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1 Introduction

When a particle beam undergoes a weak, if such a thing is possible, hose insta-
bility, hose waves travel back from the head to the tail of the beam, growing in
amplitude as they do. In experiments on intense electron beam propagation the
result is more often in the nature of a catastrophic hose instability and the con-
cept of a well behaved equilibrium undergoing weak perturbations of any sort is
dubious. Nevertheless, in order to have a well defined model to discuss, in this
work we are going to postulate such benign hosing of a Bennett equilibrium. In
any case for heavier particles any hosing is apt to be much less severe than it is
for electron beams.

Anharmonic phase mixing effects are of great importance when attempting
to analyze nonaxisymmetric phenomena such as hosing. The mixing arises due
to the radially dependent betatron frequencies which occur when particles travel
ip a nonlinear potential such as the pinch potential. The pinch potential is
defined as ¥ = fA, — ¢ and determines the transverse particle dynamics. In
terms of the pinch potential the radially dependent betatron frequency is:

Wi(r) =—-(-= =)

If we imagine the beam to be composed of a sequence of slices then as the hose
disturbance passes a given slice the slice experiences a shaking back and forth.
Individual particles in the slice respond in a manner which is dependent upon the
betatron frequency. If 1 = w — Bck is the Doppler-shifted hose frequency then
particles for which 1 < wg are maximally affected and the beam is plastically
deformed. It has been known since the original work in the 1950’s [1] that
radially dependent frequencies, and in the case of relativistic beams, relativistic
mass spread, cause phase mix damping of the hose motion, that is, damping of
the response of a slice, if one takes this point of view, and the convection of the
hose backwards in the beam frame.

Lee (2] exploited the known damping and convection due to relativistic mass
spread, in the first model of hosing beams to attempt to accurately model an-
harmeonic effects, by introducing a fictitious mass spread, that is, a distribution
of particle masses, chosen to recover known simulation growth rates. In his
distributed mass model one imagines the beam to be composed of groups of
particles the masses of which vary, from group to group, from a certain mini-
mum mass to effectively infinite mass. Each slice is composed of a superposition
of disks labeled by the mass of the particles in the disk, and the radial shape
of each disk is that of the undisturbed beam profile. Each disk undergoes rigid
harmonic oscillations in response to the linearized JxB force, averaged over the
radial profile of the disk. Phase mixing results due to the different shaking
frequencies of the disks. While this model is useful it has the feature that the
radial dependence of the betatron frequency is not accounted for since each disk
has the same shape.



Subsequent work by Ubm and Lampe [3] involved dividing the beam into
groups of particles with differing transverse energy, each energy group having a
partial density profile flat out to an energy dependent maximum radjus beyond
which it vanishes. The energy group model thus incorporates radial dependence
of betatron frequencies. Each energy group is treated as a rigid wafer whose
center of mass oscillates in the transverse plane in response to the disk averaged,
linearized JxB force.

Sharp, Uhm, and Lampe [4] improved upon this approach by developing the
multicomponent model, in which the beam is divided up into groups of particles
each with a particular narrow range of azimuthal frequency. Each component
is localized within a maximum radius which in this case is dependent upon
azimuthal frequency. Each disk oscillates rigidly and harmonically in response
to the disk-averaged linearized JxB force. As demonstrated by these authors, the
multicomponent model has the powerful advantage of successfully duplicating
the unportant analytical and resonance structure of the exact Vlasov theory, in
particular, radial localization of the resonance.

The adiabatic beam theory of Mark et al.[5] opens the door to yet another
multi-group approach to model nonaxisymmetric beam phenomena. In the con-
text of Mark’s model; it is possible to constrict s multi-ring model; in place
of disks one uses rings of particles, each of which consists of particles with a
narrow distribution of azimuthal angular momentum, centered upon a reference
circle orbit determined by the mean angular momentum of the particles in the
ring. Each ring responds rigidly to the ring-averaged, linearized, JxB force.

A multi-ring approach has the distinct advantage of allowing one to build
up hollow equilibria, something which cannot be done with multi-group models
involving disks. As such hollowing beams have been theoretically predicted (6]
and nnmerically observed (7] this is of some importance.

In this work we are going to consider the hypothetical but physically realistic
(at least for heavier ion beams) situation of a Bennett beam undergoing weak
and slow, in a sense to be made precise later, hose perturbations. The intent
18 to investigate the effect of such a nonaxisymmetric perturbation upon the
dynamics of transverse particle motion. It i clear that in case of catastrophic
destruction, due to large amplitude hosing, all bete are off in any save a fuily
wvoulinear theory. If intense particle beams ever propagate for many betatron
wavelengths they will certainly underge benign hosing at worst, so we feel that
the weak hose sitwation  a fruitful case to study.

We will not bave time to adequately discuss the philosophy underlying
Mark’s adiabatic beam theory, its potential application to simulation, withing
a drift kinetic or even fully hydrodynamic picture, or its relation to more con-
ventional particle simulation codes [24] except to say that one important reason
for studying adiabatic beam theory is the hope that computer simulations based
upon such fluid-kinetic hybrids might allow one to study beam propagation over
many more betatron wavelengths than is possible using brute force particle simn-
ulatiou. There is aiso the fact that the particle codes exhibit certain numerical
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pathologies and predict certain nonphysical results [24] when simulating nonax-
isymmetric beam phenomena. For more information on adiabatic beam theory
one should consult the papers of Mark et al. [38].

The organization of this report is as follows: In section 2 we briefly develop
the relativistically covariant formulation of Bennett equilibria in preparation for
the investigation of weak hosing of such equilibria. Following this, in section
3 we proceed to our discussion of transverse beam dynamics in an equilibrium
Bennett beam as a Hamiltonian system. In section 4 we employ canonical Lie
transform perturbation theory to get the ground state Hamiltonian in action
angle variables. In section 5 we analyze the families of nested tori of the equi-
librium beam system. In section 6, within the slow hose context, we end up with
an autonomous perturbed system involving nonlinear coupling resonances whose
properties we examine in section 7. In section 8 we investigate resonance overlap
using various tools available in the modern arsenal of Hamiltonian mechanics:
our main concern will be with the extent to which the adiabatic assumptions un-
derlying drift-kinetic beam models hold up for the benign, slow, weak, hose. In
section 9 we present our conclusions. For completeness we include Appendices
A and B dealing with Lie transforms.

