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1. INTRODUCTION

In a previous paper,(l) we developed the theory of the discrete cones
method (the DCy method) for two-dimensional neutron transport calculations.
The DCy method was applied to a solution in a void and the Sy method was used
for a solution in non-void regions. This hybrid method was formulated only
for X-Y geometry. Numerical experiments demonstrate the DCy-Sy hybrid method
significantly mitigates the anomalous oscillations in a scalar flux distri-
bution. Since an extension of the method to a solution in curved geometry is
a necessary step from a practical point of view, in the present paper we
formulate the hybrid method in R-Z geometry.

Although in the previous report we formulated two schemes of the DCy
method in a void, we choose one of those, in which a void is partitioned into
mesh cells, and outgoing cone fluxes, incoming cone fluxes, and a source of a
mesh cell are related by means of transfer and escape matrices. The present
method is similar to the streaming matrix hybrid method (SMHM) by C1ark.(2’3)
However, there are the following major differences between the two methods:

1. In the SMHM, the incoming and outgoing fluxes of subsurfaces of boundary
surfaces of a void are related through streaming matrices; meanwhile, in
the DCy-Sy hybrid method the relations are obtained for a mesh cell.

2. In the SMHM, the matrix elements are calculated numerically; meanwhile, in
the DCy-Sy hybrid method analytical formulas of the elements are derived.
In these formulas single integrals that cannot be analytically integrated
are evaluated by using low order Gaussian quadratures.

Consequently, the DCy-Sy hybrid method has the following advantages over

the SMHM:



A. For the same problem, the DCy-Sy hybrid method requires less computer
memory.

B. Computation of the matrix elements in the DCy-Sy method is much faster
than in the SMHM.

C. The fluxes in void mesh cells are calculated by the DCy-Sy method.

After this introduction, in Sections 2, 3 and 4 the DCy method will be
formulated. In Section 5, a computer program utilizing the DCy-Sy hybrid
method will be described. In Section 6, sample calculations will be demon-
strated. In Section 7, the difficulty of duct streaming problems will be dis-
cussed as well as the limited capability of the present hybrid method for such
problems. Section 8 will conclude this report.

2. CONSTRUCTION OF THE DISCRETE CONES METHOD

In this section we shall solve the neutron transport equation of a void
in R-Z geometry by the discrete cones method. By applying the standard dis-
crete ordinates method to non-void domains, a hybrid method will be con-
structed.

The transport equation is given by Eq. (2.22) in Ref. 1:

%0

¥(r,2) = ¥(r-s 9,9 + [ Q(r-s,8) ds (1)
where s is the distance between two spatial points, and Q is a particle

source. To simplify the method, we ignore the source term for awhile. Then

Eq. (1) becomes

¥(r,2) = ¥(r',9) (2)



where ro=r -sf,

As we observed in Section 3 of Ref. 1, the discrete cones method for a
void cell, which is created by partitioning a large void, is more efficient
than the discrete cones method for the large void itself in terms of the com-
puter memory and the computing time. Hence we shall construct the discrete
cones method for a void cell.

Defining n as a unit vector normal to a cell boundary surface, we multi-
ply Eq. (2) by fen and integrate it over both a cone and an outgoing surface
to find relations between the outgoing and incoming cone fluxes. The same
procedure was applied in Ref. 1; however, there is a fundamental difference
between the discrete cones method in X-Y geometry and one in R-Z geometry.
The difference is that as a particle streams over mesh cells, the cone in
which the particle lies varies in the R-Z coordinate system. Consequently, a
particle on an outgoing surface of a mesh cell may cross the incoming surface
of the mesh cell in a different cone. Hence we must consider the following

recursive relation:

¥ =5 7 7M™ oy, (3)
km m| kl kk k'm

where TEE: js an element of the transfer matrix. In Eq. (3), k and k' denote
the outgoing surface k and the incoming surface k', respectively; m and m' de-
note the cone m on the surface k and the cone m' on the surface k', respec-
tively.

To find explicit formulas of the transfer matrix elements, we first look

into a cylindrical annular mesh cell in the coordinate system illustrated in



Figs. 1 and 2. In Fig. 2(b) we refer to the top, bottom, outer, and inner
boundary surfaces of the cell as TOP, BOTTOM, OUTER, and INNER, respectively.
Since the system is symmetrical about the plane made of the unit vectors ér
and ;z’ and the X-Y plane, we need to consider two of eight octants of the

unit sphere of directions. One of the octants satisfies w > 0, n > 0, and

£ > 0; the other satisfies u< 0, n> 0, and £ > 0. Here u and & are defined
2 2

as follows: u=+vl-n"cos wand £ = vl - n° sin w Consequently, the
transfer matrices of the following ten cases are sufficient for a numerical
solution by the present method:

1. The transfer matrix for a particle streaming from INNER to OUTER: u > 0.
2. The transfer matrix for a particle streaming from OUTER to OUTER: u > 0,
3. The transfer matrix for a particle streaming from BOTTOM to OUTER: u > O.
4. The transfer matrix for a particle streaming from INNER to TOP: u > 0.

5. The transfer matrix for a particle streaming from OUTER to TOP: u > O.

6. The transfer matrix for a particle streaming from BOTTOM to TOP: u > 0.
7. The transfer matrix for a particle streaming from OUTER to INNER: u < O,
8. The transfer matrix for a particle streaming from BOTTOM to INNER: u < 0.
9. The transfer matrix for a particle streaming from BOTTOM to TOP: u < O.
10. The transfer matrix for a particle streaming from OUTER to TOP: u < 0.
A difference between cases 5 and 10, or cases 6 and 9 is that for cases 5 and
6 the polar angle w of direction on the outgoing surface varies between 0 and
n/2; on the other hand, for cases 9 and 10 it varies between m/2 and w. These
separations are made because in an inner iteration of a numerical computation

the spatial sweep over mesh cells is made separately for the directions of

positive p and negative u; i.e., the directions



Fig. 1 The coordinate system for R-Z geometry.



TOP

Fig. 2 (a) A cylindrical annular mesh cell.
(b) A cross sectional view of a mesh cell.
(c) A top view of a mesh cell.



with the angle w varying between 0 and m/2 are treated separately from the
directions with the angle w varying between w/2 and m,

3. CALCULATIONS OF ELEMENTS OF THE TRANSFER MATRICES

In this section we shall describe a method to find the formulas of the
transfer matrix elements for the ten cases given in Section 2. After a gene-
ral description of the method, it will be explained in detail by using a
specific example. Then a more systematic way suitable to programming will be
discussed.

According to the definition of the transfer matrices given by Eq. (3), an

element can be represented as follows:

fA dA, . ffm de Q-n, .
mt KK mm' (4)
kk' T dA, ] d Qen
A K aq —X
k m

where A+ indicates a subdomain of the surface k' which a characteristic line
subtended from the surface k crosses and AG, .+ is a domain common to both cone
m on the surface k and cone m' on the surface k'.

To perform the integration of the numerator in Eq. (4), we must find the
integral limits, Ay + and AR .. First, remember we are considering a stream-
ing particle which leaves a cell through surface k in the cone m at a point
rp = (r,z) in the direction & = (n,w). At the same time the particle enters
the cell through surface k' in the cone m' at a point rg = (r',z') in the

direction @' = (n',w'). The two coordinates (r,z,n,w) and (r',z',n',w') in
the four-dimensional phase space are related to each other by the following

equations:



n=n (5a)
r sin w=r' sin o' (5b)

Y(z - z') =r cos w-r' cos w' (5¢)

where v = V1 - n2/n. These equations are derived by geometrical consider-
ations as well as more rigorous methods as discussed in Appendix A.

There is only one free spatial variable to specify a surface of a cylin-
drical annular cell, and we indicate the variable as p for the point A and q
for the point B. Consequently, the problem we must solve is to find a domain
where q, Y, and w' vary when p, Y, and o vary in a domain: [p_, py] x [y_,v,]
x [w_,w,]. Here py = ry or zy, p- = rpor zg, vy = V1 - nitl/Z /Mys1/2> and
w = wpy1/2.  Since Eq. (5a) holds, from now on we do not distinguish y' from
Y and use Y.

Before going on, let us represent the numerator of Eq. (4) as follows:

N=S S fQ) dg —T o [ dw' e, (6)

where q; and gy are functions of Y and w', Y7 and v, are functions of g and

w , and

2nr' dr' for TOP or BOTTOM
f(q) dq = 2mr dz' for OUTER
2mr; dz' for INNER .

The procedure for the integrations in Eq. (6) consists of the following

four steps.



Step I: By substituting Eq. (5b) into Eq. (5¢) to eliminate w and

solving for Yy, we have

- e - 2 sinfe' - r' cos w'
Y= zZ - z : (7)
Also Eq. (5b) gives
" sin w

Since either r or z and either r' or z' are fixed on a surface, Y may be
represented as v = g(p,q,w'). Hence varying p between p_ and p, gives the
maximum and minimum values of Y as functions of q and w'. If r is fixed,
varying w in Eq. (8) yields the range of r'. If r varies, varying both w and
r yields the range of r'.

