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ABSTRACT: The theory of void swelling in irradiated steels has been critically re-
examined and a model has been developed from first principles for such fundamental
parameters as the bias factors for dislocations and voids, relaxation volumes for in-
terstitials and vacancies, and migration and formation energies for interstitials and
vacancies. Four types of growth mechanisms are modeled: self-interstitial emission,
loop punching, thermal vacancy exchange, and bias driven growth. The net bias of
the system is allowed to change continuously with the evolving microstructure. Com-
bining these growth mechanisms has resulted in a swelling model capable of reproduc-
ing some important features of the observed swelling behavior in austenitic stainless
steels. For austenitic stainless steels the model predicts bias driven growth for tem-
peratures between 300°C and 600°C. The long term swelling rate in this temperature
range is roughly independent of temperature and helium concentration and is between
0.7%/dpa and 1.3%/dpa. For ferrite phase the model predicts bias driven growth for
temperatures between 300°C and 500°C. However, for this class of steel the swelling
rate is at or below 0.3 %/dpa. For bias driven growth it has been shown that the in-
terstitial and vacancy relaxation volumes ultimately determine the maximum possible
swelling rate. It is for this reason the model predicts a much lower swelling rate for
ferrite phase than for austenitic stainless steels.

KEY WORDS: radiation effects, void swelling, helium equation of state, dislocation
evolution

Introduction

Recent analysis [1] of swelling data for austenitic stainless steels has revealed that

the steady state swelling rate is nearly independent of temperature. Furthermore, the
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swelling rate appears to approach an ultimate value of about 1 %/dpa independent of
the initial microstructure and independent of the alloy composition. These observa-
tions are in contradiction with earlier analyses. Accordingly, the physical processes of
swelling have been reexamined from first principles and have been refined and a rate
theory model of swelling has been developed. Additionally, initial experimental results
[2] of the swelling of ferritic steel suggest a much lower swelling rate for this class of
steel. However, long term exposure results have not yet been completed. In an effort
to predict the steady state swelling behavior of ferritic steels, the rate theory model of
swelling is applied to ferrite phase.

The rate theory of swelling is basically concerned with the calculation of the net
flux of point defects to the surface of a void or bubble. Knowing the net flux to a cavity
surface, the growth rate can be calculated. The major unknowns to be determined in
this rate theory are the sink strengths and the bias factors of cavities and dislocations.

As a result of the continuous helium production, other growth mechanisms are
also possible and are incorporated in the present model. These gas-driven mechanisms
are as follows.

1. Thermal vacancy exchange. Due to differences in the equilibrium vacancy con-
centrations between the cavity surface and the bulk material, thermally generated
vacancies will tend to flow either toward or away from cavity surfaces.

2. Loop punching. Given a sufficiently high pressure and energetically favorable
conditions, it has been shown [3] that an interstitial platelet can be punched out
from the bubble surface.

3. Self-Interstitial Emission. Given high enough pressure within a bubble, a self-
interstitial can be emitted from a bubble surface.

The results of the model presented herein do not accurately match experimentally
determined swelling behavior. This is to be expected because of many simplifying
assumptions made. For example, the only sinks modeled are cavities and dislocations.
The nucleation of cavities is not modeled; rather, a constant number of cavities is

assumed with a uniform radius which increases with time. It is assumed that all of



the helium is equally partitioned to the cavities. Even though certain aspects of the
physical processes are not modeled, important features of swelling behavior result.
These features include a steady state swelling roughly independent of temperature, a
significantly lower swelling rate for ferrite phase than for austenitic stainless steels,
and an incubation-type period early in life which depends on the helium concentration
and pressure. Temperature independent steady state swelling rate and an incubation
period have been reported [1] in experimental results; and helium is considered to be

a major factor in causing early nucleation of cavities in steels exposed to neutrons.

