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Adiabatic beam theory provides the framework within which a drift
kinetic treatment of charged particle beams is constructed. Transverse dy-
namics in an axisymmetric equilibrium constitute an integrable nonlinear
Hamiltonian system. One is primarily interested, however, in nonaxisym-
metric phenomena, for which theoretical understanding is as yet incom-
plete. We define nonaxisymmetric adiabatic charged particle beams to be
those for which KAM tori exist in the transverse phase space. For such
beams one is able to justify a drift kinetic description. This simplification
of the dynamics has important consequences concerning numerical simula-
tion of nonaxisymmetric beams. Our ultimate objective is to formulate a
theory of the coupled Maxwell and drift kinetic equations for a weakly per-
turbed beam. We present this theory and justify it for situations in which
the KAM structure is well enough preserved. We investigate stochastic
effects of hose-like perturbations upon the transverse dynamics. Utilizing
section maps we study the transverse orbit structure due to coupling reso-
nances, between harmonics of circular drift and vortex gyration, driven by
these weak hose-like perturbations.

Contributed paper submitted to the International Conference on Stochas-
ticity and Turbulence in Plasmas, University of California at Santa Barbara,
March 26-29, 1985.



1 Introduction

When a charged particle beam undergoes a linear hose instability lateral de-
flections of the beam travel back from the head to the tail of the beam grow-
ing in amplitude as they do. In experiments with intense electron beams the
result is more often in the nature of a catastrophic hose instability resulting
in gross sideways deflection and destruction of the beam. In this situation
the concept of a well behaved equilibrium undergoing weak perturbations
of any sort is dubious, nevertheless, a great deal of theoretical work has
been devoted to the linear theory of beam hosing [1],[2],[3],[4],(5],[6],[10].

Full nonlinear treatment of the mode has not been attempted to date
nor will it be in this paper. Here, in order to have a well defined model
to discuss, we are going to investigate linear hosing of a Bennett equilib-
rium [9]. The Bennett equilibrium is one of a class of beam equilibria which
arise naturally as a result of statistically random perturbations of the beam
particle distribution. An initially non-Bennett distribution has been shown
both experimentally [7] and theoretically (8], as a result of an H-theorem, to
evolve to the Bennett distribution. As the Bennett distribution is the natu-
ral quasi-equilibrium and possesses many remarkable features, not the least
of which is analytical tractability, we have selected this beam distribution
for our present work.

Anharmonic phase mixing effects are of great importance when attempt-
ing to analyze nonaxisymmetric phenomena such as hose deflections. The
mixing arises due to radially dependent betatron frequencies of transverse
particle orbits in the nonlinear pinch potential. The pinch potential is
defined as ¢ = ByA, — ¢ where A, is the axial component of the vector
potential, ¢ the scalar potential and 8, = vp/c the beam velocity in the
paraxial approximation. The pinch potential completely determines the
transverse particle dynamics. In terms of the pinch potential the radially
dependent betatron frequency is

=L (-19) )

In this equation 42 = 1/(1 — %), m is the beam particle rest mass and ¢
its charge.



If we imagine the beam to be composed of a sequence of slices then
as the hose disturbance passes a given slice, as the disturbance propagates
tailward, the slice experiences a shaking back and forth. Individual particles
in the slice respond to this nonaxisymmetric time dependent perturbation
in a manner which is dependent upon betatron frequency. Since the particle
betatron frequency is radially dependent the responses of classes of particles
at different radii get out of phase with one another in time, that is, the
response of the slice as a whole damps due to phase mixing amongst the
classes of particles. If 2 = w — Byck is the hose frequency Doppler-shifted
from the lab to the beam rest frame, where w is the hose frequency and &
the wave vector in the lab, then particles for which 2 ~ 23 are maximally
coupled to the perturbation and the beam is therefore maximally deformed.
The earliest low frequency theories treated the beam as an internally rigid
bending rod [1]-[2]. The essential fact, however, is that each slice responds
as if it were a collection of oscillators, coupled to the perturbation, each of
different fundamental frequency.

