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VACANCY CLUSTER EVOLUTION IN METALS UNDER IRRADIATION
M.F. Wehner* and W.G. Wolfer

Fusion Engineering Program, Department of Nuclear Engineering
University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

ABSTRACT

A stochastic treatment of vacancy cluster formation in irradiated metals
is formulated in terms of a Fokker-Planck equation. The Fokker-Planck coef-
ficients are found to depend on the cluster size distribution itself. This
nonlinear equation is solved by a previously developed numerical path integral
solution. The nonlinear dependence provides an important feedback for the
evolution of the bias. This evolution both initiates and terminates the
nucleation process. The void size distribution follows a bifurcation process
in which a peaked distribution of stable voids separates from a distribution
of small unstable voids. The stable void number density reaches a final value
which depends on temperature and dose rate. These predicted values are in

close agreement with measured void number densities.

*Present Address: Lawrence Livermore National Laboratory, Livermore, CA
94550, USA



1. INTRODUCTION

The formation of vacancy clusters and voids in solids subject to dis-
placement damage has in the past been treated in the context of classical
nucleation theory (Katz and Wiedersich, 1971; Russell, 1971, 1978; Wolfer and
Si-Ahmed, 1982). The basic assumptions of the classical theory are that an
jncubation period or a lag time exist during which a subcritical cluster popu-
lation forms. This period is then followed by a nucleation period during
which a constant flux of clusters grows beyond a critical size. An individual
cluster overcomes the nucleation barrier at the critical size only as a result
of growth fluctuations. Once it crosses the barrier its further growth be-
comes more deterministic and growth fluctuations become negligible. The
second important assumption of the classical and homogeneous nucleation theory
concerns the termination of the nucleation period and the cessation of the
steady-state nucleation rate. This termination is generally believed to be
caused by a depression of the supersaturation of the clustering species, name-
1y the concentrations of vacancies, divacancies and self-interstitials in the
present example. For a continuous irradiation, the increasing void density is
believed to eventually reduce the vacancy supersaturation and thereby stop the
cluster flux across the nucleation barrier. Although it is difficult to pre-
cisely specify the required reduction, Russell (1978) suggests that a lowering
of the vacancy supersaturation by a factor of ten will suffice to terminate
void nucleation.

In this classical approach to void nucleation, the critical size and the
nucleation barrier are determined mainly by the supersaturations, the internal

energy of the cluster, and by the diffusion coefficients of the mobile



species. The subcritical cluster population below the critical size has no
direct influence on the critical size and the nucleation barrier.

It is one of the major goals of the present paper to show that this
latter assumption is incorrect. To abandon it requires also to abandon the
classical approach of steady-state nucleation, and to develop a time-dependent
theory which describes the evolution of the entire cluster population. This
population is represented by a distribution function P(x,t), where t is the
time and x the number of vacancies contained in a cluster. For each cluster
size x, the master equation determines the change of P(x,t). The most direct
approach to a time-dependent nucleation theory is then to numerically solve a
sufficiently large group of master equations (Courtney, 1962; Abraham, 1969,
1971). An approximate numerical solution of the master equation has been
developed by Kiritani (1973) by combining several individual rate equations
into groups. Another approach is based on the Monte Carlo method, as has been
used extensively by Binder (1984).

The first approach does not seem to be practical in view of the fact that
voids observed in the electron microscope range in size from about 2 nm to 200
nm in diameter, and the barely visible voids already contain 300 vacancies.
The second approach does not allow the void size distribution present at any
moment to influence the subsequent evolution of the void population.

Accordingly, a different approach has been developed which proceeds along
the following lines. In the first step, the master equation for the cluster
distribution function P(x,t) is replaced by a Fokker-Planck equation in the
cluster size space x. Next, a nonlinear transformation between x and the
cluster radius r is applied, and a new Fokker-Planck equation is obtained for

the cluster distribution function P(r,t). This Fokker-Planck equation is then



solved numerically using a recently developed technique based on the path
integral (Wehner and Wolfer, 1983a, 1983b). These steps are discussed in
Sections 2 and 3.