2 Relativistically Covariant Bennett Equilibria

Consider a superposition of charged particle streams each with fluid velocity
directed along the z-axis of an otherwise arbitrary laboratory frame. In the
original work [8] Bennett spoke of a superposition of two oppositely charged
particle streams; in the formulation presented here we find a natural restriction
to only two streams. The basic assumption is that each particle stream is
distributed in phase space as a Maxwell-Boltzmann distribution in its own fluid
rest frame. In any frame the Maxwell-Boltzmann distribution for species o is
defined as:
fo = Noezp(—alP%)

which is a Lorentz scalar. In the lab frame the four-vectors a and P have
contravariant components (we use the Feynman metric g = diag(1, ~1, —1, —1)):

)

(L Yo
ad (tho’o'/ Ta
Py =(22,0,0,P7)

where T is the temperature, v the fluid velocity, H the Hamiltonian, and P the
canonical momentum. The vector a is timelike in the lab frame:

[«
L il (R
al&a ( ’7T )



and is thus timelike in any frame. If we contract a with the four vector potential
A* = (¢, A ) we arrive at the covariant pinch potential:

Yo = g_‘_’.‘A“a#
[

Note that this is —¢, /7, times the pinch potential which we mentioned in the
introduction. In a frame for which ¢ = 0 the particle stream is said to be a pure
pnch. [u the fluid rest frame of the sigma stream the vector a has no spacelike
components and the covariant pinch potential is:

_ %
Yo = Ta¢

This is the pinch potential we shall be concerned with in the next section of the
paper. The current density four vector for the sigma species is defined as:

1* = (necqq, jor)
Ny = /dapf,

Jo = goc f &pfop(p* + mic?)~H
Calculating j# explicitly yields the result:
j: = chNGQOG{:C“"‘

4rm3c?
Qo = —
a aa

where K; is the modified Bessel function of the second order. In this formula
all terms are manifestly covariant and one therefore writes the total current in
an arbitrary frame (with z axis along that of the lab and streams) as:

=Yg
(>3

The total current provides the source in the inhomogeneous Maxwell equation:

—=—2—Ka|mesc\/a a}]

(@*9xgtt — 043,)4" = fgfi e

If we contract the inhomogeneous Maxwell equation {in the Lorentz gauge) with
the four vector yclai& we get a nonlinear equation for the pinch potential

id d

S = ----XWN Goagaf'e™



where we assume an axisymmetric ground state and treat the hypothetical case
of a long beam so that 3/3z = 0. To get Bennett equilibria we invoke an ansatz
which converts this equation into the Poisson-Boltzmann equation. To this end
let us force the covariant pinch potentials of the streams to be related to one

another by:
e~ %o = e~ Vo

where b, is to be determined by forcing self-consistency, that is, forcing g to
solve the Poisson-Boltzmann equation:

ld d ~to _
;-&—rf':i;lbo - 28 =0

This equation results only if we have:
27
“E“' Z QGQINchboa:a: =-1
[ 4
so that if we define the matrix m:

2n
My = "‘;‘QUQINGQGQZG:‘

we may solve for the unknown coefficients by inversion of the system of linear
equations :
by = (m—l)clll

The matrix m is square and S by S where S is the number of streams. It is
easily proved that m is in fact singular for more than two streams, hence the
theory only accommodates two streams of particles. The vector potential A, i
gotten by inverting the system:
Yo = ZZGZA“
¢

If we explicitly refer to ions and electrons ¢ = (i,e) we arrive at the following
formulae for the scalar and vector potentials:

¢ gia3 — e

as
dide a5a% — ahal Vo=¢

Ag =

c [ P |
Ay= =28 By, oy,
9i9e GGy — Qa4
From the relation for the scalar potential we can see under what conditions a

pure pinch results in an arbitrary frame, with respect to which this formula is
defined, namely:

Yefe _ ¢iVi

T. T:




i terms of physical variables. This is the same as the condition one arrives
at in a nonrelativistic treatment. Notice that a pure pinch involves counter-
streaming of the ion and electron beams. One can show that the pure pinch
results in the same three-vector current density in all three frames of reference,
lab, 100 fluid, and electron fluid rest frames: it is of course this net, current which
provides the pinch force. We note that in the fuid rest frame of species o the
covariant potential v, is a pure scalar potential as mentioned earlier.

The Poisson-Boltzmann equation is a “classical” equation of mathematical
physics [10| and admits a class of self-similar solutions [11] which are invariant
under the group of transformations:

1/);:1/)0'4-0!

Here we find the mathematical basis for the self-similar expansion, that s,
the Nordsieck expansion, of self-pinched particle beams [9]. The most general
solution yielding a positive density n = nge™¥° is:

“ R+ Xy 4+ 1
o = 2og L P 11
570N - 53R

where 7 is an arbitrary harmonic function V3n = (. Generalized Bennett
solutions, gotten by taking the most general case of axisymmetry:

r.n
=(f g
Rn (a) cosn

S = (i)nsinno

are given by: . "
b Sl Ly M
Yo =2og-[(2)" +(%) |
where n and a are arbitrary positive real numbers. The self-similarity is manifest
providing that the scale radius a scales as r, since r scales as e~ 3® under the
invariance group. The Nordsieck expansion of ¢ with time preserves the group
invariance. Taking n = I we have the classical Bennett solution:

. 72 . &
gy = 2log(1 + ;;) J,lag%
taking n larger than 1 yields hollow equilibria, howeves, here we are concerned

ouly with the classical Bennett. For more information on the family of general-
ized Bennett distributions one should consult the review [i2].



3 Transverse Hamiltonian in a Bennett Equi-
librium

In this section we are going to derive the Hamiltonian describing transverse
dypamics of a beam ion. In the interest of careful presentation we prefer to
develop the theory, as in the previous section, in a covariant fashion. The
relativistically covariant formula which implicitly determines the Hamiltonian
is:
(mc)” = pup*

Minimal coupling between a charged particle and an electromagnetic field is
described by the replacement:

pp___,Pu_gAn
c

where the canonical momentum four vector is:

P =2 p

[

For particles in electromagnetic fields the relativistic and gauge covariant for-
mula which implicitly determines the Hamiltonian is (mc)? = p,p* subjected
to the minimal coupling replacement. We may explicitly solve for the ground
state Hamiltonian:

2 . 2,3
Ho = vome® + g0 = [(me*)” + (Poc)’]” + qdo
where the mechanical momentum with respect to our arbitrary frame is:
L _ 5 4r
po=FPo — -C'Ao

Small perturbations of the ground state manifest themselves in the addition
of small, nonaxisymmetric, time-dependent terms to the potential, and corre-
sponding terms to the canonical momentum:

A® — A* + 5 A*
P¥ — PH 4 6P

or, in terms of the explicit time and space parts:

¢ = po + &1
Ag = Ag + A,
H=‘Ho+ H]
P =P, + P



We may get an expression for the perturbation H, of the Hamiltonian by vari-
ation of the relation (mc)? = p,p* :

puépt =0
Solving this for H, yields:

Pﬁ'lfl)+??)'ﬁ1
Yomc Yom

H, = ‘I(¢1 -

The last term may be eliminated by a redefinition of the canonical three-
momentum but not in a gauge covariant fashion. This redefinition amounts
to setting the perturbation 131 to zero, which one is free to do but such a choice
destroys the gauge covariance of the theory. This lack of gauge covariance, in
itself, is not necessarily a problem so long as the final results of the calcula-
tion are gauge covariant. A similar situation has arisen in a recent paper [13]
wherein the authors opt to set the perturbation to zero but demonstrate the
gauge covariance of their final results. Failure to obtain a gauge covariant re-
sult would place a calculation in direct opposition t¢ the modern concept of
gauge covariance as a guiding priuvciple in physics, equal in status to Lorentz
covariance and general coordinate covariance. We prefer to avoid tampering
with gauge covariance, instead transforming to the frame in which pq, is zero
when we write down our Hamiltonian. We have discussed the derivation of H
from the point of view of an arbitrary frame of reference in order to motivate
the naturalness of the final choice of reference frame, which is neither the lab
frame, nor, strictly speaking, the fluid rest frame. The perpendicular terms in
Po are not zero in this frame but we argue that the perpendicular components
of Py are entirely negligible. Utilizing the fundamental relation (mc)? = p,p*
we arrive at the Hamiltonian in this frame by the samne procedure as above:

Ho=me + (52 + 22) 4+ g0
2m 7 3

H; = q¢y

Now we argue that the dispersion of the z velocityb in the fluid rest frame is
of negligible magnitude. This implies that the special frame we are working in
has po, equals zero for essentially all the ions in the beatn; stronger yet, this
meaus that the frame we are in is essentially the fluid rest frame. In the fluid
rest frame we recall that the covanant pinch potential takes the form of the last
equation in section 1 so we arrive at our final result for the Hamiltonian in the
fluid rest frame:

H, (p? + «&2) + 2T log(1 + .fi) + mc? - Wlog(g)
T3 - a? h 2

1
T 2m

H; = y¢,y



where, of course, the last two terms in Hy are of no consequence to dynamics.
There still remains the calculation of ¢,, the perturbed potential due to the
hose wave passing through the fluid frame. In the next section we process the
ground state Hamiltonian, by means of Lie transforms, into a more useful form
in preparation for the application of KAM theory. We derive in section 6 the
hose perturbation rendered also in action-angle variables.

4 Action-Angle Variables for the Near-Circle
Hamiltonian

Expanding the Hamiltonian H, about a reference circle orbit, to lowest order,
one gets a system of two linear oscillators for the radial and azimuthal degrees
of freedom. If one uses this lowest order Hamiltonian and perturbs it with a
weak hose one gets a nonlinear coupling of the two degrees of freedom which
is delicate to study since the ground state system fails to satisfy the sufficient
nonlinearity condition of the KAM theorem. The linearity of the ground state is
not inherent in the physical system but only in the expansion to lowest order in
noncircularity. In this work we are investigating the breakdown of adiabaticity
and find it necessary to expand the ground state to higher order to expose the
inherent nonlinearity. This alleviates the problem with the weak nonlinearity,
i.e., the linear ground state, and results in fulfillment of the conditions of the
KAM theorem in its strongest form. For more information on KAM theory,
in the context in which we are using it, we find Chirikov’s report [14] and the
recently published book by Lichtenberg and Lieberman [15] to be particularly
valuable. Expanding to fourth order in the small parameter ¢ ~ or/rq we get
the transverse Hamiltonian:

Ho = QoJg + 3v9J, + e3u1J,§ sin® ¢ + e*vgJ3sinty

where the various parameters are defined by:

ld"’V 92

”‘:("}I) (e dr3 r(,)
1 14 ng
2(6‘4 4 +1 )

r
V = 2Tlog(1 + z-i«)
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and the radial action-angles variables are those of the order ¢? terms of the
radial contribution to the Hamiltonian:

2.5 4
or = e(;) Ji sing
(0

op, = €(2v) i Jf% costy

These are not the correct action-angle variables for the radial Hamiltonian as a
whole. We employ Deprit’s version (16 of Lie transform perturbation theory to
get the action-angle variables and the Hamiltonian to the requisite order. Lie
transforms operate directly on the functions defined on the phase space manifold
and thereby avoid the well-known problem of the classical Poincaré-Von Ziepel
canonical perturbation theory, cf. [16], that is, mixing together of the new and
old variables. Our problem is easily formulated in canonical variables so that we
have no need of the more general noncanonical perturbation methods pioneered
iu plasma physics by Littlejohn [17].

The azimuthal contribution is already in ite exact action-angle variables. In
what follows we are concerned only with the radial contribution:

Hy =9, + eulin sindy + fzungsin“w

where we have divided out €2 to save writing. We will refer to the various terms
of H according to the power of ¢ in this equation in what follows. The missing
powers of ¢ will be replaced at the end of the calculation.

The terminology we use is largely that of Abraham and Marsden whose
magnum opus [18] is eminently worth studying. We mention now that in the
physical literature the operator that one calls a Lie transform is geometrically a
“pullback by a flow”. Unfortunately we simply will not have time to fill in much
of the beautiful differential geometric interpretation of the formalism we are
applying; for the whole story one must consult [19]. For other treatments in the
plasma physics literature, devoted strictly or more completely to the methods,
one could read Littlejohn [20] or Cary [21], or, for a wide ranging overview of
this and many related topics, Lichtenberg and Lieberman [15]. To carry owut
the calculation one needs the Ay flow, the puilback, and the pushout by the Hp
flow. The pullback by the Hg flow is used to invert the inhomogeneous Liowville
operator, which occurs at each order of the perturbation calculation, ov She
orbits of the Hg flow (method of chavacteristics) . One selects at each order a
funciion whose vector field generates a flow the pullback by which yields the
new variables at that order. This function is called the Lie generating function.
The pushout by this flow yields the new Hamiltonian at each order.