The first model, the “spread-mass” model, to attempt to accurately
treat anharmonic effects exploited the known damping and convection due
to real relativistic mass spread by introducing a fictitious mass spread
amongst the particles in the beam [4]. Subsequent work involved divid-
ing the beam into groups of particles with differing transverse energy [5].
This approach was improved upon with the development of the “multi-
component” model in which the beam is divided into groups of particles
according to azimuthal frequency [6].

The multicomponent model successfully duplicates the important an-
alytical and resonance structure of an exact Vlasov theory [5], including
radial localization of the resonance. The Vlasov theory does not lend itself
to further analytical development yielding as it does a dispersion relation in
the form of an intractable differential equation and its boundary conditions.

In a future publication we intend to present a new model of linear
hose instability, the “multi-ring” model, which incorporates phase mixing
effects without any ad hoc constructions. In the multi-ring model phase
mix damping develops naturally from the basic particle dynamics.

In this paper we will describe an alternative approach to the linear
hose instability, which is the most important nonaxisymmetric beam mode,



based upon the “adiabatic” model [12]. In the next section we will describe
the essentials of the full adiabatic theory. Then we will look at stochastic
effects driven by the linear hose instability. Our conclusion is that for the
amplitudes typically considered in the linear theory, §y/a ~ 1076 — 10~*
where y is the lateral displacement of the beam center of mass and a the

Bennett radius, the invariants upon which the adiabatic theory is based
hold up.

2 Adiabatic Theory

In the Lorentz gauge the Maxwell field equations describing a charged par-
ticle beam propagating in resistive plasma are

1 82\ 0y 4r 47 1 9
2 _ _ . - ——— ——
B (vl+7§6§2) 3 " Vi VL=~ 726;‘]’ (2)
1 8%\ 0 4r 0
2 L, 107\ O __pgmo
where the current J, is
Jz =Jb—0'a—¢ (4)

3
The conductivity o is usually modeled by a simple rate equation which
accounts for beam driven impact ionization of the ambient gas

- =k (5)

where « is a gas dependent constant.

In deriving these equations we have made the paraxial approximation
that the transverse particle energy is negligible compared to the axial en-
ergy. We have also assumed the z dependence of the fields is weaker than
the ¢ = Byct — 2 dependence. Physically this is because the fields are ex-
pected to look like fixed patterns moving in the z direction, evolving only
slowly in the “time” variable z, whereas the dependence upon the “slice”
variable ¢ may be strong if there is axial field structure in the beam rest
frame. We have also decoupled the transverse vector potential A, from the



determlnatlon of the scalar potential and axial vector potential A, by set-
ting A 1/9¢ = 0 in the transverse induced current J, . This gives a closed
set of equations for the scalar and pinch potentials. Taking v, — oo in
these equations yields the EMPULSE field equations of Lee [11].

The lab frame Hamiltonian of a particle in the beam is

H = ymc® = \/(mc?)? + (5c)? + go (6)

This may be expanded in the paraxial approximation in the form

1 P,
H = ~yyme? + —— ( ,+—”) — gy (7)
2yym

where the beam “fuid gamma” +, is defined by

(reme®)? =1+ (%)2 (8)

and p denotes mechanical momentum whereas P denotes canonical momen-
tum.

The adiabatic beam model is based upon the fact that there are trans-
verse action invariants which remain sufficiently well defined despite the
nonaxisymmetric potential and the coupling resonances driven by linear
hose instability. The existence of action invariants enables the elimination
of a fast variable, analogous to gyro-motion, here called vortex gyration,
and the reduced description of the particle orbit as a circular orbit, here
called circular drift. Particle orbits in a general charged particle beam re-
semble precessing ellipses in the transverse (r,6) plane. The basic idea is
to resolve the ellipse into a circle and an epicycle. Then the epicyclic “vor-
tex gyration” is averaged out of the problem. This procedure is essentially
a small gyro-radius expansion where the vortex radius plays the role of
gyroradius.