The reaction rates for the absorption and emission of mobile point de-
fects at vacancy clusters depend most critically on three parameters, namely
the so-called bias factors, the point defect concentrations, and the cluster
properties. To make the paper self-contained, these parameters will be brief-
1y summarized and discussed in Section 4. The results for the evolution of
the vacancy cluster size distribution will then be presented in Section 5, and

critically examined in Section 6.

2. MASTER AND FOKKER-PLANCK EQUATIONS

Let x denote the number of vacancies contained in a cluster and P(x,t)
the number density of clusters of size x at time t. If it is assumed that a
cluster of size x can change its size only by the absorption of monovacancies
and of self-interstitials, and by the emission of vacancies, then the follow-

ing master equation holds:

dP(x,t)/dt = B(x - 1)P(x=1,t) + [a(x + 1) + 6(x + 1)IP(x+1,t) (1)

- [a(x) + B(x) + 8(x)IP(x,t)

This equation is valid for x » 2, and it represents a set of rate equations as
X is a discrete variable assuming only integer values. The rate coefficients
a(x), B(x), and 68(x) are the absorption rates for vacancies and interstitials,
and the thermally induced emission rate of vacancies from a cluster of size X,

respectively. The thermally induced emission rate of interstitials is so



small as to be entirely negligible. Although the two absorption rates are
strictly functions of time through their dependence on the point defect con-
centrations, this dependence can be suppressed for the following reason. The
point defect concentrations, C, and C; for vacancies and interstitials, depend
on the radiation induced production rate, P,, and on the total sink strength
S, a parameter that will be defined later. For a constant production rate P,
the time dependence of S determines the time dependence of the concentrations
Cy and C;. These concentrations adjust to a new sink strength with a relax-
ation time on the order of S/D, or less, where D, is the diffusion coefficient
for vacancy migration. Since this relaxation time is very short compared to
the time scale over which S and P(x,t) change, we can indeed assume that the
point defect concentrations are quasi-stationary, and a(x) and B(x) are nearly
time-independent. The expressions for the rate coefficients that will be used
later are derived from a diffusion model of point defects to a spherical cavi-
ty. Accordingly, the size variable, x, in this model is treated as a continu-
ous variable, and we shall therefore treat it likewise in the distribution
function P(x,t).

For clusters with size x > 1, we may expand the first and second term
into Taylor series. Retaining terms only to second order, the master equation

(1) is then approximated by the Fokker-Planck equation

2

P(x,t) ) 139
—r = - K(x)P(x,t) | + 5 —5 [Q(x,t)P(x,t) (2)
at ax [ ] 2 ax2 [ ]
with a drift force defined as
K(x) = B(x) - a(x) - 6(x) (3)



and a diffusion function as

Q(x) = a(x) + B(x) + 6(x) . (4)

This approximation to the master equation, originally due to Kramers (1940)
and Moyal (1949) 1is valid only 1if the higher order terms are sufficiently
small that they may be ignored. A truncation after the second term is parti-
cularly desirable as a theorem by Pawula (1967) assures that the distribution
function P(x,t) remains everywhere positive in this case. The smallness of
the higher order terms in the expansion has been of great concern in the
literature. Van Kampen (1961, 1981) has developed the so-called system size
expansion as a systematic procedure to eliminate these terms. The necessary
mathematical rigor was provided later by Kurtz (1971). Because of the unit
step size, in the region x >> 1 the expansion and truncation is equivalent to
such a procedure. Significant differences between the solutions to the master
and to the Fokker-Planck equation would be expected in the vicinity of x = 1.

However, we now introduce the boundary condition

P(1,t) = ¢, for t >0, (5)

and thereby force the solution of the Fokker-Planck equation to agree with the
solution to the master equation at x = 1. As a result we expect that the
Fokker-Planck equation will provide adequate results for the entire size space

x > 1. Additional boundary conditions are

P(x,0) =0 for x > 1 (6)



and P(e,t) =0 . (7)

The solution for the cluster distribution in terms of the size variable x
is not convenient for two reasons. First, for large voids such as those ob-
served in irradiated materials, x becomes on the order of 106. Second, void
size distributions are measured in terms of the void radius. Therefore, it is

desirable to introduce a new cluster distribution function

Flr,t) = P(x,t) g-;é (8)

where the cluster or void radius is defined as

SELIVEN )

