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ABSTRACT

The moment equation approach to neoclassical processes is used to derive
the Tinearized electrostatic perturbed flows, currents and resistive MHD-like
equations for a tokamak plasma. The new features of the resultant "neo-
classical MHD," which requires a multiple Tlength scale analysis for the
parallel eigenfunction but is valid in the experimentally relevant banana-
plateau regime of collisionality, are: (1) a global Ohm's law that includes a
fluctuating bootstrap current resulting from the "parallel" electron viscous
damping (at rate ue) of the poloidal flow due to the perturbed radial pressure
gradient; (2) reduction of the curvature effects to their flux surface average
because Pfirsch-Schliter currents cancel out the lowest order geodesic curva-
ture effects; (3) an increased polarization drift contribution with B2 re-
placed by Béz where By is the poloidal magnetic field component. An electro-
static eigenmode equation is determined from.zfg = 0. For the unstable fluid-
like eigenmodes the new viscous damping effects dominate (by 3—3/2) over the
curvature effects, but the growth rates still scale roughly 1like resistive-g
or resistive-ballooning modes -- v,Tq ~ n2/3 S;/3 B%/3 (ue/ve)l/3. Diamag-

netic drift frequency corrections to these new modes are also discussed.



I. Introduction

Nonlinear resistive MHD models of Tow mode number instabilities in toka-
maks have had considerable success in explaining many of the macroscopic phe-

1~ internal disruptions (m/n = 1/1), Mirnov

nomena in tokamak discharges
oscillations (m/n = 2/1), major disruptions (2/1-3/2 coupling), etc. Also,
nonlinear models of medium mode number resistive ballooning modes in high Bp
resistive tokamaks have been advanced to explain the deterioration of plasma
confinement with high power neutral beam injection.2 Most of the tokamak
plasmas to which these theoretical models have been applied operate in a "long
mean free path" regime in which the Coulomb collision mean free path X exceeds
the magnetic connection length R,q, i.e. the so-called banana-plateau regime

of col]isiona]ity3 where v < wy. However, the resistive MHD equations4

upon
which the theory is based are usually derived in a short mean free path limit
[A(be¥Y) ~ A/Ryq << 1 where the two-fluid equations® apply] -- the so-called
Pfirsch-Schliter regime of collisionality where v > w,. In this paper we
explore the major modifications of the resistive MHD equations in the long
mean free path 1imit (banana-plateau regime) and find a new type of "neo-
classical MHD" instability.

The usual resistive MHD equations4 differ from the ideal MHD equations
primarily by the addition of the parallel (to the magnetic field B) component

3,6 we know

of Ohm's law. From the neoclassical transport theory of tokamaks
that, at least in equilibrium, in the long mean free path regime the parallel
component of Ohm's law is changed from its usual Ey = J"/ou form in two im-
portant respects. First, it is no longer valid locally, but rather must be

averaged over the periodic poloidal structure of the tokamak via a flux

surface average. Second, the "parallel" viscous drag on the equilibrium po-



Toidal flow carried by the untrapped particles, which is caused by collisions
with the immobile toroidally trapped particles, leads to a parallel neoclassi-

6,7 current. The bootstrap current is given approximately in

cal or bootstrap
the banana-plateau collisionality regime by Jy = -(ue/Ve)(c/Bp) dP/dr, where
Ve 15 the electron collision frequency and Hy ¥ /e Vo/(1 + v, ) is  the
electron viscous drag frequency. (Throughout the paper we will neglect order
unity constants in the viscosity coefficient definitions so as to be able to
emphasize the dominant physical scalings.) Here € = r/Ry << 1 is the inverse
aspect ratio of the tokamak and vi, = ‘%/EB/ZNbe (with wye = vre/Roq, the
electron bounce frequency) is the electron collisionality parameter such that
Ve = 1 at the boundary between the banana and plateau collisionality regimes.

In view of these changes in the equilibrium parallel Ohm's law, we can
thus anticipate the following modifications of the resistive MHD instability
equations in the banana-plateau coliisionality regime (v*e ~1). First, since
the perpendicular flows and currents are not significantly changed from ideal
MHD by the addition of resistivity effects, they should remain relatively un-
affected. However, the parallel flows and currents should be significantly
modified, and now their net contributions will emerge only after averaging
over a flux surface. Finally, and most importantly, for modes which evolve
slowly compared to the poloidal flow viscous damping rate (i.e., w < Ha), we
expect that the ideal equation of state d/dt(P/pg) = 0 will no longer be valid
and that there will be a fluctuating bootstrap current type modification to
the parallel Ohm's law and hence to the resistive MHD instability equations.
We will refer to the new equations so derived as "neoclassical MHD" equations.

A critical element in this work involves the use of a multiple Tength

scale analysis in the ballooning mode representation of the perturbed po-



tential along a magnetic field line. Specifically, the small, short scale
variations (Pfirsch-Schliiter type effects) within one poloidal transit are
averaged over to obtain perturbed flows and currents (i.e., the neoclassical
flows and bootstrap current) that vary only slowly on the long scale, which
represents the variation along a field Tine as it circumnavigates the torus
many times. Thus, the Tlowest order density and momentum conservation
equations become nearly the same as the corresponding neoclassical equations,
except for their parametric dependence on the long scale variable. After
determining the long scale perturbed currents, we combine them in.21§ = 0,
which gives an electrostatic eigenmode equation whose solution yields new
unstable modes due to the fluctuating viscous damping (bootstrap current)
effects.

This paper is organized as follows. In Section II we utilize the usual
small gyroradius, perpendicularly localized mode ordering to derive density
and momentum conservation equations in various orders. Also, the perpendicu-
lar (to B) flows are solved for in both first order (diamagnetic and E x B)
and second order (classical, neoclassical diffusion and polarization drift).
Next, in Section III we review how the moment equations are utilized® in neo-
classical transport theory to determine the parallel flows and currents (both
Pfirsch~Schliiter and bootstrap). In Section IV we apply this same methodology
to determine the perturbed parallel flows and currents. It is also in this
section that we first introduce the multiple length scale approximation
alluded to above. Then in Section V we combine the perturbed currents into
the charge continuity equation_Z{E = 0 and analyze the resultant eigenmode
equation to obtain the new pressure-gradient-driven resistive MHD-like insta-

bility. In Section VI we discuss the modifications to our fluidlike analysis



that occur when the mode number increases to the point where the mode frequen-
Cy can become comparable to the ion viscous damping rate and/or the diamag-
netic drift frequency. The results of this paper are discussed and summarized
in Section VII. Finally, the Appendix presents a simplified derivation of
resistive interchange or resistive-g modes in the notation and style of this
paper to facilitate comparison of our results with the usual ones in resistive
MHD.

II. Finite Gyroradius, Perpendicularly Localized Mode Ordering

In order to develop these neoclassical effect ideas more mathematically
we derive long mean free path resistive MHD-like equations for tokamaks
through a special ordering scheme on moment equations in a form similar to
those utilized in neoclassical transport theory.6 A more rigorous kinetic
analysis being deve]oped8 will be published in a companion paper (see also
Ref. 9). Assuming constant temperature (but T, # T;) throughout the plasma
for simplicity so as to eliminate the need for considering heat balance
equations, the moment equations for any given species of plasma particles can

be written a56

+ VenV =0 (1)
mn —— = nq(E+%lX_B_)-Vp‘Z‘£["R (2)

where I is the viscous stress tensor and R = nq(J,/o; + J,/0,) is the friction

between the electron and ion species in the plasma, with o, = ne2/meve and o,

= nez/meveae, where a, is® a constant of order unity that depends on the ion

charge Z and which we will now set to unity for simplicity. (In axisymmetric



neoclassical transport theory o, becomes reduced by a factor (1 + ue/aeve)—l
because of the viscous damping of the untrapped electrons as they flow over
the trapped electrons.) For the usual small gyroradius expansion with
§ ~p/2 < 1072 <« 1, we expand the density in the series

~

n = no(w) + Gnl + ... (3)

and similarly for the potential ¢. Here, no(w) indicates the equilibrium
radial density profile, which is only a function of the (radial) poloidal mag-
netic flux coordinate y. The first order density has no equilibrium contri-

3,6

bution and is due only to the perturbation. Further, we expand the flow V

and viscous stress tensor II in the form

Vo=V e V) (4)
where ]i indicates the (neoclassical) equilibrium flow and y& is the perturbed
flow. We allow Y& to be on the order of the equilibrium neoclassical flow V.
so as to be able to treat neoclassical and instability effects on an equal
footing. For simplicity we will concentrate on electrostatic effects and thus
assume that Ei ~ 52B0 or smaller; hence E& will give negligible contributions
to the order we calculate and we will henceforth set B, =B and E = -V¢ + Eig

A A
ﬂg, where EIl

= -Zﬁ¢o + 531) + S is the ohmic heating transformer induced E
field in the plasma.

