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1. INTRODUCTION

We have been developing the discrete cones method (the DCy method) for
two-dimensional neutron transport computation. The general theory of the DCy
method was already reported.(l) A hybrid method was created by applying the
DCy method to a solution in a void and the Sy method to a solution in non-void
regions. The method was formulated for both X-Y(l) and R-Z geometry.(Z) The
numerical experiments demonstrate the strong mitigation of the ray effects in
a void.

In the present paper we formulate the DCy method for a solution in a non-
void region. Our goal is to obtain a two-dimensional neutron transport compu-
tational method which is free of the ray effects and at the same time as effi-
cient as the Sy method. In Sections 2 and 3, the DCy method will be con-
structed for X-Y geometry. Section 4 will describe new programs utilizing the
DCy method. In Section 5 several sample probiems will be solved to show the
capability and numerical properties of the method. Section 6 will conclude
the report.

2. CONSTRUCTION OF THE DISCRETE CONES METHOD

In this chapter, we shall discuss an application of the discrete cones
method to solutions of the neutron transport equation in a non-void. As we
mentioned, we expect ray effect mitigation by this method. However, the
application is restricted to solutions in X-Y geometry.

The spatial domain of a system is partitioned into rectangular mesh
cells, Dj. In a cell Dj, we solve the integral form of the transport
equation:

s -a(r',r) -a(r_,r)

0
¥(r,2) = [ ds S(r',Qe ~ T + ¥(r . Qe —s°~ (1)
0



where r. is a point where a particle enters the mesh cell, r is a point where
the particle leaves the mesh cell, s = |r' - r|, s; = |rg - r|, and a(r',r) is
the optical length defined by a(r',r) = fs op{r - s9) ds.

First, we assume uniform compositionoof a material over the mesh cell Dj.
This leads to of(r',r) = oyys and a(rg,r) = oyys,, where o denotes the total
macroscopic cross section of the cell D;. Second, we assume that the source
term S(IL'gQ)’ which includes the scattering, fission, and external source
terms, is constant over the mesh cell Dj. This leads to S(r',2) = $;(9).
Under the above assumptions, performing the integration with respect to s in
Eq. (1) results in

=-0_.S

L 5.() + ¥r e U0, (2)

¥r,2) = — (1 -e
ti

-otiso)

To find the transfer and escape matrix elements, we consider a rectangu-
lar mesh cell in an X-Y coordinate system as illustrated in Fig. 1. Multiply-

ing Eq. (2) by Qeny and integrating it over the surface TOP and the m'th cone,

My = [en-1/258me1/20 0 ¥n-1/25 w1721, we have

X
R
J'odx [ dE dv (2eng) ¥(x,y1.E,¥) (3)
X AQ
L
1 (R %o
=2 dx [[  dEdv (@n)(1 - %) s(,v)
X AQ -
L m
XR -0,
+ [ dx [[  de&dy (feny) ¥r.,E9)e ,
xL AQm B

where we omit the subscript i and abbreviate o, to 0. It is noted that s, de-

pends on the outgoing point of a particle on the surface TOP and its di-
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Fig. 1 Schematic diagram of a mesh cell.



rection. Using Qeny = /1 - E? sin ¥, and assuming the angular flux Y is con-
stant over the m'th cone, we can integrate the left-hand side of Eq. (3) to

find

L.H.S. = gp &x Ay, ¥, (4)

£+

3
[ A-€ g =-% [e/h - € + arcsin el
£

where: g

-

L

bup = [ sin ¥ dv = cos y_ - cos ¥, ,
¥

X = xp = X_

and Y¥rp, is the m'th cone flux on the surface TOP. From now on, Emel/2 and
Yme1/2 are abbreviated to &; and Yy, respectively. The right-hand side of Eq.

(3) is rearranged as follows:

X

R
RHS. = [ dx [f  didy /A - €2 sin ¢ SLE¥) (5)
X AR
L
xR ~-0s o
s f dx Jf dedy /- € sin ve [¥(r . 6,9) - S(E,¥)/0] .
X AQ

L

To go further, we point out an advantage for using X-Y geometry. In X-Y
geometry, if a particle lies in a cone at a point, the particle lies in the
cone forever as long as it streams without collisions. In contrast, in curved
geometries a particle moves over several cones as it streams. This makes the
discrete cones method in curved geometries much more difficult than in X-Y

geometry,



Now, taking account of the above fact for X-Y geometry, we perform the
integrations in Eq. (5). First, we define T by T = cos V. From the geometry
shown in Fig. 1, we see that

S = (x = x)/u

for particles streaming from LEFT to TOP, and

So = dy/n

rd
for particles streaming from BOTTOM to TOP, where &y = YT - ¥gs ¥ = 1 - &° 1,

and n = /f - €2 /i - TZ. Furthermore, we define Yo» Tg» and T, by

<
]

A
, = arctan (-K{-) ,
Tg = COS Vg ,
and Ty = COS Y .