Here, 9@ is the atomic volume, and the cluster or void surface is defined by
the centers of the surface atoms. Their radii is assumed to be equal to half
the Burger's vector b. The equation (9) represents a nonlinear transformation
between two stochastic variables, x and r. Using Eqs. (8) and (9) to
transform the Fokker-Planck equation (2) and rearranging the terms to have the

same form yields

2

B P(r,t) _ 9~ 19 ~ o~

I3 = 3 - = i [K(I")P(Y‘,t)] +§;;2— [Q(Y‘)P(r,t)] (10)

2

~ _ dr | 1 d°r
where K(r) = K[x(r)] x E—Q[x(r)] 5;5 (11)

Q A
z K(r) - Qr) ——— (12)
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and Qr) = Q[x(r)](g—;)z = Q(r) ’(zsf'z"‘ti . (13)
m)r
One might also consider Eq. (2) as being equivalently described by a stochas-
tic differential equation of the Ito type (Gardiner, 1983). The transformed
coefficients can then also be obtained from the associated stochastic calcu-
lus. It will be shown below that the rate coefficients are all proportional
to r. Hence, K(x) and Q(x) are both proportional to x1/3, and the shift and
diffusional broadening appear of equal importance. In contrast, the trans-
formed drift force behaves as K(r) ~ 1/r and the transformed diffusion
function as Q(r) ~ 1/r3. Therefore, with larger void radius, the diffusional
spreading of the size distribution diminishes and void growth becomes an in-
creasingly deterministic process when judged by the evolution of the void
radius. The dynamics of void nucleation and growth are, of course, indepen-
dent of the coordinate system used. The nonlinear transformation (9) simply
jllustrates that large voids are subject to smaller fluctuations in size than
are small voids. The experimental evidence for this observation will be dis-

cussed in Section 6.

3. PATH SUM SOLUTION

The formal solution to the Fokker-Planck equation (10) subject to the
boundary conditions of Eqgs. (5) and (7) can be constructed via the path sum as
shown recently by Wehner and Wolfer (1983b). If the solution at time t is as-

sumed to be known, the solution at a later time t + T is given by
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Plr,t+t) = [ dr' P(r',t)6(r,r',1) - J dt' [3(b,t+Tt")G(r,b,T")

b o
(14)
+-% 5(b,t+r')6(b)-3§f G(r,r'=b,t')] .
Here,
T (r,t) = R(r)F(r,t) - 5 4= [@0r)F(r,1)] (15)

is the net cluster current, and the radius of a monovacancy (x = 1) is assumed
to be approximately equal to the Burgers vector b. In actual fact, the
transformation (9) yields r = 1,053 b for x = 1 for the parameters of Table I.

In the Timit of small time steps T, the propagator or Green's function

can be given by (Dekker, 1976)
G(r,r',T) = (Znﬁ(r')r)'l/z exp{-[r - r' - K(r')r]z/zﬁ(r')r]} ) (16)

By the repeated application of Eq. (14) for N times, the solution can be found
for a finite time interval t - t; = Nt. This solution becomes exact in the
limit T » 0 and N + ® such that Nt remains fixed. In actual numerical calcu-
lations, a small but finite time step T is selected based on the interval
spacing employed in the numerical integration of Eq. (14). Furthermore, if t
is sufficiently small, P(r,t) changes 1little in the vicinity of r > b, hence
the cluster current J(b,t+t') may be approximated by its value at time t. As
a result of the boundary condition in Eq. (5), P(b,t+t') = Cv. Hence, the
r.h.s. of Eq. (14) is known and can be eva]uated.* The details of the numeri-

cal procedure are given elsewhere (Wehner and Wolfer, 1983b). Starting with



the initial condition, Eq. (6), the path sum solution of Eq. (14) then yields

the evolution of the distribution function P(r,t) with time.

