A User’s Guide to TRAK: A Customizable Particle
Following Code

J.W. Johnson

October 1984

UWFDM-597

FUSION TECHNOLOGY INSTITUTE

UNIVERSITY OF WISCONSIN

MADISON WISCONSIN

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government
or any agency thereof.

A User’'s Guideto TRAK: A Customizable
Particle Following Code

J.W. Johnson

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive

Madison, WI 53706

http://fti.neep.wisc.edu

October 1984

UWFDM-597

http://fti.neep.wisc.edu/

A User’s Guide to TRAK:
A Customizable Particle Following Code

J. W. Johnson

Fusion Technology Institute
Nuclear Engineering Department
University of Wisconsin—Madison

Madison, Wisconsin 53706

October 1984

UWFDM-597

Contents

1 Introduction

2 Subroutine STEP
2.1 The Guiding Center Equations
2.2 The Predictor-Corrector Method
2.3 The Magnetic Field Model
2.4 The Electric Field Model
2.5 FormatoftheOutputFile

3 The Main Program
3.1 Subroutine RCONTRO, ..
3.2 TheRead/Execute Loop
33 GOOF and TTYOUT it i

4 Bells and Whistles
4.1 Pitch Angle Scattering
42 Interpolation

5 Running TRAK
5.1 Obtainingthe Code
5.2 SamplesofInput Files
53 ErrorChecking

A Some Other Applications
A.l Field Line Following u....
A.2 Porting TRAK to a VAX/VMS Systemo v v v v v e ..

B Using PLOTS
C Data Analysis

Bibliography

00 =3 & W

11
11
12
13

14
14
15
16

16
16
17
18

19
19
23

24

27

29

List of Figures

1 Change in Energy vs. time; At =1x10"%s
2 Change in Energy vs. time; At =2x10"%s
3 Change in Energy vs. time; At =4x10"1°g

List of Tables

1 A Sample Magnetic Field Model File
2 ASampleInput File

......................

......................

1 Introduction

TRAK is a simple, user-extensible particle following code which runs on the CDC 7600
or Cray-1 computers at the National Magnetic Fusion Energy Computer Center. Briefly,
TRAK integrates the guiding center equations using a fourth order predictor-corrector
integrator. While some users may not find the version of the code described here very
useful, TRAK is easily modified due to its modular construction. This report is an attempt
to document some of the features of the code so that prospective users will be able to
modify TRAK to suit their own purposes.

- In the next section, the subroutine which does the actual integration of the particle
orbits will be described. In this context, integration methods, the equations of motion,
magnetic and electric field models and output will be discussed. Section 3 contains a
description of the “top level” of TRAK and will address issues of initialization and job
control. In Section 4 some subroutines which are included in TRAK but not used in the
current version will be described. These include an interpolation subroutine and a pitch
angle scattering subroutine. Care and use of the code are documented in Section 5. There
are three Appendices to this report; in the first, some additional applications of the code
are discussed. These applications require nontrivial but straightforward modifications to
the code. Appendix B takes up the question of plotting data from TRAK — a brief guide
to the code PLOTS is included. Finally, Appendix C gives an example of how the output
from TRAK can be used in a data analysis program.

Before continuing, it would be a good idea for the reader to obtain a copy of TRAK. See
Section 5.1 for the proper incantation to retrieve the code from the mass storage facility at
the NMFECC.

2 Swubroutine STEP

In this section, the portion of the code which does the orbit integrations will be detailed.
It may seem strange to discuss this subroutine before the main part of the code (which is
described in Section 3), but the orbit calculation is the main purpose of TRAK. The rest
of the code can be considered as job control or initialization before STEP is called.

STEP takes five arguments; the starting position, energy and cosine of the pitch angle,

a parameter called mflag and the output parameter nwrite (which is called nskip in

the main program) which will be discussed in Section 2.5. Other data, such as the time
step, maximum integration time and angular modulus are passed through the common
block /endchk/. In the current version of TRAK, mflag can only take on two values,
corresponding to normal execution and the mirror end condition, i.e. the particle escapes
from the mirror. In some previous versions of the code, the value of mflag could also
specify a poloidal orbit end condition, the use of the interpolation subroutine as well as
some output criteria.

Normal execution means that there are only two end conditions; when the running time
exceeds tmax or when the number of angular periods exceeds nangpd.

The first section of STEP does the initialization of the integration variables and outputs
the first point. The subroutine DERIV contains the implementation of the guiding center
equations (see Section 2.1). A Runge-Kutta integrator is used for the first three time
steps, then a predictor-corrector scheme is used. The integration scheme will be discussed
in Section 2.2. During the integration, the subroutine PERIOD is used to keep the ¢
coordinate in the range 0 < ¢ < angmod.

In this version, neither the interpolation subroutine nor the pitch angle scattering sub-
routine are called; comments indicate where the call statement for each routine should be
placed. When integration terminates, the character string endmsg can be used to pass a

message back to the main program (or a controlling subroutine).

2.1 The Guiding Center Equations

The equations of motion are found by carrying out the guiding center expansion as in
Northrop[1]. For a particle of mass m and charge g, the full (non-relativistic) equations of

motion are:

dt? d

where g is the acceleration due to gravity and E and B are the electric and magnetic fields

& d
£=g+%(ﬂ+—f—x§) (1)

respectively. r is the particle position.
The position of the particle can be decomposed into the position of the guiding center

R and a vector from the guiding center to the particle, p- Thus we can write:
r=R+p (2)

Substituting this relationship into the equations of motion, and realizing that | BI is of O(e),

we can carry out the guiding center expansion. The result[1] is:

B=g+2L(E+kxB)-LvB 3)
- m m

_m - Exb u
_L—qB(g—ﬁ)xI_w 5~ agVB X (4)

where B = |B|, u is the magnetic moment, b is a unit vector in the B direction and R 1 is
the motion of the guiding center perpendicular to b. Terms of order €2 have been neglected.
Note that the first term in Equation 4 contains the gravitational and curvature drifts, the
second term is the E x B drift velocity and the third term is the VB drift.

