of helium within a void can determine the

onset of swelling.
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Chapter 3
DISLOCATION EVOLUTION IN METALS UNDER IRRADIATION

3.1. Introduction

During the bombardment of metals with energetic particles, vacancies and
self-interstitials are produced. At irradiation temperatures above the onset
for vacancy migration but below the temperature where self-diffusion is rapid,

. the absorption of vacancies and interstitials at dislocations leads eventually
to dramatic changes of the dislocation density. The dislocation density is
important in calculating void swelling because the voids and the dislocations
are the major sinks for boint defects. Accordingly, in order to more accurately
model void swelling, a dislocation evolution model is developed.

Other microstructural defects also arise, such as small dislocation loops
and precipitates as a result of the irradiation. However, the evolution of the
dislocation density is nearly independent of the evolution of all other mi-
crostructural features. Well-annealed metals exhibit a sharp increase with
irradiation dose of the dislocation density which eventually approaches a
saturation value. In cold-worked metals, however, the dislocation density
drops with dose and approaches a saturation value similar or even identical
to the one in the well-annealed counterpart. The observation that this satu-
ration value is independent of the initial dislocation density has led several
researchers [3.1-3.3] to suggest that the evolution of the dislocation network is

the result of two competing processes, namely the generation of dislocations
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by loop growth and by climb of edge dislocation and the mutual annihilation
of dislocations with opposite Burgers vectors.

These general ideas [3.2,3.4] provided the background for the empirical
models of dislocation evolution proposed earlier, according to which the rate

of change of the dislocation density p(t) is given by

dp m_ an
pri Bp Ap (3.1)

The logical choice for n is two since the annihilation of dislocations involves
pairs with opposite Burgers vectors. For the production term, a plausible
choice would be m = 1. However, Garner and Wolfer [3.4] provided heuristic
arguments for n = % and m = % Unfortunately, the experimental data
for p(t) are not sufficiently accurate to determine the exponents m and n,
and the choice of m = 1 and n = 2 appears to give an equally satisfactory
correlation [3.2]. A review of the experimental results has been given earlier
(3.4], and any discussion of those will be postponed to Section 3.6 where the
measured dislocation densities are then compared with the theoretical pre-
dictions. Preceding this comparison, a model for the annihilation or recovery
term Ap? will be derived in Section 3.2, and Section 3.3 will deal with the
derivation of the dislocation generation term Bp. It will be found that both
A and B are dependent on the dislocation density p(t). Both processes re-
quire the climb motion of edge dislocations as a result of either an excess of
self-interstitial absorption, or an excess of vacancy absorption or emission.
At temperatures below about half of the melting point, the necessary climb

motion can occur only if sinks with different point defect biases are present in
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the microstructure, where the bias is a measure of the preferential absorption
of interstitials. Accordingly, we discuss in Section 3.4 the need and the extent
of the bias variance necessary for the evolution of the dislocation structure
to occur under irradiation. The comparison of the theory with the experi-
mental data in Section 3.6 is limited to austenitic stainless steels irradiated
in fast-neutron reactors, because the experimental irradiation conditions are
well characterized, and the effects of the specimen surface are negligible. For
irradiations performed with ion bombardment or electron beams, several ad-
ditional complications exists such as a non-uniform defect production and a
significant loss of dislocations to both the surface [3.3] and the portion of the
specimen [3.5] not subject to radiation damage. For the present model to
be applicable for ion bombardment or electron irradiations, these additional
aspects must be included. However, they add little to the elucidation of
the basic mechanisms which control the evolution of the dislocation density

during high-temperature irradiations, and they will not be dealt with herein.

3.2. Dislocation Recovery

The reduction of the dislocation density in cold-worked metals by annealing
involves the thermally activated climb of dislocations and the mutual annihi-
lation of dislocations in dipole configurations. It is reasonable to assume then
that the process of dipole annihilation takes place also under irradiation, and
that this process is enhanced as a result of the radiation induced climb. In
the following, an edge dislocation dipole is considered to consist of two nearly

parallel segments of edge dislocations with parallel or anti-parallel Burgers
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vectors. The segment can either belong to line dislocations or to dislocation
loops with a diameter significantly greater than the distance between the
dislocations in the dipole.

Among the four different dipole configurations shown in Figure 3.1 which
have edge dislocations of parallel or anti-parallel Burgers vectors and whose
glide planes are separated by a distance h, only one pair will converge to a
common glide plane when either interstitials or vacancies are preferentially
absorbed at edge dislocations. For this one pair, called the converging dipole,
h reduces with time, and if the segment can also glide under the mutual
interaction force, annihilation will inevitably occur.

However, this requires that the interaction glide force overcomes a crit-
ical shear stress, 7,. For a given 7, this condition defines the maximum
separation distance, A4z, from which a converging dipole may form. Using

the glide force for an edge dislocation dipole [3.6], we obtain

ub
= 3.2
27(1 — v)hmaz To (3.2)

where b is the Burgers vector, u the shear modulus, and v Poisson’s ratio.
In alloys such as steels, dislocation motion is restricted by glide obstacles
such as precipitates and by forest dislocations. Dislocation glide requires
then the activation of Frank-Read sources. Accordingly, it is assumed that
the critical shear stress 7, for the glide motion of a dislocation segment is well

approximated by the condition for the activation of a Frank-Read source of

o = -2-7;(-1-’%—;)—1 In (%) (3.3)

length [ [3.6], i. e.
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Equations 3.2 and 3.3 define then the maximum separation distance hpaz
unless the dislocation density is so high that the average distance between
parallel dislocation segments is less than this value.