Next, we adopt a high mode number, perpendicularly localized mode order-
ing scheme whereby all perpendicular (to the B field) gradients of perturbed

quantities are of order 6'1, whereas gradients of equilibrium quantities are



of order unity:

~ \ _ 0 1 ~ <0
Xl(n0 + Gnl) =68¥n, +3 j&(Gnl) & (5)
Thus, perturbations can significantly distort the local density gradient.
Parallel (to B) gradients are assumed to be comparable to equilibrium gradi-

ents:

(b+¥)(n  + &A)) = 8(b-W), , (6)
in which b = B/B is the unit vector along the magnetic field. Finally, in
concert with the rest of our small gyroradius ordering scheme, we assume
temporal derivatives are on the order of the sound wave frequencies and hence

of order unity:

9 ~ 3 ~
ap (ng + 80)) = 8y ~ 6. (7)

With this customary ordering scheme, the linearized, lowest (6°) and

first (68) order density and momentum conservation equations become

~ _ a ~ a ~ _

69 0o {70yt =0 g (T 090) + 55 (T 98) ] = 0 (8)
_ _ ~ 1 - ~

O—NOQ[XL(¢O+¢1) +*C_11.LX—B—] _V_i(po+pl) R (9)



~

an

1 1 5 ~ 2
§ . — V) oV . - »*
50t !1 Vn o+ !“ Y, + (B Z)(novlu/B) nolll 'V 1n B (10)
+ no{—v.L.-Y.l.L} + no{z.l.'lz }=0,
v, 3 L
— + oV = - . -V —
mno(at !1 -—.1.!1) nal b(b _)¢1 -—.L¢2 + E,,E + C !21_ X E] (11)
#nal-V e + =T xB]-blbeWp, - Vp - VoL - R
17" —L% c =1L - =22 1 —1f2 —=1 4

Here, to order the various parts of the compressibility term VeV, we have

utilized a Clebsch representation of the magnetic field for which
B =9y x V8=5b, (12)

with contra- and covariant basis vectors Vy, V8, b and Uy, ug, b, respec-

tively, where

Ug =b x Vu/B . (13)

(We will later set B = g©® - © to be tokamak specific.) Then, writing the

velocity V as

Vo= uy (TeeV) + ug(¥8eV) + b(beV) = IV, (14)

where [ is the identity tensor and utilizing V-B = 0 and the fact that in

equilibrium (7 x B) | = (4n/c)d, = 4n(B x Yp/8%) = B x [(b-¥)b - 1 W], so that

Veuy = -u *[(beV)b %—XB], we find



| <
[ ]
n

(8+9)(B+V/BZ) + (u W) (V+T9) + (uye¥)(V-Tg) (15)

- [(UeT0)u, + (V-T8)u, ] [(b-T)b + 5 W]

R’

(B-¥)(B-V/B%) + {¥ oV } - ¥V, +¥ In B

2

e AR UL NN R ALY

In the last expressions we have made use of the fact that for the low B plasma
equilibria in tokamaks, to lowest order in B we have (b<V)b = é—jB. Also, in
Egs. (9) and (10) we have ordered the perpendicular component of the viscosity
one order smaller than might be indicated in Eq. (4) because the perpendicular
viscosity coefficients are one or more orders smaller in the gyroradius expan-
sion than the parallel viscosity coefficients.®

The lowest order momentum balance given in Eq. (9) can be readily solved
to yield the perpendicular flow velocity

c ~ 1 ~ ~
= — v — Vv = +
Vo =g b [le +9e)+ X (p, +p)l =y, +V (16)

—-11 — — - —11°

which indicates both E x B and diamagnetic flow contributions, and the perpen-

dicular diamagnetic current
- C [}
Ji1 ?E x V(P +Py), (17)

where P_ = ) Pos = 1 51' Note that, because of our localized
species species

i
-



e, Eq. (5)], these Tlowest order flows include

mode ordering V, ~ ¢
contributions due to the perpendicular derivatives of the perturbations as
well as the usual ones due to the gradients of the equilibrium potential and

pressure. Also, note that since

Ed )= v el g ol +ag il =0 (18)
the yil in Eq. (16) automatically satisfies the lowest order density conser-
vation or incompressibility equation given in Eq. (8). Similarly, the
{Zi-jil} contribution to Eq. (10) vanishes.

Next, we consider solving the first order density and momentum conser-
vation equations given in Eqs. (10) and (11) for the required quantities Vi,

Hl and !21' The second order perpendicular flow !Ql is obtained by taking Bx

the momentum balance equation and is found to be (after cancelling the diamag-

1 V vV i Vel --
netic flow term part of mnox1 zLxl off against part of __gl see Ref. 10)

C ~e ~ A~

= —— b v + v + V] + VeIl

Vo1 n g = x [njave, + nq¥e + Vo, + V1

(19)
n
] — ~ 1 -
+ — 4+ V_ oV - =
FRpeng G YTl -y,

0

in which V_ = (c/B)(b x ¥ ) is the equilibrium E, xB flow. This leads to

the second order perpendicular current
By L oalngy, oy, )
species
(20)

c 3 -
=g 2% [Py v e Gt Yowly,



where 52 and p, are the total second order pressure and mass density (domi-

nated by the ions) defined by

52 = X. 52 s Z' ngm =n.m . (21)
species species

Lo
3
il

Note that the perpendicular friction force component b x R; in Eq. (19) just

yields the classical, ambipolar diffusive flow due to Coulomb collisions:

2
(T +T.) T + 7.
C C ~ e i 2 e i
B xR, =—Db xJ ==-DV(n_+n) ,D=o—="fn——=vp G——————J
nquZ - -1 oB- -1l L0 1 Bzol e’e 2Te
(22)
where Pe = 2Te/me/9e is the electron gyroradius and Qe = eB/mec is the

electron gyrofrequency. Further, the Vyeb x (Z-g) component of Eq. (19) can
be shown [see Ref. 6 and the discussion after Eq. (44)], at least in its flux
surface average form, to lead to the Pfirsch-Schllter and banana-plateau
regime crossfield transport, which is also ambipolar and so does not contri-
bute to Eq. (20). While the flows induced by $2 and Eé are nonzero, they do
not contribute to the {zi'izi} term in Eq. (10) because, in analogy with Eq.
(18), they are proportional to gradients of perturbed quantities and thus, to
Towest order, are incompressible flows.

To determine the remaining quantities Vlu and ﬁl, we utilize Eqgs. (16),

(19) in Egs. (10) and the parallel (B+) component of Eq. (11) to obtain

~

on

1 - o~ 2
—_— oV oV v b oV
el PR MR (§__)(nOV1“/B) nV, *VinB (23)
_.(:_ng(.i’_+v.v)v2 G, + 15 )+ 2 (vyeb x (vel)) z 0
Ba ot T AL\ TR g P ey VRIS 20

10



a ~ ~ ~ A

—_— . . = - Y - oVe - .
m GGp + ¥y Y )@Y, = - (B<V)(p, +n qé )+ n gE B - BVeI - BR (24)
. . 2 _ _ 93 2 9 P 2 9
in which Vi = {_\Zl'_V_l} =% | Yyl ETIET | V8| 3B ¢

A (1/m9)(3/33)(9,xAZB'(Z‘El)) term has been neglected in Eq. (23) since it
represents a radial viscosity contribution that is higher order in the gyro-
radius expansion than the viscous stress effects within the flux surface which
are being retained. To proceed further it is necessary to take into account
more explicitly the tokamak geometry and to develop a subsidiary expansion
based upon large aspect ratio and greater radial than azimuthal Tocalization
of the modes. Before doing this, we discuss the solution of Eqgs. (23) and

(24) for the equilibrium neoclassical flow V,,, which we need to determine the

1

convective flow derivative Yi~z_ in the perturbed equation.