This system of equations can be simplified by introducing a parallel velocity u = b- R.

Differentiating, we have:

a=b-R+b-R (5)
—bg+ 210 E-Lo.vB+ L Rik-vh-k (6)
= ' m m ot

All that remains is to eliminate the R in the expression for R . Because R occurs with

a coefficient of E% we can neglect the O(e) terms. Thus R can be expressed as:

R=— (ub+ug) (7)
. db dug
R=ib+um + = (8)

where ug is the £ x B drift velocity, which may be large enough to be included. The
other drift velocities are all of order . Whether the uy, term is large enough to be included
depends on the electric and magnetic field models, however, it is not “wrong” to include it
even if it is small. The first term in Equation 8 can be neglected because the cross product
of _Ii and b is what we need. If we define v’ = ub+ uy we can write the result in a compact

form:

at

If we insert this result back into Equation 8 we have:

E=u (g;’ 'Vb) % | . Vu, ©)

E:Q’+q%x(uVB+m(u?+uu Vb+a(9 +u'- VuE)—mg) (10)

Equations 6 and 10 represent the full guiding center equations of motion. I have been

fairly sloppy about including some second order terms (for example in the R-Vb-R term),

but these make little difference. If we make some assumptions about the magnetic and
electric fields, the guiding center equations can be simplified. For example, suppose that

the up term in R can be neglected. Then Equation 10 can be simplified to:

. b %
ﬁ-ul_;+yE+q—Bx(uVB+m(ua—t+u Q-Vé)—mg) (11)

If we further assume that the electric and magnetic fields do not vary in time, we have

i=bg+ b-E-Lb.VB1R Vb R (12)
E=ul_)+gE+q—QB;x(uVB+mu21_)-VI_)—mg) (13)

where uy is defined by:
!E=E;b (14)

This system of equations may be further simplified by neglecting the “gravitational” ac-
celeration, which is frequently of little interest. Equation 12 may be slightly modified to
improve energy conservation[2]. The result is:

i=bg+ Lo E-2p. VB4R Vb-k- " x (up-vb). VB (15)
= ' m m qB

This “extra” term has a simple physical explanation. The first term of Equation 15
is the change in @ caused by the particle moving into a region of different magnetic field
strength. This is from the parallel motion of the particle. The new term is similar, except
that the motion is the result of the drift motion of the particle, specifically the curvature
drift. The new term is one of the higher order terms left out in Equation 12.

The importance of this additional term depends on how big the curvature drift velocity
is. In most cases, it turns out that this term improves energy conservation by less than
10%. If the magnetic geometry is highly curved the improvement can be 40% or more. The
inclusion of this term is up to the user; the improvement in energy conservation may not be
worth the small increase in CPU time. In Section 5.3, we will see that the error in energy
conservation from the guiding center expansion is not usually very large.

The subroutine DERIV implements Equations 12 and 13. DERIV calls FIELD and EF
to compute B and E; see Sections 2.3 and 2.4 for details. In this version of TRAK there
is no additijonal force acting on the particle, so g has been set to zero. An implementation

of the full guiding center equations (Equations 6 and 10) is contained in the file derivi;

see Section 5.1 if you wish to access this file. The extra “energy conservation” term in
Equation 15 has been added to Equation 6.

It should be noted that with one exception the physical quantities used in TRAK are
all assumed to be in SI units. The exception is the particle energy (a dependent quantity)

which is in electron volts.

2.2 The Predictor—Corrector Method

A fourth order predictor—corrector algorithm is used to do the integration. This method
was chosen because it gives fourth order accuracy with only two function evaluations per
step, while other fourth order schemes, like the Runge—Kutta method, require four function
evaluations. For the case of particle following the function evaluations (t.e. calls to DERIV)
require calculation of the magnetic fields, and thus require many operations.

A disadvantage of the predictor—corrector method is that it requires data at three pre-
vious points before it can calculate the fourth point. This means that some other method
must be used to do the first several integrations; in TRAK the Runge-Kutta method is
used. Also, the predictor—corrector method is limited to a fixed step size.

The predictor—corrector method (and the Runge-Kutta method) are discussed in many
books on numerical analysis; see for example references [3] and [4]. Briefly, the predictor

step is defined by:
~ At
Tnt1 =Ty + -éz (55’0,,, —59%v,,_1 + 37v,_2 — 9’Un_3) (16)

where z,, represents the position at the nth step, v, is the velocity at the nth step, At is the
time step and %, is the “prediction” for the position at the n + st step. The corrector

step can be expressed as:
At
Tnt+l = Ty + ﬂ (gvn+1 + lgvn - 5vn—1 + vn—2) (17)

For our purposes, the quantities £ and v represent a four dimensional position and
velocity — the position is defined by R and u, the velocity is R and 4 which are defined
in Section 2.1. It is common to include the “time of flight” along the trajectory as a fifth
position variable.

In subroutine STEP there are three separate phases to the integration procedure. First,
the Adams-Bashforth predictor step (Equation 16) is applied to the four principal integra-

tion variables; the three spatial variables and the parallel velocity. This yields an estimate

for the new position, which is in array xx. Next, the arrays x and v are shuffied back, delet-
ing the oldest point and making space for the new point which is about to be calculated.
Finally, the Adams-Moulton corrector step (Equation 17) is applied to all of the integration
variables. The new velocity is calculated at this point, and the whole integration procedure
is repeated.