4, RATE COEFFICIENTS, BIAS FACTORS AND POINT DEFECT CONCENTRATIONS

The fundamental process involved in the cluster formation is the dif-
fusion of the point defects to the sinks. If we consider then a cluster as a
spherical sihk, and if the point defect absorption and emission at the sink is

controlled by bulk diffusion, then the reaction rates are given by

a(r) = 4nrDiCiZ?(r) (17)
B(r) = 4mrdD C 72(r) (18)
8(r) = 4mD C2(r)z5(r) (19)
where cO(r) = c%exp{anly(r)r? - v(r_)r21/kT} (20)

is the vacancy concentration in local thermodynamic equilibrium with a void of
radius r, v(r) is the surface energy, and r. is the radius of the void with
one less vacancy. The surface energy for small voids is dependent on the void
radius as discussed by Si-Ahmed and Wolfer (1982).

The void bias factors Z?(r) and ZS(r) account for the effect of the

stress-induced interaction of the interstitial and vacancy, respectively, with

*Note that since Eq. (13) is a parabolic partial differential equation, both
the value of the probability distribution and the current may not be specified
independently at the boundary without a risk of overspecifying the problem
(Morse and Feshbach, 1953).



the void. They have been derived recently by Sniegowski and Wolfer (1983) for

the case where segregation to voids does not occur. Both bias factors are

given by
%) =1+ [(/TF7 - 1)/221/3 (21)
where n = 4XI/(r3kT 1n 2) (22)
T = %21&%1;_"5 (23)
v= L2 ;Zgiz . (24)

Here, u is the shear modulus, v the Poisson's ratio, k the Boltzmann constant,
and T the absolute temperature. By inserting the appropriate values for the
relaxation volume v and the shear polarizability aﬁ, the bias factors Z? and
Ze can be obtained for the absorption of self-interstitials and vacancies, re-
spectively. For the materials parameters of solution-annealed nickel, listed
in Table I, the void bias factors as shown in Fig. 1 are obtained. It is seen
that small voids possess a significant bias for preferential interstitial
absorption. However, this bias diminishes rapidly with increasing void
radius, a fact that will prove to be essential for the emergence of a peaked
distribution for voids above the critical size.

As mentioned in Section 2, the time scale for the relaxation of the point
defect concentrations is much shorter than for significant change in the
cluster population. Thus the point defect concentrations assume their sta-

tionary solutions corresponding to the existing set of materijal parameters,

10
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Table I.

Materials Parameters for Nickel

Boltzmann constant
temperature
lattice parameter
Burger's vector
atomic volume

vacancy migration energy

vacancy formation energy

vacancy diffusion coefficient
production rate of point defects

recombination coefficient

equilibrium vacancy concentration

Poisson's ratio
Young's modulus

shear modulus
relaxation volume

shear polarizability

surface energy of flat surface
surface energy of a void

shape factor for dislocations
dislocation density
dislocation sink strength

dislocation bias factors

11

1.38 x 10723 g/°k

3.639 x 10710 peter
a/"2

a3/4

1.76 x 10719 Joule

2.832 x 10719 Joule

-EM/kT
1.286 x 100 e V' (m?/s)
0.1 2 x (dpa rate)

8'|'|'a(1 +L) ~8ﬂ

Ei Dv Dv
(1.5-EF/kT)
1 * v -3
ﬁe (m )

0.264 + 7.7 x 1072 T (°C)

2.097 x 1011 - 1.03 x 108 T (°c)
(pascals)

E/2(1 + v)

for interstitials 1.8 @

for vacancies -0.2 Q

for interstitials -150 eV

for vacancies -15 eV

2.28 + (1333 - T)0.55 x 1073 J/m?

Yo[1.0 - (0.8/(x + 2))]

2 x 1013
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The void bias factors vs. void radii for interstitials (solid line)
and for vacancies (dashed lines) evaluated from Eqs. (18) and with
the parameters listed in Table I.
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and C; and C, change as these parameters change. The approximation dC;/dt =
dC,/dt = 0 is a statement of the "adiabatic approximation" as termed by Haken
(1983). The resulting equations for the point defect concentrations become

(Si-Ahmed and Wolfer, 1982)