Now we treat the second term of Eq. (5) separately. By assuming that
¥(rs,8,%) - S(E,¥)/0 is constant over the m'th cone, this is replaced by ¥_, -
Sp/0, where Y_, is either Yg, or ¥ ,. When 1, < 7_, all the particles cross-
ing TOP in the m'th cone come from LEFT. Hence, the second term of Eq. (5),

I,, becomes



X
I, = {[  dx f f A - & dede exp (- _
X /lj

To simplify the integration with respect to the variable &, we include v1 - EZ

a(x - XL)) S

in the g, and set € to &;. As a result, I, becomes

Ip = 9uC31(Ypm = Sp/9) (6)
R ™ o (x - x )
where Cqy = [ dx | dtexp(--P = (7)
X, T
ag
and op - '
h-e

X, = X
. 17X ’
for - x +
X, = X
., - 2 =% ,
/ixz - X )2 2
R X - X
t(x) = L :
(x - xL) + ly

When . < 1, < T, we see that some of the particles crossing TOP in the m'th
cone come from LEFT if 7. < v < 7, and x < x < x3, or T < T <71 and x; < x
< xg. Others come from BOTTOM if =. < © < Tand x; € x € x3. Thus, I, is

expressed by



X E, T
1 + 4+ o(x - x ) S
L=/ d&[ [ /- £ dedr exp (- -——-___J:_)(wLm -.Em)
g o 7l - £! T

g Ty

xR o(x - x ) S
+f & f [ - £ dedt exp(- — )y, - D)
X1 s T(x) N -«

+ ;(x) S
[ A - £ dedt exp(- oby ) (¥, - =n).
- Nh-8 N -2

xR 13
+[ dx [
Xq g

By the assumption made for the £ variable, I, becomes

S S
_ _°m _°m
I, = 9,{C3p (Y - 57) + C33 (%, -5 (8)
where
X T X T
1 + o (x-x, ) R + o_(x-x, )
Cypp =/ ax [ drexp(- 2—5)+ [ ax [ drexp(- 2——), (9)
- X1 1(x)
*R Tt oAy
and Cag = [ dx [ drtexp(- —P—). (10)
X - 71l - 2

When t4 < 75, the particles come from LEFT either for t. < 1 < 1, and x|
< x € xp, or (x) < T < T, and X} € x < Xp; meanwhile, they come from BOTTOM
either for t_ € 1 < ;(x) and X3 € x € xp, or . € T < 7 and xp < x < xp.

Then, I, becomes



1 alx =~ x, ) S
I, = Vl - & dede exp (- L — Iy, - Eﬂ)
XL E- A-g e
X2 g+ T+ o(x - XL) S
+[ ax [ ] /1 - & d&dt exp(- -———_—.)(‘YLm - _O_"l)
X1 . T(x) 1 - gz T
X2 E'l' ‘:’(x) oA Sm
+[ ax [ vl - 52 deédt exp (- Y )(me -'E')
X1 o E- Ez v/l - 12
XR E'I' T+ oA S
[ dx [ [ - €@ dedr exp(- Y ) (¥, - =) .
et 2 -2 "
X2 5T N-82 A -1

By the assumption made for the & variable, I, becomes

S S

_ _m _°m
I = 9n{Cag (¥ - 57) + O35t - )1 s (11)
where
X T X T
1 + o (x = x ) 2 + o {x - x )
Cay = [ dx [ dt exp(- —E——;———E—) + [ dx | dtexp(- —E——?———E—)(lz)
XL T_ Xl T(X)
and
X : X T
2 T(x) g by R + o_Ady
Cag = [ dx [ drexp(-—P )+ [ dx [ drexp(-—P—) . (13)
Xq T_ 1 - 2 Xo T_ 1 - 2
Meanwhile, the first term of Eq. (5), I;, becomes
I{ = gp Ay & Sy/o . (14)



Finally, adding Eq. (14) to Eqs. (6), (8), and (11), and equating them to
Eq. (4), we have three equations. Dividing both sides of these equations by
gpdxAy, and rearranging leads to the following relations between the outgoing
cone flux on the surface TOP and the incoming cone fluxes on either the

surfaces BOTTOM or LEFT, or both:

Cap ¥y v (1 -C3y)S, /0 for t, < T
(15)
Y = C2fim * Caa¥am * (17 Cgp m C33)S,/o for to<Ty <ry
C3a¥m * Cas¥pm * (1 = O34 = CgglSpfo for 7 <
where Céi = C31/AumAx for i =1, 2, 3, 4, and 5 .

As for the cone flux on the surface RIGHT, relations similar to Eqs. (15)

are obtained:

D31‘1’Bm + (1 - D31)Sm/o for Py <o
| (16)
Yom = D3o¥pm * D3g¥ y + (1 = D3y = D33)S, /o for p_ < p <p,
Dag¥py * D3g¥py + (1 = D3y = D3g)S, /o for p, < o
where po = sin (Ay/ax)

pt sin (lpt)

m = sin ¥y - sin Y., and

o
L]

D31-/AyAnm for i =1, 2, 3, 4, and 5 .