Finally, taking account of y_ < vy < vy, and q. < g < g4 where q; = r, or
zy and q_ = ry or zp, we find integral limits in the g-Y plane.

A11 the integral limits are illustrated in Appendix B.l, where y = v,
lines are not shown. Appendix B.2 shows the functions that represent the
integral limits.

Step II: By using Egs. (5b) and (5¢), w' can be represented as a
function of p, q, v, and w. Hence the maximum and minimum values of w' can be
obtained for given ranges of these variables. We define the range of w'
by [w$in’w$ax]' Since the range may cover the w-range of several cones, it
can be partitioned as follows:

L
Lonins “nax] = 221 Lug 15wl (9)

9



where wy = .o, = 6., and wg is either wyy/p or wy_ 1/ for & # either 0
or L.
Step III: Let us represent the result of an analytical integration with

respect to q and Yy in Eq. (6) by a function G(w'). Then

=
[}
—

Glw') W(w') do' (10)

where W(w') is either cos w' or 1, and ' and w,_ are one of wys given in Eq.
(9).

To perform the analytical integration with respect to w' in Eq. (10), it
is convenient to divide the range [q:,w;] into subdomains so that the analyti-
cal expression of G(w') is identical in each subdomain. Then Eq. (10) is

represented as

W

K k
N= 1 J G (0') W(w') do' =
k=1

“k-1

Fo ()X
Folw') (11)
k We-1

I~ R

k=1

where w = w., w = wy, G(w') is a function corresponding to a range
Lwg-1,w], and Fy(w') is a primitive function of the integration.
Step IV: Integrations in Eq. (11) are carried out analytically or nu-
merically. Finally, an element of the transfer matrix is obtained by Eq. (4).
The above procedure will be discussed in more detail by using Case 1:
streaming from INNER to OUTER. Since r = r, and r' = ry, Egs. (7) and (8)

become

2 _ 2 .2 _ ,
/Y‘ Y‘I Sin"w Y‘I Cos w (12)

zZ -2z

10



_ sin w
and O A T (13)

Since z' <z and zg < z < zy, by Eq. (12) the range of v is

2

2 2 . ' '
r¢ -~ r$ sin“w' - r. cos w
/fo "M ® TN Cy<w (14)
zp -z
The range of z' is zg < z' <z7 . (15)
The domain made by these inequalities is illustrated in Fig. 3.
From Eq. (13) the range of w' is given for w_ < w < w,_ as follows:
', o
arcsin (=2 sin w_) € @' < arcsin(— sin w,) . (16)
r - r +

Here it is noted that if w, > arcsin (ry/ry), the right-most term is replaced
by m/2. Similarly, if w_ > arcsin (ry/r,), the range cannot exist; in other
words, the transfer matrix element for this case is zero. Hence, we assume

w_ < arcsin (ry/ry).

After partitioning the range of w' given by inequalities (16) into w-
ranges of cones as given in Eq. (9), we have Eq. (10), where W(w') = cos w'.
To find Eq. (11), first see Fig. 3. Let us represent an intersection of a
surface vy = f(z',0') and a plane z' = zg as vj(w'). Then a domain made by
1limiting the domain shown in Fig. 3 by two planes vy = v, and Y = y_ is cate-
gorized into three types, two of which are illustrated in Figs. 4(a). For
type 1, v4 < vy(w') < y_. For type 2, yj(w') < v, < y_. For type 3, the area

is zero.

11



>Z

Fig. 3 The integral limit in the z' - v plane for Case 1: INNER to OUTER.
Y = Y, lines are not shown.

12



3
!

’

N

{3

3+

- - - - 3_
~3|

Nl._.N

/

_ (,m,2)4 (1)

I,, 0
4=, (,muLs Lvumi\\

[AY

1
A=y ((PULS ) - ol

\K._-J.-_- -

17 82

— = (m %o

-8z - ,Z fuoljedbajuL jo eade suefd A - m (q) p "bL4

82

13

e

(mZ )4 =4S

o oov ase want

S\ O

W/

> s (,mW iz adkL (11)

VA

ko> (m) o> thoip adAL (1)

‘uorjedbajut jo eade suefd A - ,z (e) ¢ "bL4



By taking into account these three types of integral limits, Eq. (11) is

obtained separately for the following six cases:

L. If o < yp(wl), N =0,

2. If vy < yp(w)) < v. < yy(w), z'-v plane area of integration is given by
Type 1 for w! < w' < w,. Here wy is a root of the equation v_ = y(w').
The area is zero for wy < ' < .

3. If v, < y(wl) < y(w,) < y_, the area is Type 1 for w! < ' < w.

4. If Yl(“l) <y, <y < Yl(w;), the area is Type 2 for w! < w' < w,, Type 1
for w, < w' < w5 and zero for w; < w' < w;. Here w; is a root of the
equation v, = yy(w').

5. If Yl(ml) <y, < Yl(w;) < y_, the area is Type 2 for w! < w' < w; and Type
1 for w; < w' < m;.

6. If Yl(w;) <v,, the area is Type 2 for w! < o' < w,

For instance, for Case 4, Eq. (11) becomes
w, wy w_'|_
N =] Gy(w')cos w' da' + J G,(w')cos w' du' + J Gy(w')cos w' du' (17)
w' W w
- 2 1
where Gy (w') = 2mr, [ ] ———— dv dz'
Y, Zp (I +v7)
Y. Z 2
'y Y 1
Gz(w ) = 2mr [ ———— dy dz’
Y, zp (L +77)
1 B
and G3(w ) =0 .

In the above definitions of G; and Go, 27 is given by

14



' - - 2_ 2 -2!_ i
z;(v,0") = 2z, (/ro ry sin®w' - r; cos )/az .

After elaborate calculations, we find the exact analytical formula:

2 “1
N = 2mr [Fl(w')]wl + 2w [Fz(w')]w2 . (18)

Fi(w') and Fo(w') are given as follows:

n
Fy(w) =21—rIAz [l - n® + arcsin n]ni sin w +%-r%(ni - ng)
CL 1. ey "ol _ .2 _ (foy2
x {w + > sin 20 - sin w /(—r—I-) sinw (F-I-) (19)
"1
x arcsin (r_ sin w)}
0

F,(w) =21- ry8z[(arccos n_ - n_v/1 - Z2) sin w - sin w arctan (y;(w))

- Wl_KE {q? arcsin ((8B + %i_) * DD ) (20)
I yq(w)

- 82% arcsin ((2*AA*y§(w) + BB) * DD) - /€K arcsin ((BB -

2%An - 22K ) % pp)}] -zlrrfnf fu+ % sin 20 -

yl(w) + 1
r r r
sin /(—0)2 - sinfw - (—0)2 arcsin (—I- sin w)}
lﬂI rI r‘O

15



where yp(w) = (/ rg - r% sinlw - ry cos w)/ Az
AA = -aZ*
88 = 2(rZ + r¥) a®
cc = -(rd + r2)?
DD = 1/(BB? - 4xAACC)
CK = BB - AA - CC .

In the above example, to obtain the explicit formula of Eq. (11) we must
consider six cases, which are found by carefully examining Figs. 3. Since a
computer cannot do such a visual examination, a more mechanical method to do
the same work must be devised to write a workable computer program.

To accomplish this goal, we shall introduce graphs associated with tables
and functions. In the remainder of this section, we shall explain the graphs
and tables, and describe how to read these graphs and tables to find the final
expression of Eq. (11) using Case 1 of streaming (INNER to OUTER) and Case 3
of streaming (BOTTOM to OUTER).

A graph is made up of vertices and arcs. As an example, see Graph 2.2 in

16



Table 1(b). Here the numbers are called vertex, and the arrows between the
vertices are called arc. (See Ref. 4 about the terminology.) Each vertex is
associated with a primitive function of integration, F (w') in Eq. (11). The
function corresponding to a vertex is found by looking into a table associated
with the graph. Each arc is associated with a value of w', which is w, in Eq.
(11).

The integration in Eq. (11) is carried out from w! to w, with respect to

w 1in the following manner:

1. Find the vertex number corresponding to ®' = w', using an associated

table. The vertex is called the starting point.

2. Do the same thing for w' = w,. The vertex is called the end point.

3. Find a path between the starting point and the end point by tracing the
arcs in the direction of the arrow. Note that if there are more than two
arcs leaving a vertex, we choose an arc whose w is the smallest. At a
vertex the lower 1limit of integration, W -1 in Eq. (l1), is set to w of
the arc reaching the vertex, and the upper 1limit of integration, w in Eq.
(11), is set to w of the arc leaving the vertex. A primitive function of
integration, Fy(w'), is also chosen.

4. At the end point, we have an expression for Eq. (11).

To be more specific, let us explain Case 1 of streaming (INNER to OUTER).
First, look at Graph 1.2 in Table 1(a). Here the first column shows the graph
number, the second column shows an identification number that indicates the
direction of arrows, and the fourth column shows the table numbers associated

with this graph. For the present example, we must examine Table 1.1. (A1l

the graphs and tables are given in Appendix C.1 and C.2, respectively.)