Since £ is the dislocation density belonging to one glide system in the
face centered cubic lattice, and since only one pair out of four will form a
converging dipole, the average separation distance is —2— between those

dislocation segments capable of forming such a dipole. Hence,

(3.4)

e = min |8 l
mas V7p/3’ In(1/b)

Let us assume now that at any given moment, the total number of all con-
verging dipoles with a separation distance of their glide planes between h
and h + dh and with a separation distance parallel to the glide planes of %ﬁ
or less (see Figure 3.1) is given by 121 (-l%)2 Ly, dh for a given glide system.
If h < hmaz, the dipole will in fact assume a configuration close to its me-
chanical equilibrium and L, = 2h. Furthermore, let (k) denote the lifetime
of a converging dipole of initial separation A. Then the rate of dislocation

annihilation is finally given by

hma:
Ap? = L2 / =1 (h)h dh (3.5)
24" |,

where we have summed over all 12 glide systems, but divided by four because
three out of four dipole configurations are not converging.
If V(h) represents the climb velocity of one dislocation, then the con-

verging dipole lifetime is

h !
= [ (3.
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The climb velocity

V(h) = % [z¢D:C; - Z{D,C, + Z2D,CZ(h)] (3.7)

is determined by the concentrations of vacancies, C,, and interstitials, C;,
by their diffusion coefficients, D, and D;, and by the vacancy concentration,
C4(h), in local thermodynamic equilibrium with the dislocation. According

to Kroupa [3.7]
Hb
Ce(h) = C%exp (—;—) (3.8)
where C2? is the equilibrium vacancy concentration in the defect-free lattice,

- u0

{1 is the atomic volume, and kT has the usual meaning. The concentrations
C, and C; can be obtained from two rate equations discussed in Section 3.5,

and V (k) can be written as

Q[z¢ Z 9] . Hb
Vik) =+ [z_g - Z] Z8D,AC, + ZD,,Z,‘,’C,," [exp (..ﬁ_) - 1]
=Vr+Vr [exp (%’3) - l] (3.10)

The bias factors Z¢ and Z¢ contained in Equations 3.7 and 3.10 account
for the effect of stress-induced migration on the absorption rate of intersti-
tials and vacancies at edge dislocations, respectively. They are characteristic
parameters of the type of sink under consideration.

Equation 3.10 shows that the climb velocity under irradiation can be

separated into a radiation-induced part, Vg, and a thermally activated part
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proportional to Vr. The first part is proportional to excess vacancy con-
centration due to irradiation, AC,, and the net bias, the expression in the
bracket. This net bias is only different from zero when the sink-averaged
bias factors, Z; and Z, are different from the dislocation bias factors, Z{i
and ZZ; and this would require the presence of sinks other than dislocations.
However, it will be shown in Section 3.4, that there exists a variance in the
dislocation bias factors, and Vi will have to be modified. The modified Vi
no longer vanishes when the sink structure consists only of dislocations.
With the expression for V (&), the dipole lifetime defined by Equation
3.6 can now be evaluated. However, to obtain an analytical result, the follow-
ing approximation must be made. Whenever the exponential term exp (42)
is large, the climb velocity makes the least contribution to 7(h). Conversely,
only for large values of A’ will the thermally activated climb velocity con-

tribute significantly to r(h). In this case, exp (-’—,f,é) ~14 -},? and

T(h) N l‘/-h dh' -
~2J), (VR+Vr-Hb/R)

h VrHb Vrh
= T —_ 3.11
Vg 2vE ° [1 * VTHb] (3.11)
The coefficient A for the dislocation annihilation rate is then given by
1 = 1 -1
A —VTHb/ 1-=-In(1+ z)] dz (3.12)
12 zo z
where z = V{“g’,’;, T, = V—‘;Bﬁ, and z; = Z‘é:_'—;'ﬁi. No closed-form solution

to this integral exists. However, two limiting cases can be evaluated easily.

First, if Vg > Vr, then %lna: < 1, and

1
&~ —Vehoas 3.13
A 12VR (3.13)
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Second, if V1 > Vg, then z < 1, and expanding 1 In(1+z) = 1+ Z. In this
case

A=

VyHbln ("";“) (3.14)

1
6
These two special cases represent the low and high temperature approx-
imations, respectively. Because of the strong temperature dependence of
self-diffusion and hence of Vr, the range of temperatures, where Vg and Vp
are of the same order, is very narrow. As a result, we may simply add the
expressions and obtain the approximation

1
12

IR

A

Vihmas + %VTHbln (ﬁ'%‘ﬁ) (3.15)

suitable for all temperatures. Note that Vi depends on the dislocation den-

sity p(t).

3.3. Dislocation Generation

The dislocation density may increase during irradiation as va. result of two
processes: first by the formation and growth of dislocation loops, and second
by the climb of dislocation segments pinned by obstacles. The latter process
is exemplified by the Bardeen-Herring source (3.6].