Helium Equation Of State

Helium produced by (n, o) reactions or injected in metals is essentially insoluble. There-
fore, helium has the natural tendency to precipitate and form bubbles. The pressure
in the bubbles can become quite large. The experimentally determined equation of
state does not cover at the present time the entire range of interest of temperature and
pressure. In an effort to predict the pressure in helium bubbles correctly, a theoretical
equation of state was developed by Wolfer et al. [4]. A brief explanation of the equation
of state is as follows. ,

Gaseous helium is modeled by perturbation theory [5] to be a system of hard
spheres of diameter d which is dependent ontemperature and the packing fraction y =
%d"’%, where m is the number of helium atoms and V is the volume of a cavity. Then
the compressibility factor in the hard sphere approximation is given by the Carnahan
and Starling approximation [6]; zps = (1+y+y? —y3)/(1—y)3. Two contributions are
added to zj,. First, a quantum correction 2 is obtained with the interatomic potential
of helium and the radial distribution function. Second, to account for the attractive part
of the atomic potential, another correction z4 is included. This attractive correction
24 is a function of the width and depth of the potential well. The total compressibility
is then given by z = 2p, + 2g + 24. The solid helium equation of state is found by
determining the free energy of the lattice atoms as the sum of the ground state potential

energy plus the vibrational energy about the lattice equilibrium points. The ground



state pressure p, has been determined by several researchers [7,8]. Their results are
used in the model. To establish the vibrational energy contribution to the pressure,
the Debye theory is employed with a temperature dependent Debye temperature. The
actual compressibility factor z is then given by either the gaseous or the solid equation
of state depending on the density and temperature of the helium.

While the theoretical equation of state described above gives good agreement
with available experimental data, it is cumbersome to use. To make the results of the
equation of state easier to apply, a simple polynomial fit to the data was obtained for
the two regions (gaseous and solid). The fitted equations are presented below.

For low densities, covering the gaseous state, the compressibility factor can be

approximated by
z2=Ag+ Byz +Cy2® + Dgz®, 2 <1.77°% (1)

where z is the helium density in (100 moles/cm®) and

Ay = (T/1300)%

B, = 5.83(1/T)°®8
C. = log,4(T'/800)
97 0.69T0-65
D, = 8.6(1/T)*4*

T is the absolute temperature. For the solid fitted equation of state,
z=A,+ B,z + C,z2, z> 1774 (2)

where ) g 83
A, = —-3.89+6.59 % 1072T — 1.15 x 107472 + 5.46 x 10T
B, = —0523+439x 1074T +1.77 x 107672 — 1.37 x 107°73
C, =0.101 —2.91 x 1074T + 3.01 x 107772 — 1.045 x 1071973,

Figure 1 gives the comparison for the compressibility according to the theory and the

polynomial fit for three different temperatures, 200, 600, and 1000°K. Within the
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ranges of 200 < T < 1200°K and 0 < z < 50 (100 moles/cm?®), the agreement is within
11%.

Athermal Growth Processes

Two different athermal growth mechanisms are considered in the model: 1) self-
interstitial emission and 2) interstitial loop punching. These two mechanisms are acti-
vated only at relatively high pressures.

Glasgow and Wolfer [9] concluded that self-interstitial emission is energetically
favored over helium interstitial emission, and that the condition required for bubble
growth by self-interstitial emission is
nP

> — ! m S
p(l > R +E; +E™*+kTh #RND?

. (3)

It was found that the overwhelming contribution to the right hand side originates from
E'f , the interstitial formation energy; and that p must be on the order of 101° Pa for
the condition to be satisfied. The other parameters included in the above equation
are as follows: () is the atomic volume, ~ is the cavity surface energy, R is the cavity
radius, E™ is the interstitial migration energy, k is Boltzmann’s constant, T is the
temperature, D? is the pre-exponential interstitial diffusion constant, P is the helium
production rate, n is the ratio of helium atoms to vacancies in a cavity, and N is the
cavity number density.

Instead of the emission of one interstitial at a time, it is possible that an entire
interstitial platelet may be emitted. Trinkaus [10] and Greenwood et al. [11] have
shown that the condition for loop punching is

p > 1100 @
when the bubble radius R is less than about 15b. Here, u is the bulk modulus and b
is the Burgers vector. As can be seen, there is a radial dependence for loop punching,

whereas self-interstitial emission is nearly indepéndent of the bubble radius. While
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self-interstitial emission is favored over loop punching at small radii, the opposite is
true at larger radii.

Athermal processes can be activated only if the above described conditions are
satisfied. To determine if either of the two conditions is satisfied, it is assumed that a
density of cavities (dependent on temperature) with a uniform radius exists and that
all helium atoms are evenly distributed among the cavities. The pressure within the
cavities can be found using the equation of state and compared with the two criteria.
If one of the two criteria embodied in Equations (3) and (4) is satisfied, the cavity
radius is increased incrementally until the pressure drops below the critical values for
self-interstitial emission and for loop punching. It has been found that athermal cavity
growth is significant only under extremely high helium production or implantation rates

as is seen in blistering studies.