Now let us introduce the radial drift U(r), the circular drift frequency
Q(r), the vortex gyration frequency v(r) and the vortex action J,. We
assume that the radial action J, is of order ¢® where ¢ ~ §r/r with ér the
gyration radius of an orbit centered on r. The relations between U, (2,



v, and the mechanical radial momentum p, and the canonical azimuthal

momentum P, are
pr = vomU + \/2yymvd, sin€ (9)

rv
Py = yymriQ + E\/2qul/J,cos§ (10)

where we have anticipated the fact that the action Jp turns out to be related
to the action J, by Jp = (r?v%/40?%)J,. If we insert these into the lab frame
Hamiltonian and average over the gyration angle ¢ we get the averaged
Hamiltonian
20))2 2

< H >¢= yymc® + %%m (U2 + (r—r?)—) + %VJ, (1 + Z%) —qy (11)
We are only interested in the transverse part of this averaged Hamiltonian
H=<H >¢ —ysmc? and in what follows we will drop the “hat” from the
averaged transverse Hamiltonian.

To close the set of field, current, and conductivity equations we now
have a drift kinetic equation of the form

. e/

7=(5-1a)s=0 (12)
where Ly is the angle averaged Lie derivative and f is the single particle
phase space distribution function. Determination of the correct angle av-
eraged Lie derivative will also yield U, (), and v as nonlinear functionals of
the pinch potential 1. To do this we use the definitions (9) and (10) and
pr =—H, and Pg = —H g where H is here the exact Hamiltonian (7). The
ordering scheme as relates to the various derivatives is

g 0 o

2t~ 3" a8~ Y (13)

€

Computing E results in terms of order ¢!, €°, and ¢!. Since v is taken to
be order €® and we want £ = v(r) + O(e) we set the order €~! term to zero
which yields the relation

=229 (14)



Setting an angle dependent order ¢® term to zero yields

20 7] 10 /1 q
U=_2" 9 29 (1202 9
v? (ﬂbcazrﬂ—i— r 00 (ZT f 7bm¢)> (15)

This procedure yields £ = v + O(e€) with the definition
V== (r20)? (16)

If we hadn’t taken Jp = (r?v%2/402)J, then angle dependent terms would
have arisen in the order ¢! terms, setting these terms to zero would yield
the given relation between Jy and J,. As an aside, note that the radial drift
velocity has a simple interpretation as a balance equation, since it may be
rewritten in the form

o

U _8_ ('n,mrzﬂ) + ﬂbcaiz ('ybmrzﬂ) + Qi ('ybmr2ﬂ) =45,

ar El) (17)

which is an angular momentum balance, radial convection plus axial con-
vection plus azimuthal convection equals torque on a wedge shaped element
of the beam cross-section. Also notice that what we are calling the circular
drift frequency (1 is in reality nothing but the betatron frequency (1).
The gyration averaged Lie derivative to lowest order is
a2 0 q 0Y 9

o
b= by U =% * B9z P,

(18)

so that, in terms of the beam variables (z,¢) the drift-kinetic equation
assumes the form

9 8 8 qopd
99 _ 19
(ﬂ”caz U T 0% * B0 5 aPz) f=0 (19)

Equations (2), (3), (4), (5), (14), (15), (16), and (19) are a closed set of non-
linear equations describing charged particle beam propagation in resistive
plasma in the adiabatic theory. For low frequency modes the “displace-
ment” terms on the RHS of the field equations may be dropped and for
ultra-relativistic beams the EMPULSE field equations employed.
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This theory is called the “adiabatic” theory because J, is in fact an
adiabatic action invariant of the system with drifts U(r) and (r) and an
exact invariant of the system when U and (2 are constants. The question is
whether the action remains adiabatically invariant in the nonaxisymmetric
beam.

3 Bennett Equilibrium

The transverse Hamiltonian for a particle in a Bennett equilibrium written
in the beam rest frame is

H, = 2im (p,z, + al;;;z) + 2Tlog(1 + p*) + mc® — 2Tlog(§) (20)
where T = ¢BpIy(1 — 1/8%/(1+ f))/2c is the Bennett temperature, p = r/a
with a the Bennett radius and f = I,/I, is the current neutralization
fraction.