Evaluation of the average rate of increase for the dislocation density by
these processes follows. Dislocation loops can grow under irradiation to an
average maximum radius R,,, whereupon they may unfault and become part
of the network or coalesce with other loops or dislocations. If V represents
the mean climb velocity, the average lifetime of a dislocation loop is 7 =

%1. Assuming that R = %’ﬂ is the average loop radius at any instant, the
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dislocation density due to loops is p = 7R,, N; averaged over a significantly
large volume containing a density of IV, loops.
The rate of increase of this dislocation density is then given by

_ 27 R N}
T

1%
P 3 (3.16)

To evaluate the change in dislocation density from the climb of edge disloca-
tions, consider in Figure 3.2 a bowed-out dislocation segment pinned at two
centers separated by a distance !/, the mesh length. To remain pinned under
a current of point defects constant along the arc, the point defects must pipe-
diffuse towards the center of the arc. It is assumed that pipe-diffusion can
occur readily such that the dislocation segment maintains always its mini-
mum line energy commensurate with the area F required to accommodate
the accumulated atoms. The rate of increase for F is given by % =VL
where V' is the climb velocity of an unpinned segment and L is the arc length
of the bowed-out segment. As the dislocation segment continues to bow-out,
it encounters eventually new pinning centers or it annihilates with another
edge dislocation segment. When new pinning centers are encountered, the
bowed-out segments is subdivided into new segments with an original mesh
length of average value . The process of regeneration repeats itself with
each segment. If 7 denotes then the average time of regeneration and L,
the maximum arc length a segment can reach, then the rate of dislocation

increase in a volume containing /N4 segments is given by

Bp=_4om ) (3.17)
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The regeneration time may be obtained from

Lm
T --/ dt = ——/ dF dL (3.18)
0

With the help of Figure 3.2 it is easy to derive the following geometrical

relatibnships

L=vyR, I=2Rsin (g) (3.19)
and

12 1/2

F=-|LR-1 (32 - Z) (3.20)

From these it is possible to obtain
o l /-!bm 1- (%) cot (-'g) ” ‘(3 21)
T2V g :

Ysin (g’—)
The dislocation density at any given instant averaged over a sufficiently large

volume is given by

Ny /Lm
= d 2
=11 LdL (3.22)

if it is assumed that segments bowed out to any length between ! and L,,

are equally abundant. Equation 3.22 can also be written as

N dL 2 Ym ¢2 ) —cot {2
p= Lmil meﬁ: L]:df-l 0 [(8253112 (%)(2)] d

Y

We may use this equation to eliminate the segment density N4 from Equation

3.17, use Equation 3.21 to eliminate 7, and obtain

C (&) Vp

Bp = 7

(3.23)
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where

! Lm -1 1 sin (—',i,i) 8sin® (329

and ¢¥,, = R_(LLm,:i' The numerical evaluation of C (—lilm) is shown in Figure
3.3. If the segment bows out to a half-circle, then L,, = 12'-, Ym = 3, and
C ( %) = 1.355. Except for values of L,, close to /, the coefficient C is of
order one, and this approximate value will be used in the following.

In the above derivation, it was also assumed that the climb velocity
V of the bowed-out dislocation segment is not dependent on the radius of
curvature, B. However, at elevated temperatures when Vp & Vg, the vacancy

concentration in thermodynamic equilibrium with the bowed-out segment is

given by [3.6]

TR ] (3.24)

Cy = O3 exp [' 27(1 = o)kT R ™ 1.860
when the bow-out is due to excess interstitial absorption. For the case of
excess vacancy absorption, the sign in the exponential is reversed. Figure
3.4 shows the ratio C8/C29 evaluated for nickel according to Equation 3.24.
It is seen that C® — C2% becomes increasingly negative as R decreases. As
a result, the current of thermal vacancies to the bowed-out segment may
cancel the excess interstitial flow at elevated temperatures, and the net climb
!

velocity becomes zero. The minimum value of C? is reached when R = 5

corresponding to a “minimum” climb velocity of

_ ud b l B
Vin = Vg + Vr [exp( w(l—u)leln 3.66) 1] (3.25)

ot (Em) _ I \?2 ¢m1—(—'§)cot(%)d¢ ¢m2¢—¢2cot(%>d¢
()= () | [



Figure 3.2. Geometric parameters for a Bardeen-Herring source.
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If this climb velocity is zero or negative, the dislocation generation by the
Bardeen-Herring process is no longer possible and B = 0. Accordingly, the
rate of dislocation generation is approximately given by

& for V > 0-
Bp = L m ! 3.26
P { 0, for Vi, <0. (3:26)

In the low temperature (< 300°C) range where loops contribute signifi-
cantly to the dislocation density, the rate of dislocation generation is seen to
be given by similar expressions, i. e. by Equations 3.16 and 3.26. The ma-
jor difference lies merely in the characteristic length parameters, the average
lbop radius, R in the case of loops, and the average distance between pinning

obstacles, [ in the case of network dislocations.