Other integration variables besides time can easily be included; just increase the dimen-
sion of the arrays x and v and insert an expression for the derivative of the new quantity
in DERIV. For example, suppose we want to compute the average value of the parallel ve-
locity. This involves integrating v, over the particle orbit and dividing by the time. First,
increase the dimension of the arrays from 5 to 6. Next, note that the value of v) is located
in x(4). In DERIV, we add the expression:

v(6) = x(4)
All that remains is to change the limits on the loops used in the predictor and corrector
steps. Note that the average of v is derived from the four position variables, so it is
not necessary to include it in the predictor step. This is true of most of the “auxiliary”

integration variables.

2.3 The Magnetic Field Model

One of the most important issues in a particle following code is the question of a magnetic
field model. In general there are two kinds of models for B; a “real” field based on the Biot—
Savart law applied to a current distribution and an “approximate” field which is usually a
simplified form of the “real” field. The advantage of the the “approximate” field is that it
is generally very simple to evaluate B at an arbitrary point; unlike the “real” field which
can be very time consuming to evaluate. The “real” field has good curl and divergence
properties, which is not necessarily true of an “approximate” field.

The magnetic field model presented in this version of TRAK combines the good curl
and divergence properties of a “real” magnetic field with the ease of evaluation of an
“approximate” field. The model consists of three parts: a long, thin filament along the
axis, used to simulate By in toroidal geometry; a constant vertical field; and a number of
current loops which can be used to simulate the poloidal field in toroidal devices, a simple
magnetic mirror or a quadrupole. It should be noted that the current loops are constrained
to lie in a plane perpendicular to the 2 axis with the center of the loop on the axis.

For particle following, we are interested not only in B but also in the gradients of B,

denoted by VB. Analytic expressions for B (and the vector potential) for a current loop are
easily calculated (see Jackson[5] for example), but computing the four nonzero quantities
in VB is a little more complicated. These calculations are given in reference 2, and are
implemented in subroutine BCIRS, which is called by FIELD. After returning from BCIRS,
the entries in db which represents VB look like this:

9B, 9By 2B,
3r ar or

= | 18B, 19By 13B,
VB = rd r 8¢ r 09 (18)

8B, 9By [:2:1%

3z 3z dz

From this, we can compute V|B|, which is also needed in the guiding center equations.

Given:

VIB|* =2|B| V|B] (19)
|B|* = B? + B} + B} (20)

it is easy to compute V|B| from B and VB.
Now that we have computed V|B|, the only remaining magnetic field quantity that must
be computed is Vb where b is the unit vector along the magnetic field. First, we must add

two terms to VB to reflect the choice of cylindrical coordinates for our computations.

8B, 9By 9B,

ar ar aor

— | 18B. _Bs 19By , B, 1B,
VB=| ;S5 -3 3¢+t 5 %4 (21)

3B, 9By 8B,

3z dz oz

The addition of the curvature terms makes calculation of V- B and V x B very easy; for
example, V - B is just the trace of VB. Just as we were able to calculate V|B| from VB,

so we can compute Vb from VB and V|B|. If we remember that B = |B|b we can write:

VB =|B|Vb+ — VB (22)

where VB is the outer product of V|B| and B. Equation 22 determines Vb.

Some further notes on subroutine FIELD; the argument io was added to allow the
magnetic field and other quantities of interest to be printed out after the calculation. This
same feature is present in DERIV and EF, it is intended for debugging purposes. The

variable ibf in common block /bfield/ is a flag used to prevent multiple evaluations of

the magnetic field at a given position. It is particularly useful if subroutine PSCATR
(Section 4.1) is included in the code.

2.4 The Electric Field Model

A relatively simple electric field model is included in TRAK. The electric field is calcu-
lated in subroutine EF from parameters which are read in at run time. This allows particle
orbit calculations to be done for different electric field values from the same input file.

The model for E consists of three parts: a “toroidal” field component Ey, E, which is
computed from a potential and a time dependent piece £, to represent the “near field” of
ICRF heating. Ej is a constant and was used in earlier versions of TRAK which simulated
a tokamak. The potential is assumed to be a Gaussian function, with three parameters
determining its actual shape. These are: phiO the amplitude; zphi0 the z location of the
center of the potential; and wphiO the “width” of the potential. Given the potential, E, is
easily computed using the relation E, = —V&.

Calculation of E,, is a bit more complicated. It is assumed that Ez is a function of 2
and ¢ only. The time dependence is assumed to be a cosine, with omega as the frequency
and wphase the offset. wez0 is the amplitude of the “wave”. The shape of the “wave”
is calculated using cubic B-spline interpolation[6][7]. The spline coefficients are read in as
part of the initialization process, and the actual evaluation of the function value occurs in
subroutine SVAL. The program used to compute the spline coefficients is WAVE. Use of
spline interpolation allows many different shapes to be tried for E, without recompiling
TRAK.

2.5 Format of the Output File

A fairly flexible output file format is used in TRAK. The format used to write data is:
a4,e16.8,3(4x,e16.8)

where the four e16.8 fields are used for data and the a4 field is used for a label. Labels

usually consist of three characters, insuring a space between the label and the first data field.

There are four labels which have a special meaning and should not be used for anything

else: “par” or “lin” for the beginning of a set of data for a single particle, “end” for the

end of the data block and “tim” for the end of the data file. More than one data block can

be contained in a single data file.