17



Table 1(a)

(1.1) CASE 1 FUNCTION
1 +- 0
2 + - 2
3 - 1
Graph 1.2
TABLE NUMBER THAT CORRESPONDS
GRAPH ID. IDCRT  GRAPH TO THIS GRAPH
1-2 2 &——1 2 1.1 6A.2
3A.1 7.1
3A.2 8.2
3 4.1 9.4
4.2 10.4

18



Table 1(b)

(3A.1) CASE ¥1 FUNCTION
1 +- 1
2 + - 2
3 += 3
(3A.4) CASE ¥Y3 ¥ FUNCTION
1 +- 0
2 + +- 6
3 + - 11
4 +- 8
5 + - 12
6 += 13
1) y1 = ry sin (o' - w_)/sin o'
y3 = ro sin (o' - w.)/sin o'
2) t =,
1 2
Graph 2.2 le— 22—
A
3 3
2
4<—-5
o~
4
6

19




Now see Table 1(a) (1.1). In this table, y; is a function given by

yplw') = (//rg - r% sin“w' - rp cos w')/Az. + and - denote Y+ and y_, respec-
tively. There are three cases depending on the order of values v,, v., and
yi(w'). Each case is accompanied by a function, Fj(w'), which is a primitive
function of integration. The function number, i, is given in the right-most
column of the table. The case number shown in the left-most column of the
table corresponds to the vertex number in Graph 1.2.

Let us represent the values of w' as w for an arc between the vertices 1
and 2, and w, for an arc between the vertices 2 and 3. For the present
example, w; is a root of an equation v, = yj(w) and wy, is a root of an
equation vy. = yj(uw).

Suppose that y (wl) < v < y_ < yq(w,). Then, we see by Table 1(a) (1.1)
that the starting point is the vertex 3 and the end point is the vertex 1.
According to the rules described above, we find the following expression of
Eq. (11):

N = [Fl(w')]:? + [Fz(w')]:; v 0]t
This is identical to Eq. (18) except a factor 2mrj which is included in the
functions Fy and Fj.

Next we consider Case 3 of streaming (BOTTOM to OUTER). In this case, w'
can be larger than w/2. Hence we consider two cases, 0 < w' < n/2 (Case 3A)
and 1/2 < w' < w (Case 3B), separately. For the present example, we assume 0
< w' < 7/2,

Case 3A (BOTTOM to OUTER, 0 < w' < m/2) is made up of four tables and

four graphs instead of only one table and one graph for Case 1 (INNER to

20



OUTER). Hence, at first we must find which tables and graphs should be looked
into. This is done by examining Table 2. In the table the number, n, over
each subsection on the w' axis indicates a corresponding table number, 3A.n.

The definitions of w; and w, are as follows:

r

arcsin (Fg-sin w ) if sin w_<rp/r,
° I
w =
1

n/2 otherwise

o -
Lo iF sin w <

) arcsin (rI sin w,) if sin w <rp/r
w =
2

n/2 otherwise.

Now suppose that w_ < wl < w < w < w;. Then, examining Table 2.3A.i1,

we find that we must read Table 3A.1 for w' < w' < w_and Table 3A.4

] ] 1 ]
for w, < <. Further assume y_ > yl(uh) > v, and Y, > yl(w_). Here

Yi{w) = ry sin (w - w_)/sin w. Then referring to both Table 3A.1 (in Table

1(b)) and Graph 1.2 gives

“

Ny = [Pl i+ [Fpeh)] (21)

where w, is a root of an equation y. = yj(w).
Next assume that yj(w.) < v, <yj(w) <v_and v, < yslu) < v
< yl(wl). Here y3(w) = ry sin (w - w.)/sin w. In Table 3A.4 (in Table 1(b)),

W o= w is Case 5 and w' = w, is Case 2. As seen in Graph 2.2, there are two

possible paths between vertices 5 and 2. Which path should be chosen is

21



Table 2

(3A.)
1 2 3
(1) 4 ; | | 'r —
w_ wl w+ wz /2
1 4 3
w_ w+ wl wz x/2
R s
1) w = arcsin (== sin w_)
"1
- . o .
w, = arcsin Q;; sin )

2) The number, i, over each subsection on w' axis indicates the

table number in Table 4.1(b), 3A.i.

22



determined by comparing w, of the arc 2 and w3 of the arc 3. Here wy and wg
are roots of v, = yj(w) and y_ = y3(w), respectively. The next path is an arc
with a smaller w. Hence, if wy < wg, the next vertex is 4, which is followed
by the vertex 2. Consequently, using Table 3A.4 in Table 1(b), we find the

following formula:

w, wy w;
N, = [FIZ(NI)]Q+ + [F8(m')]w2 + [F6(ou')]m3 ) (22)

The final formula of N is a summation of Egqs. (21) and (22).

In the above derivation of N we made several assumptions; however, in
actual calculations of the transfer matrix elements there are no such assump-
tions. That is, all parameters necessary to compute the transfer matrix ele-
ments are uniquely determined once an outgoing surface and a cone are speci-
fied.

A1l other tables and graphs similar to Tables 1 and Graphs 1.2 and 2.2
are given in Appendix C. In the appendix, associated tables such as Table 2
and functions such as a function y; in Table 1(a) are also given.

The primitive functions of integrals are not given in this paper because
they are too complicated to list in a limited space. The reader can find the
explicit formulas of the functions in function programs in a program TWODCRZ,
which will be explained in the following section. For convenience, the names
of function programs are given in Table 4.

4. DERIVATION OF THE ESCAPE MATRICES FOR A SOURCE

In the preceding sections, the transfer matrices were derived when no
particle source existed in a void. In this section, we shall derive the

escape matrices for a source. The transport equation considered is
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S0

¥(r,2) = ¥(r-s 2,9 + [ Q(r-s2,9) ds . (1)
The transfer matrices for the streaming term, which is the first term of the

right-hand side of Eq. (1), are the same as those obtained in Section 3.

Hence we consider Eq. (1), neglecting the.streaming term:

S0

¥(r,0) = [ Q(r-s2,0) ds . (23)
0

We multiply both sides of Eq. (21) byiﬁﬁgk and integrate it over the boundary

surface k and the m'th cone. Then we have

5o
[ ] ¥r,8) 2en, dAd@ =[] [ [ Q(r-s2,2) @n, dsdAd2 .  (24)
A - A, A2 o T T T T -
k m k m

We apply the discrete cones approximation to the left-hand side of Eq. (24);
that is, the angular flux is assumed to be constant over the surface k and the

cone m. Then, it becomes

(25)
On the other hand, we apply the standard discrete ordinates approximation to
the right-hand side of Eq. (24). Also, we assume that the source is distri-

buted uniformly over the mesh cell and is isotropic. As a result, the right-

hand side becomes

R.H.S. = (ffA s,(r) dA)(8 n ) w Q. (26)
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where s, is the distance between a point, r, on the surface k and the point
where the characteristic in the direction &, extended from the point r inter-
sects another boundary surface of the mesh cell, Sy is a direction vector of
the discrete ordinates, and Wp and Qp, are the same as those of the discrete
ordinates method. It is worth noting that there is no contribution of a
source of different cones to the outgoing flux because an isotropic source is
assumed. Now, by Egs. (25) and (26), an element of the escape matrix, PE, is

represented as follows:

// s,(r) dA
m (gniﬂk) Y Ak
k

! A

pil =
AR -
m

Recalling the definition of the adjustment factors described Eq. (2.31) in

Section 2 of Ref. 1, we have

I/ solr) dA
Ay (27)

where oy, is the adjustment factor of the surface k. By using both the trans-
fer matrices and the escape matrices, the m'th outgoing cone flux on the

surface k is represented by

_ mm' m
Yem = E. %. Tek' Yerm' * Pl - (28)

There are four cases of the escape matrices:
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Case 1 is of the surface OUTER,

Case 2 is of the surface TOP for 0 < w < w/2,

Case 3 is of the surface INNER, and

Case 4 is of the surface TOP for #/2 < w < m,
In Eq. (27), Acs of the Cases 1, 2, 3, and 4 is given by 2rjaz, n(r% - r2)az,
2mriAz, and W(rg - r?)Az, respectively. By taking account of the geometry of
a mesh cell as shown in Fig. 2(a), the function So(r) of the integrand in Eq.
(27) is obtained. For example, for Case 1, sy(r) = (zj - zg)/n, if Wy € 0,
and z) <z < zp5 solr) = (z - zg)/ny if wy < wy and zg <z < z;. Here w, and

N, are the polar angle and the direction cosine of the m'th direction of the

discrete ordinates, w, = arcsin(ry/ry), and z; is given by z; = zg + %
+ # (ro cos w - r% - rg sin2 ). By using this result, Eq. (27) becomes
2mr Tz, -2 Z) 2 -2
m_ 1 0 1 °B B
Py " o 7w 53 {f ——ﬁ;——— dz + | T dz } for z; <z,
om 0 z zp
or
m 1 2ur IZT z -2z
P — dz for z. > z, .
0 %om 2nroAz zp m 1 B

These integrations are easily performed to obtain the final formula of the
element. All the elements are obtained in the same way and those are listed
in Appendix D.

