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I. INTRODUCTION

During high power neutral beam heating of divertor tokamak plasmas
(ASDEX, D-III, PDX), the plasma can be made to change from an L-mode to an H-
mode of operation, which has better energy confinement.1 For H-mode dis-

charges, however, edge relaxation instabilities called "H_, spikes" have been

o

observed. Also, new quasi-coherent fluctuations (QCF) are observed.? The "Hg
spikes" which are repetitive (~ 1 ms), short time scale bursts of light due to
coolings of the plasma just inside the divertor separatrix have a drastic ef-
fect on the energy confinement.3 In the present work, we attempt to provide
an explanation for the underlying mechanism behind these edge oscillation phe-
nomena through ballooning mode instabilities near the separatrix. One of the
most important characteristics of H-mode discharges is that the plasma pres-
sure profile in these discharges is relatively flat out to the divertor, but
falls off very rapidly in the divertor separatrix region. So, in spite of the
low B value near the separatrix, ballooning instabilities are still possible
owing to the very large pressure gradient. To study the ballooning instabili-
ties in the H-mode discharges, one must take account of the effect of X-points
in the separatrix region, and in this paper we concentrate on the influence of
the X-point on the ballooning instabilities. This work complements that by
Bishop et a1.4 which examined ballooning mode stability on flux surfaces
inside but approaching the separatrix.

In Section II, we derive the ballooning mode equation in a Clebsch repre-
sentation. Then, in Section III, we give an analytic equilibrium configu-
ration with two X-points at the top and bottom respectively, and obtain the
explicit form of the mode equation. This is used to calculate the stability

criterion for the ballooning mode in the given configuration. In Section IV,



we analyze ballooning mode instabilities in tokamak systems with concentric
circular flux surfaces by using the boundary conditions derived in Section

III. Section V gives a brief summary.

[I. BALLOONING MODE EQUATION IN CLEBSCH REPRESENTATION

To derive the ballooning mode equation, we begin from the MHD set of

equations5

@
PaE = ¢ d xB-Vp, (2)
1 -
E+—=-V xB=20, (3)
— c —— —
d Yy o
gz (pp ) =0, (4)
vi=o, (5)
Vy xB = glll . (6)

In this paper, we use the Gaussian system of units and the symbols we do not

"n_n
~

specify specifically have their usual meanings. In what follows, we use

LIl
~

on a symbol to denote a perturbed quantity and use the same symbol without

to denote the corresponding unperturbed quantity.



For not very large BT, we can take

P gy - LA
E=-%-<3h, (7)
B=vx(fb), (8)

where b = B/B, and $ and A are the perturbed scalar and vector potential, re-

spectively.

In a tokamak-type system, §“

= 0, so the perturbed current along

the field line plays a dominant role and the perpendicular perturbed current

will be calculated in the electrostatic approximation.

From Egs. (3) and (7) we have

~e ——E- ~
T--SexE), (9)
B
~ 1 3R _
(93)¢+'€§E'0' (10)
The equation for E can easily be derived from
v-j =93 +B:v(3,/8)=0. (11)
It follows directly from Egs. (2) and (3) that
. e of .
j_l=—2(CO'at—+Exzp). (12)
B

From Eqs. (4) and (9), we have



(13)

In arriving at Eq. (13), the time dependence of perturbed quantities has been

taken to be of the form exp(-iwt) and an incompressibility approximation has

been made. Noting that

c ~ 2c2 o
Ve(=5 B x Vp) = - (b x VB)+V(Vp x b)+E, ,
vz 2t A T 20 IBIRIAIR X D0t
B iw B
from Eqgs. (11)-(13) we have
j 2 2
e ) cp . 2~ 2¢ . w o
(B:-¥)(57) + 55~ (iw)V ¢ + ——= (b x YB)+¥(¥p x b)*¥ 6 =0,
B iw B
~ C 2% c2 2 ~
where J" = - in V.LA = = 4"—mVl(_ll'Z)¢ .