A general operator formalism was introduced by Dewar |22}, cf. Appendix A,
but we follow Fermi’s dictum: “when in doubt... expand!” , to get Deprit’s ver-
sion of the formalism, which in fact preceded Dewar’s more general treatment.
To this end we expand everything in sight in powers of epsilon, cf. Appendix
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B. For our system the Hy flow , i.e., the “time development mapping”, is quite
trivial:
Fo(J,9) = (J, ¥ + vot)

The pullback by the Ho flow, i.e., the “time development operator” is:
Fy(J,¥) = fo F(J,%) = f(J, ¥ + vot)
The first order term of our generating function is gotten from the equation:
(3 - {Ho, D = Hy - H,
at
Inverting the inhomogeneous Liouville operator on the Hy flow we get:

wi= [+ 0t ~0) - (9 + (e~ 1)

To rid wy of secular terms we define H, to be the time average of H; on an Hy
orbit:

B Vo 2x/vg
Hl = dtHl(J,dJ‘{" Vot) =0
27 Jo
hence, to this order we have: )
H1 =10

- luvigy v 2
w; = T VOJ (9cosyy — cosy)
The old variables in terms of the new are gotten from the formulae:
J = j + f{wl, :I}
'l’ = JJ - E{wl,v 'Z}

We also compute the updated version of §r in terms of the new action and angle;
leaving out the rather lengthy computations we tabulate the results of the order
¢ perturbation:

E = Uoj

= 1422 7% (90089 - cos3i
w=14+4c¢ i3 qu (9cosyy — cosly)
J=J+ e}--ﬂji(sinihz ~ 3sing)
4 vy
- 1 i]l ...i‘ - .
Y = ¢ + e=—J ¥ (cosdy ~ Ycosy))
8 1%}

3

5r = (%’;) (_.sinﬁ; - ei%—é-J%W + cosfz;[i))
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where functions with overbars are “new”, those without, “old”. What is signifi-
cant is that the Hamiltonian has not changed; evidently we need to go to higher
order yet in order to expose the nonlinearity of the ground state. The second
order term of the generating function is the solution of:
3 v2
( ~{Hp, }wy = 2H, + -«—J2[ (4v9 + 3_)cos4w

Vo

v 2
+ (162 — 121 )cos2y — (1205 — 15—1))
1200 vo

We choose H; to eliminate secularity and invert the Liouville operator on the
Hy flow to arrive at:

= 3 1507 -,
Hy = (§V2 - 55“;)
= l»jz[-(?—?- )sm41/1+{8—-— —6—~)sm2d)]
16 Vo

The second order contributions to the old action a.nd angle in terms of the new
are computed from the formulae:

i 8w1 . 1 dtUQ
J - D e
v=glen 5T i35
- _ { dwl 1 6w3
s TV BT 1T 357

After a lengthy calculation one arrives at the results:

V3
Jy = gi,jﬂ[ 4._ +6-—-)cos4w+ (16 - 24-—)cos2¢ + 1521 ]
v3

2
vr = (- —sm6¢+(8—-+18 2)sm4w+(—64-——+27 ,)smzw]

Inserting the results for J and ¢ into 6r and expanding to order €2 we get the
result for §¢ in terms of the second order correct action and angle:

by = (‘.’%‘)i.ﬂ sin ¢ ~ c—» m( = »%J(coszw + 3)

PN S SN vi

3 2 (2473 - 191 gin 5 1
+€ 556 Uo) J [ osm'h/) 19 osm 1/:+( 6 ”
v
+6‘Dm)sm 3¢ + (w96«- -+ 189=--~) sin |
v

The second order correct Hamiltonian which now conta.ms the nonlinearity is:

H = VOJ + fzi\guﬂ o Eﬁ ui) 2
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In the next section we will analyze this Hamiltonian, our intention being to set
up the family of ground state tori which describes the energy level manifold of
the transverse dynamics in a classical Bennett equilibrium.

5 Ground State Tori of the Classical Bennett
Equilibrium

Time evolution of two degree of freedom dynamical systems may be described
as a toral flow on a two-torus whose major and minor radii are actions and
whose toroidal and poloidal angles are the corresponding angles; see Figure 1.
When one considers the collection of tori parameterized by the ranges of actions
consistent with the total energy of the system one arrives at a family of nested
two-tori, an idea which apparently can be traced back to Lagrange in 1762, cf.
(18]. It is interesting that the behavior of the phase space orbits in this family of
tori is perfectly analogous to the behavior of magnetic field lines in a tokamak.
This is because one may in fact arrive at a description of field line behavior as
a two degree of freedom Hamiltonian system.

Toral flows have been investigated since the time of Jacobi who, in 1835,
proved that orbits with irrational winding numbers densely cover the torus,
cf. [23]. Poincaré [25] initiated the modern qualitative period of dynamics in
the late 1800's the development of which continued with the work of Birkhoff
[26] and others, including Kolmogorov whose fundamental paper of 1954 (27],
followed by work of Arnold (28] and Moser [29] in the early sixties, resulted in
KAM theory and the resolution of the problem of small denominators which had
plagued celestial mechanics for well nigh a hundred years. Chirikov and others
began introducing these ideas into plasma physics in the late 1950's. In 1966
a paper applying these ideas directly to the physics of tokamaks appeared [30].
These ideas must have seemed all the more compelling for tokamak physicists,
in light of the direct analogy mentioned above. In fact, one might look at this
aspect of tokamak physics as a particularly beautiful physical manifestation of
an otherwise abstract concept, that is, Hamiltonian systems as toral flows!

With this brief bit of lore behind us we move on to describe the tori of the
classical Bennett ground state. We may easily non-dimensionalize the problem
and by so doing scale away any mention of the transverse temperature 7' and
the Bennett scale radius a. To this end we will measure action in units of a\/T,
frequency in units of T'/a?, energy in units of transverse temperature 7', and
length in units of the Bennett radius a. If we wish to scale to oof ther beams
we simply use the following interbeam scaling laws:

(

2
)0

|~

UR-]

=

Dﬂ

=
if
18 T a

E



1
3

) J

Bae K

| |

J::a(T

We therefore have the near-circle Hamiltonian:
H = QoJg + ezl/().],» + 64(10.]3

where the various quantities have the same meaning as before but are now pure
numbers and we have dropped the overbars on the new Hamiltonian and vari-
ables. As explicit functions of the dimensionless radius the various frequencies
are:

1
N2 =
T 1443
2+ z3
= i
| B 11:3 + 66z3 + 129.1:(2, + 72
96 (2+ z3)

Since ag is manifestly negative the ground state system is of the “weak-spring”
oscillator type, that is 2 Hy/8J? < 0 so that the twist mapping in the (J,, %)
plane is such that the larger actions revolve more slowly than the smaller actions.
The fact that the ground state Hamiltonian depends linearly upon Jy is of
some consequence, resulting in the primary resonances being separated by a
frequency interval that is independent of action and therefore the same for
all adjacent pairs of primary resonances. Of course one only considers the
primary resonances that actually exist and in general there are only finitely
many primary resonances consistent with allowable winding numbers. In the
ground state the actions and winding number of a given torus are explicitly
given by:
Jo(zo) = :tgﬂo

1 |
Jo (0, E) = ---52%[1 -(1- 4-‘5—&'—(13 - 2203
w(zo, E) = g%[l ~422(8 - o)

[+

where, in deriving J, we have selected the branch that goes to zero as the radial
energy goes to zero, £ -—— ﬂ%:cg,, Winding numbers are bounded above by an
zg¢ dependent maximum rg/¢ where the upper bound itself is constrained to
fall within the range /2 < vy/fl¢ < 2.This resiricts the primary resonances to

= 1,2 which are equally separated from one another, as depicted in Figure 2.
At any finite radius the only primary resonance of importance is w = 1. The
secondary resonances are w = 1+ % and w = { — = where m < n so there
is a dense distribution of secondary resonances on either side of the primary

resonance; see Figure 2. Later when we investigate the coupling resonances we
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will be interested in whether the islands of the secondary resonances overlap one
another or whether they remain isolated. Technically, the smoothness condition
of the KAM theorem requires the latter condition if invariant tori are to exist.

