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1. INTRODUCTION

Many neutronics analyses of fusion reactors have been carried out by 1-D
or 2-D discrete ordinates codes (SN codes) such as ANISN,(l) ONEDANT,(Z),
poT, (3) TwoTRAN, {4) and TRIDENT-CTR.(5)

Although a one-dimensional geometry cannot model actual reactors, 1-D
calculations have been routinely performed. Because 1-D calculations are
relatively inexpensive, they are used when many similar calculations are
required. One of the examples is a calculation to optimize physical lengths
and material compositions of blanket and shield.

To lessen the geometrical error, 2-D Sy codes are sometimes used. 2-D
codes can model the poloidal cross section of a toroidal device quite well.
Furthermore, partitioning the whole reactor system into components, each sub-
system can be modeled by 2-D geometry. Therefore, 2-D Sy codes are very use-
ful tools to obtain better geometrical modeling, when rigorous 3-D analyses by
a Monte Carlo code do not afford.

However, the 2-D Sy method has a serious problem for the systems that
people in the fusion neutronics field are analyzing. It has long been recog-
nized that an anomaly, the so-called ray effect, exists in a solution of a
highly absorbing material and a void.(6) Many methods have been proposed to
fix it for a solution in a non-void. Emergence of detailed fusion reactor
designs reminded us of the importance of the ray effect in a void, which we
shall call the ray streaming effect. Since a fusion reactor system includes
localized neutron sources in a vacuum and has many narrow ducts such as
neutral beam injectors, microwave launchers, and vacuum pump inlets, the ray
streaming effect is particularly important in the fusion neutronics. To over-

come the anomaly, people in this field have been developing several hybrid
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methods utilizing the Sy solution and the other solution. One of them is to
use a Monte Carlo method in a void and the Sy method in a non-void.(7) While
this method eliminates the ray streaming effect, it is not efficient. As is
well known, good spatial and angle resolutions by a Monte Carlo calculation
are not obtained as easily as with a Sy solution. On the other hand, a Sy
solution requires spatial and angle distributions of particle sources by the
Monte Carlo calculation. Therefore, coupling the two methods requires much
effort. Another method is to use an analytical formula of the first-flight
kernel to obtain fluxes produced by a source in a void.(8) The fluxes are
used as surface sources for the following Sy calculation. This method is much
more efficient than the former, but neglecting the contribution of collided
particles makes a large error for some problems.

Seed and Maynard proposed another hybrid method,(g'll) in which a
deterministic method for a vacuum streaming calculation is utilized in a Sy
code. Their method was formulated only for x-y geometry. Later, Clark
developed a similar method for r-z geometry, the so-called streaming matrix
hybrid method.(12’13) His method was successfuly implemented in the TRIDENT-
CTR program.(14) Their basic idea is that since the ray effect is caused by
tracing particles in discrete directions, tracing particles so that no
direction is missed eliminates the anomaly.

In the present report, we choose Maynard's approach(ll) and construct a
theory of the so-called discrete cones method. In this method, a direction
space is partitioned into cones and particles in a cone are simultaneously
traced. Outgoing and incoming fluxes and a source in a spatial mesh cell are

related by transfer and escape matrices.
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The general theory will be described in Section 2. In Section 3, the
method will be applied to a solution in a void for x-y geometry. Two differ-
ent schemes will be formulated. In one scheme, a void is partitioned into
mesh cells, and the transfer and escape matrices will be derived for a mesh
cell. In another scheme, boundary surfaces of a void are partitioned into
subsurfaces and the transfer matrix between fluxes on the subsurfaces will be
derived.  The schemes will be implemented in Sy programs to solve several

sample problems. Section 4 will conclude this report.
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2. GENERAL THEORY OF THE DISCRETE CONES METHOD

2.1 The Discrete Ordinates Approximation

A numerical solution of the transport equation requires an approximation
of the direction vector £. In the discrete ordinates approximation, a set of
discrete directions is selected. The set is selected so that numerical inte-
grations of a function with respect to the direction vector should be optimal
in terms of accuracy because most quantities of interest and the scattering
source term in the transport equation are represented as integrals of some
weight function times the angular flux over the unit sphere of directions.

