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DISLOCATION EVOLUTION IN METALS DURING IRRADIATIONT
W.G. Wolfer and B.B. Glasgow

Fusion Technology Institute and Department of Nuclear Engineering
University of Wisconsin, Madison, WI 53706 USA

ABSTRACT

Physical models are developed for the evolution of the dislocation densi-
ty in metals subject to irradiation at elevated temperatures. Two basic pro-
cesses are shown to account for the experimental observations: the generation
of dislocation line 1length takes place by the Bardeen-Herring mechanisms,
whereas dislocation 1loss can be described in terms of dislocation dipole
annihilation. Only two microstructural parameters, namely the mesh length and
the bias variance, need to be introduced and adjusted in order to reproduce
the experimental observations on dislocation evolution in type austenitic

stainless steels.

TThis work has been supported by the Electric Power Research Institute, Palo
Alto, under contract RP1597-2 with the University of Wisconsin.



1. INTRODUCTION

During the bombardment of metals with energetic particles, vacancies and
self-interstitials are produced. At irradiation temperatures above the onset
for vacancy migration but below the temperature where self-diffusion is rapid,
the absorption of vacancies and interstitials at dislocations leads eventually
to dramatic changes of the dislocation density. Other microstructural defects
also arise, such as small dislocation Toops, voids, and precipitates as a re-
sult of the irradiation. However, the evolution of the dislocation density is
nearly independent of the evolution of all other microstructural features.
Well-annealed metals exhibit a sharp increase with irradiation dose of the
dislocation density which eventually approaches a saturation value. In cold-
worked metals, however, the dislocation density drops with dose and approaches
a saturation value similar or even identical to the one in the well-annealed
counterpart. The observation that this saturation value is independent of the
initial dislocation density has led several researchers [1-3] to suggest that
the evolution of the dislocation network is the result of two competing pro-
cesses, namely the generation of dislocations by loop growth and by the climb
of edge dislocations and the mutual annihilation of dislocations with opposite
Burgers vectors.

These general ideas [2,4] provided the background for the empirical
models of dislocation evolution proposed earlier, according to which the rate

of change of the dislocation density p(t) is given by

- A" . (1)
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The Togical choice for n is two since the annihilation of dislocations in-



volves pairs with opposite Burgers vectors. For the production term, a
plausible choice would be m = 1. However, Garner and Wolfer [4] provided
heuristic arguments for n = 3/2 and m = 1/2. Unfortunately, the experimental
data for p(t) are not sufficiently accurate to determine the exponents m and
n, and the choice of m =1 and n = 2 appears to give an equally satisfactory
correlation [2]. The question of the correct exponents must therefore be
answered by developing concrete physical models for both the production and
the annihilation term. This will be the main purpose of the present paper. A
review of the experimental results has been given earlier [4], and any discus-
sion of those will be postponed to Section 5 where the measured dislocation
densities are then compared with the theoretical predictions. Preceding this
comparison, a model for the annihilation or recovery term Ap2 will be derived
in Section 2, and Section 3 will deal with the derivation of the dislocation
generation term Bp. It will be found that both A and B are dependent on the
dislocation density e(t). Both processes require the climb motion of edge
dislocations as a result of either an excess of self-interstitial absorption,
or an excess of vacancy absorption or emission. At temperatures below about
half of the melting point, the necessary climb motion can occur only if sinks
with different point defect biases are present in the microstructure, where
the bias is a measure of the preferential absorption of interstitials. Ac-
cordingly, we discuss in Section 4 the need and the extent of the bias vari-
ance necessary for the evolution of the dislocation structure to occur under
irradiation. The comparison of the theory with the experimental data in
Section 5 is limited to austenitic stainless steels irradiated in fast-neutron
reactors, because the experimental irradiation conditions are well character-

ized, and the effects of the specimen surface are negligible. For irradi-



ations performed with ijon bombardment or electron beams, several additional
complications exist such as a non-uniform defect production and a significant
lToss of dislocations to both the surface [3] and the portion of the specimen
[5] not subject to radiation damage. For the present model to be applicable
for ion bombardment or electron irradiations, these additional aspects must be
included. However, they add 1ittle to the elucidation of the basic mechanisms
which control the evolution of the dislocation density during high-temperature

irradiations, and they will not be dealt with in this paper.