We may invert the winding number condition for resonance to get the reso-
nant energy spectrum:

1032 2 2

Bpm = 3305+ 1 2z - )
where p and g are integers and their ratio is of the form one plus or minus a
fraction less than one. We naturally speak of such an energy spectrum as there
are many particles at any reference circle and these particles have a distribution
in energy. If we change our point of view and fix a given energy then the nested
tori for any particle with that energy are parameterized by the radius of the
reference orbit.

If we introduce the energy spread into our considerations we have a one pa-
rameter family of nested tori families, that parameter being the energy. The
true dynamical system is the four-manifold and a nested tori family correspond-
ing to an energy level manifold is a “slice” of this manifold. For a description of
the bewildering variety of bifurcational processes which may occur as one varies
the energy parameter in such a system we refer the reader again to [18].

If the radial action ceases to be a good invariant due to any resonance over-
laps then the particle orbit will diffuse to other reference radii. This is because
there is a one-to-one relationship between the reference radius and the azimuthal
action Jy . In fact, we could think of (z¢,J,) as the invariants of the ground
state system as well as (Jg, J, ), so that diffusion in action is equivalent to radial
diffusion.

For our system, as with all of these systems, resonant tori are densely dis-
tributed in the energetically accessible region of action space. We have a dense
distribution in radius, at fixed energy, of resonant tori, or a dense distribution
in energy at a fixed radius. Both situations actually exist in the beam which
consists after all of many particles with a distribution in transverse energy.

Resonance structure in action space tends to enhance the diffusive effects of
weak extrinsic random noise. We are not comsidering in this paper the effects
of extrinsic diffusion, such as elastic interparticle collisions, which tend to cause
radial diffusion. Collisions can remove a phase point from a nonresonant torus
and place it on a resonant torus or island. Such resonant diffusion, taking place
in the absence of resonant interaction, amounts tc an enhancement over the
nonresonant extrinsic diffusion, as the islands provide “stepping stones™ for a
phase point to random walk about action space propelled from island to island
by the collisions. We note that even KAM tori cannot prevent such diffusion as
the particle is able to “hop over” the tori. Here we are investigating only the
intrinsic diffusion driven by the interaction of neighboring islands.

The KAM theorem establishes the fact that “most” of the tori bearing in-
commensurate frequencies survive with only a small distortion, & small noninte-
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grable perturbation. By a small distortion we mean one without any ripping or
topological changes, i.e., we end up with a deformed manifold which is topologi-
cally a torus. On the other hand, tori bearing periodic orbits, or nearly periodic
orbits, i.e. incommensurate but with winding number approximated extremely
well by n/m (where n and m are relatively small integers), are grossly, that is
to say topologically, deformed.

Ultimately the distinction between rational and irrational winding numbers
1s meaningful only in a time asymptotic sense and has no real physical signifi-
cance for finite times. Mathematically one distinguishes between the concepts
of an orbit and a trajectory. An orbit is a geometrical concept, independent of
time, that is, the set of points which may be gotten from one another by action
of the flow map or its inverse. A trajectory is the act of evolution along an orbit.
One might think of the orbit as a wire and the trajectory as the motion of a
signal down the wire. Periodic orbits whose winding numbers are the ratios of
very large relatively prime numbers look very much like irrational orbits, that
is, tend to cover the torus well and close upon themselves only after a very
great, but finite, path length. It is important to realize that finite segments of
all orbits, corresponding to ow for a finite time along the orbits, which do not
happen to close during that time, look, and are, topologically identical. This
point is nicely discussed by Greene [31].

6 Hose Perturbations

In the rest frame of a transverse slice of the beam the passage of a hose wave,
propagating from the head to the tail of the beam, results in nonaxisymmetric
perturbations upon the potential with a sinusoidal time dependence. For an
overall review of hose theory we find the reports of Lee (2] to be particularly
enlightening; here we are only going to derive the perturbation due to a hose
wave whose Doppler shifted frequency is slow compared to the time scales of
transverse particle motion. The phase of the wave in the lab frame is kz — wt so,
i terms of the Doppler shifted frequency {1 = w — cAk, one may formulate the
problem i two different but fundamentally equivalent ways, depending upon
whether one eliminates w or k between the two equations. If one eliminates w
one arrives at the phase kZ - ()t where Z = z — fct is the fixed label of the slice,
whereas if one eliminates w one arrives at the phase ~{1z/f4¢ — w¢/Bc where ¢ =
Pet ~z is the fixed label of the slice. In the hose literature both formulations have
been nsed by various authors. Which choice one adopts is determined primarily
by whether one wanis the frequency or the wave vector as the independent
variable, which choice in turn depends upon the experimental situation one has
in mind. If one perturbs the beam with a fixed, known frequency in the lab, at
a fixed position, then one wants the frequency to be the independent variabie,
1.e., one wants the dispersion relation to yield k(w) , in which case subsequent.
development of the mode is governed by k(w) and 0(w). This was the situation
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in early work of Weinberg (32| which was carried out in the context of the Astron
experiment. In this work, however, we find it convenient to use the opposite
formulation, that is, k is the independent variable, so that the phase of the hose
wave in the slice rest frame is kZ — ()t where Z is fixed. The hose wave therefore
manifests itself in the appearance of factors such as:

6 f(r)ezplinblezp(i(kZ — t)]

in the pinch potential. We hope, in subsequent work, to investigate the effects
of the time dependence, which destroys the autonomous nature of the system,
making it a 5/2 dimensional problem and characteristically a more intricate
system as well, although a version of the KAM theorem on invariant tori holds
in this case also. For now we restrict attention to the autonomous case wherein
frequencies of transverse motion are much faster than (2. This removes the time
dependent factor ezp(i(kZ — (t)] from the pinch potential.