To make the formulas more concise, we rewrite Eqs. (15) and (16) in the

following way according to Eq. (2.25) in Ref. 1:

Tm = TTLm‘yLm * TTBmWBm + PTmsm (17)

me = TRLm‘yLm + TRBmWBm * PRmsm (18)

where Trims Ttgms TRLms» aNd Tppp are called the transfer matrix elements and
Prm and Ppp are called the escape matrix elements. These elements are given
in Tables 1(a) and (b). As we described in Section 3 of Ref. 1, these ele-
ments are sufficient for actual calculations because all other elements are
obtained from these by symmetry.

The source term S(r,9,E) 1is given by a summation of Eqs. (2.14) and
(2.15) in Ref. 1, and an external source term. Applying the multigroup method
and assuming the sources are constant over the mesh cell, we find the source

term of the g'th energy group:

Sgl@ = Scg(@) + Sep + Qq(D) (19)
G
where Scgl®) = h=21 J a9 Oshag F(2'20) ¥ (2") (20)
1 G 0 o
and ng =I5 % h=21 (voe), / ¥ (8') da' . (21)

In Eq. (20), f(2'+2) is the probability that a particle in the direction 2' is
scattered into the direction £, and Osh+g is the scattering cross section from

the h'th to the g'th energy group. In Eq. (21), Xg is the energy distribution

10



Table 1(a)

Elements of the Transfer and Escape Matrices

for the Surface TOP

ELEMENTS
CASE TTLm TTBm PTm
To € T Cél 0 (1 - Cél)lo
< T STy C32 C33 (1 - C3p = C33)/0
T+ < T C34 C35 {1 - €34 - C3g)/o
Table 1(b). Elements of the Transfer and Escape Matrices
for the Surface RIGHT
ELEMENTS
CASE TRLm TRBm PRm
Py < P- 0 Dél (1 - Dél)/o
P < Po < Py D33 D32 (1 - D3p - D33)/o

11




of fission produced neutrons, and (vof)h is the number of neutrons produced by

a fission reaction times the reaction cross section of the h'th energy group.
The probability function f 1is expanded by use of spherical harmonic

functions in polar coordinates where the direction ' is identical to the

polar axis. Then, the scattering source term is represented as(3)

G © n
_ k k
Seql® = hgl n=20 (2n + 1) o, k=20 R (1, 9) ¥ (22)
Kk AT K
where Y = {1 du fo dy ¥ (u,9) R (u,¥)/2n
and Rk is the spherical harmonic.

n

In the discrete cones method, we use the following sources averaged over

the m'th cone:

G L n K K
chm = hzl nzo (2n + 1) oshn kzo Rn(“m’wm) whnm * (23)
1 G MT .
ngm S IT Xg hzl (vof)h mzl wmwhm ’ (24)
and ng = Qg(um,wm) . (25)

where MT = N(N + 2) for the DCy approximation, (mu,,V¥y) is a discrete direction
K

of the EQy quadrature set, and whnm is given by
MT ~
_ k
wﬁnm - mzl ik Ol ¥ ¥ - (26)

12



In Eq. (23), the summation with respect to n is stopped at n = L, and the ap-
proximation is called the P__ approximation. ¥, is called the cone flux. The
solar flux, ¢, is given by

MT .

6= ) w¥

. (27)
mel M hm

For Egs. (17) and (18) to find the outgoing flux ¥, and Yp,, we must
know the incoming fluxes Y¥p, and ¥, and the source term S,; however, S,
depends on the cone flux Y, averaged over a spatial mesh cell. Hence, ¥, must
be calculated in some way. In actual calculations, S, is computed by using
the ¥, of the previous inner iteration.

To find the cell cone flux Y¥,, we first proposed a flux averaged over the

two outgoing cone fluxes and the two incoming cone fluxes of the m'th cone:
-1
W'E“’Lm*‘” + ¥+ v ), (28)

Our numerical experiences, however, show that the use of Eq. (28) results in a
slow convergence of the inner iteration; it requires twice or more the inner
iterations compared to the discrete ordinates method (TWOTRAN-II).

As is known, the coarse mesh rebalancing technique for acceleration of
convergence demands particle balance in a specific spatial domain, and the
technique has been successfully app]ied.(3) This suggested enforcing particle
balance in a mesh cell and a cone so that convergence is accelerated in the
discrete cones method.

Transferring the total scattering term oi¥ to the right-hand side in Eq.

(2.16) in Ref. 1, and defining the current by j = ¥, we have

13



Feilr,9) = s(r,9) - or) ¥r,9) , (29)

where the subscript g is omitted. This equation states the particle conser-
vation at a spatial point, r, in a direction, 2. To apply Eq. (29) to a mesh
cell Dy, we integrate it over the mesh cell D; and the m'th cone. By the
divergence theorem: [ Vejdr = [ jen dA, we have

D. oD,

[I ] gndad@=[[ [ (S-o.¥ drda. (30)
Let us consider a mesh cell as shown in Fig. 1. Assuming S - o4¥ is constant
over the mesh cell D; and the m'th cone AQ,, and ¥ is constant on each boun-

dary surface: TOP, BOTTOM, RIGHT, and LEFT, and the m'th cone, we find

FTm + FRm + FLm + FBm = AxAywm(Sm - Gth) s (31)

where Flm

AX(”AQm feny do) I >
FRy = ay(ff  Sen, d2) ¥,

Flp = &y(f]  9n do) ¥

and FBp

n
>
x
~
—
—
Lol
[
=
[~ %
Lol
~—
w"&
3

Solving Eq. (31) for ¥, results in a formula of the cone flux ¥,:

FT_+ FR_+ FL_+ FB
y =L (g -_m m m m . (32)

mooo,m AxAywm

14



As we will see later, this expression, in fact, accelerates the convergence of
the inner iterations.