<7 > S<Z > 4<7 > <7 > S<Z >
D.C. = 1 {[( V_pcS+ VY2 o, i p 1/2 _ ( V_p S+ v )} (25)
ivi 2 <Zi> vV RC <ZV>Rc 0 <Zi> vV Rc
<Z'i> s

Here the total sink strength is

S=dn [ dr [rP(r,t)] + A9 (26)
b ‘
the sink averaged bias factors are
an [ dr [rz%(r)F(r,0)] + 299%¢ 27)
_ b
<> = 5
and the averaged vacancy concentration in equilibrium with sinks is
an [ dr [rcS(Mzd(rFir, 1)1 + c2Zn%¢
cS - b (28)
v <ZV>

One may speak of the fast variables (the point defect concentrations) as being
“slaved" by the slow variables (the average bias factors, the sink strength
and the averaged vacancy concentration). Moreover, the dependence of the
point defect concentrations on the cluster size distribution leads to another

important consequence. Through Eqs. (17-19) and (25-28) one can see that this

13



dependency removes the linearity of the Fokker-Planck equation (13). Indeed
Eq. (10) is no 1longer a differential equation but rather an integrodiffer-
ential equation. Such integral dependencies are common throughout physics
whenever many-body interactions play an important role. In the present case,
the integral dependence arises from the fact that the mono-defect populations
depend on weighted averages of certain functions characteristic of the system.
It does not, however, depend on particular values of the size distribution
function. Because of this integral dependence, this truly nonlinear equation
can be solved using the numerical path integral technique by assuming that for
small enough time steps the equation may be regarded as being linear. Then
given the solution at a particular time, the solution a very short time later
can be found. This new solution is used to recalculate the point defect
concentrations (and hence the Fokker-Planck coefficients). A revised linear
equation is constructed and the whole process repeated. In this manner it is
possible to investigate the effect of the void size distribution on its own

development.

5. VOID SIZE DISTRIBUTIONS

In order to gain an initial understanding of the dynamics of void nucle-
ation, the nonlinear character of Eq. (10) will be suppressed. Specifically,
the integral dependence 1in Eqs. (26-28) will be neglected. This erroneous
assumption leads to the conclusion that the microstructural properties of the
material remain unchanged throughout the nucleation process. Nevertheless,
certain interesting characteristics of cluster nucleation become transparent

in this 1imit.

14



Figures 2a and 2b show the transformed Fokker-Planck coefficients evalu-
ated for parameters listed in Table I and for a case representative of ion
bombardment experiments at a temperature of 873 K. The total sink strength
was chosen to be somewhat higher than the dislocation sink strength alone and
is kept at a constant value. The general shape of these plots is typical of
that found over the entire ranges of temperature and dose rate studied. The
critical size of a void is defined as that size where K(r) crosses zero.
This corresponds to the location of the peak of the nucleation barrier. In
Fig. 2a, this occurs at approximately r/b = 3.0. At this point in the dis-
cussion, it is convenient to introduce some nomenclature. Voids of less than
the critical size are subject to a negative drift force, hence they are more
likely to be driven back in size space across the boundary at r/b = 1. Since
a "particle" driven across a boundary in an open system is lost, these voids
are referred to as "unstable." Some voids, driven by the random forces, will
cross the critical size. These voids are then subject to a positive drift
force and tend to grow in size. Hence, voids of a size greater than the
critical size are termed "stable."

Figure 3a shows the void size distribution obtained by solving the linear
equation (10) subject to the Fokker-Planck coefficients of Fig. 2. As is evi-
dent, a large concentration of small unstable voids (invisible to the electron
microscope) develops quite rapidly. In addition, after a certain length of
time, a uniform, plateau-like distribution of larger stable voids is estab-
lished. The leading edge of this plateau continues to propagate in size space
as time progresses.