A lateral hose wave results in a lateral deflection of a slice and the appearance
of angular factors of the following form:

op(6h,6z,0) = Z 6pr(6z,6h)coskd
k=0

where 6p = p — 2o . We have exploited the absence of § dependence in 6z to
write this Fourier expansion of §p in harmonics of § . We are going to keep only
the lowest few harmonics in both 8 and %. In Figure 3 C refers to the center of
the unperturbed beam, §h is the lateral displacement which is assumed small
compared to the beam radius (i.e., roughly twice the Bennett radius), and z is
the radial position of the particle. It is the lateral displacement which effectively
determines the barrier transition to global stochasticity.
Next we expand ép and 6p? on the theta harmonics with the result being:

Sh3
bp = Iz’}-g[&hﬁzcosﬂ + (2062 — 62%)c0820 — 5h62c0830 + - - -]
0

g _ Ohéz

T 223
where ellipses in this case denote terms with no ¢ dependence. The hose per-
turbation of the Hamiltonian is expanded also on the harmonics:

op [(4z3 — 6h%)cosd + (8héz — Shzo)cos20 + 6h%cos30 + - - -]

SH = 5Hy(bz)coskd
k

which, in terms of 6p and 6p? is explicitly given by:

6H = 30360 + %(ug - 303)5p% + - -
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Finally, the double Fourier expansion in harmonics of 8 and ¥ yields, after quite
a considerable amount of algebra, the hose perturbations:
3 1 %]

2
SHus = 4hiJH sin(® - ¥) + *hy(353 - 272) 7 sin(0 — )
0 Vo

2
6H 3 = ~¢h, “y cos(f — 29) + —1~62h1 V—iJ% sin(d — 2v)
vo 4 v,

0
l/2 3
5H13 = E2h1‘~*—;.]7 sm(a - 3‘!/))

§Hog = (- hgi + fhgzo )i)Jcos(20 2y) — e’g %J% cos(26 - 2v)
0

+€23h2;-22-12 co8(20 — 2¢) — ¢ —hg.’ﬂo_—{k“—)%Jg sin(26 — 2v)
0

2
5323=(e4h2§+e=h2xo-'i-(- 14)7% sin(26 — 39) + 2 £h —*;J?cos(za - 3u)
%

Vo 2
vy 21
6Hay = -t‘-hay ~—-)i.lcoe(39 29} + ¢ Zhs—(_ *Jsm(30 24)
(7
where s = 6h/azg is the “hose strength”, and h,, hq, and hs are defined as:

Io

A= 203 )(—) (s = 39%)

hy = ﬁaa(ug - 4013)
ha = Zoahg

In the next section we analyze the isolated coupling resonances driven by these
perturbations. If one considers a region of action space in which there is a reso-
nance between the two degrees of freedom with no other resonances nearby then
all terms save the resonant term have rapidly varying phases and thus tend to
average away on the time scale of the resonant term. Such ap isolated resonance
is in fact integrable, that is, an invariant besides the enexrgy exists enabling one
to casily study the properties of the given isolated coupling resonance between
the two degrees of freedom.

If oue examines the perturbations we have derived one immediately realizes
that there will be many pairs of interacting, that is, overlapping, coupling reso-
uances, when the hose strength parameter exceeds a certain value'. One cannot
hope that the system will retain good invariants in this situation. It is to the
study of these resonances that we now turn our attention.

*One also reslises shat the perturbations vanish identically for 2 linear heam, that is, & beam
with &4 Gaussisn radial profile. We must confess thai we do not understand as yei just why
thiae should be.
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7 Coupling Resonance Between Harmonics of
Circular Drift and Vortex Gyration

Poincaré and Birkhoff realized that very few two degree of freedom Hamiltonian
systems possess two independent invariants, that is, classical Hamilton-Jacobi
theory fails for most systems, thus nonintegrable systems are properly thought
of as generic or “garden variety” systems. This means that one may write down
any Hamiltonian involving only actions, and perturb it with any perturbation
involving angles, at random so to speak, and be reasonably certain that the
combined system is nonintegrable. In fact, one is rather astounded if it turns
out to be integrable, as in the case of the Toda lattice [33] which surprised Ford
et al. [34] when they numerically found evidence of its integrability. This was
analytically verified by Henon [36] who, inspired by Ford’s work, sought and
found o independent invariants for the n particle lattice showing that the Toda
lattice is indeed “a jewel in physics” [34].

On the one hand, for garden variety perturbations of integrable systems,
one has the celebrated theorems of Kolmogorov, Arnold, and Moser to fall back
upon. The existence of invariant tori enables one to effectively study a wide class
of otherwise intractable systems which may be thought of as those systems for
which perturbation theory succeeds, if done correctly. On the other hand, as
one moves a system further and further from an integrable system the KAM tori
begin to disintegrate, that is, perturbation theory fails outright. If one pushes a
system far enough in this direction one may fall back upon essentially statistical
methods.

Of particular interest is the behavior of a system undergoing transition be-
tween near-integrability and non-integrability. For two DOF systems such as
the one we are studying the computation of the threshold of global stochasticity
involves determination of the critical perturbation strength at which all of the
KAM tori have disintegrated. The breakup and disappearance of the last KAM
torus triggers global stochasticity. Even after the destruction of the KAM tori
there are structures that provide resistance to global diffusion: invariant Cantor
sets, the Cantori, stubborn remnants of KAM tori which impede global diffu-
sion of actions and result in a divided or “clumpy” phase space. These partial
barriers to diffusion are of considerable current interest, cf. [35] for example.

In the late 1950’s Chirikov [37] began formulating a practical method of
discerning and quantifying the point at which the last KAM torus between
two fundamental resonances is destroyed, the overlap criterion. This was the
criterion applied to tokamak magnetic field structures by Rosenbluth et al. in
1966 (30]. Although the overlap criterion is neither necessary nor sufficient for
destruction of the torus [15] it is easy to apply and has great intuitive appeal
[14).

Before investigating the resonance overlap and resultant diffusion of the ra-
dial action in the Bennett beam we wish in this section to present some graphical
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results concerning the Poincaré sections of the isolated resonances in the weakly
hosing Bennett beam.

[n the previous section we arrived at the hose Hamiltonian which turned out
to be of the form:

H = Hy + OH}, cos(lyy — m@) + S Hy, sin(lyy — mb)
im
im

im

At resonance the frequencies of circular drift and vortex gyration are related in
such a fashion that the phase of the resonant term is stationary:

%‘(mb - 30)~0
Performing a transformation to the usual rotating variables defined as:
3, =1,
n

.79 = EJ,— + Jo
n

-

Y= 30 — ny
=9
we may perform an average over the angle & to get the approximate second
invariant which we mentioned earlier. The only surviving term is that for which
[s — nm = 0 so if we define p = I/n we have m = sp and | = np and the angle
averaged bose Hamiltonian in island variables is:

-

Huo = Ho+ ) 6HS, pcooptins + 3 6H oy 1p9inpWns
p=1 p=1

where Q)M = ny —~ 36 . Refering to the results of the last section we see that the
resonance Hamiltonians are just Hy plus the various perturbations previously
derived takeu one at a time, the only difference being that the ground state is
now evaluated at o