3. CALCULATION OF THE TRANSFER AND ESCAPE MATRIX ELEMENTS

In this section, we perform integrations of the transfer matrix elements
TrLms TtBm» TRLms @nd Tppps and the escape matrix elements Pr, and Ppp;
equivalently, we must calculate the constants C3; and D3; for i =1 to 5.

By integrating Eq. (7) with respect to x, it becomes

12 - 1'2 T-!- o, Ax
Cor = — iy [ dt texp(- P
31725, T T L exp T

The second term is converted by the following formula of integration:

b
fa du u exp(--%) =-% (b? - ab) exp(- &) - %-(a2 - oa) eXP(‘-%)

ol

(33)

where the exponential integral E;(x) is defined by(4)

= °°e

and a is a positive constant. Applying Eq. (33) to the second term of C31

results in
2 2
*° -7 o, Ax
+ - 1 2 p 1 2
C31 = 35— = 7o- (T - opixr,) exp(- ——) + 5 (1 (34)
P p + p
2
g, Ax o, (Ax) o, Ax o, Ax
P P p P
- oy0xt_) exp(- T ) + = {E, ( - ) - £ ( . )}

15



As for the second term of Eq. (9), we must first integrate it with re-
spect to Tt because the integral limit ;(x) is a function of x. But doing so
leads to exponential functions whose arguments contain ;(x).‘ Integrating it
with respect to x is very complicated. In order to simplify the integral, we
look at the integral limit from a different point of view. The integral

limits are illustrated in Fig. 2. If we first integrate with respect to x,

the second term becomes

o x(1) op(x - xL) X op(x - XL))

T+ R
[oar ) axexpl- o E) s [ ar [ ax exp(- 2L
- Xy T_ X1

where x(t) = x_ + wy/A - % and Ty = bx/Vax% + by? | performing the inte-

gration with respect to x leads to

LY Glxp = x) 4 o Op Ly
=] drrexp(- ——=—=) - [ dt texp(- )
P t_ P T /1 - 2
Tt o, AX
1 p
- = fT dt T exp(- =
P 0

We apply the formula (33) and the following equation (35) to the above

expression:

b
[ dwwexp(- —2—) = -3 (1 - b* - off - b?) exp(- —2—)

a A -2 Y

(1 -a%- oA - a?)exp(- —2—) + 1 {£, (—2—) (35)

16



|
Ty :
T - X—=X
’ - T =/( i = 2
T X‘XL"' A\ ¢
>
0) XLX| XR X

Fig. 2 The integral 1imit for the second term of Eq. 19.
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As for the first term of Eq. (9), we first integrate it with respect to x

to find
2 2 T
° - + oy (x, = X )
+ - 1 f P71 L
- dt texp(- ——— (36)
ZoP cp T T
Finally, we obtain the following expression for C32:
2 2
™7 - T o, Ax o, AX
+ - 1 P 2 1 P
Con = - exp (- ), - optxt, ) + exp (-
32 20P 20P T, + P+ ’2—5; T,
2 i’ o % &
x (ro - oPAxro) - —— {El( T ) - El( T )} \ (37)
1 Y 2 72, _ 1 ophy
t oy exp(- ———)(1 - T - oPAny - ro) - exp(- ———)
p 2 P A 2
i - X 1 - T
2
) o, by o, dy o, dy
x(1-rz-oAyv’1-Tg)-P {E(——P——)"E(—-E———)}
v/l - T_ Yl - ‘l’o

In the same way, we find the following expressions for the constants C33,
C3q, and C3s.

T

o o, Ay o, Ay
Cog = O [ d7 exp(- ——) + /1 - Tf, by exp(- ——0)

33 T (38)

- 1 -1 l -

o, dy g, Ay o,y
-V - rf by exp(- —52————) + o Ayz{Elf-—E————J - Elc——g————)}

 — P

A2 -2 =2

18



T - T o, Ay
-t - 1 _ P _ 2 _ L _ 2
Caq 75, + 75 exp(- ——)( - « opyvl - 1) (39)
1l -
+
o, Ay
- Zé—exp[- —-P————)(l - 'rg - oPAyv'l - TE)
P 1 -1
2
o, Ay o, Ay o, Ay
Yl - 'l:+2 A - TE
T
+ o, Ay o, Ay
c = Ax f dt exp(- _P_.___) + 71 - 12 Ay exp(- .__P.__)
35 . + 5 (40)
- 1l - 1 - T,
opdy o, dy oy dy
-1 - 'rz_ by exp(- _P__) + oPAyz{El(_?___) - El (__E__._)}
1 -4 N - 2 N -l
The constants D33 (i =1, 2, ..., 5) of the transfer matrix elements for

the surface RIGHT are easily obtained by replacing &x, 4y, 14, t_, and Tg in
Eqs. (34), (37), (38), (39), and (40) by A&y, &x, p_, p4, and p,, respectively.