As we see in the derivation of the escape matrices, the matrix is not
obtained so that particles produced by the source in a mesh cell balance the
particles leaving the cell. As a result, using these escape matrices reduces
the convergence rate of the inner iteration in a numerical calculation. To
avoid such a deficiency, we enforce the particle balance by introducing a

balance factor.
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The balance factor, f, is defined by the following equation:

M M M
m m m
f[z(mzz1 2mu w P Q.+ m=21 2nummeIQm) + 2(m=21 2mn w P Q + (29)
1 2mngepTy0n)] = 4 40,02 - %) az
i T¥m T2%m 7 T, I y

Here M is the total number of discrete ordinates in an octant of the direction
space, and PE, P$]’ PI, and P?z are the elements of the escape matrices for
Cases 1, 2, 3, and 4, respectively.

Equation (29) 1is solved for each void cell to find f, and all the ele-
ments PE of the mesh cell are multiplied by f. The new elements are applied
to an actual numerical solution of the transport equation. Our experiences
with numerical calculations indicates that using the balance factor does
indeed accelerate the inner iteration up to the same level as that of the

discrete ordinates solution.

5. PROGRAM TWODCRZ

The TWOTRAN-II program was modified so that the new program solves the
neutron transport equation in a void by the discrete cones method described in
the preceding sections. The new program is named TWODCRZ, whose structure is
shown in Table 3. To compute the transfer and escape matrix elements and
store them in a common array, the TEMS module is inserted as the fourth over-
lay after the first overlay, which is an input module.

The TEMS module creates two output files, OUTTM and TESUM. The file
OUTTM contains 1lists of the transfer matrix elements, the adjustment factors,
the quadrature set, and the discrete cones boundaries. The file TESUM con-

tains brief lists of the transfer and escape matrix elements and tells whether

27



Table 3.

Structure of the TWODCRZ Program

1) These subprograms are newly added to the TWOTRAN-II program.

2) These subprograms are modified.
3) This module is new.
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a sum of the transfer matrix elements of an outgoing surface and a cone added
over all possible incoming surfaces and cones becomes unity. If the sum is
larger than 1.005 or smaller than 0.995, a warning error message is issued.

In addition to the TEMS module, a subprogram SNCON, which contains the
built-in quadrature set, is replaced by a subprogram EQNCON, which provides
the equal weight quadrature set EQy. Furthermore, subprograms IN and OUT are
modified so that in a void IN and OUT call subprograms VACIN and VACOUT, re-
spectively. The subprogram VACIN calculates the discrete ordinates fluxes
leaving the void by using the incoming discrete ordinates fluxes, the transfer
and escape matrix elements, and the adjustment factors for the inward sweep of
space, or in the direction of decreasing r. On the other hand, the subprogram
VACOUT does the same for the outward sweep of space, or in the direction of
increasing r.

VACOUT uses the transfer matrix elements of Cases 1 through 6 described
in Section 2. Since calculations of the outgoing fluxes of cases 2, 3, 5, and
6 require the cone fluxes that are in the inward direction, the fluxes calcu-
lated by VACIN in a previous inward sweep must be stored. In contrast, VACIN
uses the transfer matrix elements of cases 7 through 10. No fluxes by VACOUT
are required in the subprogram VACIN.

Since the transfer matrix depends on incoming cones and surfaces, out-
going cones and surfaces, and the size of spatial mesh cells, it can be repre-
sented as a four-dimensional array, TME(n,m,k,i). This denotes the element of
the transfer matrix of particles streaming into the m'th cone from the n'th
cone in the k'th of ten cases of streaming in the i'th void cell. Here, m
varies between 1 and MM. n varies between 1 and NM(= N/2) for Cases 1, 2, 4,

5, 7, 8 ,9, and 10; meanwhile it varies between 1 and 2 x NM for Cases 3 and
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and 6. MM is given by MM = N(N + 2)/8 as usual. If the number of void cells
that have different spatial intervals is IVT, the total number of/the transfer
matrix elements, ITME, is given by 12 x NM x MM x IVT.

On the other hand, the escape matrix depends on the surface and the cone
in which a particle leaves a void cell. As described in Section 4, there are
four types of escape matrices. Therefore, the escape matrix can be repre-
sented as a three-dimensional array, TMEQ(m,k,i), where m denotes the cone
number, k denotes one of four types, and i is a void cell. As a result, the
number of the escape matrix elements stored, ITMEQ, is given by 4 x MM x IVT.

For example, consider a system with a void. Then, suppose that the boun-
daries of the void are divided into 50 intervals in the r-direction and 10
different intervals in the z-direction. Moreover, suppose the DCg approxi-
mation is used in the void. Then, ITME = 240,000 and ITMEQ = 20,000. Al-
though this number might be reduced by choosing the mesh intervals carefully,
the number is typical for most practically interesting systems. The point is
that 242 K memory is not small even for a large computer.

Fortunately, particles crossing an outgoing surface in a cone cannot
cross the incoming surface in all the NM or 2*NM cones. In other words, the
elements of the transfer matrix are zero for some cones. Hence, we can ease
the memory requirement by storing only non-zero elements. This strategy, how-
ever, prohibits us from using the transfer matrix in the matrix form because
the first dimension of the matrix TME varies cone by cone. Consequently, the
computational algorithm becomes complex. In spite of its complexity, this
algorithm is applied to the present program to ease the memory requirement.
In this algorithm the computer must call the transfer matrix elements, corre-

sponding to each cone and each cell. For this calling, first the place of
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desired transfer matrix elements in a storage array must be calculated. This

is done by using data provided by a subprogram CHOP as described later in this

section.

Due to complexities, the algorithm 1is expected to be inefficient,
especially when the order of the DCy approximation is high or a large number
of spatial mesh cells are used.

The program structure of the TEMS module is illustrated in Appendix E.
Roles of subprograms will be explained in the remainder of this section.
OMEGRAN computes the range of the polar angle w' for outgoing and incoming

surfaces and an outgoing cone.

CONSTAT calculates almost all the constants used in the subprograms in the
TEMS module, especially the machine epsilon of the computer 1is computed
for floating point arithmetics. Furthermore, it computes the denominators
of the transfer matrix elements.

TRANS1,2,3,...,10, BOTOUT, and BOTOP compute the transfer matrix elements for

ten cases described in Section 1.

CHOP finds numbers of incoming cones, which correspond to an outgoing cone,
and it stores them for use in VACIN and VACOUT.

SEARCH searches a starting vertex and an end vertex on a graph with the help
of tables. It finds a possible path between the two vertices, knowing
roots associated with the arcs. Finally, it returns the vertex and arc
numbers to the program that called it.

SORT is a sorting program.

MULLER solves a nonlinear equation to find real roots in a given range by the

Muller method.(s)
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SECANT also solves a nonlinear equation by the SECANT method. () It is called
if we know in advance that only one root exists in a given range.

QUAD numerically integrates single integrals, which cannot be integrated ana-
lytically. Gaussian quadrature is used for the integrations. The order
is specified as an input variable, IQUAD. The examples described in the
next sections are solved by the 8th order Gaussian quadrature because this
results in sufficient accuracy for the present computations.

QUADSET computes the cone boundaries.

ADJUST computes the adjustment factors.

RINTGA and RINTGB assign roots to arcs of graphs and computes yi(wo). Here w,

is the minimum or maximum value of w'. i =1, 2, ..., 7 for TRANS6 and
i=1,2, ..., 8 for BOTOP. Having these values, it calls the subprogram
SEARCH to find primitive functions.

TRANSQ computes the escape matrix elements.

TMQREBL calculates the balance factors to find the adjusted escape matrix
elements.
The functions used in this module are included in subprograms shown in

Table 4.

6. NUMERICAL RESULTS

PROBLEM 1. Streaming Problem

First, we solve a streaming problem for one energy group. As illustrated
in Fig. 5, a void is surrounded by a highly absorbing material. An isotropic
source is located at the center and the boundary conditions are shown in the
figure. In this problem the source region is not void, but consists of a
material with very small cross sections; that is, the mean free path is much

longer than the dimensions of the source region. To calculate the transfer
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Table 4. Function Subprograms that Contain the Functions

Necessary to Evaluate the Transfer Matrix Elements

[1] I »o0: FULl, FUl2

[2] o0 ~o0: FU21, FU22

[3] B > 0: (A) FUBOA, QI301
(B) FUBOB, GGBOB, QI311

(41 1 -7 FUIT

(6] 0T FUOT1

[6] B~>T (A) FUBT1A, FBT1A, GBT1A, GGBT1A, QINTBTA, QI601, GAMZBTA
(B) FUBT1B, FBT1B, GBT1B, GGBT1B, QINBTB, QI611, GAMZBT

[7] o+ 1: FU71, FU72

[8] B +1I: FUBI, QI801

[9] B+ T: FUBT2, FBT2, GBT2, GGBT2, QINBT2, QI901, GAMZBT2
[10] 0+ T: FUOT2

Function subprograms that are called by any of the above subprograms:

SQRT1, TUN, ATUN, SIN1, ASIN1, F1AB, F2AB, F3AB, F4AB

33



0.~ R

NNNJVA

e el 5|
= |V ~ | =
S |xf - { 3
215 S | 2
S > [ >

' |

“ -

| | Su

beosmeozoooooooooeo . @9

I 2 QoA N\N-—33%
Ng o JAILD31438 -

S| QN
SRS
N QO
S| C @
<

o

>~

m&ul.?_
| =
BT |<
g|=|=

vFig. 5 Geometry and cross sections for Problem 1.