3.4. Bias Variance

The radiation-induced part of the climb velocity, Vg in Equation 3.10, is
proportional to the net bias parameter g{; - % It is already mentioned in
Section 3.2, that this parameter vanishes if only one type of sink is present.
In cold-worked steels, void formation is suppressed for an extended pe-
riod of irradiation. Nevertheless, during this period the dislocation density
has been observed to change dramatically even at temperatures where V7 is
negligibly small. It can therefore be concluded that Vz does not vanish even
though the net bias is zero when only dislocations are present as sinks.
This paradox can be resolved by taking into account the bias variance
of edge dislocations. This variance arises from the partial cancellation of the

long-range stress fields of individual dislocations when they are arranged in
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dense groups. The bias of an individual edge dislocation depends to some
degree on the proximity of other edge dislocations and on the directions of
their Burgers vector. Wolfer et al. [3.8] have estimated this bias variance
by considering narrowly spaced dislocation multipoles. It was found that
the bias of an edge dislocation dipole can be as low as half the value for
an isolated edge dislocation, and that dislocations in higher-order multipole
configurations have even lower bias values. To take into account this bias

variance, the net bias

z¢  Z
1 e 3.27
(1+2g5 - 3 (3:27)

is assigned to the individual edge dislocation and z is assumed to be a nor-
mally distributed random variable. Then, the average climb velocity Vg
remains proportional to (%5; - %), but Z¢ and Z? are to be interpreted
as mean values for the dislocation bias factors. Furthermore, both positive
and negative climb directions contribute to the average climb velocity Vg.
However, with regard to increasing the dislocation line length through climb
or with regard to annihilation, the direction of climb does not matter, and
we must therefore take the average of the absolute climb velocities. This
average is given by integrating over the assumed normal distribution for the

bias variance with the result

[/ Q d o Z;d Zi -1 —'22
VR _FZUD'JAC” /;Oo dz 'Z—g'(l + Z) - —Z.:: (V 27!’{) exp (w
Q.4 z¢ Z;
= $22D,AC, [Z_,, (1+ g\/27r) - Z—] (3.28)

is to be substituted for Vz in both Equations 3.25 and 3.16.
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The standard deviation ¢ of the dislocation bias is expected to depend on
the dislocation density itself. In a well-annealed material, most dislocations
in narrowly spaced dipole configurations have been annihilated by the very
process described in Section 3.2. The remaining edge dislocations possess
then the full bias of an isolated dislocation, and ¢ is close to zero. In contrast,
in a heavily cold-worked material, many dislocations are part of dense tangles,
resulting in a large bias variance. If we assume for this case that ¢ = -21-, and

¢ = 0 for the annealed case,
¢ = 0.5[1 — exp(—Ap)] (3.29)

will provide a plausible dependence of the bias variance on the dislocation
density. The choice of A = 1015 m? assures that the bias variance becomes

negligible for p < 101 m~2 but approaches its maximum value for p > 1016

-2

3.5. Rate Equations For Point Defects

The average concentrations of vacancies and interstitials, C, and C;, in a
material subject to a constant rate of generation P by a fast neutron flux are

given by the two rate equations

P - xkD,C,D;C; — D;C; Y N°A*Z! =0 (3.30)

P - xD;C;D,C, — D, Y (C, — C2)N*A*Z: =0 (3.31)
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where

4rr. (1 1
K= Q (D—u + -5:> (332)

is the recombination coefficient and r. the recombination radius for a Frenkel
pair. N°® is the density of sinks of type “s”, A® a geometrical factor charac-
teristic of this sink type, and Z} and Z? are the bias factors of this sink type
for interstitial and vacancy absorption, respectively.

The solution of the rate equations for D;C; and D,C, are

D,C, =D, (—Z?—:AC., + C‘;q) (3.33)
D;C; = D,AC, (3.34)
where |
Z;, = %{— (3.35)
are the sink-averaged bias factors and
Oea = s N°A°Z)C) (3.36)

Y XNz
is the sink-averaged thermal vacancy concentration. The vacancy concentra-

tion in local thermodynamic equilibrium with the sink of type “s” is denoted
by C;.

The excess vacancy concentration AC,, is given by

__NZ, 2 1/2
AC, = 35 [(M +1) M] (3.37)
where
o
M=14 2 (3.38)

NZ;
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and
L = —:—4_P—-'c_——
Z;Z,N?
Here N =), N°®A® is the total sink strength.

(3.39)

3.6. Results And Discussion

The following predictions for the evolution of the network dislocation density
are carried out for 316 austenitic stainless steel and the ferrite phase of ferritic
steel. The dislocation bias factors Z¢ and Z¢ are evaluated with the formulas
given by Sniegowski and Wolfer [3.9]. An example of the dislocation bias
factors for 316 stainless steel is given in Figure 3.5. Properties used are listed
in Table 3.1. With the exception of the mesh length, all other properties in
Table 3.1 are based on measured or theoretically determined values. The
mesh length was selected such that the saturation dislocation density will be
6 x 10!* m? for an irradiation temperature of 500°C; this density corresponds
to experimentally observed saturation densities in 316 stainless steel at about
500°C. The average point defect concentrations produced during irradiation
are evaluated with rate theory as outlined in a previous section. A density
of cavity embryos is assumed to exist from the beginning. The density of
cavities depends on temperatures and is assumed to be equal to the terminal
void number density as observed experimentally. These cavities are allowed

to grow according to rate theory which results in void swelling and an increase
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in the cavity sink strength. The details of void swelling are discussed in a
later chapter.