The nucleation barrier for the 1linear Fokker-Planck equation is, of

course, time-independent. Accordingly, the current across this barrier quick-

15



0.2

0.0

1 o~

-0.8

-1.0

1.0

Figure 2a.
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The transformed drift function vs. void radii obtained by neglect-
ing the effect of the void size distribution at T = 873 K and a
dose rate of 0.001 dpa/s.
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Figure 2b.
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The transformed diffusion function vs. void radii obtained by
neglecting the effect of the void size distribution at T = 873 K
and a dose rate of 0.001 dpa/s.
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Figure 3a. The void size distribution vs. void radii at various times ob-

tained by neglecting the effect of the size distribution upon it-
self at T = 873 K and a dose rate of 0.001 dpa/s. Note the high

concentration of unstable voids and the plateau-like size distri-
bution of stable voids. The times indicated are in seconds.
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ly attains its steady-state value. This constant current, together with the
slowly varying nature of the drift force of Fig. 2a in the region r/b > 5,
causes the size distribution to flatten out. Hence, the plateau-like behavior
is a consequence of the suppression of the nonlinearity of Eq. (10).

Computer memory limitations prohibit extension of the calculations to
total doses much higher than 0.2 dpa for the Fokker-Planck coefficients
plotted in Fig. 2. The trend, however, is that of a development of a popu-
lation of voids uniformly distributed over a broad range in size. In addi-
tion, the void number density, defined as the area under the stable portion of
the void size distribution, continues to increase with increasing dose. Both
of these effects are contrary to experimental findings. Under most irradi-
ation conditions, a very narrow size class of voids is observed, i.e. the void
size distribution is sharply peaked. Also, the void number density does not
vary with time after an initial nucleation period (Glasgow, Si-Ahmed, Wolfer,
Garner, 1981; Mansur 1978). As Fig. 3a shows, this cannot be obtained by a
theoretical approach which neglects the effect of the void population itself
on the microstructural properties of the metal.

To this end, the nonlinear character of Eq. (10) is considered. Figure
3b shows the void size distribution at various times solved under the same
conditions as in Fig. 3a except that the integrals of Egs. (26-28) are calcu-
lated after each time step and the Fokker-Planck coefficients suitably ad-
justed as described in the previous section. These plots show a dramatic
change in the void size distribution which now becomes very sharply peaked at
the later times (note the logarithmic y axis). Also, the unstable voids di-

minish in number as time progresses. Furthermore, after the initial nucle-
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2.5 4.0 5.5 7.0 8.5 10.0 11.5

The void size distribution vs. void radii at various times ob-
tained by considering the effect of the void size distribution it-
self on the microstructural parameters at T = 873 K and a dose
rate of 0.001 dpa/s. Note the "pinching off" of the void size
distribution at later times. This results in a lowering of the
concentration of unstable voids as well as the isolation of a
narrow size class of stable voids. The times indicated are in
seconds.
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ation period, the stable void number density remains constant with increasing
dose.

Such an extreme change in the shape of the distribution function illus-
trates the highly sensitive nature of void nucleation to changes in the micro-
structure and the rate coefficients. The feedback mechanisms responsible for
the termination of void nucleation are twofold. First the increase in the
void sink strength causes a decrease in the concentrations of both point de-
fects. This feedback mechanism is however not as significant as traditionally
believed. As seen from the y-intercepts in Fig. 3b, the vacancy concentration
changes little with time.

The second, and dominant feedback mechanism is the change in the differ-
ence of the capture rates B and a. This difference is highly sensitive to
changes in the average bias factors, and best illustrated by the transformed
drift force K(r). Figure 4 shows that the drift force not only changes in
magnitude but the critical size increases as well with increasing dose. In
terms of the number of vacancies contained in the void, x, the critical size
is approximately 18, 56, 166, 460, for the various times indicated. The
transformed diffusion function, q(r), being a sum rather than a difference of
the rate coefficients, does not change much with time and has the general
shape as in Fig. 2b. The changing shape of the distribution function can be

further explained by defining a potential function as

r oo
Glr,t) = -2 / Kr,t) g (29)
b Q(r',t)

The peak value of this potential determines the nucleation barrier, AG. As

shown in Fig. 5, this barrier increases dramatically with time. Since the
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Figure 4. The transformed drift function vs. void radii which led to the void
size distributions of Fig. 3b evaluated at those times.
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The potential function vs. void radii which led to the void size
distributions of Fig. 3b evaluated at those times. Note how the
nucleation barrier (the peak value of the potential) increases
drastically with time.
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steady state nucleation current over a fixed barrier is proportional to eAG

(Russell, 1978), it 1is apparent that the time-dependent nucleation current
corresponding to the barrier of Fig. 5 1is reduced significantly in a very
short period of time. Clearly, the actual nucleation of voids can occur only
in the very early stages of the irradiation.