1
III. Neoclassical Equilibrium Flows and Currents

Taking an average of Egs. (23), (24) over time and length scales longer
than those of the fluctuating modes, we obtain for the neoclassical equilibri-
um equations

(B+¥)(V,,/B) - ¥, ;¥ InB" =0 (25)

1l

= A - L] .— — ._
0 =+ngqEB - B-Y-I - B-R, . (26)

Note that, in contrast to the usual MHD equations, Eq. (25) shows that the
parallel velocity and perpendicular flow velocity components in the magnetic
flux surface are linked in neoclassical equilibria. We now focus our atten-

tion on an axisymmetric tokamak equilibrium for which we define

11



[
]

IVg + Vg x Yy = V§ x V(g0 - ¢)

where I = I(y) = RB

o G

rotational transform), and © and ¢ are the poloidal and toroidal angles.

also that for this coordinate system B = q© - ¢ and that Vg = g/R.

find

V, eV 1 32—V (v 2 il sy a—)1 32
=" AR R T IA A v

dé dp
_c wvold 2 0 1 )
"B E x _Vt]) Xe(a@ In B )(CN) + noq dy J

2 d¢ dp
I aC) A2 g gy0 . L o

+
2 20 d¥ " n_q dy

d¢o + 1 dpo)]
dy nya dy ?

9
since (BeV)f = (B-Vy g—‘p + BeVe %— +B-

ing this result in Eq. (25), we find that it can be written as
v

dé dp
Eplgh+ 8 G+

+ )] =0.
nod v

This equation can be integrated along a field line to yield

VlH = UH(W)/B + Up(¢)3
dé dp
— - 0 1 o}
where U“(¢) = CI(¢)(d¢ + na v )

12

¢ 30t = (/aR?)(q 35 + 357

(27)

ql{y) (the toroidal winding number, or inverse of the

Note

Then, we

(28)

Utiliz-

(29)

(30)



is B times the parallel flow component that results in no net poloidal flow

6

and U _(y) is a constant of integration on a flux surface, which is° the po-

p
Toidal flow velocity divided by the poloidal component of E_(Ub E‘Yifze/§i29)°

The total parallel flow can be written in terms of its Pfirsch-Schiliiter
(<BVi"> = 0) and flux surface average (<BVi"> # 0) parts in the form
2 U,

—1T (0 + 85[0 (v) +
<B > P <B >

Bv1|| = [1 -

] (31)

in which <Bz> is the flux surface average of 82 defined by

2. _ ¢ do 2 df do 2 de
<B°> = ¢ E—-B /¢ 5= ¢ B+VO B / ¢ Bevo - (32)

To determine the neoclassical poloidal flow velocity coefficient Uﬁ(¢),
we consider the momentum balance equations in Eq. (26) for both electrons and

ions:

- B (33)

o
1
)
=
fe)

o
m
= >
jws)

'
| o
.
i<
L ]

(34)

o
f
=
e}

(D
m
= >
o)

i
|
[ ]

L ]
ey |
1
w
L ]
X

For roughly comparable electron and ion E x B and diamagnetic flows E&, the
dominant term in these equations is the ion viscosity term, which upon flux

surface averaging yie1d56

0 = <B¥eI> = <B%> myn u,U . (¥) (35)

13



in which u; is a parallel or poloidal flow viscous damping rate given approxi-

mately by
/e v;
My ”T—_'_—\: . (36)
The solution of Eq. (35) is
U =0 7ol e (d¢ + dp°i) (37)
pi ? 10 B B dy ne dy

This indicates that the parallel ion viscosity, which is due to the viscous
force exerted by the trapped ions on the toroidally (and poloidally) passing

ions, damps the poloidal flow of the ion species to zero. Further, for

Upi = 0, it is easily shown that the total equilibrium ion flow velocity
V1w9 +11l is purely toroidal and given by
d¢ dp . d¢ dp .
- - 0 1 oi c 0 1 oi
z Ve = - + = - +
VeilR = TeV, = - clgg ne dy ) R 5 ne dr ] (38)

Next, we make a subsidiary expansion in the smallness A of the electron

viscosity and the electric field Eﬁ compared to the electron collision rate:

A~uyu/v , eo EA/m vV, << 1. (39)
e e 0 eell

Then, expanding the parallel electron and ion flows as

- 0 . —(1
Vl" = V1" + Avlu + ..., (40)

14



we find from the lowest order form of Eq. (33) that

_ - —(0) _ (0) =(0)
0= E-Rle - neeE-gl /On B meneveB Vlue Vlﬂi) ’ (41)
which requires that
+(0) _ (0) +(0) _ <(0)y, _
Vite = Viu5 > <B (vllle Ut P=0. (42)

Since the parallel ion viscosity forces Ubi to zero, in order to keep the

parallel electron and ion flows equal, as required by Eq. (35), we must have

— Uni B Une cl(y) dPo
u = > = - AT (43)
Pe <B > n e<B >
0

Note that while the equilibrium ion flow is purely toroidal, the electron flow
is not; the viscous damping of the residual electron poloidal flow will lead
to the bootstrap current. Utilizing the results of Eqs. (35), (36) and a form
for the parallel electron viscosity analogous to Eqs. (35), (36), we find that
the flux-surface-averaged first order parallel electron momentum balance

equation becomes

—(1) =(1) A - 2
R oz - >/6. = - n e<E B> - <>
BRe noe<Bdyy >/oy = = noe<t B> - mnul B>,
or &
M u
—(1)_ _ A e - 2. A e 0
<BI > T o <E B>+ (KZJ nerpe<B > = o <€ B> C;;) cI(w) TR (44)

This is the standard6 flux-surface-averaged parallel Ohm's law for a neo-

15



classical, axisymmetric tokamak, with the second term representing the boot-
7 s o -1
strap current,’ since (ue/ve)cl(w) dP /dy = Ve (1 + Vicg) (c/Bp)(dPo/dr).
Having obtained the first order equilibrium neoclassical flows, we can
now return to Eq. (19) to work out the second order neoclassical transport

flows (Z¢{z21). Namely, we ca]cu]ate_zwjiél utilizing the geometric identity

bx% , 1B
=R_VC'7
B
to yield, in flux surface average form,

— C - C 1 1 - cl -
<VPeV_ > = < VPoBx(Vell > = = T<(— - oVe oV
ISP y BTl ) = 21 - ) BeTe N ¢ = eTeT>

eB B <B > e<B >
2 —_—

in which we have utilized the fact that <R"VgeVeIl> = 0 because of the conser-
vation of toroidal angular momentum to the order (in the small gyroradius
expansion) being ca]cu]ated.6 The first term here gives the Pfirsch-Schliiter
transport contribution while the second indicates the banana-plateau trans-
port.6 As can be seen from Egs. (33) and (34), these electron and ion radial
particle transport flows are ambipolar.
Before proceeding to analyze the perturbed flows, we summarize what we
have learned from the first order neoclassical equilibrium flows as follows:
1. The parallel ion viscosity couples the parallel and ug = %-g'x V¢ compo-
nents of the ion flow in such a way as to damp out the poloidal ion flow
and yield only a toroidal flow given by Eq. (38).

2. Collisional friction between electrons and 1ions causes the parallel
electron flow to be equal to the paraliel ion flow in lowest order, which

leads to a poloidal electron flow given by Eq. (43). The viscous damping

16



IV.

of this poloidal electron flow leads to the bootstrap contribution to the
parallel Ohm's law.

The parallel electron momentum balance or Ohm's law in the banana-plateau
collisionality regime is only meaningful in a flux surface averaged sense,
as indicated in Eq. (44).

In addition to the flux surface average J,, there is a Pfirsch-Schliiter

1
component that averages to zero (<31“PSB> = 0) and is given by

noe(U .- U ) 2 . cI(w)( 52 . _EEP
%> B %> dv

s = B (45)
The Pfirsch-Schiliter current is the zero average current whose parallel
derivative is just what is required to cancel the geodesic curvature
[882/38 > (gfz)(lle) in an axisymmetric tokamak, cf. Eq. (28)] driven
charge imba1ancelz{§;. That is, we have

0
de Po 3 1In B2

2 —
d VoJ =—2f—-——

(B9 () 1pg) = -J B — 211 B dy o8

Note that this cancellation was insured by the first order incompressi-
bility constraint conditions for each plasma species, as given by Eq.
(25).