Many sets of discrete directions have been constructed. However, we
restrict our discussion to the symmetric equal weight quadrature set EQN(l)
since we shall use this set when both the discrete ordinates method and the
discrete cones method are applied in one program, or the discrete cones method
is applied in the whole domain of a problem.

We define the direction vector & in terms of polar coordinates as illu-
strated in Fig. 2.1(a), in which p =71 - Ez cos x and n = ¥1 - 62 sin x.
This coordinate system is used in X-Y geometry. In R-Z geometry, a coordinate
system shown in Fig. 2.1(b) is used. Unless anything is mentioned, all the
following discussion in this chapter will be made in the X-Y coordinate
system. We assume the symmetry of the direction space about w - n, n - &, and
£ - u planes. Then, the following integral over an octant of the unit sphere

of directions is evaluated:

1 w/2
I =/ f(Q)de=/ [  f(&,x) d&dx . (2.1)
00
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Fig. 2.1(b) The coordinate system for R-Z geometry.
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In the discrete ordinates approximation, this integral is approximated by

M
Ing = 2m )

DO A wmf(«Em,Xm) (2.2)

where wp is the weight factor, (wg,ng,&,) is a point on the unit sphere of
directions, X, = arctan (nm/um), M is the number of points in the octant, and

M
Hps M Eps and wy satisfy ui + ni + Eﬁ =land ] w =1/4.

For the EQy quadrature set, we assume equ;T{beights; that is, wp = 1/(4
M). The points are determined by solving the following equation (2.3), which
states the approximation (2.2) is exact for polynomials P(u,&) = ukﬁz, where
k + £ <N, k and £ are positive even integers or zeros.

2

M
o Y w ax wket . (2.3)

mugﬁé = fl dE I“/
m=1 0 0
Equation (2.3) gives N(N + 2)/8 equations. Meanwhile, there are N(N + 2)/4
unknowns when M = N(N + 2)/8. Hence, imposing further assumptions of symmetry
on the quadrature points and reducing the number of unknowns, we can solve a
set of nonlinear equations (2.3) to find the quadrature set.

2.2 The Discrete Cones

In the discrete cones approximation, the unit sphere of directions is
divided into cones, AQ,, where A% = [xp_1/2,Xpe1/2] % [Ep-1/2-8me1/21.  We
make four assumptions to determine boundaries of the cones on the spherical
surface:

1. The direction space is symmetrical with respect to u - n, n-&, and § - u
planes; consequently, only one octant of the unit sphere will be con-

sidered.



2. The areas of the cones, AQ., are equal for all m on the octant; i.e.,

/I a2=[[ d2 for all m and n such that m # n. (2.4)

3. The &-direction is divided by N/2 &-planes (i.e., & = constant) for the
DCy approximation.

Meanwhile, for the i'th E-level, the domain of the variable x: [0,7/2], is
divided equally into N/2 - i + 1 intervals, where i = 1 and N/2 corresponds to
the Towest and highest E-levels, respectively. As a result of this assump-
tion, there are N(N + 2)/8 cones in an octant, which is the same as the number
of the discrete directions in the discrete ordinates approximation. This
assumption also imposes rotational symmetry about the &-axis in the direction
space. The use of constant &-levels is made in order to make analytical inte-
grations of the transfer matrix elements easier. It is noted that the quadra-
ture points of the EQy set reside nearly at the center of the cones. This is
illustrated in Fig. 2.2.

Under the above assumptions, we shall find the cone boundaries. First,

the second assumption leads to

= n/2 - 4n
IIAQ BN+ 278 "N+ D) (2.5)
m
because |/ dQ = n/2 and there are N(N + 2)/8 (= M) cones in the
an octant

octant. Performing the integration of the left most side results in

Em+l/2 Xm+1/2

. dE IXm / dx = (Enr12 = Sn-172) Opey2 = Xp-172) -
m-1/2 -1/2

(2.6)
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Fig. 2.2 Schematic diagram of cones in the DCg approximation for X-Y
geometry.
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Next, if we consider the i'th &-level, the third assumption leads to

/2

Xn+1/2 =~ ¥m-1/2 N2 =7 F T (2.7)
Thus, by Egs. (2.6) and (2.7),
_ - 4(N - 21 + 2)
Em+1/2 Em-l/z NN+ 2) : (2.8)

For the first £-level, Eq. (2.8) becomes £3,p - &1/, = 4/(N + 2). Since
8172 = 0, 8372 = 4/(N + 2). As long as the cone resides in the first &-level,
Em-1/2 = 0 and &py1/2 = 4/(N + 2). For the second E-level, &p4q/p is obtained
by Eq. (2.8) from the known En-1/2- Also, Xxpeyp/2 (mo= 1, 2, ..., M) are
easily found.