2. DISLOCATION RECOVERY

The reduction of the dislocation density in cold-worked metals by anneal-
ing involves the thermally activated climb of dislocations and the mutual an-
nihilation of dislocations in dipole configurations. It is reasonable to as-
sume then that the process of dipole annihilation takes place also under ir-
radiation, and that this process is enhanced as a result of the radiation-
induced climb. In the following, an edge dislocation dipole is considered to
consist of two nearly paraliel segments of edge dislocations with parallel or
anti-parallel Burgers vectors. The segment can either belong to line dislo-
cations or to dislocation loops with a diameter significantly greater than the
distance between the dislocations in the dipole.

Among the four different dipole configurations, shown in Fig. 1, which
have edge dislocations of parallel or anti-parallel Burgers vectors and whose
glide planes are separated by a distance h, only one pair will converge to a
common glide plane when either interstitials or vacancies are preferentially

absorbed at edge dislocations. For this one pair, called the converging di-



Fig. 1.

Edge dislocation dipoles.




pole, h decreases with time, and if the segment can also glide under the
mutual interaction force, annihilation will inevitably occur.

However, this requires that the idinteraction glide force overcomes a
critical shear stress, Ty For a given 71, this condition defines the maximum
separation distance, hp,y, from which a converging dipole may form. Using the

glide force for an edge dislocation dipole [6], we obtain

- =T, (2)
2n(l \’)hmax 0

where b is the Burgers vector, u the shear modulus, and v Poisson's ratio.

In alloys such as steels, dislocation motion is restricted by glide
obstacles such as precipitates and by forest dislocations. Dislocation glide
requires then the activation of Frank-Read sources. Accordingly, we assume
that the critical shear stress 1, for the glide motion of a dislocation seg-
ment is well approximated by the condition for the activation of a Frank-Read

source of length 2 [6], i.e.

T = ez I ) - (3)

Equations (2) and (3) define then the maximum separation distance hy,y unless
the dislocation density is so high that the average distance between parallel
dislocation segments is less than this value.

Since p/12 is the dislocation density belonging to one glide system in
the fcc lattice, and since only one pair out of four will form a converging
dipole, the average separation distance is 8//mo/3 between those dislocation

segments capable of forming such a dipole. Hence,



hoax = Min {8//m073 , 2/1n (2/b)} . (4)
Let us assume now that at any given moment, the total number of all converging
dipoles with a separation distance of their glide planes between h and h + dh
and with a separation distance parallel to the glide planes of Lp/2 or less
(see Fig. 1) is given by 12 211-(9/12)2 L, dh for a given glide system. If
h € hpax, the dipole will in fact assume a configuration close to its mechani-
cal equilibrium and Ly = 2h. Furthermore, let t(h) denote the lifetime of a
converging dipole of 1initial separation h. Then the rate of dislocation

annihilation is finally given by

h
o 1 2 [ max

Ao” = 5p “Hn)n dn (5)

b
where we have summed over all 12 glide systems, but divided by four because
three out of four dipole configurations are not converging.

If V(h) represents the climb velocity of one dislocation, then the con-

verging dipole lifetime is

h
tw(h) = [ dh'/2v(h') . (6)
b
The ¢limb velocity
vin) = 2 [zd.c. - 29 ¢, + 28 cd(n) ] (7)

is determined by the concentrations of vacancies, C,, and interstitials, C;,

by their diffusion coefficients, D, and D;j, and by the vacancy concentration,



Ce(h), in local thermodynamic equilibrium with the dislocation. According to

Kroupa [7]
d - Hb
Cv(h) = qu exp Cﬁ—) (8)

where qu is the equilibrium vacancy concentration in the defect-free lattice,

= =T (9)

 is the atomic volume, and kT has the usual meaning. The concentrations Cy
and C; can be obtained from two rate equations discussed in the Appendix, and

V(h) can be written as

Q
V(h) =& [— -
(10)

=V + Vg [exp (%E) -1].

The bias factors Z?

and 23 contained in Egs. (7) and (10) account for the ef-
fect of stress-induced migration on the absorption rate of interstitials and
vacancies at edge dislocations, respectively. They are characteristic para-
meters of the type of sink under consideration.