Analysis of Perturbed Flows and Currents

We now analyze the perturbed flows in a manner analogous to this develop-

ment of the neoclassical flows. The first step in this procedure is to make a

subsidiary expansion (in A) so that the lowest order flows are poloidal and

toroidal, with the radial perturbed flow being first order in A. To do this

we need to order the poloidal (3/38) gradients of perturbations to be one

17



order in A smaller than the radial (3/3y) gradients. Also, we order the wave
frequency (3/3t ~ -iw) to be of order the parallel gradients [vT(Q'X) ~ kg
< w] and diamagnetic drift frequency wx, with all three being order A smaller
than the bounce frequency wy = vT/Roq. To make this explicit, we utilize a

Tocal ballooning mode representation for the perturbed quantities:

G = DTG (yy) = ] eINETikETIu oy o Tlkenaly 8 (¥,y) (46)
n n,k -

ing-ike-iwt ~
nZk e b ()

in which d2 = Ryq dy. Then, we order

VTe(R.-V—)’ w, W, << My ™ Awbe << Vor %o (47)
v.h.(b°V), W, Wy ~ My~ Amb Ve, ws
3—W~A°, 3—8~A, bev ~a, (48)
and expand Hl’ V1 in the small parameter A:
zl - ziO) + Alil) +
A I (49)
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Utilizing these orderings, we find that the lowest order perpendicular

flow is 1in the_gﬁ direction, and the first order flow is radial:

0 a¢(O) 35(0) ) )
~(0) _ ¢ 1 1 1 d ~(0 1 ~(0
_1_1_ -ER"Z‘P[ v +n0q 3 ]+ ""nyd_%cu [4’ +_qp ]
7 oy« M{O) + 1 aaio)] £px W[aE{l) v L 85{1)] (50)
=11 B—= —-"L 3B n.d ap B—= " =L 23y n,a oY
. ~(0 _1 ~(0 . 3 ~(1 1 ~(1
> 1nqgw[¢£ U - q ( )] - 1ny-3% QHB[¢£ )y ﬁ;ﬁipé )] .
The first order perpendicular current is thus of the form
~ “{0) SP(O) 3550) aﬁil)
dpr =gt Aiu = clug a T Ay et Mgt ]
. (51)
P(l)

.o dg . iy dgy (1 5
> c[gﬁ( iny dw) + Agw(ln) + Ags[ iny dw) %TET + 0] PJ
1
Then, with all these orderings, we find that the lowest and first order compo-
nents of the density conservation and parallel momentum equations given in

Egs. (23), (24) become

2% (Bem)(¥ ﬁ)/s) (0)-_\7 n 8% = 0 (52)
0= -8R (53)

A: BZ£O) :ﬁ) X‘P:—IQ‘LY Vn + (E Z)(n Vi ")/ B) - oiﬁ)z in 82 (54)
Ea R TGRS LR AU AR



~(0) ~(0 ~
JBY ") = - (B (p, " + n_as

3
mn (— + V_ oV L

09t ~1 —L

(55)

To solve these equations for Vi%) and ﬁ}o), we proceed in a manner analogous
to the neoclassical flow determination discussed above. First, we consider

Eq. {53) which in analogy with Eq. (41) indicates that

7(0) _ (0) ~(0)p
Vlﬂe = vlﬂi s JiyB=0. (56)

Next, we consider the terms in Eq. (52). Utilizing the ballooning mode repre-

sentation in Eq. (46), we can write

(80 (719 78) = L, (a 3z + 3575 /8)
(57)

_ inz-iko-iwt i(k-nql)y 3 ((0)
= (B*VO) ) e [ dy e (vlln /B) .

In analogy with Eq. (28), we write the other term in Eq. (52) as follows:

~(0) ~(0)

T ) ap
~(0) 2 _ _ 1 1 71 oy (L
Vi ¥ In Bt = -l (g MR )(EZ>(7B)

_ I ) oinz-iko-iut [ dy e1(k-nq)y (=cI)(~iny ggJ (58)
qR2 k,n - dv

< (00 + L5l 3 Cy) -

Substituting Eqs. (57) and (58) into Eq. (52) and operating on the resultant

L
equation with l;- dg e

-ing to pick out the nth toroidal mode, we find

QN
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9 ~(0 . ~ ~ 3
& (T2078) + (e (~iny SD)FO + L 5l0)) 7 G =0, (59)
B
Some further assumptions are required to solve this equation. Namely, we
assume, as can be validated a postiori in a kinetic treatment of this prob-
1em,8’9 that $§0) varies only slowly with y, and that rapid fluctuations of

-- see Fig. 1. (In

(0) _
n

$n with y (over 2m intervals) are present only in $§1)

particular, we find from kinetic theor‘y8 that $§1) ~ (wD/w*)¢

€ cos 0 $£0).)

Thus, we are led to a multiple length scale approximation.
Since we anticipate modes that are highly extended along magnetic field lines

(many times around the torus), we expect y ~ 1/A., Therefore, we order

- 3 _ 123 )

.Y“.VS"'Aes W‘I-m""yy:, (60)
where y. is the slow variation and © indicates the variation within one
poloidal transit of a field line. Then, from our physical discussion above,
we assume

%(0)

3 =50+ 0o,y )+ .. (61)

n

and similarly for Hn' Rigorously speaking, $(0)(ys) is a local flux surface

n
ys+ﬂ
~ ~(0 do ~ de cas
average of ¢ defined by ¢é )(ys) = [ 7.v6 ¢n ¢'§776 . Utilizing these
y_-m—— - -
s

orderings, we find that to lowest order in A, Eq. (59) can be simplified to

V(O)
3 in cl . dqy~(0) 1 ~(0) -
20 [B(e) ¥ BZ(G) ( 1nys_cn)(d)n (ys) ¥ n g Py (ys))] 0.
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Fig. 1. Schematic illustration of the Tong (yq) and short (@) scale vari-
ations of the eigenfunction $n(y) in the multiple scale length
approximation given in Eq. (61).
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In analogy with Eq. (29), the solution of this equation can be written as

Vflg) = U“(ys)/B + Un(yS)B (62)
where U"(ys) = - cl (—inys-g%)(Eﬁo)(ys) + ﬁia'5§0)(ys)) s (63)

and Uﬁ(ys) is a constant of integration on a flux surface, which is the per-
turbed poloidal flow velocity divided by the poloidal component of_E_(Un =
25120[5{20). Note that this poloidal flow velocity constant Un depends para-
metrically on the Tong scale or "slow" ballooning mode variable Y- Also note
that Eq. (63) is analogous to the neoclassical result given by Eq. (29) with
d/dy replaced by -inyg dq/dy, because of the ballooning mode representation.
As in the determination of the neoclassical flows we determine the con-
stant Un by considering the first order (in A4) parallel momentum balance,
which is Eq. (55). Rather than considering this entire equation, we want to
select out the nth toroidal Fourier component and take the flux surface

average of the kth poloidal Fourier component. To do this we utilize the

operator
2m . .
[A] = <—;—1; [ dg e TNEKO a0, 00> (64)
0
on the equation to obtain
— - ~(0) ~(0) ~(0)
-3 1 oV - i V0 J< > = = <BW> +
mno( iw+ dny, Vo - ikV, Vo) BV, BV (pn n a¢. )

(65)

- <gev.iit0)s @RS ,
— = ="n
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i i <BeV> = _
in which BV, ?75§7§'dys (66)

with § d&/B = V'(y)/27 being the normalization factor for the $ d2/B average.
Now, since the perturbed flows z{(i) and Vi(?') are closely analogous to their
neoclassical counterparts, the parallel viscosity term in Eq. (65) is analo-
gous to that given in Eq. (35) except that part of it cancels the equilibrium

diamagnetic flow contribution to the f/_'lo_V_<BV(ug)> term (see Refs. 8, 10).

Thus, Eq. (65) can be written as

— ~(0 ~(0 ~(0 ~ 2 ~(1
- jwmn <BV( > = - <B-V>(p ) +nqgé ) -mn w <B > - <B°R( )> (67)
0 in — = 'n o'n 0 n - N
in which W= w- o (68)
"4 d¢o ngy(c d¢o
with g =n¥eeVe = - ne o= = - (R G (69)

is the frequency Doppler-shifted by the equilibrium E, xB flow effect.