The cone boundaries for the DCg approximation used in this work are
listed in Tables 2.1 and 2.2 for X-Y and R-Z geometries, respectively.

Having determined the cones, the integral is approximated in the discrete

cones approximation as follows:

M M
Inc = 27 ! (Jf  ae) flg ,x ) = 2w 2

m=1 AQm m=1

wmf(Em,xm) (2.9)

a_ ~1 ~1
where w_ = 2/(N(N + 2)), En 57 ey * gm-1/2)’ Xn =7 nerso * Xp-172)

and (Ep,X,) is a quadrature point of the EQy set. The approximation (2.9) is
called the double triangle rule (DTR) because of its similarity to the tri-
angle rule for one-dimensional numerical integration. This is the same as Eq.
(2.2) when the EQy set is used; hence, Eq. (2.9) is exact for polynomials such

as ukﬁz where k + £ < N, and k and £ are positive even integers or zeros.
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Table 2.1,

Cone Boundaries for the DCy Approximation in X-Y Geometry

2-7

E-Level m_ X4 X Ey E_
1 10 1.5708E+00 1.1781E+00 4.0000E-01 0.0000E+00
1 9 1.1781E+000 7.8540E-01 4.0000E-01 0. 0000E+00
1 8 7.8540E-01 3.9270E-01 4.0000E-01 0.0000E+00
1 7 3.927e-01 0.0000E+00 4,0000E-01 0.0000E+00
2 6 1.5708E+00 1.0472E+00 7.0000E-01 4.0000E-01
2 5 1.0472E+00 5.2360E-01 7.0000E-01 4,0000E-01
2 4 5.2360E-01 0.0000E+00 7.0000E-01 4,0000E-01
3 3 1.5708E+00 7.8540E-01 9.0000E-01 7.0000E-01
3 2 7.8540E-01 0.0000E+00 9.0000E-01 7.0000E-01
4 1 1.5708E+00 0.0000E+00 1.0000E+00 9.0000E-01
Table 2.2, Cone Boundaries for the DCq Approximation in R-Z Geometry
n-Level m_ w, w_ n, n_
1 1.5708E+00 0.0000E+00 1.0000E+00 9.0000E-01
2 2 7.8540E-01 0.0000E+00 9.0000E-01 7.0000E-01
2 3 1.5708E+00 7.8540E-01 9.0000E-01 7.0000E-01
3 4 5.2360E01 0.0000E+00 7.0000E-01 4.0000E-01
3 5 1.0472E+00 5.2360E-01 7.0000E-01 4.0000E-01
3 6 1.5708E+00 1.0472E+00 7.0000E-01 4.0000E-01
4 7 3.9270E-01 0.0000E+00 4,.0000E-01 0.0000E+00
4 8 7.8540E-01 3.9270E-01 4.0000E-01 0.0000E+00
4 9 1.1781E+00 7.8540E-01 4,0000E-01 0. 0000E+00
4 10 1.5708E+00 1.1781E+00 4.0000E-01 0.0000E+00



However, when the current, which is another important quantity in trans-
port theory, is evaluated, the DTR differs from the approximation used by the

discrete ordinates method. The current J, is defined by

J, =] f(2)Qen d@ (2.10)
Sen>0
where J; is equivalent to the number of particles crossing a surface with unit
area per unit time, and n is a vector outward-normal to the surface.
In the discrete ordinates approximation, J, is given by
MT
Jpg = 27 _Z W F(2 ) (2.11)
m=1
where we define u = fen and MT is the number of discrete directions satisfying
Uy > 0. In the discrete cones approximation, J; is given by

MT

Jne = Qen dQ) f(2.) (2.12)
DC mzl (ffAﬂm'_ n _) 2m

where &, is a quadrature point of the EQy set.