34



matrix elements (TMEs), the TWODCRZ program must know the maximum and minimum
Z coordinates, the maximum and minimum R coordinates, and the number of par-
titions in the R direction for a cylinder or an annular cylinder. These data
are provided as inputs to the program.

For the present problem, the void is divided into one annular cylinder,
VOID1 and one cylinder, VOID2. In Fig. 5, these regions are surrounded by
dashed lines. The entire system is uniformly partitioned into a 10 times 10
mesh. This means that the Z direction of VOID1 is uniformly divided into 9
subsections and the R direction is divided into 8 subsections so that the sub-
traction of the inner radius from the outer radius results in equal length for
all the 8 annular cylinders. Since the TMEs depend on the outer and inner
radii themselves rather than the ratio, the TMEs must be individually calcu-
lated for the 8 annular cylinders with width 1 in the R direction. In differ-
ent Z levels, the same TMEs may be used. The Z direction of VOID2 is divided
into 8 subsections; meanwhile, the R direction consists of one subsection.
Hence, in this case the TMEs for only one set of the inner and outer radii
must be calculated.

The problem was solved by TWOTRAN, TWODCRZ, and MCNP. The scalar flux
distributions by the Sg, S;4, DSCg approximations and an MCNP calculation
using 1 million particle histories are plotted for the top edge at Z = 9.5 and
the right edge at R = 9.5 in Fig. 6(a) and Fig. 6(b), respectively. Here the
DSCy approximation implies that the Sy method in non-voids and DCy method in
voids are used.

Comparing the flux distributions by the DSCg solution with that by the Sg
approximation clearly shows a strong mitigation of the streaming ray effects.

Qualitatively speaking, the DSCg solution is as accurate as the Sy solution.
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Table 5 represents the computing time of these calculations. The CPU
time of the DSCg solution 1is not only much Tonger than that of the Sg so-
lution, but also it is more than twice that of the CPU time for the 316 so-
Tution. For the DSC8 solution, the CPU time to calculate the transfer matrix
elements is 2.53 seconds. Subtracting this from the total CPU time, we find
the CPU time that is actually consumed to solve the transport equation. In
this case, it is 1.5 seconds, which is almost the same as the total CPU time
of the S;4 solution. Therefore, the current version of TWODCRZ is inefficient
compared with TWOTRAN.

However, we can justify this inefficiency from the following point of
view. Now, suppose that we solve a multigroup problem, which has a small void
compared with a non-void domain. Furthermore, suppose the void contains a
localized particle source whose volume is much smaller than the void, and we
are interested in the scalar flux distribution near the void as well as in the
non-void domain far from the void.

For this problem, we must employ a method which is free from the stream-
ing ray effect. Let us assume, for example, we use TWOTRAN with the S16 ap-
proximation and TWODCRZ with the DSCg approximation. As mentioned in the
paragraph second above, the CPU time of these two calculations may be compara-
ble in a void if we exclude the computing time for the transfer matrix ele-
ments. Since the S;g calculation consumes three to four times more CPU time
than an Sg calculation in the non-void domain, the TWODCRZ calculation is much
faster than the TWOTRAN calculation. Consequently, beyond a certain volume
ratio of void to non-void, the TWODCRZ calculation with the DSCg approximation
results in a sufficiently accurate solution in a shorter CPU time than the

TWOTRAN solution.
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Table 5.

Computing Time of Problem 1

Sg S16 DSCq DSCq
CPU time at TEMS --= -—= 1.515 2.532
CPU time by whole 0.636 1.541 2.647 4,001
CPU (whole)-CPU (TEMS) 0.636 1.541 1.132 1.469
No. of inner iterations 5 5 6 5
CPU time per inner 0.1272 0.3082 0.1887 0.2939

iteration

(1) IQUAD = 8 for TEMS

(2) convergence criteria € = 1,0E-4

(3) units = seconds
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[f we take account of the computing time of the transfer matrix elements,
the ratio may become larger, but such a critical ratio still exists. We can
reduce the computing time by using meshes as equal as possible. Also we
remind you that the transfer matrix is independent of energy.

To make the TWODCRZ solution faster, we must invent a more efficient
algorithm for sweeping spatial meshes and cones. This task is left for the
future.

Before we pay much attention to the computing time, however, we should
look into the accuracy of the new method in more detail.

PROBLEM 2. Streaming Problem

In this problem, we shall investigate effects of spatial mesh size on the
accuracy of the DSCy solutions. The geometry of the problem is illustrated in
Fig. 7. Two voids are specified as shown in the figure. The voids are sur-
rounded by a material with very small cross sections. In fact, the total and
scattering cross sections are 1.0 x 10710, An isotropic source is located on
the Z axis in the same material. These domains with the low cross section
material are solved by the Sg approximation.

The whole system is partitioned in three different ways:

a) AR =1,0, AZ = 2.0
b) &R = 0.5, &Z = 1.0
c) AR = 0.25, AZ = 0.5,

and these cases are solved by the Sg, S16s DSCg approximations and the MCNP
code.

Scalar fluxes of subdomains represented by numbers are obtained by
averaging several scalar fluxes in the subdomain. The average fluxes are

shown in Table 6 for the solutions mentioned above. In this table, the lower
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number in a box is a percent error compared with the MCNP solution. If the
number does not have a symbol %, then it indicates the ratio of the solution
to the MCNP solution.

First, we realize that refining the spatial mesh does not result in a
better accuracy of the DSCg solutions. On the contrary, the error increases
as the mesh size decreases, except solutions for the DSCg approximation. Un-
expectedly, the same thing is true for the Sg solutions. As a whole, we see
much better accuracy of the DSCg solutions than the Sg solutions. However,
comparing the average fluxes at subdomains 5 and 6 at the top of the system by
the DSCg approximation with the S16 solutions we find that the DSCg does not
give sufficient accuracy.

Next, we compare more global quantities. Table 7 represents the right
and top leakages. The right leakage is a leakage from a cylindrical surface
with R = 5 and Z = 0 to 10. The top leakage is a leakage from a circle with a
radius 5 at Z = 10. Differing from the average flux in a region, these
quantities become more accurate as the mesh size decreases. The top leakage
by DSCg for case (a) is less accurate than Sg for case (a), but for the other
two cases, the DSC8 solutions are much more accurate than the Sg solutions.
In conclusion, about the accuracy of integrated quantities such as leakages,
the DSCg and Sg solutions are comparable, and both solutions are acceptable.

PROBLEM 3. Duct Streaming Problem

Because of the nature of the discrete ordinates approximation, it is
difficult for the Sy method to solve a narrow duct streaming problem accurate-
ly. Here, a narrow duct is one whose height (L) is much larger than its
diameter (D), i.e., L/D > 1. The following problem is solved to show the

usefulness of the DSCy approximation for such a narrow duct streaming problem.

42



DSCq

MCNP

Table 7.

Right and Top Leakages of Problem 2

Right Leakage

0.54972
0.54569
0.53838
0.51025
0.52823
0.54082
0.52423
0.53433

(+2.90%)
(+2.15%)
(+0.777%)
(-4.49%)
(-1.14%)
(+1.21%)
(-0.018%)
(+ 0.20%)

Top Leakage

.0721901
.0642282
.0613779
.0612613
.0501096
.0514688
.0638051
.0630628

(+14.5%)
(+1.85%)
(-2.67%)
(-2.86%)
(-20.5%)
(-18.4%)
(+1.18%)
(x0.14%)

* The numbers inside parentheses are percent errors from MCNP solutions.
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The schematic diagram of the problem is illustrated in Fig. 8. Its L/D is 8.
The Sg, S;4, and DSCg approximations are applied, and an analytical solution
is obtained. For the numerical solutions, the system is partitioned into 6
times 81 mesh cells.

The scalar flux distribution along the Z-axis in the outer layer, i.e., R
= 5.5, is plotted in Fig. 10. An analytical solution, which is obtained by
integrating a point source kernel over the region of the surface source, is

represented by

% 2% + a2 - b2 + vzh 4 2(a2 + bz)z2 + (a2 - b2)
¢(Z) "a—-ln | 3 I
2z

(30)

where q, is the number of particles produced per unit area per unit time, a =
5.0, and b = 5.5 cm. This analytical solution is also plotted in Fig. 10.
Comparing the DSCg and Sg solutions, we observe oscillations in the Sg so-
lution. These are due to the ray streaming effect. The DSCg approximation
eliminates the anomaly. Despite this success, the DSCg solution decreases
sharply around Z = 40. At Z = 70, it is an order smaller than the exact so-
Tution. Although the deviation is smaller than that of the Sg solution, the
error is unacceptable as a solution.