Bias Driven Growth And Thermal Vacancy Exchange

According to the rate theory of void growth the swelling rate is given by

%(AV—V) = 4rNRZ°D, [ ]1‘ D,(Cg - Cy) (5)

where N and R are the cavity number density and radius, respectively. 4r N R is known
as the void sink strength (S,). D, is the vacancy diffusion coefficient, Z;, and z,
are the average bias factors for interstitials and vacancies and the void bias factors for
interstitials and vacancies, respectively. C, is the sink-averaged vacancy concentration

and C? is the vacancy concentration in equilibrium with a cavity. I is defined as

o? + 8 — af (6)

2AD

where A\ = 47R./Q, R. is the recombination radius. a = 1+ XC,/(5Z;), B =
4\D,Ppq/(5%2Z;Z,), Ppa is the production rate of point defects. S is the total sink
strength, and is composed of the void sink strength (S,) and the dislocation sink
strength (Sg).



The second term in Equation (5) is due to the flow of vacancies to or away from the
cavities, depending on the vacancy concentration in local thermodynamic equilibrium

with the cavity. This concentration is given by

Co =Cilexp (;;:1(11) (7)

where p, = (29/R — p) and C%9 is the thermal equilibrium vacancy concentration.
For over-pressurized bubbles (p > 2+/R) there will be a net flow of vacancies to the
bubble surface. Because of the temperature dependence of D, the second term in the
swelling rate equation (5) (annealing term) is not important at temperatures below
about 500°C. However, at temperatures above about 600°C the annealing term is
comparable to or larger than the first term (bias term).

The time evolution of the microstructure plays an important role in the bias term.
In particular, the sink strengths (S, and S4) and the sink-averaged parameters (C,, Z;,
and Z,) change with the microstructure. If only two sink types are present, namely
cavities of equal radii and edge dislocations, then

So Sq (zgz;‘ - z;'zg')

bias driven swelling rate ~

where Z:”v is the dislocation bias factor for interstitials and vacancies. From this ex-
pression it can be seen that sink strengths and sink-averaged bias factors are important
for bias driven growth. It is also evident that the maximum swelling rate for bias driven
growth is attained when the void sink strength equals the dislocation sink strength as
pointed out by Harkness and Li [12]. In this case the swelling rate is mainly determined
by the bias factors and to a lesser extent by I'. In turn, the net bias factor is critically
dependent on the interstitial and vacancy relaxation volumes as shown by Sniegowski

and Wolfer [13].

Dislocation Density Evolution Model

As discussed above, the bias driven swelling rate is a function of sink strengths. There-

fore, to model swelling rates, the sink strengths as a function of time should be known.
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For the void sink strength the number density is assumed constant, but the radius
is changing. For the dislocation sink strength the density of dislocations is evolving
through thermal and irradiation processes. As a result of the preferential absorption
of interstitials at edge dislocations, dislocations climb and, if pinned by precipitates,
increase their line length. Large dislocation loops at higher temperatures make only
a small contribution to the dislocation density and are treated approximately as edge
dislocation segments. However, experimental observation [14] indicates that at lower
temperatures loop density increases and loop size decreases. Therefore, the edge dislo-
cation segment approximation is probably not appropriate at temperatures at or below
300°C. The present model can therefore not be applied to materials containing a high
density of small dislocation loops.

Detailed analysis [15] of the process shows that the rate of increase of the dislo-

cation density is given by

Bp=pl{VR—VT [l—exp (:fﬁlnl—léz”} (8)

However, B is set equal to 0 when the right hand side of Equation 8 is negative. In
this case, the radiation-induced climb force can no longer overcome the opposing line
tension force contained in the argument of the exponential function. In the above
equation, ! is the average distance between pinning centers, p is the dislocation density,

b is the Burgers vector,

H = uQ/[2r(1 — v)kT] (9)

Vr = %D.,Z:,’C:" (10)
Q_ [z¢ Z;

= — s 1 - 22T 11

Ve= 300 | Sha+e)- | (1)

Vg is the radiation induced climb velocity; and V7 is proportional to the thermal
climb velocity. The parameter ¢ represents the variance of the dislocation bias (defined
below). Such a variance arises for the fact that the long-range stress field of dislocations

contained in dipoles and dense tangles is significantly less that the stress field of isolated
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dislocations. Estimates given by Wolfer, Ashkin, and Boltax [16] indicate that the bias
of dislocations in dipoles is reduced by about a factor of two in comparison to the bias
of an isolated dislocation.

