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(608) 262~0944

ABSTRACT

ICF conceptual designs have been proposed in
which flexible tubes conveying liquid metal are
subjected to repetitive dimpulsive pressures.
Because the tubes are vertical, very long and
carry liquid metal, gravity gradient effects are
substantial. The complete equation of motion is
presented. Results are obtained for the vibra-
tional mode shapes and corresponding frequencies
of the tubes. It is shown that the gravity
gradients can produce strong asymmetries in the
mode shapes and shifts in the numerical values
of the natural frequencies. Results of an
approximate perturbation analysis are also pre-
sented to support the exact solution.

INTRODUCTION

A major problem in ICF reactor designs is
the protection of the first wall from x-rays,
neutrons, target debris and mechanical shock re-
sulting from target ignition. A concept pro-
posed by the staff of the University of
Wisconsin Fusion Technology Institute (FTI) uses
an annular tube bank for the cylindrical cavity
of the reaction chamber. The arrangement of the
cavity tube bank is shown in Fig. 1 for the
light ion beam reactor LIBRA, a conceptual de-
sign jointly developed by FTI and the Kernfor-
schungszentrum Karlsruhe, FRG. Individual
vertical tubes, identified as INPORT units, are
braided from continuous silicon carbidi fiber to
produce a flexible porous component. Liquid
lithium-lead, used as a coolant and breeder,
flows axially within the INPORT and also through
the tube wall to develop a thin exterior film
(approximately 1 mm thick) as shown in Fig. 2.
This layer protects the INPORT by absorbing
target debris and x-rays. :

The first two rows of these tubes are sub-
jected to repetitive mechanical shock 7loading
during operation. To avoid resonance problems,
it is important to have accurate values for the
natural frequencies of the INPORTs. It is also
important to accurately characterize the mode
shapes since requirements for close packing may
result in mechanical interference. These issues
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Fig. 1. Schematic of LIBRA Reaction Chamber.

will be addressed in the work which follows.
INPORT MECHANICAL MODELING

The INPORTs are modeled as completely flex-
ible tubes, neglecting any shear or bending
resistance. They are elastically supported at
the top and bottom as shown by the preliminary
design of Fig. 3. This would permit relatively
convenient assembly and allows tensile preload-
ing of the INPORTs by means of the compression
spring system. Thus the tubes react to the
dynamic lateral loading with internal tension.
In addition, a modification of this support
mechanism can be used which allows end rotation,
essentially as a ball-and-socket joint.

This dynamic analysis 1is developed for
INPORTs comprising the first two rows of the an-
nular tube bank since only these units receive
the impulsive pressure from the blast wave.
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Fig. 2. Sectioned INPORT Unit.
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Fig. 3. Support Mechanisms for INPORTs.

These units have a diameter, thickness and
length of 3 cm, 1 mm and 10 m, respectively.
with3 the density of the 1ithium-lead being 9.44
g/cm®, each tube has a mass of approximately 70
kg. Thus with a combination of an unsually
large length and the heavy liquid metal, a sub-

stantial axial variation 1in internal tension
will exist. In addition to these considerations
it should be noted that the internal flow is
retarded by a throttle mechanism at the lower
end. The resulting pressure increase is in-
cluded in the mechanical analysis.

GOVERNING EQUATION

The system under consideration (Fig. 4)

‘consists of a uniform tube of length £ supported

at each end. It has a cross-sectional area A,
mass per unit length my, and flexural r'lg'ldi%y
EI. The internal fluid flows axially with
velocity ¢, cross-sectional flow area Af and
mass per unit length me.  The mean pressure
within the tube 1is p, measured above atmos-
pheric.

In its undeformed (equilibrium) position
the longitudinal axis of the tube coincides with
the x axis. HWith this vertical configuration,
gravity effects will be assessed. Free and
forced response of the tube is allowed in both
the x-y and x-z planes a'long with longitudinal
deformations.

With the compression spring mechanism (Fig.
3) supporting both ends, a static pretension T
can be applied to the system. An additiona?
axial tensile force is induced by the internal
pressure, which is equal to pA(l - 2v) for a
thin tube, where v is Poisson's ratio. Non-
1inear tension effects can be included by con-
sidering higher order terms in the expression
for the tube extension. Also, since the weight
of the viscid fluid is not negligible, there
will be a tension variation due to a gravity
gradient.

The general equations of motion for the
tube were derived using Hamilton s principle and
variational calculus procedures.© The resulting
partial differential equation for lateral motion
in the x-y plane is given by
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where

T = T, = PA(L = 2v) + (m, + m)g(2 - x)
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Fig. 4. Tube Geometry and Coordinate System.

and Ko represents the coefficient of equivalent
viscous damping.

PLANAR VIBRATIONS

In order to determine the basic modal
characteristics of the tube, Eq. (1) has been
linearized to decouple the lateral and longi-
tudinal displacements. For transverse motion it
is assumed that the effect of the Coriolis
acce'IeEation of the fluid, given by
2mfc(3 v/3x3t), can be neglected. Also, since
the INPORTs are considered as comp]etely flexi-
ble tubes, Eq. (1) becomes

a_x {[(To < PALL - 2v) + (m, + m.)g(2 - x)

- mfcz] -g—:—} - Kkylm, + mg) -g-% (2)
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The equation of motion may be expressed in
dimensionless terms by defining the following
dimensionless quantities:

- _V
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Substitution into Eq. (2) yields

_ =
-g—g{eg%}-:%-%w (4)
T

Equation (4) can be reduced to an ordinary dif-
ferential equation by assuming a harmonic so-
lution of the form

v(E,1) = Re{¢(€)7eﬂ;1} ‘ (5)

where ¢(E) is a complex function and w is the
dimensionless frequency. Substitution of Eq.
(5) into (4) gives

d¢(§))

& + (@@ - 4@ #8) =0 . (6)

The solution to Eq. (6) 1involves Bessel
functions of the first and second kind of zero
order, namely

8(8) = AJ(ME) + BY (WE) (1)
where

WE= W - - waT - P @)

and the dimensionless tension and frequency are
given by

- - _ 2
To pAf(l 2v) + (mtﬁnf)gl- meC

= (9)
(mt+mf)g£

a=/-;&m. (10)

For a general solution A and B must be complex
constants.