A nonaxisymmetry such as a linear hose instability results in the addi-
tion of another term 6 H to H,. Before looking at § H we will transform H,
to action-angle variables. Expanding H, about a reference circle orbit to
lowest order, as in the original work on the adiabatic theory [12], yields a
system of two harmonic oscillators. However, the system is inherently non-
linear so we expand to higher order to expose the lowest order nonlinearity.
The ground state of the two oscillator system is nonlinear so that we may
rely upon the KAM theorem [16] in its strongest and most useful form.

Expanding the Hamiltonian H, to fourth order in the small parameter
6p/po ~ € we get

H, =Q,Jp + €v,J + esulJ%sinzf + et Jisinte 4+ - (21)

where the various parameters are defined

1 dV
2 __
= a?p, dp, 22)
1 d*vV
VZ = 303 + Ed—p% (23)
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5= G (o %) 4
1 (1 dv 102

=i (g + 97 5) 9
V = 2Tlog(1 + p?) (26)

and the action Jj is that of the circular drift, not to be confused with
the usage of this symbol in the previous section where it referred to only
the vortex component of the § action and not the drift component. The
radial action-angle variables are those of the order ¢? terms of the radial
contribution to the Hamiltonian

2 .
bp= 1 / poa? Jsiné (27)

6p, = €\/2v,J cos¢ (28)

These are not the correct action-angle variables for the radial Hamiltonian
as a whole. We employ Deprit’s version [14] of Lie transform perturbation
theory to get the action-angle variables and the Hamiltonian to the requisite
order. This calculation is given in detail in [15]; the result is

2
H, = Q,Jy + voJ, + € (—Vz — E%) J? (29)

where the relation between J and J, is given in [15].

This is the Hamiltonian of two oscillators, one linear and one nonlin-
ear. A slight nonaxisymmetry will couple these oscillators together and
generally the resulting Hamiltonian will be nonintegrable. The issue here
is whether or not the invariants of the ground state will at least remain
“adiabatic” invariants of the perturbed system. If the KAM structure in
phase space holds up well enough then we will call the beam “adiabatic”.
For strong enough perturbations the KAM structure disintegrates and the
beam trajectories become stochastic. When this happens the entire basis
of linear theory, that the spectrum depends only upon the unperturbed
system, breaks down and a quasilinear or fully nonlinear theory must be



developed. This breakdown of linear theory vitiates the Vlasov treatment
of the mode used in [5].

To nondimensionalize our system we will measure action in units of
aV/T, frequency in units of T /a2, energy in units of transverse temperature
T, and length in units of the Bennett radius a. For the Bennett beam our
Hamiltonian now reads

H, = Q,Js + €v,J, + fa,J) + - (30)
where the coefficients are 1
0 =4 1372 (31)
2
vt = 8(1{%’;")5 (32)
o, = —%VZ 11p8 + 6?;1—;31;%3 + 72 (33)

Since a, is negative the ground state system is of the “weak-spring” oscil-
lator type, that is 3*H,/8J? < 0, so the twist mapping in the (J,, £) plane
is such that the larger actions revolve more slowly than the smaller actions.
The fact that the ground state Hamiltonian depends linearly upon Jj is of
some consequence, resulting in primary resonances separated by an interval
that is action independent.

In the ground state the actions and winding number of a given torus
are given by

Jo(po) = p°Q (34)
lvy, a, :
Jolpo, E) = —5— (1 - (1 — 4 (E - pﬁﬂi) ) (35)
v, o, :
w(po, E) = o (1 —45 (E - P393)> (36)

where, in deriving J, we have selected the branch which goes to zero, as
the radial energy goes to zero, E — p2{)2. Winding numbers are bounded
above by a p, dependent maximum v,/(), where the upper bound itself
is constrained to fall within the range V2 < Vo/Qs < 2. This restricts

9



the primary resonances to w = 1,2 which are equally separated from one
another. At finite radius the only primary resonance of importance is the
w = 1 resonance. The “sidebands” of secondary resonances ranging on
either sideof w=1arew =1+ m/n where m < n so the sidebands form
a dense set of resonances.