If the magnetic field is given in the Clebsch representation

we have from Eq. (15) that

(B'V)(i"-) + & 1wp V2$ C2 dp (SBZ 32$ _ BBZ 32~ ) =0
—-’*B 2 1 . 2 do ‘3o 2 3B dadB ’
B TwB 9B
2 _ 9 2 3 d 2 3
where Vi = ag 190l 55t 58 |V8|" =3

Substituting Eq. (16) into Eq. (18) yields the ballooning mode equation

(14)

(17)

(18)

(19)



2 25wl 8%
.L2.~m2~ﬁ_a 3¢ _ 3
(B+9) 2 Vi (B:¥)e + 2 1Pt 2 da (5 BB2 S and) - (20)

In the radially "local" approximation (g%-/ %% > 0), it follows directly from

Eq. (20) that

|Zﬁ|2 dmp 2 8ﬂ dp 3B,%
{(Be¥) B—2~ |v8|? vl (I (21)

(B-¥) +
B

In arriving at Eq. (21), we have assumed the modes to be of the form

$ = exp(-inB)? . (22)

III. BALLOONING INSTABILITIES NEAR THE SEPARATRIX REGION FOR AN ANALYTIC

EQUILIBRIUM CONFIGURATION WITH TWO X-POINTS

To facilitate the study of the influence of the divertor with two nulls
on ballooning instabilities, we employ, in this section, the simple analytic
equilibrium configuration shown in Fig. 1 with two X-points at the top and

bottom, respectively. The magnetic field is taken to be of the form

B
0 X Lk es )
Beragr; (I 8y 8 sinwe) BRI+ TexW, .  (23)
s
Y = R B, ( -~ cos vy}, (24)

where ¢ is the toroidal angle, R  is the major radius of the magnetic axis,

0

and x and y are given in Fig. 1. From Eq. (24) we have

= 2(__ i
Y, = RB, (Ls Ux + & sin ky Vy) . (25)
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Fig. 1. An analytic equilibrium configuration with two X-points at the top
and bottom, respectively. & = m/kxg = 1.



The trajectory of a field Tine with Y« = constant can be expressed as

x2 = x2 - X2 sinZ(Ky/Z) , (26)
0 3
where x2 = 48L /x , (27)
s 3
x2 = 2L y,/(RB) (28)
0 s*" o 0" T

For the separatrix, we have X5 = Xg»

x2 = xi COSZ(Ky/Z) .

To express B in the Clebsch representation, we proceed as follows:

BoRo
§=BOROX€+_V.§XE‘J’*= R (¥x x vy) + Vg x Vi,
(29)
=V o (Wu - ¥2) = Vo x VB,
h d s & (30)
where G—l‘)*, B—U C, u—fo R(y',‘l’*) X(Y‘NP*) )
It is easy to show that in terms of the ¥x, u, ¢ coordinate system
R B
_ 00 (9 ]
BV = 2 (§E'+ =) (31)
and, hence, BevB =0 . (32)



Equation (32) has been used when Eq. (21) was derived.

mode equation along field Tines near the separatrix is

o 0000 B + st + o 882 c IR0 -

where

In what follows we calculate the explicit form of Eq. (33).

a(g) =

Ka(z)

9 =

dw*
|v8|2
BZ
_ 18
B 3y, °

ky/2

b

and taking the separatrix as the reference surface, we obtain

for the separatrix and

From Eq. (24), we have

Ky (%)

where fl(e) =

S 1

X
S

2 cos 9

e

1+

sin ©

de 1
j e
0o COS36 2

C0529

9

cos ©

sin 9 cosze fl(e)] s

+ntg (F+ )] .

b

Setting

Thus, the ballooning

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)



dp _ dp dxo _ dp Ls

Noting that = = , (41)
dv, dx0 dv, dx0 RoBoxS
the third term of Eq. (33) is then given by
d LS
- _a. dp S 1 . 2
8n av; (2) = -8m I 377 cos 8 [1 + sin 8 cos“® f (el . (42)
0 RTB x
00's
From Eq. (30) we have
Lo, ak . 2L
Ju = [R X_ Cos & 3 fl(e) sin 26] Sy ) 2 fl(e) cos @ Ex - (43)
0's ROXSK RoxSK

Since Lg/xg = By/By >> 1 (B, the poloidal magnetic field at x = x5, y = 0), we

have
L2
1 142 s
afL) = 5 (zu R SC) 357 fz(e) ’ (44)
B R"B™x
00"s
_ 4 2, 2 11, 2
where f,(0) = ;E;z-cos 6 f (8) + [535_3' » sin 20 fl(e)] . (45)

Substituting Egs. (38), (42) and (44) into Eq. (33) yields the explicit form

of the ballooning mode equation

2

2 41" 8B
d ) 1 1 s T 1
[z cos ® f, (e) s (8) + — [1 +
ds w 2 cos 6 2 rp R XZKZ c0526
¢ (46)
sin 6 cos2e fl(e)]}g(e) =
2. 2n2
B
_ _(ldp y1 _ 8mp x2 _ %%
where rp (6 d—‘) N BT —2— N wa —-—2 . (47)
BO 16 anS

10



Near the X-point (8 » 7/2), we set

=T _
61—2 o,
and Eq. (46), then, reduces to
(=L L d+‘*’21}?zs‘(e)=o (48)
de, o, de *2 3 1 :
171 1 0
a 1
The finite solution to Eq. (48) is
3(e,) « o} (49)
1 1>
2, %2,1/2 1 & 2 . 2
where A=14+ (1 -uw/e”) %2 -2 %5 (for v < w %) . (50)
a 2w2 o
a

Equation (49) can be considered as the boundary condition dictated by the X-
point.