There are two integrals left in the above formulas. The exponential
integral Ej(x) is evaluated by means of approximate functions given by 5.1.53
and 5.1.56 in Ref. 5. For convenience, the expressions are reproduced as
follows.

For 0 < x <1
= - 2 3 4 5
Ep(x) = -In x + a5 + ayx + apx“ + agx® + apx* + agx” + €(x) (41)

where the error |e(x)| < 2 x 1077 and

19



3y = -0.57721566, a; = 0.99999193, a, = -0.24991055,
az = 0.05519968, ag = -0.00976004, ag = 0.00107857 .
For 1 € x < =
x4 + alx3 + a2x2 + a3x + a4
xeXE{(x) = 7 3 5 + e(x) , (42)
x + blx + bzx + b3x + b4

where the error |e(x)| < 2 x 1078 and

a; = 8.5733287401, by = 9.5733223454
ap = 18.0590169730, by, = 25.6329561486
a3 = 8.6437608925, by = 21.0996530827
ag = 0.2677737343, by = 3.9584969228

b
Another integral, f dx exp(-a/fl - xz), is numerically integrated by
a
using the 8'th order Gaussian quadrature formula given by Ref. 6.

4. PROGRAMS DCTRAN-II AND DCTRAN-X

The discrete cones method developed in the preceding sections was imple-
mented in the discrete ordinates code TWOTRAN-II.(3) Tpe code is available
through the National Magnetic Fusion Energy Computer Center at Livermore,
California.

The following five subprograms are added to the TWOTRAN-II program:
EQNGEN - contains the equal weight quadrature set EQy for 2 < N < 16; the

values are taken from Ref. 7. The subprogram SNCON built into TWOTRAN is
not used in the present program.

QUADSET - calculates the discrete cone boundaries.

20



COEF - calculates the transfer and escape matrix elements.

AAF - evaluates the exponential integral in the transfer and escape matrix
elements by using approximations described in Section 3.

GINT - evaluates the integral: fb du exp(~a//f - uz) by using the 8'th order
Gaussian quadrature. :

In addition to these new subprograms, two subprograms IN and OUT in
TWOTRAN-II were completely changed. The new subprograms apply Egs. {15),
(16), and (32) to find the cell edge fluxes and the cell average fluxes in
sweeping the spatial mesh cells. The negative flux fix-up scheme is dis-
carded. The new program is named DCTRAN-II, and it runs only on the CDC-7600.
The DCTRAN-II calls the subprogram COEF in a subprogram GRIND21 of overlay 2.

As we described in Ref. 1, the discrete cones method was successfully ap-
plied to a solution in a void. Hence, by applying the discrete cones method
to both a void and a non-void, a new program, DCTRAN-X, was created. In ad-
dition to the above five subprograms, the program has a subprogram VOID, which
calculates the transfer and escape matrix elements of a void. This program
runs on the CRAY-1 computer. The structure of DCTRAN-X is shown in Table 2.

At present, the DCTRAN-X program is available only for problems in X-Y
geometry. An extension of the method to other geometries seems extremely
complicated and is left for the future.

5. NUMERICAL RESULTS

The program DCTRAN-X was run on the CRAY-1 computer to test the discrete
cones method. The method is examined from two points of view: accuracy and
computing efficiency. The accuracy is categorized into two points: one of

them is the accuracy of physical quantities obtained by integrating a function
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Table 2. Structure of the DCTRAN-X Program

OVERLAY(0,0) OVERLAY(1,0) OVERLAY(2,0) OVERLAY(3,0)
DCTRAN?) INPUTL GRIND2 OUTPUT3
1 MONITOR 1 LOAD 1 REBAL 1 OUTPT3L
2 ERROR 2 1NpT112) 2 GRIND212) a FINAL
3 CLEAR a DUMPRD a COEFL) 2 OUTPT32
4 MPLY 3 INPTL2 b AAFl) a EDCALL
5 WRITE a CSPREP ¢ GINTY) b GENFLO
6 ECHECK b IFINXS d vorpl) ¢ EDITOR
7 DUMPER 4 INPTL3 e INITAL d EDMAP
8 PCMBAL a READQF £ INITQ 3 IFOUT
9 REED b IFINGF g FISCAL a IFRITE
10 RITE 5 INPT142) 3 GRIND22
a EQNCON) a OUTER
b IFINSN b INNERZ)
c PNGEN ¢ In2)
d QUADSET d out?)
6 INPTL5 e SETBC
a CSMESH f STORAF
b MAPPER g SAVEAF
h GSUMS
4 GRIND23
a TESTS
b NEWPAR

1) These subprograms are newly added to the TWOTRAN-II program.

2) These subprograms are modified.
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over a certain spatial domain, D; these quantities are defined by

J (r)e(r) dr, where f(r) is a response function such as the absorption cross
sgction, and ¢(r) is the scalar flux. Another is the accuracy of the spatial
distribution of the scalar flux, i.e., how much the ray effect is mitigated.