Writing separate averaged parallel momentum balances for electrons and

(0)

i from Eq. (62) and the form

ions utilizing Eq. (67), the specification of v
of B*R given in Eq. (41), and then solving for the poloidal flow components

for ions and electrons, we obtain

— o~ ~(0) ~(0) ~(0) ~(0)
- <B*W> + - <Be¥> - +
ﬁ uminoU I B-r (pni noecpn ) BT (pne noeq)n )/(1 ue/ve)
ni m.n (u, - 1‘75)<Bz>
io i (70)
'G" - U“. <B-V>('|5(O) - e'd;(O))

ne ni

(1 + ue/ve)<B > meneve [1 + ue/\)e)<B >
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in which we have neglected terms proportional to /me7 i ZVve, and
(me/mi)ve/a. Note that for w << M and neglecting the <B+V> parallel deriva-
tive terms we would have Uni = 0 (no perturbed poloidal ion flow) and

0 --@

ne - ﬁ"i)/(l + ue/ve)<82>, which are analogous to the neoclassical

le
equilibrium results given in Eqs. (37) and (43).

(0)

The lowest order parallel electron flow velocity Vﬂne

is now completely
determined. However, since it does not give rise to any net parallel current
directly [cf. Egs. (53), (56)], what we need to determine is the first order
3$|r11)>'

current <B This can be obtained from the electron component of Eq.

(65), which for w <<y, ~ Ve v /(1 + v, ) can be simplified to

_ s (3(0) - 1 ~(0)y _ ~ 2 ~(1)
0= noeSE.X>(¢n e Pne ) menoueUne<B > + noe<BJ“n >/°u . (72)
~(1)

Solving this equation for <BJ!In >, we obtain the global Ohm's law appropriate

for "slow" perturbations (w << u,) in a ballooning mode representation:
) + —g-ner w2 . (73)

The first term is the appropriate combination of the parallel electrostatic
electric field and electron pressure gradient terms. The last term, which is
proporticnal to Une’ indicates the fluctuating bootstrap current analogous to
the neoclassical result given in Eq. (44).

Finally, in our determination of the lowest order perturbed quantities,

~(0)
1

we need to solve for the perturbed density n from Eq. (54). Since from our

(0)

multiple length scale expansion in Eq. (61) we have ﬁn independent of the

short scale length variation © and only dependent on the long scale length
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variation Yg» Wwe need only utilize the flux surface average of Eq. (54).
Thus, operating on this equation with the operator indicated in Eq. (64), we
find that to Towest order in A the first order perturbed density equation for
electrons (so that the polarization drift type contributions that are inverse-

1y proportional to B& can be neglected) becomes simply

dp

dn d¢
ae(0) o ~(0) _ 1 ~(0)y o _ . o _ 1 oey ~(0) _
i 0 1nc(¢n e Pre ) i 1nc(d¢ he dv ) no =0 . (74)
Since for our constant tem = 5l0) _ 70)
perature plasma p,, = n,T, and Pre = Me Te’ the
ﬁég) terms proportional to dno/dw cancel and we obtain simply
dn
it ooy a0) L ~(0) Mo
i(w “E) Npe = 1nc¢n v
~(0)
dn w e
~(0) _nc ~(0) "o _ *e n
or, N == ¢n v - ( T ) n s (75)
w w e

in which the electron diamagnetic drift frequency wx, and a corresponding ion

diamagnetic drift frequency are defined by

_ cTe 1 dno . CTi 1 dn0 (76)
e TN o v dv i TS TR
) )
Note also that the perturbed electron density in Eq. (75) is just the usual

perturbed MHD convective flow density response

no= (e )/iw = (B x YaeTy)(dn /dv)/iw? »0E G 0 (77)

~(0)

~(0)
P + noe¢n and

Finally, we note that the combination of terms
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~{0 ~ . .
Pée) - "oe¢£0) appearing in Eqs. (70) and (71) can be written, utilizing our

convective response in Eq. (75), in the form

~(0) ~(0) _ ~(0) .. _ —
pni ¥ noe¢n B n0e¢n [ w*i/w)
(78)
~(0) ~(0) ~(0) —~
Pre ~ M8, = N ed 1 - w*e/w) X

Before proceeding to synthesize these results into an eigenmode equation
determining instability, we summarize what we have found for these neo-
classical-like perturbed flows:

1. The parallel ion viscosity couples the parallel and ug ion perturbed flow

components so as to determine a net poloidal ion flow velocity ] given

ni
in Eq. (70), which depends on the ratio of the net wave frequen-
cy w = w - e to the poloidal ion flow viscous damping rate .

2. Collisional friction causes the Towest order perturbed parallel electron
and ion flows to be equal [cf. Eq. (56)]. The viscous damping of the
perturbed poloidal electron flow given in Eq. (71) leads to the bootstrap
contribution to the global parallel Ohm's law given in Eq. (73).

3. The parallel electron momentum balance or Ohm's law in the banana-plateau
collisionality regime is only meaningful in a flux surface averaged sense,
as indicated in Eq. (73).

4. In addition to the flux surface average <3gi)8> # 0, there is a Pfirsch-

(0)

Schliiter component that averages to zero (<J)-..B> = 0) and is given by

InPS
U, -0,.) 2 2
~(0) _ ~(0) ngelUyy - Uy _ By _cl (B _ .y dgys(0)
Jin” = dunps * B (1 . B 7 1) (-inyg qlPy " - (79)
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Note that as in the theory of neoclassical flows, the parallel derivative
of this current is just what is required to cancel the geodesic curvature
driven contribution 1:0‘2'51-L in the quasineutrality condition.25§ = 0.

V. Eigenmode Equation and Analysis: Resistive MHD-Like Modes

These perturbed flow results will now be combined to obtain an eigenmode
equation governing instability of resistive MHD-like modes 1in the banana-
plateau regime of collisionality. They will be combined through a quasi-
neutrality condition‘iﬂi = 0, which from the next to last form of Eg. (15),
can be written as
2 .

0 =93 = (-9(83,/8°) + {7,°3,,} - 3

21 Jyy¥YIn B

(81)

Utilizing the form of in from Eq. (20) with Eil from Eq. (16), and the

form of {Xifii} from Eq. (18), we find that

2
cp
5 V= .__Mm (3
{Z.L.AZ.L}_ 82 (

~

where we have omitted (V8 x g)-(jfgl) terms since they represent radial vis-
cosity effects and are apparently one order higher in the gyroradius expansion
than the viscous stress effects within the magnetic flux surface that are re-
tained. Here, the first term is just the usual ion polarization drift contri-
bution, with the finite ion gyroradius correction and equilibrium Ej x B drift
included. The cross (i.e., b x Vy/B = Ug component) viscosity terms in Eq.
(82) will yield a neoclassical enhancement of the polarization drift and some

<§j2?5 terms. To determine them, we multiply these terms by 82 and operate on

them with the averaging operator given in Eq. (64). Then, proceeding as in
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the determination of the radial neoclassical transport flows [see discussion
after Eq. (44)], neglecting order A terms arising from the R?z; or toroidal
component of viscosity, and utilizing the Uni and Hﬁe poloidal flow components

from Eqs. (70) and (71), we obtain

o 5 L xW ~ ~ 3 ~ ~
[BC-UT( 5 ‘Z‘(Ee"lji))]"Ca_lpI@‘X‘(Ee*'Qi)]
=-c 3—-I<BZ>(m nwl  +mn ul.) (83)
Y e o e ne i01 ni
. p— — 2.2.2 ~ — . ~(0
> - j(w - w*i) M{w) pmczn ysI C%%]Z ¢£0) + cIL(w)(-myS EE%){Q{Z}Pg )

in which we have neglected terms of order me/mi and the frequency factors

L(w) and M(w) involved in the B+VP and neoclassical polarization drift terms

are defined by

R U e e - *e

L(U)) = M((L\) + —I—+—ue7€ (1 = M(w)) m . (84)
- Wy

M(w) E_u_--—'iw . (85)

In the Timit U >> w these frequency coefficients are both unity. Then, the
first term in the last form of Eq. (83) is a neoclassical polarization drift
term which 1is a factor of Bi/Bg = qz/e2 larger than the usual finite gyro-
radius polarization term given in the first part of Eq. (82). This neoclassi-

11 that in an axisymmetric toka-

cal polarization drift term reflects the fact
mak the perpendicular dielectric constant has the B2 in the denominator re-

placed by Bg -- the square of the poloidal magnetic field strength.
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Thus, to obtain the total {Zl'gél} contribution, we multiply Eq. (82) by

B2 and average with the operator in Eq. (64) to obtain

[82{9,0,, 1] = - i(@ - w ) (M@ + 2<|79|2>/12) ¢ cznzyzlz(%%)z $|g0>

(86)

+ cIL(w) (~iny -%%)<Bj§}$ﬁ0) .