When we look at coupling resonances driven by the linear hose instabil-
ity we shall be interested in whether or not the islands associated with the
secondary resonances overlap one another. Technically, the “smoothness”
condition of the KAM theorem requires good separation of these islands if
invariant tori are to persist.

Inverting the winding number resonance condition yields the resonant

energy spectrum
102 (12 p?
Epy=p0 +-22( 2 T 37
Pq 0% + 4ao (Qg qg) ( )

where p and ¢ are integers and their ratio is of the form: unity plus or minus
a fraction less than unity. We naturally speak of such an energy spectrum
as there are many particles at any reference radius and these particles
have a distribution in energy; the Bennett equilibrium is characterized by
a transverse temperature. Changing the point of view, any particle with a
given fixed energy has a nested tori family as orbit space and a torus in the
family may be thought of as being parameterized by radius of the orbit.

Introducing the transverse energy spread described by T into our consid-
erations we have a one parameter family of nested tori families, a so-called
“VAK nest” [17]. The true dynamical system is the four-manifold and a
nested tori family corresponding to an energy level submanifold is a “slice”
of the four-manifold. For a description of the bewildering variety of bifur-
cational processes which may occur as one varies the energy parameter in
such a system we refer the reader to [17].

If the radial action J, ceases to be a good invariant due to any coupling
resonance overlaps then the particle orbits will “diffuse” to other reference
radii. This is because there is a one-to-one relationship between the refer-
ence radius and the azimuthal action Jy. In fact, we could think of (p,,J,)
as the invariants of the ground state system as well as (Jy,J,), so that
diffusion in action is equivalent to radial diffusion.

10



4 Linear Hose Perturbations

In the rest frame of a transverse slice of the beam the passage of a hose
instability propagating from the head to the tail of the beam results in a
nonaxisymmetric perturbation with sinusoidal time dependence. For the
approximately autonomous case {} < 1,(p,) the perturbation is of the form
[15]
H =H,+ ) 6H;, cos(l& — mb) + > 6H}, sin(i€ — m#) (38)
im im

where the coefficients are given in detail in [15]. In this Hamiltonian the
angle 6 is that of circular drift and ¢ is the vortex gyration angle. The
linear hose instability couples the two oscillators nonlinearly.

At resonance the frequencies of the resonant term are related in such a
fashion that the phase is stationary. All other terms have rapidly varying
phases when the actions (Jy, J,) yield a stationary phase of a given term so
they tend to average away as high frequency perturbations. The condition
for coupling resonance is

%(nf —80)~ 0 (39)

Performing a transformation to the usual rotating (island) variables defined
as

jr =—J, (40)

n
Jo=~J,+ Js (41)
£ =80 —n¢ (42)
=20 (43)

we may perform an average over the angle 0 to get the approximate second
invariant which generically exists near an isolated coupling resonance of a
two degree of freedom system. The only term which survives the averaging
is that for which Is — nm = 0 so if we define p = I/n we have m = sp and
! = np and the angle averaged hose Hamiltonian in “island variables” is

H,=H, + > 6H,°,p,”cospé',.8 +>° 6H:p,8psinpén, (44)
p=1

p=1

11



where ém, = n& — sf. With the Hamiltonian in this form we now see clearly
the existence of an approximate second invariant

I'=sJ,+nJ, (45)

which demonstrates the integrability of the isolated resonance.

In order to justify the validity of our drift kinetic equation the stochastic
effects of the perturbation must be considered. It turns out that only
the one-one, the one-two, and the one-three islands need be examined.
This is because only the § fundamental and the fundamental and first two
harmonics of £ are of appreciable island width. If these islands overlap for
lateral displacements of the magnitude considered in linear theory, 6y/a ~
107® — 107, then linear theory is inappropriate. When the KAM structure
disintegrates the system is no longer even approximately integrable and
any theory based upon linearization about the unperturbed system fails,
even though the perturbation may be small in magnitude. Our drift kinetic
theory, which is nonlinear in the dependence upon the pinch potential, must
be regarded as valid only when the KAM tori bound the gyration invariant.
In this sense the theory is “linear” because clearly for large amplitude lateral
deflections the invariants simply cannot survive.