We have numerically solved Eq. (46) by the shooting method, and the re-
sults are given in Figs. 2 and 3. The variation of the critical Br (margin-

ally stable) with ¢_ = n/(xsx) is presented in Fig. 2. From Fig. 2 we see

P

that the critical BT increases with decreasing ep. This is because the con-

nection length is larger for smaller € The quantities % and §l (the per-

p*
turbed magnetic field perpendicular to magnetic surface) are plotted against ©
in Fig. 3, and we can see that the maximum value of §L is at a point quite

close to the X-point.

11
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Fig. 2. The variation of critical Br with €
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Fig. 3. The perturbed electrostatic potential % and perturbed magnetic field

B, perpendicular to the magnetic surface as a function of the angular
c&ordinate 0.
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IV. BALLOONING INSTABILITIES NEAR THE SEPARATRIX FOR TOKAMAKS WITH CONCENTRIC

CIRCULAR MAGNETIC SURFACES

In this section we consider ballooning instabilities in a large aspect-
ratio tokamak of concentric circular magnetic surface with two divertor nulls
at (r,8) = (a,x8,). Here we employ the coordinate system (r,8,z). The X-
point manifests itself through an appropriate boundary condition derived in

Section III. The magnetic field is taken to be

1
B = [(Be +B,(rle,], (51)
T 1+r/R cos 6 =g 8=
or, in Clebsch representation,
B =Va x VB, (52)
r
a=9=[ Bgr)R dr, (53)
0
B=2q0-1¢. (54)

Setting ¢ = exp(-inB)%, from Eq. (20) we have

2 R
3 228 o 22 Ro o 2 VPR B Y T ;
{Sﬁ'vl 5 * ;;E-Vl F;—BTq [cos 6 - i sin 8(ige Eg 5;)]}¢ 0, (55)
aC

where

14



) 2 } _ I dq - = - dpy-l
B = 8np/By , q = rB /RBy , £ =T Gt kg=na/r,ro= -z )T,

p p dr
(56)
* _ (2 1/2 22 _ jipp 1 332
W = Va/qR0 s Vo = (BO/4ﬂp) » V= (ig8 E;'SF 1.
In arriving at Eq. (55), kgr = ng >> 1 has been used.
Now we solve Eq. (55) in the following two cases.
(1) Weak Shear Approximation.
If magnetic shear is very small, we have from Eq. (56)
2
L2, (57)
‘ke ar

and Eq. (55) reduces to

2 2 2 R .
0 -5 e s v Loain o B -0 o

2 9X
kg 3x° 26w o p 8

where X=r -a.
Here, in order to consider the radial structure of modes, we assume
Lea-%). (59)
Equation (58) can be solved by separation of variables. Letting
3(x,8) = X(x)e(e) , (60)

and substituting Eq. (60) into Eq. (58) yields

15



2 2 2 R .
1l d d w __ 0 2 i d
(1 3 dxz) X( 7 + w*z) o(e) = = BTq (cos 6 + O sin 6 a_x_) xe(e) . (61)

7
Kg de ac p 8

Considering even modes for ©(6) and integrating Eq. (61) from -6 to 0 gives

2 2

1 dm R B-q~ 8
(1 K2 dxz) X g 1 [ cos o o(e) de
6 - po -#6 -
G-k [ ey o -
l1-=5)X —5 + —=) 0o(68) de
A2 -9 d92 w*2
p ac

where A is a constant. From Eq. (62) we have

-9 x=a0-%)x, (63)
ke dx Ap
2
2 2 R _B-q
{9—§-+ = * k g T" cos 8} o(8) = 0 . (64)
de ac po

Equation (63) is easy to solve and the solution is

X = exp(-lxz) s
k2 /
1 9 1 41/2 11
A= = [(—— + —-——) + -—-——] s (65)
2 A2 4A4 2 A2
p p p
PR S W SR W V3
2 keA 4k2A2
p 8°p
For kedp >> 1, A takes on its minimum value, A = 1. (From Eq. (64) we can see

that this case gives the most serious restriction on Br.) Also, the pertur-

bation is radially localized to a width of about Ap/(keAp/Z)l/Z, much narrower

16



than Ap. For keA

about Ap.