Here, the M(w) part represents the neoclassical polarization drift effect and
the <|ZW|2>/12 ~ B%/B% term represents the usual finite gyroradius polari-
zation drift contribution. Note that in terms of our small A or subsidiary
expansion, all significant terms in jhfﬁél are of order A, Since the usual
finite gyroradius polarization drift is of order eZ/q2 smaller, and hence not
significant in this equation, we will neglect it henceforth.

For the first order perturbed current contributions to Eq. (81), we see
from Egs. (51), (73) and (79) that Q& can be written as

25(0) +5(0) 55(1)

= 1 (0) (1) 2
= clug —5—- 4 w_r_+A£B_3_¢_) B(Jlps + 83,1 )/8 + (8%),  (87)

in which we have spelled out the form of the terms in the smail 4 or subsidi-

(l), the flux

ary expansion. While we do not have an explicit form for J
surface average <BJ§1)> has been obtained in Eq. (73). Utilizing the lowest

order components of g& from Eq. (87), we find that to lowest order in &

(0)
2 ap 2
. = 570

B 1 B . dq
= cIf -1) + cIf - 1)(-iny )
- 114PS <BZ; ay <BZ> s dy

~(0) 5(0)
3 n

and hence
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(-3

2 1

QR 90 BZ ‘

(-9 (310 /8% = - c1 -
As with the neoclassical first order currents, this parallel derivative of the
perturbed Pfirsch-Schlliter current cancels the geodesic curvature driven

contribution to_z{Q that is given by

5{0) g 1 82 - ——aizﬂ— —cl A (Bev) 1
Sl 238 oy €l 2L 52
dgy 5(0) I 3 1
> (=cl) (-iny, T P —5 55
s dy qR2 E] BZ

Thus, the lowest order (a°) geodesic curvature driven terms are cancelled out
in Eq. (81).
To next order in A there are a number of ﬁi terms that contribute, both

~(1)

directly from gl and indirectly from higher order oscillatory corrections to
the cancellation of the J{O) terms. Since all we are interested in are the
flux surfaced averaged quantities, we utilize the operator in Eq. (64) to pro-
ject out only the averaged part. Then, writing (E{Z)(Qil)°§/82) = (1/8%)

x ((B=V)(J. (1) *B) - (J (1)°B)(B *¥) 1n B2 ), we find that the [] average of B2

times the quasineutra]ity condition of Eq. (81) becomes simply

0 = [B-n @ 8)] + B - B w?) (88)

| <
b.-
I
}.—
[S—

Or, performing these averages, we obtain

31



0 = <B+W> <J(1)B> + ic? P (w - w, ) M(w) n2 2 (1 29)2 $(0)
(89)

2
+ cIL(E)(—1ny 'H$)<B V>P(O) - 1ncP(0)(<%%r> - %_.%%.<e ) .

Note that while the flux surface average of the normal curvature SBZ/BW enters
directly, the lowest order geodesic curvature term ysaBz/BB = (ys/q)(332/3@)
does not -- because the perturbed Pfirsch-Schliiter current contribution can-
celled out the lowest order term. However, the é d%4/B average first order
geodesic curvature <@ 382/39> does contribute. Rigorously speaking, Eq. (89)
is supposed to be an order A equation. However, for low B (~ ez/qz) tokamak
equilibria <8Bz/3¢> ~ <0 382/8®> ~ €2 ~ Az. Thus, formally, the last terms in
Eq. (89) vanish to the order A that we are calculating in Eq. (89); to obtain
the complete curvature driven contributions to Eq. (89) correct to order A2 e
would have to go to higher order in our solutions. However, since the main
emphasis in this paper is to elucidate the parallel viscosity effects, which
we do retain in the order A equation, we will be content to simply identify
these last terms as indicating the curvature effects, realizing that they may
not contain all the order A2 terms.

Upon utilizing Egs. (73), (75) and (78) to relate all perturbed quanti-
ties to 3#0) (except Une’ which will be dealt with later), we find Eq. (89)

can be written as
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W

" - _ w
0=-(1- __S)g <B+V><B+ V>¢( 0) + :7-<B V>(noeune<82>) + iwczp (1 _._tl)
W e w
22 dP
« M(@nyZ (1 §1)? 30 -y e T L@ dw y <-w>30) (90)
w
2 2 dP 2 2
- 3(0)(3B7, _1dq o B
a' W (5 g 0we) -

Dividing Eq. (90) by [-w n°c®e (I da/dw’] and utilizing the “natural” defi-

nitions

o S 4no“/c2(I dq/dw)2 -- resistive diffusion time (smaller than the (91)

2.2

usually defined one by a factor r¢I (dq/d¢) ~B /Be ~q /e >> 1)

T, = YAmo $ d&/2m -- poloidal Alfvén time (~ Rq/V,, which is (92)
different from the one usually defined by a factor of q > 1)
dP /dy 2 2
2 _ _ 0 B°, _1dq ., 3B - y2 .2 2 __
Wy = et <O =) = VS/rp<RC> e“Br/Ty -- an (93)

o (1 dg/dv)® 3y

effective hydrodynamic frequency (uﬁ > 0 for "ideal" MHD stability),
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dp
: 0) 2r -- an effective sound wave f (94)
(I dq/dy) ¢ d2/B e sound wave frequency

W = (-
S pm dy

. 2 2,2 .
in the plasma (ws = VJ/R q(rp dq/dr) BT/TA)

w - w*.
1 - a multiplier indicating the relative (95)

N(w) =1+ (1 -M@w)
e

%i T Y

effect of ion viscous damping on the perturbed poloidal electron

flow (N =1 for B > w),

together with the specification of <B+V> given in Eq. (66), we find our

eigenmode equation becomes simply

2~(0) 2
(1 - o /o), d°% oW

e R n _ 2~(0) e s — d ~(0)

— 22 2 M(w) (1 m*i/w) Yoo~ t 5o = Nw) Ay Ys®n

Twn"T, dy e w S

s
(96)
22 d"5(0) W2
S L@y, - 50y

;@ S dyS Z? n

To determine solutions of this differential equation in the ballooning

mode variable Yg» we put it in the following convenient form

d2¢(0)
B+ 2(C + E) A Ayi)E(O) = 0 (97)

D
dys dy _ 7s'n n

S

in which we have defined
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A= -eg/e@, B=-—, C=G)N@ -,
w e 2w
(98)
(1 - w /o)t o
D = S S Sy
iEtAn 2w

This differential equation can be simplified into the standard harmonic oscil-

lator or Weber equation form with the transformation

- -(C+E)y2/20
¢(O)(y ) = ¥(y_le > , (99)

which yields

=0 . (100)

For modes localized away from the boundaries at yg = t=, the solutions of this

equation are

2 2
-oy“~/2 dcy
- s L_ 2.2
¥, = H,(/o ys)e , H?_ = [-(22+ 1)o+ o ys]‘l‘z , (101)
S

where Hy is the Hermite polynomial. Substituting the differential form in Eq.

(101) into Eq. (100), we find the eigenvalue conditions
o = A/D + (C + E)2/D? (102)
(22 + 1)o= (B+C - E)/D . (103)
Now, we must require Re[o + (C + E)/D] > 0 for the modes to be localized

near y¢ = 0. For w << My where L =M =N =1, we have E >> C, B. Then, since

for the form of o given in Eq. (103), we have o + (C + E)/D = (E/D)(1 - 1/(2%
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+ 1)) + (C/D)(1 + 1/(22 + 1)) + B/D(2& + 1) and E/D « - i/w, we find that
growing modes (Imw > 0) are localizable and hence possible only for & = 0.
Thus, we take £ = 0 and for purely growing modes in the E, x B rest frame

(w = iy >> m*e’w*i) we take the positive square root in Eq. (102) to keep

Reo > 0:
o = (A/D + (C + E)2/p2)1/2 (104)

Hence, the general eigenvalue condition in Eq. (103) can be written as

(2 =0);
(A/D + (¢ +E)2/02)Y2 = (B +¢c-E)/D . (105)

Next, we discuss some Timiting cases of this general dispersion relation.
First, we consider the case where the viscosity effects become negligible
(uemglve << uﬁ, or ue/ve < e which is in the Pfirsch-Schiliter collisionality
regime) where we should recover a form of resistive interchange (or -g) modes.
Then, C is much Tless than B and can be neglected in Eq. (105); whence, our
eigenvalue condition reduces to (A/D + E2/02)1/2 = (B - E)/D or A = -2EB(1 +
B/2E)D = -2EB/D:

w(w - w*i)(w - w*e) = - iuﬁwinzrlz\/rR (106)

in which for simplicity we have assumed w << u, so that L(w) = M(w) = 1,

Writing w = {E|e1e, we find that growing modes (0 < & < w) occur only for
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wﬁ < 0 -- for resistive interchange instability . (107)