Since a cold-worked dislocation structure is expected to contain most of the dislo-
cations in dense tangles, the bias variance is expected to be larger than in an annealed
dislocation structure. Assuming then a normal distribution for individual bias factors
with a standard deviation of \/g ¢, and an exponential increase of the bias variance
with the dislocation density, the following form is chosen for the variance:

¢= ol (12)

Here, the exponential term and L = 1 x 10715 m? is selected such that the bias variance
becomes negligible for dislocation densities less than 1 x 101® m~2. The impact of the
bias variance is that individual dislocations can still climb in the absence of cavities, a
fact borne out by the radiation-induced recovery of cold-worked materials prior to void
swelling.

This recovery process is modeled by considering the climb of edge dislocations in
a dipole. If the two dislocations converge onto the same glide plane, and if their mutual
interaction can also overcome the critical resolved shear stress 7, for glide, then it can

be shown [15] that the rate of dislocation annihilation is given by

Ap? = éhma,,VR + leVT In [h"‘“] (13)

6 b

Rmaz = min [8\/;_1: : m] (14)

is the largest dipole width. This width is either determined by the dislocation density

where

p or or by the condition of overcoming the shear stress 7,. This stress is assumed to
be about equal to the critical stress for activating a Frank-Read source with a mesh

length of . The dislocation evolution is now determined by the rate equation

dp 2
9 _By— A2, 15
o = Br—A4r (15)
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This equation resembles the empirical one proposed recently by Garner and Wolfer [14],
and the above model provides a physical basis for it. It must be noted, however, that
in contrast to the empirical evolution equation, the parameters A and B depend on the
sink strengths, i.e. on the dislocation density itself. Equation (15) therefore requires
numerical integration.

The bias variance and the mesh length ! were determined by comparing the results
of the present model with dislocation densities observed in irradiated type 316 stainless
steel. The choice of L given above and I = 4 x 10~7 m gave satisfactory agreement,
and Figure 2 shows the dislocation evolution for type 316 stainless steel. Using the
same values for L and [, but material parameters for body centered cubic iron, the

dislocation evolution for ferrite phase is predicted as illustrated in Figure 3.

Discussion and Results

The swelling model described above has been coded into a computer program known
as WINGRA (WIsconsiN Growth RAte code). The flow diagram, Table 1, summarizes
the method of determining swelling rate and swelling. It also illustrates how bias
factors and sink strengths are continuously evaluated as the microstructure evolves.
The results of the model are as follows.

1. Athermal processes (self-interstitial emission and loop punching) are not activated
unless blistering type conditions are modeled for which the He/dpa ratio is about
1000.

2. Thermal vacancy exchange is not important until higher temperatures are reached.
For austenitic stainless steels the temperature must exceed 600°C. For ferrite
phase the temperature must exceed 500°C. The minimum temperature where
thermal vacancy exchange becomes noticeable is determined by the vacancy mi-
gration energy. The values for this energy along with other parameters of interest
can be seen in Table 2.

3. Bias driven growth is the most important growth mechanism for temperatures

below 500 and 600°C for ferrite phase and austenitic stainless steels, respectively.

10



Two different steels (austenitic stainless steel and ferrite phase) were modeled for
two different helium build-up rates (20 appm He/dpa and 0.6 appm He/dpa) with two
different material starting conditions (cold-worked and annealed). The two Figures 4
and 5 show the results for swelling. An explanation of the results follows.

For 316 austenitic stainless steel a steady state swelling rate of between 0.7 %/dpa
and 1.3 %/dpa is calculated for temperatures between 300°C and 600°C. The variation
in steady state swelling rates is due mainly to variations in sink strengths. The lower
the temperature the higher the void number density; hence, the greater the difference
between void and steady state dislocation sink strength. At higher temperatures the
sink strengths are closer to being equal and a higher swelling rate is calculated.

For ferrite phase a steady state swelling rate of between 0.01 % /dpa and 0.3 %/dpa
is calculated. Once again the difference in swelling rate can be attributed to variation
in steady state sink strengths between voids and dislocations.