In terms of numerical analysis, the first accuracy corresponds to the L2

error defined by WF1I (f Fz(r) dr)l/z, and the second corresponds to the L™

2 D
error defined by IFI, = max F(r).
reD

PROBLEM 1. One Group Problem

This problem is solved to see how much the ray effects are mitigated by
the discrete cones method. The system consists of an isotropic source distri-
buted uniformly and a pure absorber surrounding the source. The geometry and
the cross sections are shown in Fig. 3.

The problem is solved for one energy group and isotropic scattering ma-
terials by the Sg and S;¢ approximations (TWOTRAN-II), and the DCg approxi-
mation (DCTRAN-X). The spatial domain is partitioned into 16 by 16 mesh cells
for all cases. The size of a mesh cell is 1/2 mfp.

The scalar flux distributions along the right edge of the system are

plotted in Fig. 4. The distribution is expected to be a cosine-like curve

whose maximum is at x = 0. The DCg solution satisfies this requirement; mean-
while, the Sg and S;g solutions show oscillatory behavior due to the ray ef-
fects. As a whole, the scalar flux of the DCg solution is somewhat larger
than the Sg and S;g solutions. The cause of such a discrepancy will be

further investigated in the following examples.
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Fig. 3 Geometry and cross sections for Problem 1.
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Fig. 4 The scalar flux distribution at x = 7.75 for Problem 1.
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PROBLEM 2. One Group Problem

The domain of the problem consists of only one material and an isotropic
source is uniformly distributed in a square. The geometry and the cross
sections are shown in Fig. 5. The net leakage from the system and the total
absorption in the system are calculated by varying the order of the DCy ap-
proximation and the number of spatial mesh cells.

The results are shown in Table 3. On the same table we 1ist the S;g so-
lution for 20 times 20 mesh cells as a reference solution; 4/30 mfp is chosen
as the size of the square mesh cell so that sufficient accuracy is achieved by
the calculation. Observing Table 3, we find that the net leakage of the DCy
solutions is larger than the S;5 solution when the spatial domain is roughly
partitioned; on the other hand, the total absorption of the DCy solutions is
smaller than the Sjg solution. As the mesh is refined, the net leakage de-
creases and the total absorption increases. For a certain spatial
partitioning, the best accuracy is achieved. However, refining the mesh
further increases the errors. As shown in columns for the DCy approximations,
the solution does not seem to converge to the exact value even if extremely
fine mesh cells are used.

The results suggest the following expression for the error of the cell

average cone flux Y

‘P=‘l’e+€s+ea for eg < 0 and ¢5 > 0, (43)

where ¥ is the exact cell average cone flux, eg is the error due to the
spatial discretization, and €, is the error due to the angle discretization.

As the space and angle are partitioned further, [eg| > 0 and |e;| > O.
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Table 3. Dependence of Accuracy on Mesh Size for Problem 2

TWOTRAN-II
NET LEAKAGE ABSORPTION
So, 20 x 20 4.0133681E-01 5.9866317E-01
S16s 20 x 20 4.0101376E-01 5.9898766E-01
DCTRAN=-X
(DC24FEB4) NET LEAKAGE ABSORPTION
DCys 2 x 2 4,163692E-01 5.8363147E-01
4 x 4 3.8969266 6.1030741
8 x 8 3.7153841 6.2846166
16 x 16 3.6030616 6.3969390
DCq, 2 x 2 4.190945 5.8090606
4 x 4 4.,0071642 5.9928365
8 x8 3.9071642 6.0923310
16 x 16 3.8546140 6.1453867
32 x 32 3.8500853 6.1499153
64 x 64 3.8125000 6.1875006
DCg, 2 x 2 4.2368633 5.7631364
4 x 4 4.0864249 5.9135841
8 x 8 4.0162278 5.9837734
16 x 16 3.9834244 6.0165769
DC1g, 2 x 2 4.2532252 5.7467720
4 x 4 4,1121553 5.8878535
8 x8 4.0488300 5.9511703
16 x 16 4.0202063 5.9797940
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The total absorption in a domain is given by Z O ) wmi’ where i denotes
the i'th mesh cell and m denotes the m'th cone. 1Hence,m a smaller absorption
implies a smaller cell average cone flux. Since the numerical scheme is
formulated so that the particles in a system are conserved, a smaller absorp-
tion also implies a larger net leakage. As a result, Eq. (43) exactly repre-

‘sents the numerical behavior of the DCy solutions given in Table 3.

In conclusion, there is an optimum mesh for an order of the DCy approxi-

mation to achieve the best accuracy of integrated quantities. Detailed

numerical analyses are required to do such an optimization.