The saturation dislocation density is found to be independent of tem-
perature between 300°C and 500°C for 316 stainless steel, (300°C and 400°C
for ferrite phase) but begins to decrease with increasing temperature above
about 550°C for 316 stainless steel (450°C for ferrite phase). Figure 3.6
shows the dislocation saturation density for 316 stainless steel as a function
of temperature for two different mesh length assumptions. The theoretical
predictions compare quite well with observed experimental densities [3.4] as
shown in the figure; error bars are shown when given in the references. As
can be seen the error in experimental measurement can be quite large. The
reasons for the decrease in saturation density as temperature increases is the
increasing contribution of thermally induced climb as self-diffusion becomes
important. The thermally induced climb is of course responsible for the high
temperature recovery of cold-worked materials. This recovery can also be
described with the present theory by turning off the point defect production
rate. Figure 3.7 shows the results for thermal recovery of the dislocation
density in cold-worked 316 austenitic stainless steel. It is seen that the dis-
location recovers to a value of 5 x 10!® m™2, typical of annealed material,
within about 12 days at an annealing temperature of 700°C. Annealing also
occurs at 600°C; but it becomes increasingly insignificant at lower tempera-
tures. These predictions are in general agreement with observation, though

no dislocation density measurements have been found in the literature.
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Figure 3.5. Dislocation bias factor ratio for 316 stainless steel based on model
by Sniegowski and Wolfer [3.9].



Table 3.1. Material Parameters

Displacement rate, dpa/sec
Cascade efficiency
Lattice parameter a,, nm
Burgers vector, nm
Shear Modulus, GPa
Poisson’s ratio
Vacancy migration energy, J
Vacancy formation energy, J
Pre-exponential factor D2, m?/s
Vacancy relaxation volume, (2
Interstitial relaxation volume,
Vacancy shear polarizability, J
Interstitial shear polarizability, J
Initial dislocation densities, m~2
for annealed
for cold-worked
Mesh length I, um

316 SS
10-%

0.1
0.3639
0.2573
82.95
0.264
1.92 x 10719
2.88 x 10~19
1.29 x 108
-0.2
1.5
~2.4x 10718
—-2.535 x 1017

4 x 1012
7 x 1013
0.4
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ferrite
10~
0.1
0.2866
0.2482
80.65
0.254
2.02 x 10719
2.46 x 10719
4.46 x 1073
-0.5
0.85
-2.4 x 10718
—-2.535 x 10~17

4 x 1012
7 x 1018
0.4
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Figure 3.6. Saturation dislocation densities in type 316 stainless steel irradi-
ated to doses greater than 20 dpa in breeder reactors.
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Figure 3.7. Predicted recovery of the dislocation density in initially cold-
worked 316 stainless steel due to thermal annealing. The 400°C curve is
coincident with the 300°C curve.
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Figures 3.8 and 3.9 show the predictions for the dislocation evolution for
316 austenitic stainless steel and ferrite phase. The time evolution is given
in units of dpa, where the dpa rate is 1 x 107® dpa/sec. The helium/dpa
ratio of 20 appm He/dpa is typical of fusion reactors. Comparison to e;cper—
imentally measured dislocation densities [3.4] in the transient region is very
limited but agrees quite well considering the uncertainty in the experimental
measurements.

The model developed for the evolution of the network dislocation den-
sity reproduces remarkably well the experimental observations. This is sig-
nificant for two major reasons. First, the materials parameters required are
very fundamental and reasonably well known. Therefore, with the exception
of ’the mesh length parameter ! and the bias variance ¢, no other parame-
ters required adjustments. The value chosen for I, namely 400 nm, is also
reasonably close to the mesh length of bowed-out dislocations observed in
micrographs of irra;diated steels.

The second important implication of the successful model is that the
complex dislocation structure and its evolution can in fact be understood in
terms of two simple processes: the Bardeen-Herring process of climb in a
material with supersaturation of point defects; and the climb-induced anni-
hilation of dislocation dipoles.

The fact that dislocation loops have not been explicitly considered in

the present model constitutes both one of its strengths and its weaknesses.
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Figure 3.8a. Dislocation density evolution with irradiation time for cold-
worked 316 stainless steel at a displacement rate of 10~® dpa/sec and 20
appm He/dpa. The results for 0.6 appm He/dpa show similar results except
the steady state density for 700°C is approximately half as high. The one
data point [3.1] was taken at an irradiation temperature of 500°C and is
within a factor of 2 of the theoretical result.
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Figure 3.8b. Dislocation density evolution with irradiation time for cold-
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Figure 3.9a. Dislocation density evolution with irradiation time for annealed
316 stainless steel at a displacement rate of 10~® dpa/sec and 20 appm
He/dpa. The results for 0.6 appm He/dpa show similar results except the
steady state density for 700°C is approximately half as high. The one data
point (3.1] was taken at an irradiation temperature of 500°C and is within a
factor of 3 of the theoretical result.
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Large loops increase their line length very much like a bowed-out disloca-
tion segment, independent of the presence or absence of a stacking fault.
When the stacking fault energy is low, the stacking fault does not contribute
significantly to the line tension and to the vacancy concentration C? in Equa-
tion 3.24. Therefore, dislocation loops and bowed-out edge dislocations can
indeed be treated as one at higher temperatures.