10

There are two distinct ways in which data is written into the data block. The first is
when “global” data are written. Near the beginning of STEP, the initial magnetic and
electric fields are written out. If a scattering subroutine were included, the scattering
frequency should also be written out. Another example is in PERIOD, when the angular
variable wraps around, some data is written out. The bulk of the data block comes from
the write statements in OUTFIL. Here the user can specify what is to be written at each
time step.

The user can use almost any character string for a label. The four labels mentioned
above should not be used for anything else; similarly the labels used in PERIOD should not
be used. This ensures compatibility with PLOTS (see Appendix B). It is also a good idea
to have the first label written from OUTFIL remain “x 7, with the data on this record
consisting of the particle’s (r, ¢, z,t) position. Also, use of the labels “ni1” and “337 is
discouraged; these are ignored by some data analysis programs. The user is cautioned that
each label should be unique.

Printing out the particle’s position state at every time step can lead to an extremely
large data file. The variable which controls the frequency at which OUTFIL is called is
nwrite. nwrite = 0 will call OUTFIL at every step, a value of 1 will skip one step between
calls, etc. A negative value of nwrite will suppress the calls to OUTFIL. Because the final
position of the particle is frequently very important, if nwrite is greater than or equal to
-1 the final state will be printed, unless it already has been printed. Thus to suppress all
calls to OUTFIL, use nwrite = -2.

3 The Main Program

In this section, the “top level” of TRAK will be discussed. The main program performs
two main duties: initialization and “job control”, i.e. it uses input parameters to determine
how STEP will be called. Also, utility subroutines such as GOOF and TTYOUT will be
described.

3.1 Subroutine RCONTRO

After setting values for some constants, the main program calls RCONTRO. The pur-
pose of this subroutine is twofold: first to assign and open the i/o channels to the various

files and the terminal, and second, to read the file that contains the magnetic field model.

11

Use of the FORTLIB routine link allows the user to specify some or all of the input
and output files on the command line, as is shown in Section 5.2. Default names for the
files are provided.

The code for reading the magnetic field model is fairly well commented; an example of
a model file is given in Section 5.2. One of the interesting and useful features of the model
file is that it may contain comments.

Before returning control to the main program, a call to ZLOOPS is made. ZLOOPS
computes the maximum and minimum values for the # coordinate of the current loops in the
magnetic field model. This information is necessary for the mirror termination condition
in STEP.

3.2 The Read/Execute Loop

Following the call to RCONTRO, the spline coefficients which form part of the electric
field model are read in. Next, default values for the namelist quantities are established.
The namelist variables contain information about the electric field model, the charge and
mass of the particle to be followed and important job control information. The read from
the namelist is the first statement in the Read/Execute loop.

Inside the loop, further initialization is done. If the user decides to specify the particle
by name rather than by mass and charge, the appropriate values of mass and charge are
assigned to the variables. Note that this will override the assignment of the mass and charge
from the namelist read. If the scattering subroutine is to be used for the first time, the
seed for the random number generator is chosen. Finally, the phase of the wave portion of
the electric field model is converted to radians.

The key job control parameter in the main program is flag. The next section of the
code has an if-then-else structure based on the value of flag. If flag is set to end,
execution terminates and the CPU time used will be printed in the output file.

If flag = eject, the current output file is closed and a new one is opened. The name of
the new file is taken from the namelist variable filename. If flag = debug, the subroutine
DDT is called. This allows the user to interactively specify a location and have various
quantities of interest, like the drift velocity or magnetic field for example, printed to the
terminal or output file. The user should consult the comments in DDT before the debug
option. One suggestion for further improvements to TRAK would be to allow STEP to

be called from DDT; thus allowing the user to interactively choose the initial point for the

12

orbit calculation. This could be quite useful for some applications.

If flag = scan, data for plots of the electric field, potential and |B| are generated.
Execution will terminate when the scan option is used; this is because some of the namelist

variables are used in ways that are inconsistent with their use elsewhere.

flag = rip allows a large number of orbit calculations to be done without specifying
each one in the command file. In this mode, the cosine of the pitch angle is varied, keeping
all other arguments to STEP constant. Note that mflag = 20 sets up the mirror end

condition.

If £1ag has not matched one of the above options, it is assumed that the user desires a
simple call to STEP. The remaining clause in the if-then-else structure assigns a value
to mflag based on flag, and then calls STEP.

Before TRAK terminates, the amount of CPU time used is computed and written to
the output file.

3.3 GOOF and TTYOUT

These two subroutines can be called from almost any other subroutine or the main
program. GOOF provides a simple means of handling errors; should an error condition
be detected, for example some unknown object in the model file, GOOF is called with the
appropriate arguments and an error message is written to the output file and execution is

terminated. The call to exit from GOOF does not delete the dropfile so the NMFECC
debugging program DDT may be used.

TTYOUT provides a means for the user to get information on the current state of the
calculation. When the user types anything on the terminal, the variable iiflag is set to
1. At many places throughout the code, a check is made on the value of iiflag. If it is
1, a call to TTYOUT is made. In TTYOUT, the string that the user typed is compared
with various conditions, much like the value of flag is checked in the main read/execute
loop. If the string matches one of the conditions, the desired information will be typed to
the terminal. Control is returned to where the call to TTYOUT was made or execution
is terminated, depending on what the user desires. Information is passed to TTYOUT

through its four arguments and the common block /tty/.

13

4 Bells and Whistles

In this section some of the subroutines which are included in TRAK, but not used in the
current version of the code are discussed. These subroutines include a pitch angle scattering
routine and an interpolation routine, both of which can be very useful. Subroutines to
compute the first and second derivatives of a function defined by B-spline interpolation are

also included.