The sharp decline of the Sg solution is explained by considering the dis-
crete directions used in Sy solutions. The current Sy solutions apply the
quadrature set EQy. The maximum n for EQg and EQ;g are 0.9603506 and
0.9889102, respectively. In R-Z geometry, n is defined by n = cos 6 = e,°f as
illustrated in Fig. 1. Hence, the maximum n gives the minimum 8: emin' 8min
is 0.2825393 for EQg and 0.1490661 for EQyg. Now, consider a cylinder having

a radius a and a surface source on the bottom boundary as illustrated in Fig.
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Fig. 8 Geometry and cross sections for Problem 3.
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9. Since no particles are emitted in a direction with 6 smaller than emin’ no

particles can reach the outer boundary surface beyond a critical Z: Z. = 2a

o
tan(w/2 - 8min)- In the current problem, Z, = 34.44646 for EQg and Z, =
66.58671 for EQig. These critical points are shown on the Z axis in Fig.
10. The figure indicates a strong correspondence between the critical points
and points where the solutions start falling sharply. Although the DCy
approximation does not have the minimum 6, the DSCg solution also sharply
falls around Z.. To some extent, the reason will be discussed in Section 7.

In Fig. 10, we also observe that the Sg» 316, and DSCg solutions are
somewhat larger than the exact solution around the critical Z. This is be-
cause any approximate solution has a point beyond which the solution is much
smaller than the exact solution. Since both Sy and DCy solutions solve the
transport equation so that particles in a system are conserved, the flux must
be larger than the exact value somewhere to compensate the lack of particles.
In conclusion, the DSCy method as well as the Sy method results in inaccurate
solutions at the end of a duct, whose L/D >> tan(m/2 - 8;,).

PROBLEM 4. Multigroup Problem (A Tokamak Reactor Model)

The problem of a fusion reactor with a bean shape plasma discussed in
Ref. 1 is solved in R-Z geometry by using the TWODCRZ program. The geometry
and the source distribution are the same as those illustrated in Ref. 1. How-
ever, the X axis and the Y axis in the figure are replaced by the R axis and
the Z axis, respectively. In other words, the present solution can take the
toroidal effect into account. The left and bottom boundaries are reflective,

and others are vacuum.
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The problem is solved by the 58 method (TWOTRAN-II) and the DSC8 method
(TWODCRZ) using the 30 neutron + 12 gamma energy group cross section library
described in Ref. 1.

Since the neutron source concentrates around a point (R = 155 cm and Z =
0 cm), the streaming ray effect may significantly affect the flux distribution
on the surrounding walls. Since the source is only in the second energy
group, the streaming ray effect in other energy groups may be negligible.
Therefore, we apply the DSCg method only to the second energy group and solve
other energy groups by the standard Sg approximation.

The results are illustrated in Fig. 1l(a) and (b). These figures show
the scalar flux of the second energy group for the left and top edges of the
domain. As seen in Fig. 11(a), the streaming ray effect is strongly mitigated
by the DSCg method.

In the DSCg solution, the CPU time for the calculation of the transfer
and escape matrices is 5.3 seconds, and the total CPU time is 232 seconds.
Hence, the cost of the matrix calculations is negligible compared with that
needed by other parts of the computation. Meanwhile, the total CPU time of
the Sg solution is 184 seconds.

In conclusion, the DSCg method can result in a much better solution with-
out a significant increase of computing cost if the discrete cones method is
applied only to energy groups in which the streaming effect is important.

7. DIFFICULTY OF DUCT STREAMING PROBLEMS

A goal of this section is to understand why duct streaming problems are
very difficult even for the discrete cones (DCN) approximation. To achieve
this goal, we must know how well an angular flux occurring in the duct stream-

ing problem is reproduced by the DCy approximation.
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First, we discuss a problem in X-Y geometry. The system illustrated in
Fig. 12 is considered. In the system an isotropic particle source is uniform-
ly distributed on the bottom boundary. We can easily find the angular flux on
the top boundary. If the surface source density is ¥y, the angular flux at a

point A in a direction £ = (w,&) is given by

_ a - X a+ x
Wo for -arctan G—17——) < w <arctan C—jj——)

¥(x,L,w) = . (31)
0 otherwise

Since the flux is independent of the variable &, it is represented as a three-
dimensional domain as shown in Fig. 13. Here & = e, °Q,

The current at A is exact in the DCy method because the particles are
conserved. Consequently, the total current on the top boundary is also exact.
However, a problem arises when we try to find the current on the top surface
of a mesh cell above the present mesh cell. For the new cell, the angular
distribution of the bottom source is not isotropic, but it is given by Eq.
(31) as a function of the coordinate x. Furthermore, in the DCy approximation
this is not directly used, but a distribution obtained by averaging the true
distribution over both the boundary surface and a cone is used to find the
angular flux on the top boundary.

In order to explain it more rigorously, suppose the DC4 approximation for
the solution. The cone boundaries of this approximation are listed in Table
8.

For convenience, assume that -m/4 < - arctan (a - x/L) < n/2 < arctan (a

+ x/L). Then, the angular flux at a point of the bottom boundary is repre-
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Table 8. The Cone Boundaries of the DC, Approximation

Cone m Un-1/2 Yn+1/2 Em-1/2 gm+1/2
1 0 /2 2/3 1
2 0 w/4 0 2/3
3 n/4 /2 0 2/3
4 -%5/2 0 2/3 1
5 -n/4 0 0 2/3
6 -/2 -n/4 0 2/3

sented by a domain, whose cross sections by a constant £-plane are shown as
dashed lines in Figs. 14(a) and 14(b). Here, Fig. 14(a) illustrates the flux
of the 1lst E-level (i.e., 2/3 < & < 1); Fig. 14(b) does that of the 2nd &~
level (i.e., 0 < & < 2/3). This angle distribution, however, is not used to
obtain the angular flux on the top boundary. Indeed, the angle distribution
of the flux is approximated by six poles, each of which corresponds to a cone
flux at the spatial point. The cross sections of these poles are illustrated
by solid lines in Figs. 14(a) and 14(b). These are obtained by considering

the definition of the cone flux W;:

o= wWa)de/ [  de. (32)

AQ AR
m m

In Fig. 14(a), the flux of the 1lst cone is reduced for 0 < w < arctan (a +
x/L); meanwhile, it is produced for arctan (a + x/L) < w < m/2, where the flux

should not exist. Similar reductions and productions of the flux occur in
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Fig. 12 Geometry for a duct streaming problem in X-Y
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Fig. 13 The angular flux at A in Fig. 12.
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other cones as shown in Fig. 14(a) and (b). As a result, using this angle
distribution of the flux as the bottom boundary source produces a smaller flux
on the top boundary and larger fluxes on the right and left boundaries.

As for a long and narrow duct, we may partition it into many mesh cells
in the y-direction. Then the ratio of the flux on the top and side surfaces
deviates more and more from the correct value as the calculation proceeds to
cells farther and farther from the source. Therefore, the DCy approximation
cannot provide a sufficiently accurate solution for the duct streaming
problem.

As the above arguments imply, a way to overcome the difficulty is to use
as few as possible mesh cells in the axial direction (the y direction) of the
duct. As an extreme case, using only one mesh cell may result in the best
solution on the top surface. However, the spatial resolution of the flux on
the side surfaces is very poor because a constant flux on a surface is assumed
by the DCy approximation. To overcome the latter defect, we can formulate a
method in which boundary surfaces of a duct are partitioned into subsurfaces,
and the transfer matrices among these subsurfaces are used. This method is
adopted in Ref. 1.

Next, we discuss a problem in R-Z geometry. The system is illustrated in
Figs. 15(a), (b), and (c). We want to find the angular flux at A on the top
boundary, provided that an isotropic source is uniformly distributed on the
bottom boundary.

If a particle generated at B of the bottom boundary travels to A of the

top boundary, the following equation holds:

Yoz = /r'? - r sinfw+ r cos w (33)
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where v = V1 - nz/n, w and n are elements of a direction vector at A and r' is

the R coordinate of point B. YAZ must be smaller than YmaxAz

(= JQZ - r2 sinzw + r cos w) so that the point B lies on the bottom boundary
surface. In other words, n > nyi, (=11 + Yiax)' Hence, the angular flux

at A is represented by the following function:

¥ if wand nare in a hatched domain
0 in Fig. 4.16(a) or 4.16(b)
¥(r,0z,0,n) = . (34)
0 otherwise

Figure 16(b) also shows the cone boundaries of the DCg approximation. As seen
in this figure, the angular flux exists only in the cones 1 and 2. The DCy
approximation replaces the flux ¥, by smaller fluxes in these cones. Hence,
using these cone fluxes as a bottom surface source for the next mesh cell,
which is above the present mesh cell, produces an error of the flux on the top
and outer boundary surfaces. Moreover, the approximate solution gets worse as
the streaming goes farther.