However, when dislocation loops are small, it is no longer adequate to
model them as edge dislocation segments. In this case, loops and network dis-
locations must be considered as different sinks, and their evolution will have
to be described by different models. Based on experimental observation,
the loop density increases and their size decreases with decreasing irradia-
tion temperature. It is therefore expected, that small dislocation loops are
present at an irradiation temperature of 300°C, and that these loops make a
major contribution to the total dislocation density. Accordingly, the present
model should not be applied to the entire dislocation structure in materials

containing a high density of small dislocation loops.
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Chapter 4
MODELING OF VOID SWELLING IN IRRADIATED STEELS

4.1. Introduction

Recent analysis [4.1] of swelling data for austenitic stainless steels has re-
vealed that the steady state swelling rate is nearly independent of tempera-
ture for temperatures of interest in fusion and fission reactors. Furthermore,
the swelling rate appears to approach an ultimate value of about 1 %/dpa
independent of the initial microstructure and independent of the alloy com-
position. These observations are in contradiction with earlier analyses. In
order to theoretically understand swelling behavior, the physical processes of
swelling have been reexamined from first principles and a rate theory model
of swelling has been developed. Additionally, initial experimental results [4.2]
of the swelling of ferritic steel suggest a much lower swelling rate for this class
of steel. However, long term exposure results have not yet been completed.
In an effort to predict the steady state swelling behavior of ferritic steels, the
rate theory model of swelling is applied to the ferrite phase.

The rate theory of swelling is basically concerned with the calculation
of the net flux of point defects to the surface of a void or bubble. Knowing
the net flux to a cavity surface, the growth rate can be calculated. The
major unknowns to be determined in this rate theory are the sink strengths
and the bias factors of cavities and dislocations. However, as a result of the

continuous helium production, other growth mechanisms are also possible
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and are incorporated in the present model. These gas-driven mechanisms
are as follows.

1. Thermal vacancy exchange. Due to differences in the equilibrium va-
cancy concentrations between the cavity surface and the bulk material,
thermally generated vacancies will tend to flow either toward or away
from cavity surfaces.

2. Loop punching. Given a sufficiently high pressure and energetically
favorable conditions, it has been shown [4.3] that an interstitial platelet
can be punched out from the bubble surface.

3. Self-Interstitial Emission. Given high enough pressure within a bubble,
a self-interstitial can be emitted from a bubble surface.

The results of the model presented herein do not accurately match ex-
perimentally determined swelling behavior. This is to be expected because
of many simplifying assumptions made. For example, the only sinks mod-
eled are cavities and dislocations; The nucleation of cavities is not modeled;
rather, a constant number of cavities is assumed with a uniform radius which
increases with time. It is assumed that all of the helium is equally partitioned
to the cavities. Even though certain aspects of the physical processes are not
modeled, important features of swelling behavior result. These features in-
clude a steady state swelling rate roughly independent of temperature, a sig-
nificantly lower swelling rate for the ferrite phase in comparison to austenitic
stainless steels, and an incubation-type period early in life which depends

on the helium concentration and pressure. Temperature independent steady
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state swelling rate and an incubation period have been reported [4.1] in ex-
perimental results; and helium is considered to be a major factor in causing

early nucleation of cavities in steels exposed to neutrons.

4.2. Athermal Growth Processes

Two different athermal growth mechanisms are considered in the model: 1)
self-interstitial emission and 2) interstitial loop punching. These two mech-
anisms are activated only at relatively high pressures.

Glasgow and Wolfer [4.4] concluded that self-interstitial emission is en-
ergetically favored over helium interstitial emission. The pressure required
for bubble growth by self-interstitial emission may be estimated as follows.
Suppose that the rate of heliumvgeneration or implantation is Py, (per metal
atom and per second), and that there are already N helium bubbles per unit
volume of average radius R. Further assume that a stationary condition has
been reached such that each new helium atom generated or implanted will af-
ter some time be trapped at one of the already existing bubbles. In addition,
the ratio of helium atoms to vacancies in the bubble #n shall remain constant,
and any newly acquired helium atom in a bubble induces the emission of a

self-interstitial. Then the following relationship is valid.

Py, = n4rRND;C? (4.1)
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Here, Dy = D exp(—E[*/kT) is the self-interstitial diffusion coefficient and
C7 is the concentration of self-interstitials in local thermodynamic equilib-

rium with the bubble and is given by [4.4]

(4.2)

C? =exp

_E{ +Ur + 2(yo)yoQd 290
kT Qe RkT

By neglecting the interaction energy of the self-interstitial with the bubble U;

in Equation 4.2 and using Equations 4.1 and 4.2, the following relationship

exists and when satisfied results in self-interstitial emission.

P

2’10 f
Q> — : m _
PQ2 - +E/ + E" + kTl T RND?

(4.3)

It is found [4.4] from this equation that the overwhelming contribution to
the right hand side originates from E'{ , the interstitial formation energy; and
that p must be on the order of 10'° Pa for the condition to be satisfied.
The other parameters included in the above equations are as follows: (2 is
the atomic volume, = is the cavity surface energy, R is the cavity radius,
E™ is the interstitial migration energy, k is Boltzmann’s constant, T is the
temperature, D? is the pre-exponential interstitial diffusion constant, Pisthe
helium production rate, 7 is the ratio of helium atoms to vacancies in a cavity,
N is the cavity number density, z is the compressibility factor determined for
the equation of state discussed in an earlier chapter, and v, is the packing
fraction of helium atoms.