4.1 Pitch Angle Scattering

Pitch angle scattering is modeled by a Lorentz collision operator:

of va 22 0f
where f is the particle phase space density, v is the collision frequency, and) is the cosine
of the pitch angle. In reference [8] a Monte Carlo equivalent operator based on the binomial

distribution is derived:

A=2xo(l—vr)+z\/(1 - A®)or (24)

where A is the cosine of the pitch angle after scattering,)¢ is the cosine of the pitch angle
before scattering, and 7 is the time step. z is randomly chosen to be +1. The advantage
to using this collision operator is that |A| will never exceed 1. If 7 is chosen to be smaller
than the integration time step (so the scattering operator is applied several times for one
time step), the net result will approach a Gaussian distribution. Instead of following this
procedure, z is chosen to be a normally distributed random number (62 = 1), which is
obtained using the Box-Muller transformation[9]. Thus the scattering operator resembles
those described in references [10] and [11]. The advantage is that this is much faster,
however, it will be possible for |A| to exceed 1. Fortunately, for small v, the problem with
|A| only occurs for particles with |A| ~ 1, 1.e. the well circulating or passing particles. So
in practice, if the value of z yields a nonphysical result for A for these particles, a new z is
chosen.

This scattering operator was tested by following a particle for several hundred thousand
time steps, using a large value of v to simulate the actual collision frequency calculated
from the Braginskii collision frequency. It is expected that the distribution of the particle’s

A values should approach a uniform distribution, and this is indeed the case.

14

This scattering subroutine PSCATR works by calculating a new value of 1 and V|| given
the new value of A. Thus it should be called before the call to DERIV at the new particle
position. Also note that the collision frequency is assumed to be a constant and is not
calculated from any plasma parameters. The subroutine RND computes two normally

distributed random numbers.

4.2 Interpolation

A good interpolation subroutine is essential to many applications of a code like TRAK. A
familiar application is the creation of “punch plots” of flux surfaces in complicated magnetic
geometries. The interpolation routine INTERP is based on the Adams—Moulton polynomial
which is implicit in the corrector step of the integration. This is probably not the optimal

choice for an interpolating polynomial, and other choices are being investigated.

The subroutine is well commented, so the discussion here will be brief. Seven arguments
are passed to INTERP; ink is the pointer to the known dependent variable, tolnce is a
precision parameter, x is the current position, xold is the previous position, xx is the
returned (interpolated) position, £ is the complete velocity array and ds is the integration

step. Note that xx(ink) should contain the known value.

First, a check is made to see if x or xold is within tolnce of the interpolation point.
Assuming this check fails, the polynomial coefficients are unwrapped from . Then INTERP
iterates on the normalized variable del until the convergence criteria are satisfied. The

values of xx are then calculated and returned.

Should the iteration loop not converge, GOOF is called and program execution termi-
nates. This may not be desirable for all applications; an alternative suggestion would be to

return values based on a linear fit between x and xold.

One possible cause of convergence problems is the use of the subroutine PSCATR.
Because PSCATR must be called before the call to DERIV, and DERIV must be called
before INTERP, the scattering algorithm can cause anomalous behavior of the interpolation
algorithm. It is suggested that before INTERP is called, PSCATR should not be called.
This presents no problem if INTERP is used as part of the end criteria of STEP; otherwise
DERIV must be called twice, though two evaluations of B can be avoided by using the flag
ibf.

15

4.3 Derivatives of B-splines

The functions SDIF1 and SDIF2 compute the first and second derivatives of a function
which is defined by B-spline coefficients. They are analogous to the function SVAL which is
used as part of the electric field model. These functions are not used in the current version
of TRAK because the guiding center equations do not contain terms with ‘%E;L, for example.
Those terms are small for the test fields used with TRAK and were neglected (see Section
2.1).

5 Running TRAK

In this section, the procedures used to obtain a working copy of TRAK will be detailed.
Samples of the necessary input files will be given and some hints on error checking are also

given.

5.1 Obtaining the Code

The TRAK source file is stored in the FILEM mass storage facility at the NMFECC
along with several other files that will be of interest to the prospective user. To access these
files, run the FILEM program and when the . prompt appears, type 1ist .14363 .trak
to generate a listing of the files. The command to retrieve a file is read. It would be a good
idea to read the NMFECC FILEM documentation.

The source file is trakb where the b is the current version number. The version number
may change from time to time as bugs are found and fixed. Should you have problems in
accessing the files contained in FILEM, please use the TELL electronic mail program to
inform me; my user number is 14353.

The user should note that the source file was written to FILEM from a Cray and should
be read from one of the Cray computers. The code will also run on the CDC 7600. Because
the code is not vectorizable, identical runs will take approximately 2.4 times as much CPU
time on the CDC 7600 compared to a Cray-1.

The source file contains COSMOS statements which will use the appropriate programs
to compile and link the source file, depending on which machine the code is resident. All
that the user must do is type

cosmos i=trakb / t v

16

circle

0.000000000e+00 0.000000000e+00 -5.000000000e-01
0.000000000e+00 0.000000000e+00
1.000000000e+00 0.000000000e+00
5.000000000e+04
circle
0.000000000e-00 0.000000000e-00 5.000000000e-01
0.000000000e+00 0.000000000e+00
1.000000000e+00 0.000000000e+00
5.000000000e+04
comment
a simple mirror set for testing purposes.
end

Table 1: A Sample Magnetic Field Model File

t and v are the time and value. The code will be compiled and linked. The executable file
is xtrak.

Other files which may be of interest are: plots77, a program which plots the output
data from TRAK (see Appendix B); wave3, the program used to generate the B-spline
coefficient representation of the time dependent electric field; derivi, a version of the
subroutine DERIV which includes all of the terms described in Section 2.1; pf .dvi, which
is this report minus the three figures contained in f3trakOx; gobblel2, a simple data

analysis program (see Appendix C); and several sample input files.