The irradiation temperature of the material determines to a large degree
the point defect concentrations. Accordingly, the dynamics of void nucleation
and growth are also expected to be strongly affected by the temperature.
Figure 6a shows the calculated void size distribution obtained for ion bom-
bardment of nickel at a temperature of 673 K. Comparison with the higher
temperature (873 K) resultant of Fig. 3b, reveals two experimentally consis-
tent observations. First, at the lower temperature, the stable void number
density as well as the vacancy concentration are considerably higher. Second,
the nucleation process requires more time (hence more total dose) at the lower
temperature. However, the general shape of the void size distribution is the
same in both figures.

The damage rate also affects the dynamics of void nucleation and growth
by governing directly the point defect production. In Fig. 6b, the calculated
void size distribution obtained for neutron bombarded nickel at a temperature
of 673 K is shown. Comparison with the previous figure reveals a lower stable
void number density, and that more time but less total damage is required for
the nucleation process occurring at a lower damage rate.

Again the overall shape of the void size distribution, especially in the
stable size regime, is the same. A comparison with several different combi-
nations of temperature and dose rates confirms that the shape, more specific-

ally the width at any fraction of the maximum of the stable void population
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remains nearly constant over a wide range of values. In this study all other
parameters characterizing the material were held constant. Other results not
shown here indicate that the width of the size distribution broadens and the
height diminishes as the dislocation sink strength increases significantly
beyond the void sink strength. A more detailed analysis of the effect of this

and other material parameters on void nucleation and growth is forthcoming.

6. DISCUSSION

The present results indicate that in annealed materials subject to dis-
placement damage, the stable void size distribution is established at low
doses. In contrast, most irradiation experiments are carried to higher doses
because both measurements of void densities and void swelling can be performed
with greater accuracy. These measurements are aimed at obtaining average void
sizes and total number of voids per unit volume. Rarely are detailed void
size distributions obtained. However, in the few cases where distributions
have been measured with satisfactory statistical counts, the following charac-
teristics are observed. The void size distribution at low doses is indeed
sharply peaked in agreement with our results. However, a significant tail
towards larger void sizes is often observed which is attributed to void
coalescence. This process is not included in the present analysis based on
the master equation (1) which allows only unit step processes. Extensive
coalescence can furthermore lead to bi-modal void size distributions at high
doses. Renucleation at higher doses due to helium production also gives rise

to bi-modal void size distributions.
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It should also be noted that many materials of practical interest such as
steel are highly heterogeneous, and the spatial distribution of voids reflects
this varying microstructure.

Accordingly, a comparison between our theoretical predictions and experi-
mental results is best made on pure metals. Since the most commonly observed
quantity is the void number density, the stable void size distribution was
integrated from a void radius of 1 nm upwards. This lower bound represents
the 1limit of visibility in standard transmission electron microscopy.
Furthermore, the calculations of the void size distribution were always
carried out to a sufficiently large dose to provide the terminal void number
density. This density is plotted in Fig. 7 as a function of the irradiation
temperature for various dose rates. It is seen that the void number density
decreases sharply with temperature. With increasing dose rate, the charac-
teristic curve for the total void number density is shifted to higher temper-
ature. This shift is well known for the swelling-temperature relationships.
When comparing heavy ion irradiations of a typical dose rate of 1073 dpa with
fast neutron irradiations (~ 107 dpa/s), we find a characteristic temperature
shift for void nucleation of about 200°C in the case of nickel. This shift is
somewhat larger than the corresponding shift for void growth (Brailsford and
Bullough, 1972). Both the temperature and dose-rate dependence of the termi-
nal void number density are in general agreement with the experimental obser-
vations, Furthermore, the quantitative comparison illustrated in Fig. 8
demonstrates that the predicted void number densities (solid line) are in
excellent agreement with the measured void densities in nickel irradiated with
fast neutrons at temperatures below about 500°C (Packan, Farrel and Stiegler,

1978; Brimhall and Mastel, 1968, 1969a, 1969b; Adda, 1971). The experimental
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data at higher irradiation temperatures reflect the presence of gas bubbles.
Some of the data on void number densities reported by Packan, Farrel and
Stiegler (1978) are for dose rates of 1077 dpa/s, and therefore expected to
fall below the solid curve predicted for a dose rate of 1076 dpa/s.