Equation (10) shows that the climb velocity under irradiation can be
separated into a radiation-induced part, Vp, and a thermally activated part

proportional to V. The first part is proportional to excess vacancy concen-

tration due to irradiation, AC,, and the net bias, the expression in the



bracket. This net bias is only different from zero when the sink-averaged

bias factors, Zi and f&, are different from the dislocation bias factors, Z?
and 23. This requires the presence of sinks other than dislocations. How-
ever, it will be shown in Section 4 that there exists a variance in the dislo-
cation bias factors, and Vp will have to be modified. The modified Vi no
longer vanishes when the sink structure consists only of dislocations.

With the expression for V(h), the dipole lifetime defined by Eq. (6) can
now be evaluated. However, to obtain an analytical result, the following ap-
proximation must be made. Whenever the exponential term exp (Hb/h') is large,
the climb velocity makes the least contribution to t(h). Conversely, only for

large values of h' will the thermally activated climb velocity contribute

significantly to t(h). In this case, exp (Hb/h') =1 + Hb/h' and

h

w(h) 25 v +d\r/1le/h')
b ‘'R T
(11)
_h VTHb . VRh )
2V 2 V_Hb
R ZVR T
The coefficient A for the dislocation annihilation rate is then given by
X1
a=ly Hb [ [1-l1n (1+x)]'1dx (12)
12 T x X
0

where x = VRh/VTHb, Xy = VR/VTH, and x; = VRhmax/VTHb- No closed-form so-
lution to this integral could be found. However, two limiting cases can be

evaluated easily. First, if Vp >> Vy, then (1/x) In x << 1, and



n

A=lyVoh . (13)
Second, if Vg >> Vp, then x << 1, and we may expand (1/x) In (1 + x) 21 + x/2

and also neglect Vp. In this case

~ 1
A= G'VTHb In (hmax/b) . (14)
These two special cases represent the Tlow- and high-temperature approxi-
mations, respectively. Because of the strong temperature dependence of self-
diffusion, and hence of Vi, the range of temperatures, where Vp and Vi are of
the same order, is very narrow. As a result, we may simply add the expres-

sions and obtain the approximation

1]

1 1
A T?'VRhmax + E'VTHb In (hmax/b) (15)

suitable for all temperatures. Note that Vp depends on the dislocation

density o(t).

3. DISLOCATION GENERATION

The dislocation density may increase during irradiation as a result of
two processes. First, by the formation and growth of dislocation loops, and
second, by the climb of dislocation segments pinned by obstacles. The Tatter
process is exemplified by the Bardeen-Herring source [6].

Let us evaluate the average rate of increase for the dislocation density
by these processes. Dislocation loops can grow under'irradiation to an aver-

age maximum radius Ry, whereupon they may unfault and become part of the net-
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work or coalesce with other loops or dislocations. If V represents then the
mean climb velocity, the average Tifetime of a dislocation Toop is T = Rm/V.
Assuming that R = Rm/2 is the average loop radius at any instant, the dislo-
cation density due to loops is p = MR Ny averaged over a significantly large
volume containing a density of Ny loops.

The rate of increase of this dislocation density is then given by
Bo = 2m N /T = oV/R . (16)
m2L

To evaluate the change in dislocation density from the climb of edge dislo-
cations, consider in Fig. 2 a bowed-out dislocation segment pinned at two
centers separated by a distance £, the mesh length. To remain pinned under a
current of point defects constant along the arc, the point defects must pipe-
diffuse towards the center of the arc. It is assumed that pipe-diffusion can
occur readily such that the dislocation segment always maintains its minimum
line energy copmensurate with the area F required to accommodate the accumu-

lated atoms. The rate of increase for F is given by

where V is the climb velocity of an unpinned segment and L is the arc length
of the bowed-out segment. As the dislocation segment continues to bow-out, it
eventually encounters new pinning centers or it annihilates with another edge
diglocation segment. When new pinning centers are encountered, the bowed-out
segments are subdivided into new segments with an original mesh length of

average value £. The process of regeneration repeats itself with each seg-

11



Fig. 2. Geometric parameters for a Bardeen-Herring source.
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ment. If 1 denotes then the average time of regeneration and Ly, the maximum
arc length a segment can reach, then the rate of dislocation increase in a
volume containing Ny segments is given by

Bp = Nd(Lm - &)/t (17)
The regeneration time may be obtained from

With the help of Fig. 2 it is easy to derive the following geometrical

relationships
L = R , 2= 2R sin (¥/2) (19)
and F=dr- ar? - 2/a)1/2] (20)