5.2 Samples of Input Files

Three input files are needed to run TRAK and one output file is generated. The input
files have default names of input, model and coeff. The default output file name is output.
The form of the data written to output is specified in subroutine OUTFIL. Briefly, the file
coeff contains the spline coefficients needed to compute the spatial dependence of the
electric field due to the wave. The coefficients are stored in binary form and are generated
by the program WAVE. The file model contains the information for the magnetic field
model and input is the file which has the namelist variables which are needed by the “top
level” of TRAK.

Table 1 contains a sample of a model file. The file gives the parameters necessary to

17

xstart(1) = 0.5 xstart(2) = 0.0 xstart(3) = -0.1

nskip = 99 estart = 9.00e+2 tmax = 2.0e-6 dt = 1.0e-10
phiO = 100.0 zphi0 = -0.1 wphiO = 0.05

particle = "electron®" flag = "mirror"

omega = 5.0e+6 wez0 = -500.0 wshift= -0.1 wsigma= 0.05
cospa = -0.8 §

cospa = -0.4 §
cospa = 0.0 §
cospa = 0.4 $
cospa = 0.8 $
flag = "end" $

Table 2: A Sample Input File

calculate the magnetic field properties of a simple magnetic mirror.

An example of an input file is contained in Table 2. Note that this file is in a namelist
format; the $ delimits the data that is to be read on each pass through the read loop of the
main program. Thus this file contains input information for 5 particle orbit calculations. Of
particular importance are the variables xstart, estart and cospa which are the starting
position, kinetic energy and cosine pitch angle respectively.

When TRAK is run, the user may specify the input and output file names on the
command line. This is because the FORTLIB subroutine link is used to open or create
the files. For example, the user might type

xtrak i=intest, m=mirror, c=coeffl, o=outtest / t v

to execute the code.

5.3 Error Checking

There are two fairly sensitive ways of detecting errors using TRAK and PLOTS (see
Appendix B for information about PLOTS). In the absence of collisions and if the wave
amplitude is zero, the total particle energy and the magnetic moment should be conserved.
The implementation of the guiding center equations assumes that u is conserved, so the
fluctuation in the particle energy gives a good idea of the accuracy of the integration scheme
and the accuracy of the guiding center expansion. The total energy has three components,

the potential energy from the electric field, the energy in the parallel velocity and the

18

perpendicular kinetic energy which is proportional to p.

Because we have neglected some of the higher order terms in the guiding center expan-
sion, energy will not be exactly conserved. A periodic ripple can be observed in the energy;
the period should be the bounce frequency or the poloidal orbital frequency, depending on
the magnetic configuration. However, the ripple should not be a function of the integration
step size and after each bounce (or orbit) the energy should return to its original value. If
there is a roughly linear drift of the energy in addition to the ripple, the integration step
size (At or dt) is too large. If the step size is halved, the slope of the drift decreases by a
factor of 32 which is as expected for a fourth order integration scheme.

Figures 1, 2 and 3 show the change in energy for three different values of At. The ripple
due to the guiding center expansion is clearly shown in Figure 1. Comparing the slopes of
the energy plots in Figures 2 and 3, we see that the energy “drift rate” decreases by a factor
of approximately 30 as the time step is halved. It is hard to make a similar comparison
between the slopes of Figures 1 and 2 because the slope of Figure 1 is nearly zero.

The time steps used to generate these plots may seem quite small. This is because
the orbit calculations were made for an electron. The energy drift is primarily due to the
accuracy of the parallel velocity integration. For heavier particles (at the same energy) this
problem will be less severe.

Another test of the integration scheme can be done by integrating for a given time,
then reversing the integration and integrating back towards the initial point. The distance
between the final point and the initial point will be a measure of the integration accuracy.

Again, if the step size is halved, the distance should decrease by a factor of 32.

A Some Other Applications

In this Appendix, I will address some applications of TRAK which may require extensive
modifications to the code as it currently exists. The two applications discussed here are
modifying TRAK to follow field lines and implementing TRAK on a VAX/VMS system.
In each case I will outline what I think must be done to the code; there may be other

complications which I have not foreseen, so let the user beware!

A.1 Field Line Following

Modifying TRAK to follow magnetic field lines is really very easy. All that needs to

19

change in energy (eV)

2.50 b

-2.50 |-

oo WUUUULULUGUUTUUTUTTUTUgY

E-06

1.00 +
2.00 |-
3.00
4.00

£E-08

time {s)

Figure 1: Change in Energy vs. time; At =1x 10710 g

20

change in energy (eV)

8.00 -

(o]
—
=
e T
=
—
r*:::f

E-06

1.00

E-06

Figure 2: Change in Energy vs. time; At =2 x 10~ g

21

change in energy (eV)

3.00

1.50

o

“1S0 e, L
E-04

1.00

Figure 3: Change in Energy vs. time; At =4 x 10710 g

22

E-06

be done is to substitute the equations of “motion” of a field line for the guiding center
equations used in TRAK.
The “motion” of a field line in cylindrical coordinates is described by the following set

of equations: J
r rd dz dl
55,53 (%)
where [is the distance along the the field line and B is |B|. 1 is the independent variable,
and the three spatial coordinates are the dependent variables. The quantities %,’-, %? and

% are analogous to the guiding center velocities in TRAK.

Now, simply substitute the expressions for the “velocity” of the field line into the sub-
routine DERIV. TRAK has become a field line following code. Because the expressions
for the “velocity” are so simple, it is more efficient to have STEP call FIELD directly and

eliminate the call to DERIV.