(J?’a J, 0)

which amounts only to an inconsequential shift in the energy. We view this as
justification for examining each isolated resonance individually prior to investi-
gating the overlaps. With the Hamiltonian in this formn we now see clearly the
existence of an approximate second invariant:

which demoustrates the integrability of the isolated resonance. In action space,

i close proximity to a given isolated resonance, the island Hamiltonian of that
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resonance may be cast into an alternate form with great intuitive significance,
expanding around the fixed points of H :

J, = Jo +6J
¥ = o + 09

To second order in the small §J we arrive at the isolated hose resonance Hamil-
tonian in the perspicuous form which Chirikov has called the “standard form”,
i.e., a simple pendulum:

N 10%H, - . R .
H,, 3552 J+[6H S +6H Y Fcos(y + x)

0

where everything is evaluated at the fixed point J, . We have used the fact that
only p = 1 occurs in the isolated resonances except the one-one resonance, which
includes the two-two as well. We neglect the two-two vis-a-vis the one-one as
it is of much smaller amplitude. The action at the fixed point is determined by
the condition that the unperturbed frequency vanish:

- 1300——11.1/0
0= g
2 n3q

and the angle at the fixed point is given by:

§H?,

6Hc<,

With this form of the island Hamiltonian we easily read off the island width
which is twice the maximum AJ,, on the separatrix orbit:

tamlvo =

AJ, = (—%)i(mﬁ +6H) ~ nd

The Poincaré map of interest is that induced by the flow on an energy level
torus as it intersects a theta equals constant cross-section, for a given point
on the section the Poincaré map is the first return map which takes the point
of intersection at one time to the point of intersection one unit of time later.
If the winding number on the torus is irrational the images of a single point
will densely cover the circle of intersection of the torus with the section as
one iterates the map infinitely many times. For intersections with rational tori
the images of a single point will repeat themselves eventually. Here one might
recall the discussion of the previous section concerning the distinction between
rational and irrational tori.

In this section we want to study the islands formed by the perturbation
barmonics taken one at a time. The sections were chosen at = 0 for simplicity.
A different choice would only rotate the pictures, corresponding to the winding
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of the island structure itself around the torus. One would expect, and this
expectation is confirmed, that the amplitude of the Fourier harmonics decreases
rapidly with increasing mode number. It turns out that of the perturbations
we have computed only the one-one, one-two, and the one-three islands are
important, that is, only the § fundamental and the fundamental and first two
harmonics of 4. A series of sections are depicted below (Figs. 4-22) showing
the island amplitudes as the hose parameter is varied. Each section shows the
intersections of twenty orbits with the same set of imitial conditions for two
bundred section crossings. Island amplitudes decrease with the reference circle
radius and as half the particles in a Bennett equilibrium are contained within
one Bennett radius and nearly all the particles within two Bennett radii, we have
computed the islands at one Bennett radius and one-half Bennett radius in the
results presented below. These isolated islands agree well with the amplitude
estimate given above and with the location of their unstable hyperbolic and
stable elliptic points.

8 Resonance Overlap of the Lowest Order Is-
lands

Iu this section we investigate the pairwise overlapping of the three lowest reso-
nances discussed in the previous section. We are interested in resonant modifi-
cation of the transverse invariant J, due to interaction of the islands generated
by the weak hose. For fixed energy, diffusion of J, in action space results in
diffusion of Jg as well. Since Jy is related in a one-to-one fashion to the radial
postion of the reference circle orbit diffusion in action is equivalent to diffusion
in radius.

Neglect of collisionally driven extrinsic diffusion is an admittedly severe lim-
itation on the significance of these results which involve only intrinsic diffusion,
yet for heavy ion beams such as in the context of heavy-ion fusion for example,
one may reasonably expect collisional effects to be nondominant for a coasting
beam. Even for a light ion beam comprised of ions and counterflowing elec-
trons one may argue that the collisions will have a vegligible effect upow ihe
ions. For a particle beamn propagating through a plasma, however, it is mwch
more difficult to ignore the effect of beam ion collisions with plasma ions. In
all cases what is important is a comparison of the time scale of the intringic
diffusion with that of the extrinsic diffusion which is related to the frequency of
important collisions.

As stated in the introduction, we feel that such an investigation of non-
axisymmetric beam phenomena from the point of view of Bamiltonian system
theory, or more generally, modern dynamical system theory,, is potentially a
fruitful approach to the physics of such phenomena. Since to our knowledge
this has not been examined from our point of view we present these results as a
preliminary attempt to develop some of the theory of particie beams in fusion in
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terms of modern mechanics. It is particularly natural to study the implications
of the adiabatic assumptions involved in the fluid-kinetic hybrid approach to
simulating particle beam propagation, in the same sense as one examines the
breakdown of adiabaticity in gyro-kinetic models of mirror or tokamak plasmas.

We present a series of sections in Figures 4-22 depicting the overlapping
of the lowest order islands and the resultant locally stochastic orbit behavior.
Each of the sections depicts the crossings of nine orbits with the same set of
initial conditions in each plot, each orbit crossing the section two hundred times
in these calculations. Rather than discussing the plots in the text we refer
the reader to the captions beneath each figure. In the next section we present
the conclusions we have drawn from the work presented in this and previous
sections.

9 Conclusions

Two oscillators coupled nonlinearly together may exchange energy. If this oc-
curs there is a good chance the more energetic degree of freedom will feed energy
to the less energetic degree of freedom. Transverse particle dynamics may be
thought of, as we have demonstrated, as two coupled oscillators. We have also
shown that a very small anisotropy such as that engendered by a weak hose
motion can result in appreciable transfer of energy between the circular drift
and the vortex gyration. Is it possible to have a good gyration invariant in
such a situation? The sections we have displayed reveal that very small lateral
displacements are sufficient to cause stochastisation of the orbits, yet the orbits
remain confined by tori preventing the radial action from growing without limit.
That is, radial motion cannot absorb unlimited energy from the circular motion.
Thus although the oscillators transfer energy due to the hose driven coupling
resonances it is not entirely unreasonable to build a drift-kinetic description
upon the assumption of a transverse radial invariant. One might, however,
believe that the questions of collisionally driven extrinsic diffusion render the
entire question addressed in this report moot. However, so also do collisions
render any concept of good invariants moot! Our work is applicable to just
thoee situations in which one would physically be justified in speaking of action
invariants in the first place. What we have done is to examine a non-collisional
mechanism for the modification of such invariants in a plausible beam configu-
ration, a slight nonaxisymmetry, a situation that one is interested in studying,
particularly since the particle codes do not work so well for this case. We do not
believe that our results show that adiabatic models for nonaxisymmetric beams
will not work; on the contrary, we personally feel that such models should be
developed further.
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10 Appendix A