For w > Wig s Wxj these modes have w = iy with a growth rate y = Yy given by

_ . 2/3.-2/3 -1/3(_ .2 2 41/3 _ 2/3c-1/3 2/3
W=t ( wHuETA) n“’vs, (EBT) /TA (108)
in which
Sy = TR/TA » a neoclassical magnetic Reynolds number (Sy ~ eZS/qB, (109)

where S is the usual magnetic Reynolds number)

B = 87 /BZ , the total plasma 8 . (110)

T

Note that for these resistive interchange or resistive-g type instabilities
the only axial eigenmode (2 = 0) is an even function of ys that extends (for

2,2
ys/wH)

~

$ ~e a distance along a field line of

1/2
(v T,Sy) —2/3 —2/3 -
-1/2 _ ‘THAN « g1/3,72/3 2/3-1/6

= (2B/D) T

W (111)

H 2 anHITA

For Sy ~ 10°, n ~ 10 and 8y ~ 1072 this yields wy ~ 10, which is of order 1/a,
as has been assumed in the analysis. Since in the ballooning mode representa-

tion 3/3y » = -inyg dg/dy, this eigenmode is even in the radial coordinate

x = (¥ - ¥)/(dv/dr), about a rational surface (¥ = ¥g, r = rg) and extends
s
N -xz/Gﬁ
(for ¢ ~ e ) radially a distance of
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8, = l/[nwn(dq/dr)rs] « rssﬁl/3n_1/352/3ﬂ%/6 . (112)
This mode is similar in scaling to the resistive interchange modes discussed
by Glasser, Greene and Johnson,12 except that our Sy = TR/TA is smaller by a
factor of order B%/Biq ~ eZ/q3 << 1, primarily because of the increased
polarization drift current contribution discussed after Eq. (82) above.

Next, we consider the effects of the viscous damping of the perturbed
flows that are embodied in the coefficient C and dominate for (ue/ve)wi > wﬁ,
which apparently is valid over most of the banana-plateau regime of collision-
ality in which tokamak plasmas usually operate. As a lowest order effect, we
note that for C small but not negligible in Eq. (105), the growth rate of the
previously considered resistive interchange mode increases as the viscosity
2)

effects are increased. In the limit C >> B (uy/ve > €°) where the viscous

damping effects dominate over the hydrodynamic curvature effects, the disper-

sion relation in Eq. (105) simplifies to

A = - 4CE/D , (113)

or a(w = i) (8 - weg) = = 1 (n/vg L(@N (@ uin e/ [ph(@) ] (114)

i e

Writing w = [E]e]e, we find for the "fluid" Timit w, >> w > Wy sWye; aNd
M(w) = 1, N(w) = 1 that Eq. (114) has one possible unstable root with 8 = =/2.

Since for localization of the mode in ys we must require 0 < Re(o + C + E/D) =

Re(C/D) <= wi x Re(i/w), the 8 = =/2 root is localizable only for wi > 0
(dPo/dy < O with dg/dy > 0). (For wi < 0 no growing modes can be localized in

Yg.) For the "fluid" limit My > w >> Weo»We; the unstable mode is thus pure-

.i
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ly growing in the Ey x B rest frame with a growth rate given by

W T

- n2/3r_2/3'r-1/3( A

4/3
u A R ) (

)1/3

\Y
ue/ e

(115)

din P, 2/3

_2/3.-1/3Men1/3 BT V2/3
= n SN (-\-;e—) (‘Z—) dTn g

in which
d In Po/dw

(2|2 By
d Tn o/av

R (116)

Note that for this new electron viscosity driven mode the axial eigenmode
(£=0) 1is an even function of y . that extends [for ¢~ exp(-yi/wﬁ)] a

distance along a field line of

-1/2 _ [ZYuTASN/(“e/ve)]ll2

wll - (C/D) anTA
(117)
-1/6
8 y d1np
_ s 13 203 B 16 Ve y-1/3 0
ST G i

This mode will also be even in the radial coordinate x about a rational

surface and extend [for § ~ exp(-xz/ﬁi)] radially a distance of

Br M d InP
- 1 = o 1/3.-1/31°T (Tey2 o} 11/6 dgy-1
Simw@ra 1T w7 8 e | ). s
s

It is interesting to note that since /E;/Sﬁ = VBg/Sg With Bg = 8wP/Bé and
Sg = (4nr20"/c2)(Roq¢4npm/Be), the growth rate and spatial extent of these new

modes depend only on the poloidal magnetic field strength Bg -- primarily be-
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cause of the neoclassical polarization drift effect. Note also that all of

the &2 > 1 modes are stable in our electrostatic approximation.

Comparing the results for this new viscosity driven mode with those given
in Eqgs. (108)-(112) for our form of the resistive interchange mode, we find
that the new mode:

1. Scales 1like a resistive MHD instability -- except for the additional
(ue/ve) electron viscosity factor and the fact that it is unstable for
either sign of the average curvature but instead requires
(dP/dv)(dq/dy) < 0 for instability.

2. Has a larger growth rate -- by a factor of order (ue/ezve)ll3 ~ e 2/3/(1 +
V*e)l/3-

3. Is also a purely growing mode in the E, x B rest frame -- its real fre-
quency is given by wg as defined in Eq. (69).

4. Does not extend as far along the field lines -- but extends further
radially.

5. It also has a pressure or potential perturbation that is even about the
rational surface -- "twisting" mode parity.

Compared to usual resistive-g modes,12 this mode has a larger radial extent

(by a factor ~ (q/€)2/3 ~ 5), because of the larger polarization drift and

consequent smaller value of the relevant Sy. Thus, this new viscosity driven

mode exhibits a number of interesting properties that can make it a more
virulent instability than the resistive MHD instabilities of the interchange
or ballooning type that are usually considered.

VI. Eigenmode Equation and Analysis: Higher Frequency and Drift Type Modes

In the preceding section we have pursued a fluidlike analysis in which we

have assumed U5 >> W >> ws. However, since Yy ~ n2/3 but wx ~ n, for some
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large n the w >> w, approximation breaks down. Further, since u; ~ Ve vy
n®, the M >> w approximation also breaks down for some large n. We are thus
led to consider the "maximal ordering" situation where u; ~ W~ .

When the frequency and diamagnetic drift frequency become comparable to
the viscous drag frequency we can anticipate that the viscous drag frequency
B; is changed from its static equilibrium value determined in neoclassical

8

transport theory. In Section IV of our companion kinetic paper” it is shown

2/3

that in the banana collisionality regime (v; - jw << ¢ wy,j) we have

u; = Ve (v; - fw). Thus, the v; in Eq. (36) is to be replaced by v; - iu.

Similarly, since in plateau regime transport the form of the collision oper-
ator is not critically important, even when calculating the viscosity,13 we
can infer from the Krook model operator that v; would be replaced by v; - iw
(albeit probably with a different order unity numerical coefficient on the
-iw), but that the viscosity coefficient is still of order ezubi in the
plateau regime. Hence, we hypothesize that

Ve (v. - iw)
L (119)

B, =
i -3/2 =
1 +¢ (\J_i 1w)/wb1.

While this phenomenological form has not been derived rigorously, it is
physically reasonable and goes to the proper banana and plateau limiting cases

for arbitrary ratios of vifﬁ.
Having specified a form for u;, we can now return to our general eijgen-
mode equation given in Eq. (114), which we now write as

) = - iviL(a)N(a)/M(a) . (120)

W@ - 0 ) (@ -
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Formulae for the multipliers L(w), M(w), N(w) that obtain from utilizing the
u; in Eq. (119) in the various collisionality regimes are listed in Table I.
In the banana regime but with w >> Vi, Eq. (120) can be solved utilizing
the limiting values given in Table I. Of the three possible modes, the dia-
magnetic drift ones with w = g » Wy 5 CAN be shown to be damped. The third
root is the higher mode number version of the "fluid" root given in Eq. (114).
However, it 1is still purely growing in the E; xB rest frame and

has |w] << WygsWii- Its growth rate is given by
Y = ¥/ u | = (m /m)w (T + T)2/T.T (121)
p' T TRe e i'Tete i e i’

which is independent of the mode number n.