Instead of the emission of one interstitial at a time, it is possible that an

entire interstitial platelet may be emitted. As shown by Trinkaus and Wolfer
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[4.3], the least energy is expended when the dislocation loop radius equals
the radius of the bubble R. Trinkaus [4.5] and Greenwood et al. [4.6] have
shown that the condition for loop punching is

(27 + pnb)2
>
pl > 7

(4.4)
when the bubble radius R is less than about 15b. Here, u is the bulk modulus
and b is the Burgers vector.

As can be seen, there is a radius dependence for loop punching, whereas
self-interstitial emission is nearly independent of the bubble radius. While
self-interstitial emission is favored over loop punching at small radii, the
opposite is true at larger radii.

Athermal processes can be activated only if the above described condi-
tions are satisfied. To determine if either of the two conditions is satisfied,
it is assumed that a density of cavities (dependent on temperature) with a
uniform radius exists and that all helium atoms are evenly distributed among
the cavities. The pressure within the cavities can be found using the equation
of state (discussed in a previous chapter) and compared with the two criteria.
If one of the two criteria embodied in Equations 4.3 and 4.4 is satisfied, the
cavity radius is increased incrementally until the pressure drops below the
critical values for self-interstitial emission and for loop punching. It has been
found that athermal cavity growth is significant only under extremely high

helium production or implantation rates as is seen in blistering studies.
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4.3. Bias Driven Growth And Thermal Vacancy Exchange

According to the rate theory of void growth the swelling rate is given by [4.7]

d [AV ° Z,' Z,? o A
a-t— (?) = 47(‘NRZU {Dv [-Z—v - —Z_g] r- Dv(Cv Cv)} (45)

where N and R are the cavity number density and radius, respectively. 4t NR
is known as the void sink strength (S,). D, is the vacancy diffusion coeffi-
cient, Z;,., and Z{:u are the average bias factors for interstitials and vacancies
and the void bias factors for interstitials and vacancies, respectively. C, is
the sink-averaged vacancy concentration and C¢ is the vacancy concentration
in equilibrium with a cavity. I is defined as

= 2/\SDU (Va2 +8-aq] (4.6)

where A = 47R./QQ, R, is the recombination radius. « = 1 + XC,/(SZ;),
B =4\D,P,q/(S?Z;Z,), P,q is the production rate of point defects. S is the
total sink strength, which is cdmposed of the void sink strength (S,) and the
dislocation sink strength (Sy).

The second term in Equation 4.5 is due to the flow of vacancies to
or away from the cavities, depending on the vacancy concentration in local

thermodynamic equilibrium with the cavity. This concentration is given by

C° = C% exp (p °Q> (4.7)

where p, = (27/R — p) and C&9 is the thermal equilibrium vacancy concen-

tration. For over-pressurized bubbles (p > 2+v/R) there will be a net flow of
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vacancies to the bubble surface. Because of the temperature dependence of
D,, the second term in the swelling rate Equation 4.5 (annealing term) is not
important at temperatures below about 500°C. However, at temperatures
above about 600°C the annealing term is.compa.rable to or larger than the
first term (bias term).

The time evolution of the microstructure plays an important role in
the bias term. In particular, the sink strengths (S, and S;) and the sink-
averaged parameters (C,, Z;, and Z,) change with the microstructure. If
only two sinks types are present, namely cavities of equal radii and edge

dislocations, then

bias driven swelling rate ~

So Sa (Zf,’ Zf__-—_Zf Z,‘f)
(84 + S,)? 22,

where ng are the dislocation bias factor for interstitials and vacancies. From
this expression it can be seen that sink strengths and sink-averaged bias
factors are important for bias driven growth. It is also evident that the
maximum swelling rate for bias driven growth is attained when the void sink
strength equals the dislocation sink strength as pointed out by Harkness and
Li [4.8]. In this case the swelling rate is mainly determined by the bias
factors and to a lesser extent by I'. In turn, the net bias factor is critically
dependent on the interstitial and vacancy relaxation volumes as shown by
Sniegowski and Wolfer [4.9]. The results of typical bias factor calculations

for dislocations and voids are illustrated in Figures 4.1 and 4.2.
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Figure 4.1. Dislocation bias factors for 316 stainless steel as a function of
temperature {4.9]. This figure is also shown in a previous chapter and is

shown here for completeness.
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4.4. Discussion And Results

The swelling model described above and the dislocation evolution model de-
scribed in an earlier chapter have been coded into a computer program known
as WINGRA (WIsconsiN Growth RAte code). The flow diagram, Table 4.1,
summarizes the method of determi;ling swelling rate and swelling. It also
illustrates how bias factors and sink strengths are continuously evaluated as
the microstructure evolves. The results of the calculations are as follows.

1. Athermal processes (self-interstitial emission and loop punching) are
not activated unless blistering type conditions are modeled for which
the He/dpa ratio is about 1000.