Finally, the complete solution to Eq. (4)
can be expressed as a superposition of an
infinite set of the normal modes of the tube,
i.e.,

_ « _ 'iZu'nt
v(E,T) = Re{ ] ¢ (B)X e } “(11)
n=1

which also includes the complex constant
X =Xe (12)

where X, and «, are determined by initial con-
ditions. '



For convenience Eq. (11) has been rewritten
so it contains only the real part

vigE,1) = Z X [ARn R0 - Andor (A8
Ban' ok 2n ) - Yol(lnv’f)] cos('@nr
-an)-x[Rnol(Av"HAJ(xn/E)

* BRnYoI()‘n"E) * BInYoR(Xn'IE)]

x sin(ﬁnr - an) (13)

where R and 1 represent the real and imaginary
parts, respectively.

To determine natural frequencies and mode
shapes, the eigenfunctions ¢ (&) are required to
satisfy the boundary cond'lt ons of the problem.
This results in the following set of equations

ARnJoR(Xn"rl) In oI()‘ "—)
YoR(Anfrl-) In oI(A /F) =0
Andor An’) AInJoR“n',zp
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(14)
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Agndor 78] * Appdo (4 75))
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where &; and &, have been used to represent §
evaluated at x = 0 and x = £, respectively. For
a nontrivial solution to (14) the n determinants
of the terms multiplying the A's and B's must
equal zero, i.e.,

JoR“n‘El-) ~Jo1 “‘n"q) Yorf An'féjl-) “Yorl xn‘rq)
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where n = 1,2,3, ..., = The solution procedure

then involves choosing a value of w, calcu-
lating the argument given by Eq. (8) and
corresponding Bessel function, and finally
checking the value of the determinant. After w
is found, the relative values of the complex
constants A and B can be determined from (14).
This procedure is repeated until the number of
modes identified 1is sufficient to completely
describe the tube motion.

NUMERICAL RESULTS

An analysis was performed to determine
natural frequencies and mode shapes for the
special case of zero damping. The first ten
natural frequencies computed are shown in _Figq.
5. Calculations were performed letting T ap-
proach 1 since Y (0) 1is negatively infinite.
Figure 6 shows the first, second and tenth mode
shapes for dimensionless tensions of 1.1 and
3.0. For convenience, each has been individual-
ly normalized. Asymmetry is considerably
noticeable with the lower tensions. Figure 7
shows the shifts of the maximum amplitude and
zero crossing for modes 1 and 2 due to the non-
linear effects of the tension. Consequently,
s T becomes much greater than the weight the
natural frequencies and mode shapes will ap-
proach that of a classic string.
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Fig. 5. Natural Frequencies of Heavy Tubes.
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Fig. 6. The Fundamental, Second and Tenth Mode Shapes for Dimensionless Tensions of 1.1 and 3.0.

PERTURBATION ANALYSIS

The results from the exact solution can be
verified to a limited degree by a perturbation
analysis developed for the response of flexible
tubes wi:}'h small linear variations in the axial
tension.

The equations for natural frequencies and
mode shapes are given by

wﬁ = (1, + %) n2e? /e

o (x) = sin A7X . 2H m_
n K2 nfTe m#n (n° - nz)
1 1 mrx
+ ] sin =2
(n - m)2 (n +m? *

where M and W represent the total mass and

(16)

(17}
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tude and Zero Crossings.

weight, respectively. The effective tension has
been expressed as

Te = (To = pALL - 29) = mec?) | (18)

For the mode shapes, the shifts in posi-
tions of maximum amplitude and crossing points
are in good agreement. The differences between
numerical values for frequencies from the two
solutions are small, particularly for small
tension variations. This is shown, for exampie,
in Fig. 8 where a comparison is made for the
fundamental frequency. The results for higher
modes are similar. Thus, for cases character-
ized by significant tension variations, the
exact solution is of greater importance.

CONCLUSIONS

Exact mode shapes and natural frequencies
have been determined for completely flexible
tubes in which an internal tension variation
exists as a result of gravity in addition to
axial preload. In comparison with the classic
uniform tension problem, it has been shown that
strong asymmetric changes can occur in the mode
shapes, particularly for large gravity gradi-
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Fig. 8. Error in the Fundamental Frequency from
the Perturbation Solution.

ents. Similarly, the results show that the nu-
merical values of the natural frequencies can
also be substantially different for the same
comparison. Both of these effects are important
for the response calculations and design of
INPORTs,

ACKNOWLEDGEMENT

This work was supported in part by Kernfor-
schungszentrum Karlsruhe, Federal Republic of
Germany, through Fusion Power Associates.

REFERENCES

1. G.L. KULCINSKI et al., "The INPORT Concept -
An Improved Method to Protect ICF Reactor
First Walls,” Journal of Nuclear Materials,
103-104, 103-108 (19817.

2. R.L. ENGELSTAD and E.G. LOVELL, “Basic
Theory for Three-Dimensional Motion of LIBRA
INPORT Tubes,” FPA-84-2, Fusion Power
Associates (1984),

3. R.L. ENGELSTAD and E.G. LOVELL, "Planar Vi-
brations of LIBRA INPOGRT Tubes Including
Gravity Gradient Effects," FPA-84-3, Fusion
Power Associates (1984).