A.2 Porting TRAK to a VAX/VMS System

Getting TRAK to run under VMS should be a fairly simple procedure, although to
my knowledge neither TRAK nor its ancestors have ever been run on a VAX. TRAK was
written using FORTLIB, which allows some of the constructs that are found in Fortran 77,
so there should be no problems with the bulk of the code, although the user is cautioned
about the use of character strings (which will have to be declared as such on a VAX) and
the lower machine precision on a VAX (although double precision could be used if needed).
Thus most of the changes needed will occur at the “top level” rather than in the subroutine
STEP and its subordinates.

First, all COSMOS command statements must be deleted. They won’t work and it is
a lot easier to write command procedures in VMS anyway. Next, all FORTLIB subroutine
calls must either be modified or deleted. Most of the math subroutines will not need to be
changed, but things like the call to dropfile will have to be deleted. Elimination of these
subroutine calls means that TTYOUT will no longer work as written. Either TTYOUT
must be deleted from the code or a new asynchronous trap (AST) routine must be inserted.
AST routines are not terribly hard to write in VAXFortran.

Another important FORTLIB subroutine which will have to be replaced is 1ink. Open-
ing files for input and creating them for output can be done with the open statement.

The last major change involves the use of the namelist statement. The chances of

23

the FORTLIB and VAXFortran implementations of namelist being compatible are pretty

small, so the user is cautioned that this may present some difficulty.

B Using PLOTS

In this Appendix, the use of the PLOTS code to display data from the output file
generated by TRAK will be outlined. The format of the output file has been described in
Section 2.5; by taking advantage of this format, PLOTS can plot any two distinct quantities
in the output file. The purpose of this Appendix is to allow the user to run PLOTS; no
attempt will be made to explain how the code works. The first version of PLOTS was
written nearly three years ago; the code has grown in unforeseen ways and is not very well
commented.

There are two different kinds of plots which can be generated using PLOTS; a histogram
plot of one quantity and a plot of one quantity as a function of another. The histogram
option is not terribly useful unless one is debugging a scattering routine. The data plots
can also be divided into two types: “global” and “local”. The global plot chooses one data
point from every data block in the data file; a local plot chooses data points from a single
data block.

PLOTS may be retrieved from the mass storage facility in the same manner as TRAK.
PLOTS can be used on either the CDC 7600 or Cray-1 computers at NMFECC; the file
plots77 (the current version) should be read from FILEM from one of the Cray computers.
To compile the code, merely type:

cosmos i=plots77 / t v
and the code will be compiled. The executable file will be named xplots. To use the code,
do

xplots i=datafile / t v
where datafile is the name of the file containing the data to be plotted.

The first thing that PLOTS will ask the user for is a type of plot. There are 5 options
(besides quitting): a local data plot, a projection plot (a special case of local data plotting),
a global data plot, “data vs. time” (another special case of local data plotting) and a
histogram. First, let’s discuss the histogram option. If this is chosen, the user will be
prompted for the label and then the pointer to the desired data entry. Next the low and

high data values will be read in, along with the number of bins. Control passes to subroutine

24

hplot. Here the user is asked for an end criterion, which may be a number of points or the
value of time (or length along a field line). It should be noted that the histogram option
falls into the category of “local” rather than “global” plots. PLOTS will read the data file
to generate the data to be plotted. The user will be asked if any statistical analysis of the
data is to be done. Next the user will be asked if the value of scale should be changed.
scale = 1.0 means that the top of the frame corresponds to the maximum plotted value,
scale = 2.0 means that the top of the frame is twice the maximum value, etc. Now the
plot is drawn, and control passes back to the main program.

One important point about the histogram option concerns the end criterion. Similar
queries will be made for the other plotting options. If the end of the data block is reached
or if the number of points read in exceeds the allowed size of the data structure, no more
points are read in and the user is informed. One way to plot all of the points in a data block
is to specify a length or time much greater than will be found in any data block. Because
this is a very common usage, the end criterion “todo”, which reads the whole data block,
has been added.

A further note: use of the time/length end criterion depends on the time (or length if
the data is for a field line) appearing in the fourth slot of the record with the label “x ”.
This is also important for the projection plot option.

Now let us consider the local data plotting case; the two special cases of projection plots
and “data vs. time/length” can be dealt with at the same time. To do a local plot, we
need the label and pointer to the horizontal data entry and another label and pointer to
the vertical entry. For the generic local plot, the user is asked to specify the horizontal
and vertical labels and then the pointers. For the “data vs. time/length” plots, only the
vertical label and pointer are needed because the horizontal data is assumed to be in the
fourth slot of the “x ” record. If projection plots are desired, the user will be asked to
decide between “top” and “phi” projections. The first yields a projection in the (r, #) plane;
the second, a projection in the (r, z) plane.

Control now passes to subroutine SPLOT which begins by asking for the end criterion.
Next the number of points to be skipped by the data reading algorithm must be specified.
If a projection plot has not been asked for, the user may be asked if the angular modulus
check should still be applied to the second slot in the “x ” record. PLOTS will only
inquire about this if this data entry is to be used in the plot.

Next, the user will be asked if a constant is to be subtracted from the horizontal and/or

25

vertical data. Then the question of the inverse of the data entries is addressed. Finally the
data is read in from the data file. This section of the code is extremely opaque; the user
who desires to modify PLOTS is urged to be cautious.

Now some data processing is done before handing the horizontal and vertical data off
to the plotting subroutine. If the “top” projection mode has been specified, the data is
converted to Cartesian coordinates from cylindrical. If projection plots have been specified,
the user is asked whether to “close” the plot by drawing the segment between the first and
last data point. Next, the user is prompted for the value of the parameter ipass. ipass =
0 has no effect, ipass = 3 means that you will always be asked to specify the plot limits,
the other values determine when the plot parameters are to be set. Before handing control
to the plotting subroutine GRAFX the subtractions and/or reciprocals are executed.