From these it is possible to obtain

1 - (v/2) ctg (¥/2)

_s " |
il R vem v v - (21)

The dislocation density at any given instant averaged over a sufficiently

large volume is given by

N Lm

S
p=r———0/  Ld (22)
Lm x L

13



if it is assumed that segments bowed out to any length between 2 and L, are

equally abundant. Equation (22) can also be written as

N N 22

"
N a .. N m @ 2/) - ctg (v/2)]
p = [L = dv= 2
s DR AU e R

> dy .
8 sin® (¢/2)

m

We may use this equation to eliminate the segment density Ng from Eq. (17),

use Eq. (21) to eliminate 1, and obtain
Bp = C(L_/%) Vo/2 (23)

where

-1 L N\2 n 1 - (9/2) ctg (¥/2) n [20 - ¥ ctg (v/2)]
CHL /) = (=) [ J dy [ ; dy

m 0 ¥ sin {¥/2) 0 8 sin® (¥/2)

and ¥y = Lp/R{Ly). The numerical evaluation of C(Ly/%) is shown in Fig. 3.
If the segment bows out to a half-circle, then L = w&/2, ¥y, = n/2, and
C(m/2) = 1.355. Except for values of Ly close to %, the coefficient C is of
order one, and this approximate value will be used in the following.

In the above derivation, it was also assumed that the c¢limb velocity V of
the bowed-out dislocation segment is not dependent on the radius of curvature,
R. However, at elevated temperatures when Vi 2 Vp, the vacancy concentration

in thermodynamic equilibrium with the bowed-out segment is given by [6]

uf b R]

b _ ~eq _ b
Cy =C e [~ oor—mr R 1" Toae (24)

when the bow-out is due to excess interstitial absorption. For the case of

14



*UoL]eUsuab uOLIBDO|SLP 404 JUSLILL480)

¢/ ‘HLION3T Q¥V
14 ¢ [ |

-----—-‘--1--—--.--4-o

(¢771) 0

llllllllllllll

llIllt’lll'[[lll[ll

-.---..—........._--..b..N

¢ b1y

15



excess vacancy absorption, the sign in the exponential is reversed. Figure 4
shows the ratio CS/CSq evaluated for nickel according to Eq. (24). It is seen
that Ce - qu becomes increasingly negative as R decreases. As a result, the
current of thermal vacancies to the bowed-out segment may cancel the excess
interstitial flow at elevated temperatures, and the net climb velocity becomes
zero. The minimum value of Cs is reached when R = %/2 corresponding to a

"minimum" climb velocity of

Vo = Vo * Vg {exp [= 525y 5 10 3o5] - 1} (25)

If this climb velocity is zero or negative, the dislocation generation by the
Bardeen-Herring process is no longer possible and B = 0.
Accordingly, the rate of dislocation generation is approximately given by

DVm/l for Vm >0
Bp = (26)

0 for Vm <0 .

In the Tow temperature (< 300°C) range where loops contribute signifi-
cantly to the dislocation density, the rate of dislocation generation is seen
to be given by similar expressions, i.e. by Eqs. (16) and (26). The major
difference lies merely 1in the characteristic length parameters, the average

loop radius, R, in the case of loops, and the average distance between pinning

obstacles, %, in the case of network dislocations.

4. BIAS VARIANCE

The radiation-induced part of the c1imb velocity, Vg in Eq. (10), is

proportional to the net bias parameter Z /Z (_ /Z . It is already

16
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mentioned in Section 2, that this parameter vanishes if only one type of sink
is present.

In cold-worked steels, void formation is suppressed for an extended
period of irradiation. Nevertheless, during this period the dislocation
density has been observed to change dramatically even at temperatures where V1
is negligibly small. It can therefore be concluded that VR does not vanish
even though the net bias is zero when only dislocations are present as sinks.