The above comparison and agreement between measured and theoretically
predicted void number densities is remarkable in several aspects. First, no
parameter of the theoretical models required adjustment. The value of surface
energy employed is the one measured for a clean surface of nickel; the bias is
evaluated based on the elastic constants, the Burgers vector, and the actually
measured reiaxation volumes for interstitials and vacancies (Sniegowski and
Wolfer, 1984). Second, no gas is required in the dynamic void nucleation
calculations. The void nucleation is both self-starting and self-terminating.
The autonomous process for void nucleation in an annealed metal reflects the
importance of the feedback mechanisms discussed in the previous section.
Among these, the evolution of the average bias provides the key for the emerg-
ence of a sharply peaked void size distribution. Such an evolutionary process
can no longer be treated with the traditional theory of steady state nucle-
ation. The approach developed in the present paper, based on the time depend-
ent solution of a truly nonlinear Fokker-Planck equation, proved very success-
ful in treating the dynamic nucleation process and the subsequent growth stage
in a unified formalism.

The fact that no gas is required in the present dynamic void nucleation
calculations is in apparent contradiction to the experimental observations by
Norris (1970) who found no voids in pure annealed nickel irradiated in the
high-voltage electron microscope. There are in fact other numerous experi-

mental observations which clearly demonstrate the sensitivity of void nucle-
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ation to small amounts of residual gases in the metal. To resolve this appar-
ent inconsistency between theory and experiments we must conclude that the
major role of gases is to prevent the collapse of vacancy clusters into dislo-
cation loops, but is not responsible for their nucleation. This process, not
incorporated into the present model, would be favored energetically when the
cluster reaches a critical size (Sigler and Kuhlmann-Wilsdorf, 1966) and when

it contains no gas.
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LIST OF CAPTIONS

The void bias factors vs. void radii for interstitials (solid
1ine) and for vacancies (dashed 1ines) evaluated from Egs. (18)
and with the parameters listed in Table I.

The transformed drift function vs. void radii obtained by neglect-
ing the effect of the void size distribution at T = 873 K and a
dose rate of 0.001 dpa/s.

The transformed diffusion function vs. void radii obtained by
neglecting the effect of the void size distribution at T = 873 K
and a dose rate of 0.001 dpa/s.

The void size distribution vs. void radii at various times ob-
tained by neglecting the effect of the size distribution upon it-
self at T = 873 K and a dose rate of 0.001 dpa/s. Note the high
concentration of unstable voids and the plateau-like size distri-
bution of stable voids. The times indicated are in seconds.

The void size distribution vs. void radii at various times ob-
tained by considering the effect of the void size distribution it-
self on the microstructural parameters at T = 873 K and a dose
rate of 0.001 dpa/s. Note the "pinching off" of the void size
distribution at later times. This results in a lowering of the
concentration of unstable voids as well as the isolation of a
narrow size class of stable voids. The times indicated are in
seconds.

The transformed drift function vs. void radii which led to the
void size distributions of Fig. 3b evaluated at those times.

The potential function vs. void radii which led to the void size
distributions of Fig. 3b evaluated at those times. Note how the
nucleation barrier (the peak value of the potential) increases
drastically with time.

The void size distribution vs. void radii at various times with
T = 673 K and a dose rate of 0.001 dpa/s.

The void size distribution vs. ygid radii at various times with
T = 673 K and a dose rate of 10 ° dpa/s.

Terminal void number densities vs. temperature at varigus dose
rates. Solid circles - 10 ° dpa/s; open circlgs - 10 ° dpa/s;
open squares - 10 " dpa/s; solid squares - 10 ° dpa/s.

A comparison of the theoretical prediction of the terminal void

number density vs. temperature with various neutron irradiation
experiments.
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