In this appendix we will present the essentials of Dewar’s canonical perturbation
theory for the time dependent generating functions necessary to deal with time
dependent Hamiltonians. One selects a Lie generating function w the pullback
by which is denoted T and the pushout T—!. The Lie derivative L is defined in
terms of the canonical Poisson bracket as:

The derivative of the pullback T with respect to a parameter ¢ which labels the
generating function w, is:

dT

- = -TL
and the derivative of the pushout T! is:

dT—l

=

Integrating the derivative of the pullback with respect to ¢ one arrives at the
formal expression for the pullback:

T(e) = expl- / " de' L{we)

where we must think of this as an e-ordered product as the Lie derivatives do
not necessarily commute at different values of ¢. Here we get the element T in
the Lie group of transformations as the exponential of the element. L of the Lie
algebra. In terms of the pullback the new variables Z = (Q, P) are:

Z=Tz

where 2 = (q, p) are the old variables. The new Hamiltonian K is related to the
old Hamiltonian H by Dewar’s formula:

K=T"'H+T1T"! j/ dc’T(ez’)'g-tg(ef,t)
o ot

For a derivation, which unfortunately we have no time to present, one could see
Dewar [22]. Also, for the differential geometry one should see [18].

11 Appendix B

Deprit formulated a canonical perturbation theory in 1969 in terms of Lie trans-
forms in the case in which one has a small parameter ¢ in which one is able to
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expand. Dewar’s treatment in 1976 amounts to a generalization of Deprit’s to
the case of possible nonanalytic functions, i.e., where series developments may
not exist. We may most efficiently motivate things by going chronologically in
reverse. Here we expand all the objects of Appendix A in the small parameter
¢. In terms of the expansion of the generating function w the derivative along

the flow of w is: - -
%:—Z{wm }*—'-—E:Lﬂ

n=0 n=0

Likewise the formulae for the pullback and pushout are given recursively:

Explicitly, the formulae employed in the report are:
Tot=1
T;l = Ll
1 1
T; 1~ '2"L2 + ELg

At each order the Lie generating function is the solution of the following equation
where the new Hamiltonian K, is chosen to eliminate secularities:

3 n-—-1 | _
(3 = (Bo: Do =n(Kn = Ha) = 3 (La-mKom + mT 2 Ho)
m=1
Writing out explicitly the two formulae used in the report we have:
d ,
(5}7‘ ~ {Ho, }w; = K, - H,

(35 = (Ho, s = 2Ks - Ha) - L(K + H)

The differential operator on the left hand side is inverted by integrating along
the flow lines of Hy. The explicit formula for this inversion, in terms of some
functions f and g is:

(5 - {Ho NS =9

f=(F) J{,, dt” F*g(t") + f(to)

We have included just enough of this formalism to enable one to follow the argu-
ment in the report; the beautiful geometry involved must remain undescribed.
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Figure 1 Ground State Tori
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Figure 2 Secondary resonances arrayed on either side of the primary resonance
at w = 1. There is a dense distribution of such secondary resonances, one at each
rational w, however, the island amplitude decreases rapidly as the numerator
and denominator of the fraction increase. The KAM theorem requires that the
secondary resonances of appreciable amplitude be well separated in order that
invariant tori may exist.
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Figure 3 Lateral Hose Deflection of a Beam
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One-~One Hose Perturbation

dy y-action
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-t -2 -1 ° 1 2

Figure 4 z, = 0.5 and s = 0.01; depicting the growth of a primary island with
elliptic point at ¢ = 7/2 and hyperbolic point at ¥ = —3x/2. The separatrix
orbit is not shown.
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One-One Hose Perturbdation

24

14

Jy y—-action
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Figure § z, = 1.0 and s = 0.01. At one Bennett radius the primary island has
grown to an appreciable amplitude for this very small lateral displacement.



One~Two Hose Perturbation
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Figure 6 z, = 0.5 and s = 0.01. The two thin islands are visible.
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One~Two Hose Perturbetion
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Figure 7 2z, = 1.0 and s = 0.01. The section shows again the increase in
amplitude as compared to one-half the Bennett radius.



One-Three Hose Perturbation
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Figure 8 One-Three Isolated Resonance: z, = 0.5 and s = 0.01.
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One-Three Hose Perturbation
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Figure 9 One-Three Isolated Resonance:

Zo, = 1.0 and s = 0.01.



One—One One—Two Resonance Interaction
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Figure 10 z, = 1.0 and s = 0.0005. A thin stochastic layer around the separa-
trix near the unstable hyperbolic point is emerging.
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One~One One~Two Resonance Interaotion
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Figure 11 z, = 1.0 and s = 0.0008. Island interaction has generated visible
satellite islands and the stochastic layer width has increased.



One-One One—Two Resonance Intermotion
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Figure 12 z, = 1.0 and & = 0.0007. Further widening of the stochastic layer
and more satellite island structure is visible.
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One=~0One One~Two Resonance Interaction

14

Figure 13 z, = 1.0 and s = 0.001. The one-two islands have shrunken out of
visibility; a wide stochastic layer surrounds the one-one island but is still well
bounded by KAM tori.
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One—-One One-Two Resonance Interaction
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Figure 14 z, = 1.0 and s = 0.01. The inner tori are shrinking as the sto-
chastic region encompasses more and more of the section. One can see very
thin remnants of the one-two islands.
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One-0One One~Three Resonance Interaction
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Figure 15 z, = 1.0 and s = 0.001. Interaction between the one—one and one-
three islands has generated satellites but there is no apparent instability yet.



One=0One One-~Three Resonance Interaction
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Figure 16 z, = 1.0 and s = 0.0003. One can see some instability around the
separatrices of the one-three island chain bounded by as yet unaffected tori.



One-0One One-Three Resonance Interwotion
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Figure 17 z, = 1.0 and s = 0.01. Here the situation has changed dramatically,
though good tori are still bounding the action quite effectively.



One-Two One-Three Resonance Interaction
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Figure 18
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Zo, = 1.0 and s = 0.007.
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One~Two One~Three Resonance Interaction
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Figure 19 z, = 1.0 and s = 0.01. The one-two islands are not even visible;
there is some instability near the separatrices of the one-three islands.



One-Two One-Three Resonance Interaction
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Figure 20 z, = 1.0 and s = 0.1. The nine orbits are very unstable but, and
this is the significant point, are still bounded within a region of action space.
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One-0One One-Two One-Three Resonance Interaction
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Figure 21 z, = 1.0 and s = 0.01. Orbits are locally unstable but well bounded
by tori.



One-0One One-Two One-Three Resonance Interaction
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Figure 22 z, = 1.0 and s = 0.03. The outer tori are expanding, indicating
increasing transfer of energy from the azimuthal to the radial motion. We have
found that this continues as the lateral displacement increases further, with no
qualitative change in the orbit behavior within the torus.
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