The influence of the X-point manifests itself through the boundary con-

p << 1, the perturbation is radially localized to a width of

dition 3 must satisfy as 6 approaches 6,- The solution to Eq. (64) will be
given later as a particular case of Eq. (67), where magnetic shear 1is in-
cluded.

(2) Strong Shear Approximation.

If the magnetic shear is strong, we have from Eq. (56)

Vo= -1 (66)
and Eq. (55) reduces to
{Q—-(l + 202) 4, 93— (1 + gzez) +-59 B 2 (cos 6 + &8 sin 8)}3 = 0 (67)
de 2 @ " r 79 :
ac

The boundary condition at 6 = eo is

~ A
§(e) = (o - 0)" ,
(68)
> \1/2
r=1+ (1 -0,
w
ac
as © approaches 8. At 6 = 0, we have
de|  _
| =0, (69)

for even modes, or

17



3!9=0 =0 (70)

for odd modes. Here we consider only even modes. When & = 0, Eq. (67) re-
duces to Eq. (64).

The variational form of Eq. (67) is

"o 2.2, |d¥)? RBra- o 2
f (1 +£%0 )ld—el de - ‘T“ f (cos 8 + £8 sin e)|<I>| de
-0 p -0
of = 2 3 2 . (71)
AR R THERT
® -0
oC 0

Taking a trial function of the form
? = cosz(ﬂ-g—) , (72)

from Eq. (71) we can get a rough estimate for the marginal stability con-

dition. For 6, = /2 (i.e., for two divertor nulls at the top and bottom) we

have
m 2
g < 12T e G- D, (73)
T 32 1 +0.2 ¢ 2 *
q R
)
2
T 2 2
or |dp| ( 15 = L G- Ve EQ (74)
|dr 32 1+0.2¢ 2. 8n "

q Ry

Obviously, we can take 6, = 7 to represent the usual case without divertor

nulls, and the marginal stability condition in this case is

18



2
b 1y,.2
8 <11+(3— 2% (75)
T LE 2
[3 AR,
2
1.2 2
1+ (3 —5)8 B
ol (11t -3 1 8
or lar] <2 gr - (76)

Equation (67) has been solved numerically by the shooting method and the re-
sults are given in Figs. 4 and 5. In Fig. 4, the critical Bt is plotted
against magnetic shear & for 6, = /2 and 6o = ®. For comparison, the ana-
lytical results for critical By (Egs. (73) and (75)) are given in the same
figure. The electrostatic potential 3 is plotted in Fig. 5 for different g.
From Fig. 4, we can see that the X-points at the top and bottom play a
stabilizing role. That is, near the separatrix the permitted pressure gradi-
ent is larger than in the usual case. However, if the pressure gradient is
too large (H-mode operation may be such an example), the ballooning instabili-

ties can still take place.

V. SUMMARY

In this work, the ballooning mode equations have been derived in a
Clebsch representation and solved in two kinds of magnetic configurations that
mode1 the effects of divertor X-points. Our results show that the X-points at
the top and bottom play a stabilizing role for the ballooning modes near the
separatrix, Obviously, the stabilizing role comes from the reduction of the
connection length because of the existence of X-points. However, if the pres-
sure gradient near the separatrix is high enough, the ballooning instabilities
can still take place. Thus, it is possible that owing to the very high pres-

sure gradient near the separatrix, H, spike instabilities or the quasi-

19
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0 3 —“fé

Fig. 4. The variation of critical By with magnetic shear £. The dashed lines

are the analytic results and the solid lines are the numerical re-
sults. '
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Fig. 5.

/4 /2

The perturbed electrostatic potential ¢ for different £. The curves
1, 2, 3 are for £ = 0, 3, 6 respectively, and the dashed 1ine is for
the analytical trial function given by Eq. (72) with 8, = /2.
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coherent fluctuations (QCF) may be caused by ballooning instabilities. The
analysis here is for high mode number modes and hence most directly applicable
to the quasi-coherent fluctuations; however, the same sorts of effects should
also occur for the more global lower mode number modes which might play an im-
portant role in H, spikes. Of course, to develop a more detailed understand-
ing of the effects of these modes, the influence of the ballooning instabili-
ties on the topological structure of the magnetic field in the X-point region

should be taken into account, but that will be left for future investigation.
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