PROBLEM 3. One Group Problem

This problem is popular in papers dealing with the problem of the ray ef-
fects. The spatial domain consists of two materials and an isotropic source
as illustrated in Fig. 6. Since there is a localized source and a localized
high absorber, this problem is difficult to solve by the discrete ordinates
method. _

For the present solution, the spatial domain is partitioned into 30 times
30 mesh cells. The scalar flux distributions along the right edge of the
domain are plotted for the DCg, Sg, and S;g solutions as well as a solution by
the Monte Carlo code MCNP.(8) As seen in Fig. 7 the DCg solution is superior
to both the Sg and S;g solutions. Table 4 shows the central processor unit
time (CPU) in seconds, the number of inner iterations required to achieve the
accuracy of 1.0 x 10'4, the memory size required by the calculations, and the
total absorption by material 2. On this table, a true number of memory
elements is given by a summation of SCM and LCM. If the orders of the DCy and
Sy approximations are the same, the DCy calculation requires more memory than

the Sy calculation because the former must store the transfer and
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Table 4,

Computing Time, Memory, and Absorption for Problem 3

1tss CPY # of Inner Memory Absorption
(sec) (sec) Iterations | SCM LCM at Mat. 2
TWOTRAN-II
Sg 7.679 5.185 8 7386 7274 | 3.2996E-3
+4.,34%
S16 17.027 |16.791 8 10912 7274 | 3.1623E-3
+0%
DCTRAN-X
(DC24FEB4)
DCq 7.119 4,307 8 7058 7466 | 3.1049E-3
(-1.82%)
DCg 8.664 6.669 8 7760 7594 | 3.1249E-3
(-1.18%)
DCi6 22.068 | 22.014 8 12248 8426 | 3.1164E-3
(-1.45%)

* A11 the cases were run on CRAY-1,
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Fig. 6 Geometry and cross sections for Problem 3.

31



; T I . l
——DCq

—-—TWOTRAN-IL Sg
------’T”VV()1"F?I\h¢-I[ Eslf; (25())(:5()

0.02}-
. f McNP2D mesh)
X -
o
-
b
(1
<
-1 0.0l |
<{
O
N
0.0 ! ] ! J ! !
0 1.0 2.0 3.0

ylecm) —
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escape matrix elements and the DCy solution consumes 20 ~ 30% more CPU time
even if it requires the same number of inner iterations as the Sy solution.
If we believe that the absorption of the S;g solution is exact, the DCg so-
lution has 2.28% error; meanwhile, the Sg solution has 4.34% error. Hence, we
can conclude the accuracy of the DCg solution is sufficient for the integrated
value.

PROBLEM 4. 3-Group Eigenvalue Problem

This problem is taken from Ref. 9. The system and the cross sections are
shown in Fig. 8 and Table 5(a), respectively. A series of calculations are
performed by varying the number of spatial mesh cells as shown in Table 5(c).
The multiplication factor, kg¢f, is calculated. Table 5(b) shows kefs and the
CPU time for the Sg and DCg solutions. The errors listed below kyff are
calculated by comparing the solution with the Sg solution of Case 4.

PROBLEM 5. One Group Problem Containing a Void

If a system consists of a void, a highly absorbing material, and a local-
ized source, it is extremely difficult to accurately solve by the discrete
ordinates method because of the ray effects. Such a sample problem is solved
by the use of the Sg, Sy, and DCg approximations. The system is illustrated
in Fig. 9.

The scalar flux distributions at the right edge of the system are plotted
in Fig. 10. For reference, a MCNP solution is also shown. A strong miti-
gation of the ray effects by the DCg approximation is observed; meanwhile,
even the Sjg solution is much worse than the DCg solution. Although the im-
provement by the DCy method is impressive, it is worth noting that the scalar

flux near the x axis is still half of the MCNP solution. Hence, if a more
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Table 5(a). Group Cross Sections for Problem 4

Region Group X Vo oT %g Og-1+g  9g-2+g
I 1 0.7 0.0524 0.1440 0.0871 O 0
I 2 0.2 0.01 0.2591 0.2486 0.0453 O

I 3 0.1 0.006 0.4062 0.3883 0.0387 0.0001
II 1 0 0 0.1 0 0 0
II 2 0 0 0.3 0 0 0
II 3 0 0 5.0 0 0 0
‘I11 1 0 0 0.2163 0.1760 O 0
ITI 2 0 0 0.3255 0.3236 0.0399 O
ITI 3 0 0 1.1228 0.9328 O 0

Table 5(b). Computing Time and Eigenvalues for Problem 4

TWOTRAN-II (Sg) DCTRAN-X (DCg)

CASE Keff CPU (sec) Keff CPU (sec)

1, 7x6 0.59279(-1.28%) 16.717 0.56638(-5.68%) 19.812

2, 14 x 12 |0.59869(-0.298%) 69.064 0.59712(-0.560%) 86.362

3, 28 x 24 |0.60012(-0.0600%) | 274.657 | 0.61191(+1.90%) 351.191

4, 56 x 48 10.60048 1095.527
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Table 5(c). Number of Fine Mesh Cells of Subregions

REGION X-Direction Y-Direction
CASE I II III I, 11 III
1 3 1 3 3 3
2 6 2 6 6 6
3 12 4 12 12 12
4 24 8 24 24 24
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Fig. 10 Scalar flux distribution at x = 7.75 for Problem 5.
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accurate solution is required near the x axis, a different method must be used
for this problem. As for computing time, see Table 6.