2.3 Numerical Solutions of the Transport Equation by the Discrete Cones

Approximation

In this work, we are concerned with a solution of the time independent

neutron transport equation:

QeV¥(r,,E) + o (r,B) ¥(r,2,E) = S(r,8,F) (2.13)
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where ¥(r,Q,E) is the angular flux at a spatial point r in the direction 2 for
energy E, o¢(r,E) is the total macroscopic cross section, and S(r,Q,E) is the
source term. Furthermore, the source term is divided into three terms: the
scattering term S., the fission source term S¢, and the external source term
Q(r,2,E). The explicit formulas for S, and S¢ are as follows:

S.(r,9,E) = [ dE' [ dR o_(r;Q'+R,E'+E) ¥(r,Q',E') (2.14)
- 0 4w — ST~ -

- l ® ] ] t ] ] ]
Selr,E) = o= fo v(r,B'+E) H4“ oc(r,e") ¥(r,2',E") d2'dE (2.15)
where o, is the differential scattering cross section, v is the spectrum of
fission neutrons, and of is the fission cross section.

We apply the multigroup method to the energy variable of Eq. (2.13) to

obtain the following transport equation for the g'th energy group:(z)

g.vwg(g,ﬁ) + °tg(-'l) wg(bg) = Sg(ﬁsﬁ) (2.16)
where Sq(r,f) = Scglr,2) + Sgglr) + Qqlr,%)
G - . .
Seqlla2) = h£1 “4n A2° Ogp g (rs2728) ¥ (r,27) (2.17)
1 G
and ng(r_) = I Z vh+g(_r;) °f(£) ¢g(_r_-_) . (2.18)

The scalar flux ¢4(r) is defined by

bq(r) = HM dg ¥ (r,2) . (2.19)
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Since we use the standard multigroup method and we are interested in
solving the neutron transport equation for an energy group, in the remainder
of this paper we shall omit the subscript g.

To solve the neutron transport equation numerically, in the discrete
ordinates method the finite difference equations are derived from Eq. (2.16).
On the other hand, in the discrete cones method we solve the integral form of
the transport equation:(3)

0 -a(r',r) -a(r_,r)

¥(r,2) =/ dsS(r'.2le T T +¥r.,2e (2.20)

where s = [r - r'|, r' =r -s@ ro =r - s.2 and a(r',r) is the optical path

length defined by

, |£-£'| S(r_ - £l)
a(r',r) = IO ds o, (r - T ) . (2.21)
In a void, Eq. (2.20) becomes
S0
¥(r,2) = [ ds Q(r',9) + ¥(r.,8) . (2.22)
0

To solve Eq. (2.20) or (2.22), first we partition the spatial domain of a
problem into mesh cell Dj. Regarding W(ﬁs,ﬁ) as an incoming angular flux into
the mesh cell Dj, we can calculate the outgoing angular flux on the cell Dj by
either Eq. (2.20) or (2.22). The equations may be solved along a character-
istic line that corresponds to a discrete direction in the discrete ordinates
approximation; then the method is called the characteristic method.(4) In the

discrete cones method, however, characteristics in a cone are simultaneously
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traced. As a result, there are no directions which are not traced. This
continuity of tracing makes the new method mitigate the ray effects.

Equations (2.20) and (2.22) are multiplied by R2¢n where n is the unit
vector outward-normal to the cell boundary. Then, they are integrated over
cone m and an outgoing surface to find the particle conservation equation of

the m'th cone:

+

Jiam = E Jitkm * Yiam (2.23)

where JT

. ' . o - .
iam 1S the m th outgoing cone current on surface £ of cell i, Jilkm is

the number of particles entering at surface k and crossing surface £ in cone
m, and qjgn is the number of particles produced in cell i and crossing surface
2 in cone m. The summation with respect to k 1is taken because particles
entering several surfaces actually cross surface 4.