2. Thermal vacancy exchange is not important until higher temperatures
are reached. For austenitic stainless steels the temperature must ex-
ceed 600°C. For the ferrite phase the temperature must exceed 500°C.
The minimum temperature where thermal vacancy exchange becomes
noticeable is determined by the vacancy migration energy. The values
for this energy along with other parameters of interest can be seen in
Table 4.2.

3. Bias driven growth is the most important growth mechanism for tem-
peratures below 500 and 600°C for the ferrite phase and the austenitic
stainless steels, respectively.

Two different steels (austenitic stainless steel and ferrite phase) were
modeled for two different helium build-up rates (20appm He/dpa and

0.6 appm He/dpa to model fusion and fission environments, respectively)
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Table 4.1

1. Initialize the problem; set constraints: material parameters,

dose rate, helium buildup rate, initial dislocation density.

2. For a given temperature determine the dislocation bias fac-

tors Zgw set the temperature dependent parameters.

3. Given a swelling, helium density, and temperature determine

compressibility factor z and pressure in the cavity.

4. Determine void bias factors Z?, and sink strengths S, 4.
Find sink averaged bias factors and vacancy concentration, Z.-,.,

and C,.

5. Calculate swelling rate and dislocation density rate of
change. Find a suitable time step and increment swelling and

dislocation density. Go to step 3 as necessary.

Table 4.2
316 SS ferrite

lattice parameter (m) 3.639x10~10 2.8664x 10710
vacancy relaxation volume ({2) -0.2 -0.5
interstitial relaxation volume ({2) 1.5 0.85
vacancy formation energy (J) 2.88x10719 2.464x1071°
interstitial formation energy (J) 9.6x10~19 9.6x10~1°
vacancy migration energy (J) 1.92x10°19 2.016x1071°
interstitial migration energy (J) 2.4x10720 3.2x107%0
vacancy diffusion constant (m?/sec) 1.29x10~¢ 4.463x1075
dpa rate (dpa/sec) 1.0x10~¢ 1.0x107%
cascade efficiency 0.1 0.1
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with two different material starting conditions (cold-worked and annealed).
The two Figures 4.3 and 4.4 show the results for swelling. An explanation of
the results follows.

For 316 austenitic stainless steel a steady state swelling rate of between
0.7%/dpa and 1.3 %/dpa is calculated for temperatures between 300°C and
600°C. The variation in steady state swelling rates is due mainly to vari-
ations in sink strengths. The lower the temperature the higher the void
number density; hence, the greater the difference between void and steady
state dislocation sink strength. At higher temperatures the sink strengths
are closer to being equal and a higher swelling rate is calculated.

For ferrite phase a steady state swelling rate of between 0.01 %/dpa and
0.3 %/dpa is calculated. Once again the difference in swelling rate can be
attributed to variation in steady state sink strengths for voids and disloca-
tions.

For both steels at 20 appm He/dpa, differences in early swelling rates
for annealed versus cold-worked material at 300°C can be attributed to the
time evolution of the dislocation density. The annealed material takes longer
to reach a steady state dislocation density than does cold-worked material.
Therefore, a more slowly increasing swelling rate for 300°C can be seen for
the annealed material than for the cold-worked material. However, as stated
previously the small dislocation loops have not been accounted for.

For both steels at 0.6 appm He/dpa an incubation-type period is ob-

served at early times. This latent period is due to there not being sufficient
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Figure 4.3a. Swelling versus dpa for various temperatures. Cold-worked 316
austenitic stainless steel, 20 appm He/dpa.
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Figure 4.3b. Swelling versus dpa for various temperatures. Annealed 316
austenitic stainless steel, 20 appm He/dpa. .
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Figure 4.3c. Swelling versus dpa for various temperatures. Cold-worked 316
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Figure 4.4b. Swelling versus dpa for various temperatures. Annealed ferrite
phase, 20 appm He/dpa.
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helium pressure to force the cavities to grow to sufficient size for bias driven
growth to dominate. However, once the cavity reaches a critical size for bias
driven growth to become dominant, the voids grow a.ccdrding to rate theory
calculations. This then explains the rapid changes in slope for swelling as a
function of dose. The latent period of very slow void growth is due to the
interplay of two factors. First, small vacancy clusters whether empty or filled
with helium, possess a significant bias for preferential interstitial absorption
due to the image interaction; this bias decreases however with increasing cav-
ity radius, as is illustrated in Figure 4.2. The small cavities are stabilized by
the helium and growth requires, for some period, the continuing capture of
additional helium. As a result, the pressure in small cavities becomes very
large which in turn enhances bias driven growth, and the pressure decreases
rapidly as the radius increases. Figure 4.5 shows the net pressure (p —2v/R)
as a function of dose for the two helium production rates of 0.6 and 20 appm
He/dpa. It is seen that the small cavities are extremely over-pressurized but
with increasing dose rapidly convert to voids as already pointed out by Stoller
and Odette [4.10]. Bias driven growth becomes dominant after (p — 2v/R)
reaches its minimum. It is found that this conversion to a bias driven void
occurs at a radius of about 1.2nm independent of the helium production rate.

The present void growth model for swelling needs several improvements
before the swelling predictions can be compared with experiments. Most
importantly, it is necessary to allow for time-dependent vacancy clust