PROBLEM 6. One Group Eigenvalue Problem Containing a Void

This one-group eigenvalue problem is taken from a recent review
paper.‘lO) The system shown in Fig. 11 models a melted core of a fission
reactor after an accident. The problem is solved by the Sg and DCg approxi-
mations for two spatial partitions: 10 x 20 and 4 x 50 mesh cells. The mean
free path (mfp) of the fuel region is smaller than that of the melted core
region, and the mean free path of the former is 2.653 cm. The interval in the
y direction of the first partition is nearly equal to the mean free path of
the fuel region; in contrast, the interval in the y direction of the second
partition is 2/5 mfp. The intervals in the x direction of the two partitions
are much shorter than the mean free path. The effective multiplication
factors, Kkefg, the number of total inner iterations required to achieve 1.0 x
1070 for the error of convergence, and the CPU time in seconds are shown in
Table 7. The error of Kggg is computed by comparing it with kegf calculated
by McCoy, who used a quadrature set specially chosen for this problem in the
SN calcu]ations.(IO)

The error of the DCg solution for the 10 x 20 mesh cells is larger than
that of the Sg solution; meanwhile, the former is smaller than the latter for
the 4 x 50 mesh cells. The number of total inner iterations is somewhat re-
duced by the DCy method, but the CPU time increases by 20 ~ 40%.

In conclusion, the results demonstrate that the DCy method works well for
eigenvalue problems containing a void if the spatial domain is partitioned so
that the interval of mesh cells is much smaller than the mean free path of

non-void regions.
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Table 6. The Computing Time for Problem 5

Number of
Method CPU (seconds) Inner Iterations
DCg 3.379 (1.25) 9
Sg 2.701 (1.0) 9
515 8.595 (3.18) 9
MCNP 43 minutes on CDC-7600,
200,000 histories
Table 7. Eigenvalue and the CPU Time for Problem 6
No. of Inner CcPU
Ko ff Iterations | (seconds)  Mesh
DCg 0.75779(-4.048%) 341 62.531 10 x 20
0.78521(-0.5761%2) 413 78.416 4 x 50
Sg 0.79802(+1.0459%) 436 52.733 10 x 20
0.79822(+1.0712%) 442 55.778 4 x 50
McCoy's ) 0.78796
So]ution(7
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6. DISCUSSION AND CONCLUSIONS

First, we note that the spatial treatment of the discrete cones method is
similar to the step characteristic scheme (SC) described in a paper by K.D.
Lathrop.(ll) The only difference between these two schemes is the treatment
of the direction angle; the SC scheme employs the discrete ordinates approxi-
mation. Lathrop observed through numerical experiments that the SC scheme re-
sults in a larger leakage and a smaller absorption than those by the Sy method
with the diamond difference scheme (DIAMF). Moreover, he observed that the
total absorption by the SC scheme converges to the exact solution more slowly
than that by the DIAMF scheme as the spatial mesh cells are refined. These
observations agree with tendencies of solutions by the discrete cones method.

Although he did not do theoretical analyses on his observations, groups
at Los Alamos and in India have investigated the convergence rate of proposed
spatial difference schemes including the DIAMF and SC schemes since Lathrop's

(12-14) Their analyses are restricted to solutions in slab geometry;

paper.
however, we may obtain rough pictures of numerical properties of the SC scheme
in two dimensions from the results. They concluded that the DIAMF and SC
schemes have second order accuracy for cell average and cell edge fluxes with
respect to spatial discretization.

From this conclusion, along with Lathrop's, we conjecture that for
spatial discretization the DCy method in X-Y geometry has the same or somewhat
lower order of accuracy than the DIAMF scheme. Furthermore, we see stronger
effects of the order of the DCy approximation on the accuracy for a given size
of the spatial mesh cell. These must be thoroughly analyzed in the future.

Besides the ray effects, we must overcome a difficulty associated with

deep penetration problems. In deep penetration problems a large number of
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spatial mesh cells are required to obtain sufficiently accurate solutions be-
cause the mean free path is much shorter than the characteristic length of the
system and schemes such as DIAMF, SC, and DCy need a much smaller mesh cell
than the mean free path to achieve accuracy. Consequently, the calculations
become very costly. To overcome this difficulty, a computational scheme must
have the property of faster convergence of iterations for a coarse mesh.

To accelerate the iteration, the diffusion synthetic method (DSA) was
proposed(ls) and implemented in some Sy codes. On the other hand, to provide
the capability of a coarse mesh, Larsen and Alcouffe employed the linear
characteristic scheme (LC) for X-Y geometry,(g) and it was found that their
method is compatible with the DSA algorithm. Applying the DSA and LC schemes
to the DCy approximation, we will obtain the DCy method with a higher order
convergence rate for a coarse mesh than that of the current DCy method. Such
an extension will be carried out in the future.

Finally, we mention applications of the DCy method to curved geometries.
Such applications are necessary from a practical point of view, but it is very
difficult to find elements of the transfer and escape matrices analytically.
Even if they were obtained by numerical integration, the computing efficiency
of the new method might be much worse than that of conventional methods as we

see in applying the DCy method of a void to R-Z geometry.
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