In order to study the effects of the perturbation we use a Poincaré map
induced by the flow on an energy level torus as it intersects a theta equals
constant cross-section. The figures depict the numerical results of following
orbits for various values of the lateral displacement s = §h/ap, and various
reference orbits p,. It is seen that for perturbations in the linear regime
the tori do persist quite well. We view this as justification of the adiabatic
theory in the linear regime.
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Figure 1 Ground State Tori
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Figure 2 Secondary resonances arrayed on either side of the primary resonance
at w = 1. There is a dense distribution of such secondary resonances, one at each
rational w, however, the island amplitude decreases rapidly as the numerator
and denominator of the fraction increase. The KAM theorem requires that the
secondary resonances of appreciable amplitude be well separated in order that
invariant tori may exist.
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Figure 3 Lateral Hose Deflection of a Beam
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One=Qne Hose Perturbation
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Figure 4 z, = 0.5 and s = 0.01; depicting the growth of a primary island with
elliptic point at ¥ = x/2 and hyperbolic point at % = —3x/2. The separatrix
orbit is not shown.
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One=One Hose Perturbetion
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Figure 5 z, = 1.0 and s = 0.01. At one Bennett radius the primary island has
grown to an appreciable amplitude for this very small lateral displacement.
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One~Two Hose Perturbetion
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Figure 6 z, = 0.5 and s = 0.01. The two thin islands are visible.
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One=Two Hose Perturbation
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Figure 7 z, = 1.0 and s = 0.01. The section shows again the increase in
amplitude as compared to one-half the Bennett radius.
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One-Three Hose Perturbation
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Figure 8 One-Three Isolated Resonance: z, = 0.5 and s = 0.01.
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One=Three Hose Perturbation
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Figure 9 One-Three Isolated Resonance: z, = 1.0 and s = 0.01.
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One—One One—Two Resonance Interwotion
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Figure 10 z, = 1.0 and s = 0.0005. A thin stochastic layer around the separa-
trix near the unstable hyperbolic point is emerging.
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Figure 11 z, = 1.0 and s = 0.0006. Island interaction has generated visible
satdﬁteiahndsandthem&asﬁclamwidthhaincrmed.
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One=~0ine One~Two Resonance Interection
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Figure 12 z, = 1.0 and s = 0.0007. Further widening of the stochastic layer
and more satellite island structure is visible.
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One=One One~Two Resonance Interaction
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Figure 13 'z, = 1.0 and s = 0.001. The one-two islands have shrunken out of
visibility; a wide stochastic layer surrounds the one-one island but is still well
bounded by KAM tori.
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One—One One~Two Resonance Intermction

14

dy y-action
b1

Iz x=action

Figure 14 z, = 1.0 and s = 0.01. The inner tori are.shrinking as the sto-
chastic region encompasses more and more of the section. One can see very
thin remnants of the one-two islands. :
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Figure 15 z, = 1.0 and s =0.001. Interaction between the one—one and one-
three isiands has generated satellites but there is no apparent instability yet.
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Figure 16 z, = 1.0 and s = 0.0003. One can see some instability around the
separatrices of the one-three island chain bounded- by as yet unaffected tori.
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Figure 17 z, = 1.0 and s = 0.01. Here the situation has changed dramati
.01. He cally,
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One-Two One~Three Resonance Interaction
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there is some instability near the separatrices of the one-three islands.
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One~Two One-Three Resonance [nteraction
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Figure 20 z, = 1.0 and s = 0.1. The nine orbits are very unstable but, and
this is the significant.poing, are'still'hounded swithin a-regionof ;action space.
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Figure 21 z, = 1.0 and s = 0.01.
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One—One One-Two One-Three Resonapce Interaction
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ri‘a"i'&ure ‘ﬁ Z, = 1“8 amf f i- 0.03. The outer tori are expanding, indicating
increasing transfer of energy from the azimuthal to the radial motion. We have
found that this continues as the lateral displacement increases further, with no

qualitative change in the orbit behavior within the torus.
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