In the plateau regime both the ion and electron drift modes still seem to
be stable, at least for the form of the viscosity given in Eq. (122) and the
resultant lowest order forms of M(w) and N(w) given in Table I. However, some
unstable modes are possible if the classical polarization drift effect is in-
cluded since then M{w) » iezwbi/E + 62/q2 is not purely imaginary for real w.
This is apparently how these modes connect up with conventional drift waves.
The third root again has w << Wyeg » U 5 and so again obtains the growth rate
given by Eq. (121).

The new mode we have found thus remains a purely growing mode in the
Ey xB rest frame even in the presence of diamagnetic drift effects. The
limiting growth rate formulae given in Eqs. (115) and (121) can be combined

into the phenomenological formula

Y = Yu/(l + I“’*i“’*el/qu) . (122)
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Table I. Viscosity ui, Polarization Drift Multiplier M(w), Bootstrap Current

Multiplier N(w), and <B+Y>F Multiplier L({w) in Various Collisionality Regimes

Banana Regime Plateau Regime
-7 I 2
l-l-i '/E \).i TE w € “b'i
M(w) 1 a iefu ./
_ w - W, W~ owy w - e . @ - w,
N(w) 1 e - /& 1 e _.b1 — w1
w*-i w*e w*] w*e w‘ki w*e w *-l *e
2
u /v e u /v
e e i e’ e
L(w) 1 E+W(1-/§) i — s
e’ e
w - owy ezuub_i w - Wy
x < x (1 -1
“ei T Yae w Ui T ke
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This formula underestimates the true growth rate by less than 30% as n in-

creases from a small value where Y = Yu « nZ/3

growth rate, Eq. (121), becomes independent of n.

to a large value where the

VII. Discussion and Summary

In this paper we have shown how resistive MHD can be modified using neo-
classical ideas to derive the appropriate flows and currents to develop a
“neoclassical MHD," which is appropriate for the present banana-plateau regime
of collisionality in tokamaks. For simplicity we have restricted the analysis
to electrostatic perturbations in a plasma with constant temperature profiles,

9 and temperature gradi-

but To # T;. The inclusion of magnetic perturbations
ents is relatively straightforward but tedious and obfuscates the basic issues
involved.

The main modifications of resistive MHD in going to "neoclassical MHD"
are: (1) only a global Ohm's law is meaningful and it includes a viscosity
driven bootstrap current contribution; (2) the curvature effects are reduced
to their flux surface average effects and are negligible compared to the
viscosity driven bootstrap current effects; and (3) the polarization drift is
increased by a factor of Bz/Bé ~ q2/€2 >> 1. 0f these effects (1) and (3) are
purely neoclassical or kinetic effects and (2) is a result of our multiple
length scale ordering which could be derived in regular resistive MHD.

Taking account of these modifications a new pressure-gradient-driven
fluidlike instability which scales in a similar way to resistive-g modes is
obtained for (dP,/dy)(dq/dy) < 0. The mode is unstable for either sign of the

average curvature. The growth rate and spatial extension of the new mode are

indicated in Egs. (115), (117), (118), and, including diamagnetic drift ef-

44



fects, in Eq. (122). The real frequency associated with the mode is the equi-
Tibrium E; x B Doppler shift frequency as defined in Eq. (69).

Finally, one might question how this new type of analysis is transformed,
in some limiting case, back to regular resistive or ideal MHD. As a function
of collisionality, most of our new effects (namely the bootstrap current and
polarization drift enhancement) become negligible in the Pfirsch-Schllter
collisionality regime. However, the cancellation of the lowest order geodesic
curvature effects by the Pfirsch-Schlliter currents remains -- unless one
orders w >> v ~ w,, which would imply a very rapidly growing mode, or has
larger short scale variations in 3 than indicated in Eq. (61) and Fig. 1.
Thus, except for the multiple-length-scale form of the curvature term, we
recover the usual resistive MHD 1limit in the Pfirsch-Schliter collisionality
regime. For ideal {(or resistivel4) MHD modes which are growing sufficiently
rapidly so as to be localized within roughly -7 <y < m, or are highly "bal-

looning," our multiple-length-scale analysis would not apply because then

$£l)(0,ys) would not be "small" in A compared to 350)(ys). Thus, it appears
that the usual resistive and ideal MHD analyses would apply to strongly bal-
looning modes, but for modes that are highly extended along magnetic field
lines, the type of "neoclassical MHD" analysis presented in this paper and

8:9 should replace analyses of the compressibility ef-

kinetic variants of it
fects based upon the equation of state d/dt(P/p;) = 0. The synthesis of regu-
lar resistive MHD and this new "neoclassical MHD" model into one comprehensive
theory, which does not require a multiple length scale approximation, remains

an unsolved challenge at the present time.
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APPENDIX A

In this appendix we derive the usual electrostatic resistive MHD eigen-
mode equation in a short mean free path or Pfirsch-Schliiter regime to facili-
tate comparisons with the long mean free path results derived in the body of

the paper. We begin with the usual resistive MHD equations

av
pm—.'t'=ixg_zps (A.l)
1 =
d Iy _
i (Ple ) =0 (A.3)

Taking an electrostatic, isothermal ljmit, as in the body of the paper, with

E =-Vé and P = p,T, the perturbed form of these equations becomes simply
N "
pm t=ixg—_V-P (A.4)
-vi + 1 =
V6 + 2V xB=J/0, + Ip/o (A.5)
T\(a3 7 _
(r - 1)(T/e, )(30 /3t + V%0 ) =0 . (A.6)

Solving Eq. (A.4) for the perturbed perpendicular current E#, we find

c 5 3
gbx (W+eo 7). (A.7)

je



which indicates both the perturbed diamagnetic current and the polarization
drift current. Then, solving Eq. (A.4) for its perpendicular and parallel

components, we find

~e S~ 2 fad

Vi=5bx(%+J/0)=gbxV-——7Vp (A.8)
B o,

J, = _gu(giz)¢ . (A.9)

Note that the last term in Eq. (A.6) is just the classical diffusion flow due
to the perturbed pressure and can be neglected for the weakly collisional
ptasma of interest. Thus, substituting in the lowest order part of Ei into

Eq. (A.5), we find

c . czpm 5 o~
J_=§E"XP+—BQ—E"(E"-5{X¢). (A.10)

| &2

Now, substituting 3H and g; from Eqs. (A.7) and (A.8) into the quasi-

neutrality equation

0=9J=(@9(T,/8)+ (v }-371n8", (A.11)
we readily obtain
Sy - Czpm 3 2~ - 2
0= -(BV)(5)(BV)§ - —= 5z V6 - g b x PV 1n B, (A.12)
B B

To write this equation completely in terms of %, we need to utilize Eq. (A.6)

in the form (for our isothermal plasma)

A.2



_=—Vo =—-(BLEX_Y° . (A.13)

Considering perturbations of the form e 1% this reduces to

P dp
P = Few = S 3evy) o0 = 1€ 3¢ 0
Pegg b WP =g <YW =T uw (A.14)

which is the regular perturbed convective pressure response due to the E_X.E

flow. Utilizing this in Eq. (A.12), we readily obtain

.2

oy oAt o 2P0 a2 s 9 1n B2 3y 8%
0 = ~(B+V) (1) (B+7) + w3 - ( 3 _31nB" 3,3
==z 52 L w dy a8 v Y B’ 9B
(A.15)

This 1is the usual eigenmode equation for electrostatic resistive inter-
change (or g -- gravity) modes in a plasma, with the first term representing
the magnetic field line diffusion or slippage due to plasma resistivity, the
second indicating the polarization drift effect, and the last term the mag-
netic field curvature effects. (In our low B approximation 3 1n leaw = 2K¢ =
2k*Vy = 2Vy+(bV)b.) Note that both the normal curvature 3 1n B2/3y and the
geodesic curvature 3 1n BZ/BB give contributions to this equation. Note also
the similarity of this equation to Eq. (90), except for there even in the
1imit we > 0: (1) there are added fluctuating bootstrap current and (Q}Z)B
terms; (2) the lowest order geodesic curvature effects are absent; and (3) the
polarization drift contribution is larger by a factor Bz/Bg = q2/e2 >> 1. Of
these differences (1) and (3) are neoclassical or kinetic effects while (2)
would also occur in regular resistive MHD if, for example, the multiple length

scale expansion with the $ ordering indicated in Eq. (61) and Fig. 1 were

carried out on Eq. (A.15).
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