A difficulty specific to R-Z geometry is that the angular flux is not ap-
proximated as well as is done in X-Y geometry even if the order of the DCy ap-
proximation increases. The reason 1is that increasing N provides more n-
levels, but it does not increase the number of cones lying in the first n-
level, i.e. the largest n. As shown in Fig. 16(b), the angular flux concen-
trates near n = 1. The variable w of the cone varies between 0 and n/2. Con-
sequently, the variation of the flux in the w-direction cannot be approximated
well by the cones.

To verify the above arguments, we solve a problem whose spatial scale is
one-tenth of that of Problem 3 in Section 5 (Fig. 8); however, the axial

length is 10.1 cm instead of 8.1 cm and all other conditions are the same.
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Fig. 16 (a) Schematic diagram of the angular flux at point A.
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Fig. 16 (b) The angular flux (shaded) and the cone boundaries (numbered) for
the DCg approximation. A=2, R=1, and Az=4,



The duct is divided into one interval in the R-direction and JTVAC z-zones in
the Z-direction. By varying the parameter JTVAC, a series of the DSCq, DSCg,
and DSCg calculations are performed. The scalar fluxes on the top boundary
surface of the duct are plotted in Fig. 17. A MCNP solution (1% error) is
also shown in the figure.

The solution for one z-zone is almost identical to the MCNP solution. As
the number of z-zones increases, the scalar flux falls sharply. This can be
explained by the above arguments. The values, however, start increasing at 10
z-zones and they keep increasing. We can see from Eq. (33) that the angle
distribution of the flux becomes uniform over the entire domain of the di-
rection space as Az approaches 0. This implies that the DCy approximation
leads to a correct value at such a Timit.

In conclusion, it is recommended that only one z-zone or z-zones as many
as possible should be used to obtain a good solution at the end of a duct.
The former technique saves computing time, but it sacrifices the spatial reso-
lution of the flux on the side surface of the duct. Meanwhile, the latter re-
sults in much computing time and the solution cannot be as good as one by the
former. Consequently, one of the feasible solutions is to partition the boun-
dary surfaces of a void into subsurfaces and obtain the transfer matrices
among these subsurfaces. This, indeed, was carried out by C1ark.(2)

8. DISCUSSION AND CONCLUSIONS

The hybrid method of the discrete ordinates and discrete cones solutions
(the DSCy method) was extended to R-Z geometry. The new method strongly
mitigates the ray streaming effect. Although much work is required for the
computation of the transfer matrices and the process marching spatial mesh

cells and cones in an inner iteration, it is suitable especially for a problem
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in which the void is much smaller than the non-void and the streaming ray
effect significantly affects the solution.

In spite of the success, the method has two deficiencies. One of them is
the poor computational efficiency. In fact, a DCg solution needs as much CPU
time as an S;g solution. Such a Tong computing time is spent by the compu-
tation of the transfer matrices and inner iterations. The latter is due to
complexities of the solution algorithm. Switching the algorithm to an algo-
rithm where a fixed dimension of the transfer matrices is used indeed shortens
the CPU time spent by the inner iteration process, but only 10 to 30% re-
duction was achieved. Another remedy is to use only two cone fluxes of an
incoming surface to find an outgoing cone flux. This is similar to the algo-
rithm of the Sy method, in which only the neighboring discrete ordinates flux
is used to find a discrete ordinate flux in curved geometry.(7)
Unfortunately, the algorithm destroys the convergence efficiency of the inner
iteration because using elements of the transfer matrices partially does not
conserve particles.

Another deficiency is that the DCy method does not work sufficiently well
for duct streaming problems. As we described in Section 7, a remedy is to use
transfer matrices among subsurfaces of the void boundaries. This was accom-
plished by clark. (2) Another remedy is to divide cones so that more cones lie

near the z-axis and use them for a solution.
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APPENDIX A. DERIVATION OF EQS. (5a), (5b) AND (5¢)

In this appendix, we shall derive Eqs. (5a), (5b) and (5c). As already
defined, spatial points A = (r,z) and B = (r',z') 1ie on the same characteris-
tic line whose direction vector is Q. And the coordinates of the vector Q at
A and B are (n,w) and (n',w'), respectively.

In the coordinates system utilized in the present paper, the transport
equation in R-Z geometry is represented by the following equation:(l)

/1 2 Y Y1l - n2 sin w oY v

- 1% cos w o - - T B (A.1)

Since this is a first order partial differential equation, a system of charac-

teristic differential equations is given by(Z)

r _ /] - 2 cos w , (A.2)
do _ _ V{ - sin u
T

ol
(7

do , (A.3)
%§-= n, (A.4)
id‘-s'1= 0, (A.5)
S=aq- o, (A.6)

Eliminating the variable s from Eqs. (A.2) and (A.3) and rearranging it, we

have

A-1



Integrating this result in

r sin w = constant = Cqy - (A.7)

Dividing Eq. (A.2) by Eq. (A.4) and rearranging it, we have

dr
cos w

= ydz ,

where v = V1 - nz/n. We eliminate the variable w by using Eq. (A.7) to find

—=7Ydz .
/rz - C%

Integrating this and applying Eq. (A.7) again, we have
rcos w=vz=C¢C,. (A.8)
Note that C; and Cp are constant along the characteristic line. Therefore,

Eqs. (A.7) and (A.8) give Eqs. (5b) and (5c), respectively. Since dn/ds = 0,

n is constant. This leads to Eq. (5a).
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APPENDIX B.2 Surface Functions of Integral Domains

//¥2 - ( r. sinw” )2 - r_cos w’
[ 1] y = - o I I
Zq = z'
: 2roAz cos x'
[2] ¥ = ——
T
[ 32 ] YAz = Véz - (r'sin w')z - r'cos w'
sin w_
15 %% sin o
sin w,
T2 = I s o
/ 2 . 2
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2 = %o Tsin X'
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APPENDIX B.3 Functions for Intersections
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[ 5] Y1 rosin( X+ w.)/sin w
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[ 6B ] yl=rsin(x+w+)/sin w,sin y
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APPENDIX (.1

Graphs Used to Find the Transfer Matrix
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APPENDIX C.2 Tables Associated with Graphs

(1.1) ‘ CASEI Y, FUNCTION

1 0

2 - 2

3 + - 1
(2.1) CASE ' FUNCTION

1 0

2 - 1

3 + - 2
(3A.1) CASE ' | FUNCTION

1 1

2 - 2

3 + - 3
(3A.2) CASE Y, | FUNCTION

1 1

2 - 4

3 + - 5
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(3A.3) CASE Y3 Yy FUNCTION
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(3a.4) ASE Y5 ¥y FUNCTION
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(3B.6)

(3B.7)

CASE Yy Y5 FUNCTION

1 + -

2

3 29
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5 25

6 + 5
CASE Y3 Y, FUNCTION

1 + - 0

2 + 26

3 30

4 27

5 28
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(4.1)

(4.2)

(4.3)

(4.4)

CASE yl FUNCTION
1 + 1
2 + 2
3 3

CASE Yy FUNCTION
1 + 1
2 + 4
3 5

CASE Y3 ¥y FUNCTION
1l + - 0
2 + 6
3 + - 7
4 8
5 - 9
6 + - 10

CASE Y3 Y1 FUNCTION
1 + - 0
2 + 6
3 + - 11
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5 - 12
6 + - 13
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CASE
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(6a.1)

(6A.2)

(6A. 3)

CASE ¥y Ys FUNCTION
1 + - 1
2 + 2
3 + - 3
4 4
5 - 5
6 + - 0
CASE Yy FUNCTION
1 + - 1
2 + 6
3 0
CASE Y3 Ye Y4 FUNCTION
1 + - 0
2 + 7
3 + - 8
4 + - 9
5 10
6 - 11
7 - 12
8 + - 1
9 + - 6
10 + - 0




(6A.4.1)

CASE Y3 Y ¥y Y5 FUNCTION
1 + 0
2 + - 7
3 + 8
4 + - 13
5 + - 14
6 + - 10
7 + 11
8 + - 15
9 + - 16
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11 - 2
12 - 3
13 + - 4
14 + - 5
15 + - 0
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CASE Y3 ¥y Yg Ys FUNCTION
1 + - 0
2 + - 7
3 + 17
4 + - 13
5 + - 14
6 + - 10
7 + 18
8 + - 15
9 + - 16

10 19
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13 + - 4
14 + - 5
15 + = 0
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CASE Yy Y, Y3 Y4 FUNCTION
1 + - 1
2 + - 2
3 + 3
4 + - 4
5 + - 5
6 + - 6
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8 + - 8
9 + - 9
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CASE Yy Y3 Yy Yy FUNCTION
1 + - 1

-2 + - 2
3 + 15
4 + - 4
5 + - 5
6 + - 6
7 + 16
8 + - 8
9 + - 9

10 17
11 - 18
12 - 19
13 + - 13
14 + - 14
15 + - 1




(6B.2.1)