This paradox can be resolved by taking into account the bias variance of
edge dislocations. This variance arises from the partial cancellation of the
long-range stress fields of individual dislocations when they are arranged in
dense groups. The bias of an individual edge dislocation depends to some
degree on the proximity of other edge dislocations and on the directions of
their Burgers vector. Wolfer et al. [8] have estimated this bias variance by
considering narrowly-spaced dislocation multipoles. They found that the bias
of an edge dislocation dipole can be as low as half the value for an isolated
edge dislocation, and that dislocations in higher-order multiple configu-
rations have even lower bias values. To take into account this bias variance,

we assign the net bias

d _
Z'i Z'i
(1+Z)'—a‘:—
Z Z
v \"

to the individual edge dislocation and assume that z is a normally distributed
random variable. Then, the average climb velocity Vg remains proportional to
(Z?/ZS - E}/f;), but Z? and Zs are to be interpreted as mean values for the
dislocation bias factors. Furthermore, both positive and negative climb di-

rections contribute to the average climb velocity Vp. However, with regard to

18



increasing the dislocation line length through climb or with regard to annihi-
lation, the direction of climb does not matter, and we must therefore take the
average of the absolute climb velocities. This average is given by integrat-

ing over the assumed normal distribution for the bias variance with the result

d —
_ a4 S Ll — 2. 2
V. =—2ZDA [ dz |— (1 +2z)-—| (V2w z) " exp (-z /2¢7)
R b vv v d —
-0 Z Z
v \
(27)
d —
Q d Z; MUY
=—7ZDaA |— (1+¢2n)-—
b vv v d —
Z Z
v d

VR is to be substituted for Vp in both Eq. (25) and Eq. (16).

The standard deviation, ¢, of the dislocation bias is expected to depend
on the dislocation density itself. In a well-annealed material, most dislo-
cations in narrowly-spaced dipole configurations have been annihilated by the
very process described in Section 2. The remaining edge dislocations then
possess the full bias of an isolated dislocation, and ¢ is close to zero. In
contrast, in a heavily cold-worked material, many dislocations are part of
dense tangles, resulting in a large bias variance. If we assume for this case

that ¢ 2 1/2, and ¢ 2 0 for the annealed case,
z = 0.5[1 - exp(=xp)] (28)

will provide a plausible dependence of the bias variance on the dislocation

density. The choice of A = 10'15 cm2 assures that the bias variance becomes

negligible for p < 1015 2

o > 1080 n72,

, but approaches its maximum value for
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5. RESULTS AND DISCUSSION

The following predictions for the evolution of the network dislocation
density are carried out for 316 austenitic stainless steel. The dislocation
bias factors Z? and ZS are evaluated with the formulae given by Sniegowski and
Wolfer [9]. Properties used are listed in Table 1. With the exception of the
mesh length, all other properties in Table 1 are based on measured or theo-
retically determined values. The mesh length was selected such that the satu-
ration dislocation density will be 6 x 1014 p=2 for an irradiation temperature
of 500°C; this density corresponds to experimentally observed saturation
densities at about 500°C. The average point defect concentrations produced
during irradiation are evaluated with rate theory as outlined in the Appendix.
A density of cavity embryos is assumed to exist from the beginning. The
density of cavities depends on temperatures and is assumed to be equal to the
terminal void number density as observed experimentally. These cavities are
allowed to grow according to rate theory which results in void swelling and an
increase in the cavity sink strength.

The saturation dislocation density is found to be independent of tempera-
ture between 300 and 500°C, but begins to decrease with increasing temperature
above about 550°C. Figure 5 shows the dislocation saturation density as a
function of temperature for two different mesh length assumptions. The theo-
retical predictions compare quite well with observed experimental densities
[4] as shown in the figure; error bars are shown when given in the references.
As can be seen the error in experimental measurement can be quite large. The
reasons for the decrease in saturation density as temperature increases is the
increasing contribution of thermally induced climb as self-diffusion becomes

important. The thermally induced climb is of course responsible for the high

20



Table 1. Materials Parameters

316 Austenitic

Parameter Stainless Steel
Displacement rate, dpa/s 1070
Cascade efficiency 0.1
Lattice parameter, ag, Nm 0.3639
Burgers vector, nm 0.2573
Shear modulus, GPa 82.95
Poisson's ratio ' 0.264
Yacancy migration energy, J 1.92 x 10719
Vacancy formation energy, J 2.88 x 10719
Pre-exponential factor De, me/s 1.29 x 1070
Yacancy relaxation volume, & -0.2
Interstitial relaxation volume, & 1.5
Vacancy shear polarizability, J -2.4 x 10’18
Interstitial shear polarizability, J -2.535 x 10717
Initial dislocation densities, m'2

for annealed a4 x 1012

for cold-worked 7 x 1015
Mesh length £, um 0.4

21
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temperature recovery of cold-worked materials. This recovery can also be
described with the present theory by turning off the point defect production
rate. Figure 6 shows the results for thermal recovery of the dislocation
density in cold-worked 316 austenitic stainless steel. It is seen that the

2, typical of solution-annealed

dislocation recovers to a value of 5 x 1013 m~
material, within about 12 days at an annealing temperature of 700°C. Anneal-
ing also occurs at 600°C; but it becomes increasingly insignificant at lower
temperatures. These predictions are in general agreement with observation,
though no dislocation density measurements have been found in the literature.