GRAFX is somewhat easier to follow from the code listing than SPLOT. The first thing
that is done is to determine if a call to the “mapping” routine is necessary. For most cases,
it will be necessary, so the first guess at the plot limits is the maximum and minimum
values of the horizontal and vertical data arrays. The user then has the chance to modify
these limits by specifying values or specifying a scaling parameter. Next the user will be
asked for data concerning the plot itself; the limits of the picture plane, the number of tic
marks, should “nice” numbers be used on the axes, etc. The axis labels are also specified at
this time. These are contained in two arrays, labelx and labely. The first array location
should contain the number of characters in the label, the second should be the label as a
string in double quotes. Note that this is a namelist read and should conclude with a $.

The subroutine PBRMPS is used to draw the axes and labels. The TVS8OLIB routine
trace is used to draw the curve. Control is returned to the main program.

The global data plotting option is very similar to the local data plotting routine. The
horizontal and vertical data entries are specified by the user in the same manner. Instead
of the call to SPLOT, a call to TPLOT is made. Because of the global nature of the plot,
the only end criterion is a number of points, for which the user is prompted. The algorithm
walks through the data file taking the first data entries which meet the specifications from
each data block. When the end criterion has been met or the end of the file has been
reached, GRAFX is called. The plotting is done as indicated above. Control is returned to
the main program.

When the main program resumes, first a check is made to see if “multiple rip mode” is

active. If so, the data file is positioned at the start of the next data block, frame is called

26

and another plot is done. Otherwise, the user is asked whether to call frame. The user is
then asked to decide what to do next. The simplest thing to do is to plot new data; the
user is returned to the choice between the 5 plotting options and the whole process repeats.
A single rip mode freezes some of the options, like ipass and the subtractions/reciprocals
and does another plot in the same plotting option. ipass is important here because it will
determine if the same plot limits are to be used. Other possibilities are to rewind the whole
data file, rewind to the start of the current data block, call frame or open a new data file.
The last choice is to enter “multiple rip mode” which works much like the single rip mode
except that the user specifies the number of repetitions and frame will be called between
each data block.

After the user makes a choice, the file is positioned at the start of the data block and
the process repeats.

Because of the interactive nature of PLOTS it is extremely likely that some input
mistakes will be made. PLOTS can catch some of the errors and ask for the correct
information, but this is not foolproof. When the user desires to quit, it is best to wait until
quitting is given as an option. This ensures a normal termination so that whatever has

been plotted is not lost or munged.

C Data Analysis

I would like to conclude this report with a few words on data analysis. One of the design
criteria of TRAK was to keep the code simple and efficient. Thus TRAK itself contains no
plotting subroutines and only rudimentary data analysis features. TRAK simply integrates
the equations of motion and generates an output file, which contains whatever information
the user desires. In the previous Appendix, use of the code PLOTS was described. In
many ways PLOTS is only a debugging tool; it allows the user to see the data generated by
TRAK in a convenient form. If TRAK is to be used in a transport calculation, for example,
software will have to be written which can compute the desired quantities from the output
file. An example of such a code is GOBBLE, which was written for use with the particle
following code TRACK — a precursor to TRAK.

GOBBLE is not a complete data analysis code, though it contains many of the features
of such a code. GOBBLE contains a simple section of code which reads the output file

and saves some of the “global” data as well as the initial and final particle positions. From

27

this data, some calculations are made, and the data are saved in another file. The code is
much less complex than PLOTS because it is small, so the need to recompile it in response
to changes in the output file structure is not a major consideration. Note that the file
generated by GOBBLE is in the same format as the output file. This allows the use of
PLOTS if desired.

Essentially, GOBBLE was the “first pass” of the data analysis process. Its principal
function was to compress the output file from the code TRACK for ease of transmission
over the ARPAnet. The rest of the data analysis process was done by codes written in the

computer language Lisp.

Acknowledgment
Support for this work has been provided by the U.S. Department of Energy.

28

Bibliography

(1] T. G. Northrop, The Adiabatic Motion of Charged Particles, John Wiley and Sons,
New York, 1963.

[2] J. W. Johnson, L. M. Lidsky, K. Molvig and K. Hizanidis, “Monte Carlo Calculation
of the Pinch and Bootstrap Neoclassical Transport Coefficients”, MIT Plasma Fusion
Center Report PFC/RR-83-34, December, 1983.

[3] G. Dahlquist, A. Bjorck, and N. Anderson, Numerical Methods, Prentice-Hall, Engle-
wood Cliffs, NJ, 1974.

(4] Forman S. Acton, Numerical Methods That Work, Harper & Row, New York, 1970.
[6] J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, New York, 1975.

[6] J. G. Aspinall, “Spline Techniques for Magnetic Fields”, MIT Plasma Fusion Center
Report PFC/RR-83-27, June, 1984.

(7] Carl de Boor, A Practical Guide to Splines, Springer—Verlag, New York, 1978.
(8] A. H. Boozer and G. Kuo-Petravic, Phys. Fluids, 24, 851, (1981).
[9] G. E. P. Box and M. E. Muller, Ann. Math. Stat., 29, 610, (1958).

[10] R. Shanny, J. M. Dawson and J. M. Greene, Phys. Fluids, 10, 1281, (1967).

[11] G. G. Lister, D. E. Post and R. Goldston, $rd Varenna Symposium on Plasma Heating
in Torovdal Devices, Editrice Compositori, Bologna, Italy, 1976.

29