For both steels at 20 appm He/dpa, differences in early swelling rates for annealed
versus cold-worked material at 300°C can be attributed to the time evolution of the dis-
location density. The annealed material takes longer to reach a steady state dislocation
density than does cold-worked material. Therefore, a more slowly increasing swelling
rate for 300°C can be seen for the annealed material than for the cold-worked material.
However, as stated previously the small dislocation loops have not been accounted for.

For both steels at 0.6 appm He/dpa an incubation-type period is observed at early
times. This latent period is due to there not being sufficient helium pressure to force the
cavities to grow to sufficient size for bias driven growth to dominate. However, once the
cavity reaches a critical size for bias driven growth to become dominant, the voids grow
according to rate theory calculations. This then explains the rapid changes in slope
for swelling as a function of dose. The latent period of very slow void growth is due to
the interplay of two factors. First, small vacancy clusters whether empty or filled with
helium, possess a significant bias for preferential interstitial absorption due to the image
interaction; this bias decreases however,with increasing cavity radius. The small cavities

are stabilized by the helium and growth requires, for some period, the continuing
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capture of additional helium. As a result, the pressure in small cavities becomes very
large which in turn enhances bias driven growth, and the pressure decreases rapidly as
the radius increases. Figure 6 shows the net pressure (p — 2y/R) as a function of dose
for the two helium production rates of 0.6 and 20 appm He/dpa. It is seen that the
small cavities are extremely over-pressurized but with increasing dose rapidly convert
to voids as already pointed out by Stoller and Odette [17]. Bias driven growth becomes
dominant after (p — 27/R) reaches its minimum. It is found that this conversion to a
bias driven void occurs at a radius of about 1.2nm independent of the helium production
rate.

The present void growth model for swelling needs several improvements before
the swelling predictions can be compared with experiments. Most importantly, it is
necessary to allow for time-dependent vacancy cluster formation in order to obtain a
cavity size distribution. This will produce a more gradual transition in swelling from the
transient period to the steady state period. A second modification will also be required
to allow for the continued formation of small helium bubbles in the presence of already
existing large voids whenever the helium production rate is high. The formation of a
bimodal cavity distribution has been observed in HFIR irradiated type 316 stainless
steels [18,19]. However, present models of cavity nucleation are not yet capable of
predicting the number of cavities produced after a certain irradiation period. These
data must be obtained from experiments and treated as input to theoretical void growth

models.
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Table 1
1. Initialize the problem; set constraints: material parameters, dose

rate, helium buildup rate, initial dislocation density.

2. For a given temperature determine the dislocation bias factors fov,

set the temperature dependent parameters.

3. Given a swelling, helium density, and temperature determine com-

pressibility factor 2z and pressure in the cavity.

4. Determine void bias factors Zf:v and sink strengths S, 4. Find sink

averaged bias factors and vacancy concentration, Z.-,., and C,,.

5. Calculate swelling rate and dislocation density rate of change. Find
a suitable time step and increment swelling and dislocation density.

Go to step 3 as necessary.

Table 2
316 SS ferrite

lattice parameter (m) 3.639x10~10 2.8664x10~10
vacancy relaxation volume ({1) -0.2 -0.5
interstitial relaxation volume ({2) 1.5 0.85
vacancy formation energy (J) 2.88x1071° 2.464x1071°
interstitial formation energy (J) 9.6x1071° 9.6x1071°
vacancy migration energy (J) 1.92x1071° 2.016x1071°
interstitial migration energy (J) 2.4x10720 3.2x10720
vacancy diffusion constant (m?/sec) 1.29x1076 4.463x107°
dpa rate (dpa/sec) 1.0x10°° 1.0x10~¢
cascade efficiency 0.1 0.1
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Figure 1. Compressibility factor versus helium density for various temperatures. The
fitted polynomial equation of state is compared to the detailed theoretical equation of

state.
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Figure 4. Swelling versus dpa for various temperatures. Cold-worked and annealed 316
austenitic stainless steel starting conditions are modeled for different He/dpa ratios.
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Figure 5. Swelling versus dpa for various temperatures. Cold-worked and annealed
ferrite phase starting conditions are modeled for different He/dpa ratios. Swelling
rates for the 0.6 appm He/dpa case are the same for both cold-worked and annealed
because the onset of swelling occurs after steady state dislocation density is reached.
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