]
O
Hl i a0 w9 1n O~ 0 O~ O H © ™Mo H N M
3 < @ T A H T A A N0 10N
1
]
[} ] i 1 +
10
>
[} [} i ] _+
+
v
>
| i | _++
+
™
>
]
| | + o+ 4+
+
o1
>
[}
| + o+ 4+ o+
+
l
>
|
+ o+ o+ o+ o+
+
Bl & M @ 1 O~ ©® 0 © 1 N M < 10 O M~ 0O O O
w - A ~4 4 ~ ~ =~ ~ 4 4 N «

C-17




(6B.2.2)

FUNCTION

+ + + + +

N N ™M < N W >~ 00 O

10
11
12
13
14
15
16
17
18
19
20
21

C-18




(6B.2.3)

ped
O
Hlid 0 m O 9 1N O I~~~ O 6 O (@]
@ N oo 55516&&&@%%%1
[}

! 1 [} 1 _+
Vs
>

I [} i | _+ =2
o + &
>
| [} [} _++
0 +
>
| | _+++
+
N
>
|
| + 4+ + +
— +
>
1
+ 4+ 4+ 4+ +
+

E123456789012345678901
w 4 ~ A 4 4 A A 4 A &N




(6B.3.1)

CASE yl Y3 y7 y5 FUNCTION
1 + - 1
2 + - 2
3 + - 15
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6 + - 6
7 + - 16
8 + 72
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(6B.7.3)

FUNCTION

N AN 1D N O ~ W WO ™M N M~ YOO~ 0 0y 0 O H
~ ™M N ~ o N N 4 MO MO 0O MO 0O O N
I
[}
[} I ! I +
\ts,
>
1 [} ] _+
! . +
o
™
' I ' T
+
uy
> |
T I + + +
+
™
> 1
' + + + +
. +
=
[}
+ 4+ + + +
+
™ 6789012345678901
m.lz - 9 ~ ~ ~ ~ ~ ~ ™~ ~ ~ ~~ N

C-33



(7.1) CASE ¥y FUNCTION
1| +- | 0
2 + - 1
3 + - 2

(8.1) CASE Y, ¥ FUNCTION
1| +- 0
2 + - 1
3 + - 2
4 + - 3
5 + - 4
6 ‘ + - 5

(8.2) CASE ¥y FUNCTION
1 + - 6
2 + - 7
3 + - 8

(8.3)  CASE] ¥4 FUNCTION
1 + - 6
2 + - 9
3 + - 10

(8.4) CASE Y, ¥4 FUNCTION
1 + - 0
2 + - 1
3 + - 11
4 + - 3
5 + - 12
6 + - 13
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(9.1)

CASE FUNCTION
1 1
2 - 2
3 3
4 4
5 + - 5
6 6
7 7
8 8
9 9
10 1

{(9.2.1)

CASE Ys FUNCTION
1 1
2 - 2
3 10
4 11
5 - 12
6 + - 5
7 + 13
8 + 14
9 + - 15
10 16
11 17
12 - 18
13 19
14 - 20
15 + - 1



(9.2.2)

CASE Yy Yy Y, y5 FUNCTION
1 + - 1
2 + - 2
3 + ~ 3
4 + - 11
5 + - 12
6 + - 5
7 + - 6
8 + - 14
9 + - 15
10 + - 8
11 + - 21
12 + - 22
13 + - 19
14 + - 20
15 + - 1
(9.3)
CASE Y4 Y5 FUNCTION
1 + - 8
2 + - 21
3 + - 22
4 + - 19
5 + - 20
6 + - 1
(9.4)
CASE y3 FUNCTION
1 + - 8
2 + 9
3 + 1
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(10.1)

(10.2)

(10.3)

(10.4)

CASE Yy Y5 FUNCTION
1 + - 0
2 + 1
3 + - 2
4 3
5 - 4
6 + - 5
CASE Y1 Y3 FUNCTION
1 + - 0
2 + 1
3 + - 6
4 3
5 - 7
6 + - 8
CASE y3 FUNCTION
1 + - 9
2 + 10
3 11
CASE Y5 FUNCTION
1 + - 9
2 + 12
3 13
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NOTES

(i) All functions y; are given in Appendix 4.B.3.

(ii) W, = arcsin ( rI/rO )
w; = arcsin/( r sin w_/rI)
we = arcsin( rsin w+/rI)
X1 = arcsin( rIsin w_/ro)
X2 = arcsin( r;sin m+/ro)
o= max{ w_, w }
Wy = wmil/2
X = m/2 -w

(iid) Since Graphs 5.1.1 and 5.1.2 use the same table,

only Table 5.1 1is given in Appendix 4.C.2. The same

is true of Graphs 5.2.(1,2,3), 6B.1.1.(1,2,3), 6B.1.2.(1,2,3),
6B.7.1.(1,2), 6B.7.2.(1,2), and 6B.7.3.(1,2). That is,
tables having indices without numbers inside parentheses

are given.
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(iv) If there are more than one table under the first index
of table numbers, one of them is chosen by examining the
following figures where numbers over intervals indicate
the second index of the table numbers.
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APPENDIX D. ELEMENTS OF THE ESCAPE MATRICES

In the following formulas, the definitions of zZ7, 2zg, g, Iy, w and n are

given (from Figs. 2), with Az = zy - zp and w,

arcsin (ry/r,).

The

definitions of S;(x), Sp(x) and S3(x) are given in the end of this appendix.

[1] Streaming to OUTER

(i) w<w

0 r (z. - z,)(2z+ - z, - z,)
0'“1 B T 1 B
2T 5 for Zy
Pom -
2
roAz
2m > for zZy
(i) w> o _ _
0 ro(zz 23)(22T -z, zB)
2T for z
2n 2
Pom - 2
roAz
2w - for z,
z] and z, are given by
r, cos w- r% - sinzw
ST Y
2ro cos w
and z, = zp + ¥
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[2] Streaming to TOP (w < w/2)

(i) w<wo
r'l ro
ZH{[SI(X)]rI + [SZ(X)]rl} for ryp <r,
PTlm = r
0
2"[51(X)]r1 for ry >r,
where ry = YAz cos w + //}§ - Y2Az2 sinzw .

i1 w> w
(ii) o

The result is presented by using the following graph:
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In this graph, vertices 1, 2, 3, 4, 5, and 6 are associated with the
values of r, ry, ry, rp, rz, ry, and rg, respectively. Here ry, rp, r3, and

rgq are defined as follows:

YAz cos w + M/}% - YZAZ sinzw R

ry =
r, =r¢/sin v,

rs = Yz cos w+ //rﬁ - a7 sinfw ,
ry = YAz cos @ - ,/Y‘g - Y2A22 sinfw .

sy, S», and s3 attached to arcs indicate the functions Sj(x), Sy(x), and
S3(x), respectively. The vertex is traced in the direction of arrows from the
vertex 1 (r = ry) to the vertex 6 (r = ry) picking up a function. When there
are more than two arrows starting at a vertex, it goes to a vertex whose r is
the smallest. An exception is from the vertex 3 to the vertex 6. In this
case Sp is chosen if vdz < fo sin (w + wy)/sin w; otherwise, s3 is chosen.

Let us explain the algorithm using a specific examp]e. Suppose that we
are at the vertex 1, and rp > r3. By the rule, we go to the vertex 3 picking
up the function S;(x). Next suppose that rgq > rg > rg. Now we go to the
vertex 5 picking up the function S3(x). Then we go to the vertex 6 picking up
the function Sp(x). As a result, we obtain the following formula for the
escape matrix element Pryp:

r r r

Prim = 2“{[51(")],«? + [53(“],.2 + [Sz(x)]r:} : (0.7)

D-3



[3] Streaming to INNER

/’ rI(zl - zB)(ZzT -zy - zB)

2m VB for z; < z;
PIm ] r Az2
L 2T~ for z, > z;
where zg =25 + (//;% - r% sin®x - rp cos xJ/¥
and X=T =W,

[4] Streaming to TOP (7 > w > 7n/2)

3 o
2“{[52(X)]r + [S3(x)]r } for rs > ry

I 3
PT2m - P
0
21r[S3(x)]|,,I for ry <r,
where ry = //rg - Y2A22 sinzx - YAz cos xand x =7 - w ,

The definitions of Sy, Sp, and S3 are as follows:

1 3 (r% - sinzw)3/2
$,(x) = {x° cos w+ >
3/1 _ n2 sin"w
2
_Az"m 2
Sp(x) = 75 X
1 3 (ri - sinzw)3/2
S(x) = ——— {x* cos w - 5
3 ﬁ R T]2 sin“w
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APPENDIX E.

STRUCTURE CHARTS OF THE TEMS MODULE
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1
trans3

chop boal boa3 batout
boa2 boad
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i 1 ]
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These charts were drawn by using the Structure Chart
Interface (SCI) available through NMFECC at the Lawrence
Livermore National Laboratory.
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