Figures 7 and 8 show the predictions for the dislocation evolution for
316 austenitic stainless steel. The time evolution is given in units of dpa,
where the dpa rate is 1 x 1076 dpa/s. The helium/dpa ratio of 0.6 appm He/dpa
is typical of fission reactors. The amount of helium in the cavities influ-
ences the incubation period before the onset of swelling. Comparison to
experimentally measured dislocation densities [4] in the transient region is
also shown in the figures and agrees quite well considering the uncertainty in
the experimental measurements.

The model developed for the evolution of the network dislocation density
reproduces the experimental observations remarkably well. This is significant
for two major reasons. First, the materials parameters required are very
fundamental and reasonably well known in the case of 316 stainless steels.
Therefore, with the exception of the mesh length parameter £ and the bias
variance %, no other parameters required adjustments. The value chosen for £,
namely 400 nm, is also reasonably close to the mesh length of bowed-out dislo-

cations observed in micrographs of irradiated steels.
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The second important implication of the successful model is that the com-
plex dislocation structure and its evolution can in fact be understood in
terms of two simple processes: the Bardeen-Herring process of climb in a ma-
terial with supersaturation of point defects; and the climb-induced annihi-
lation of dislocation dipoles.

The fact that dislocation loops have not been explicitly considered in
the present model constitutes both one of its strengths and its weaknesses.
Large loops increase their line length very much like a bowed-out dislocation
segment, independent of the presence or absence of a stacking fault. When the
stacking fault energy is low, as is the case in type 316 SS, the stacking
fault does not contribute significantly to the line tension and to the vacancy
concentration CB in Eq. (24). Therefore, dislocation loops and bowed-out edge
dislocations can indeed be treated as one at higher temperatures.

However, when dislocation loops are small, it is no longer adequate to
model them as edge dislocation segments. In this case, loops and network dis-
locations must be considered as different sinks, and their evolution will have
to be described by different models. Based on experimental observation, the
loop density increases and their size decreases with decreasing irradiation
temperature. It is therefore expected that small dislocation Tloops are pre-
sent in type 316 stainless steel at an irradiation temperature of 300°C, and
that these loops make a major contribution to the total dislocation density.
Accordingly, the present model should not be applied to the entire dislocation

structure in materials containing a high density of small dislocation loops.
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APPENDIX

The average concentrations of vacancies and interstitials, Cy and Cj, in
a material subject to a constant rate of generation, P, by a fast neutron

flux, are given by the two rate equations

- - SpS+S -
P - «D CD.C. - D.C. g N®ASZZ = 0 (A.1)
- - - S) NSaASTS -
P - «.CDC -D, g (cv cv) N®ASZD = 0 (A.2)
where K = 4mr (l— +-£—)/Q (A.3)
c D, " D, .

is the recombination coefficient and rc the recombination radius for a Frenkel

pair. NS is the density of sinks of type "s", AS a geometrical factor
characteristic of this sink type, and Z? and Zs are the bias factors of this
sink type for interstitial and vacancy absorption, respectively.

The solution of the rate equations for D;C; and D\Cy are

7. —
Dc =D (— ac + %) (A.4)
v Vv V — v \"
7
v
DC.=D & (A.5)
11 v Vv
where Z. = INA% 7T NA° (A.6)
v o v’

are sink-averaged bias factors and
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(A.7)
S S

is the sink-averaged thermal vacancy concentration.

The vacancy concentration
in local

thermodynamic equilibrium with the sink of type

s' is denoted
by CS.

The excess vacancy concentration 4C, is given by

NZ
v 2 1/2
AC = -
C. =55 {[M™ + L] M} (A.8)
v
o, -
where M=1+dDC "/ NZ
(ARY
and

Here, N = J N is the total sink strength.
s
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