To go further, we define the cone flux Y, by

[I 2 ¥r,0) 4@

_ m
tnr) = — T - (2.24)

As a point on the outgoing surface varies and the direction sweeps in cone m,
the point and direction on the incoming surface also vary. Hence, carefully
analyzing the correspondence of the spatial points and directions on the in-
coming and outgoing surfaces, we obtain the following recursive relation among

the outgoing and incoming cone fluxes, and the source in the mesh cell:
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EZ' T'"'" Yom' + L PIY S.o (2.25)
m

1 m ikm ‘
m

Tmm

where Y;o., is the m'th cone flux averaged over surface £ of cell i, 30k is

the ratio of particles that enter surface k in cone m' to particles that cross
surface 2 in cone m, and PTEI is the fraction of particles that are produced
in cell i in cone m' and cross surface £ in cone m. By particle conservation,
any uncollided particle leaving cell i through surface £ in cone m must enter
the cell on one of boundary surfaces in one of cones. Since the coefficient

TTQK represents transport of uncollided particles, the summations over all k

and m' must be unity:

ZZ Tﬂk =1 . (2.26)

In a matrix form, Eq. (2.25) becomes

fhz = E Lk Ehk * By §1 (2.27)

and we call Iilk the transfer matrix and P,, the escape matrix.

Boundary conditions of the discrete cones method differ from those of the

discrete ordinates method in that the cone flux wﬁc

0
m

is used instead of the
angular flux in a discrete direction, Let n be a unit vector outward-
normal to a boundary surface 3D of a spatial domain D. Then, the vacuum

boundary condition is given by

DC(\ y =
¥ (r) = 0 (2.28)
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for rg on the boundary and any cone m such that 2¢n < 0 and QeAQ.. The

reflective boundary condition is given by
DC DC
y =
m (ﬁs) wmr(ﬁs) (2.29)

where r.€3D, and cone m and cone m,. are mirror images of each other about the
tangential plane at rg.

When both the discrete ordinates and the discrete cones methods are ap-
plied in the same calculation, the following adjustment factors must be con-
sidered so that particles are conserved on the interface between solutions by

the two methods. The particle conservation for cone m is represented by

. C . q. DO
(Hm Qen d2) Wg, = (2 n) w ¥" . (2.30)
m

If the adjustment factor is defined by

I~ 8n da
Aﬂm
a =

Qe
m (—m ﬂj wm

(2.31)

then the discrete cone flux Tgc is related with the discrete ordinate flux
DO
‘l’m by

DC _ 1
n T

p wgo ) (2.32)
m

The adjustment factors of the DCg approximation are listed on Tables 2.3(a)

and 2.3(b) for X-Y geometry and R-Z geometry, respectively.
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Table 2.3(a). The Adjustment Factors for the DCg Approximation

in X-Y Geometry

Cone No. ay ay
1 0.9564 0.9870
2 0.9739 0.9963
3 0.9936 0.9811
4 0.9963 0.9739
5 1.0033 1.0033
6 1.0344 0.9667
7 0.9870 0.9564
8 0.9811 0.9936
9 0.9667 1.0344
10 0.9482 0.9482

Table 2.3(b). The Adjustment Factors for the DCg Approximation

in R-Z Geometry

Cone No. % %z
1 0.9482 0.9892
2 0.9667 0.9919
3 1.0344 0.9919
4 0.9811 0.9976
5 1.0033 0.9526
6 0.9936 0.9976
7 0.9870 1.0145
8 0.9963 0.9372
9 0.9739 0.9372

10 0.9564 1.0145

2-14



Now returning to Eq. (2.27), we describe its solution in an abstract
manner. Given incoming angular fluxes on boundary surfaces of a system, Eq.
(2.27) provides 2xITxJTxMT equations for cell edge cone fluxes. Here, IT and
JT are the number of spatial intervals in the two orthogonal directions of the
system. MT is the total number of discrete cones, and MT = N(N + 2)/2 for the
DCy approximation. Since the source term S depends on cell average angular
fluxes, there are 3xITxJTxMT unknowns. Therefore, ITxJTXMT equations beside
Eq. (2.27) must be provided. In our method, these are obtained by taking
account of particle balance for a spatial mesh cell and a cone. In a void,
meanwhile, Eq. (2.27) gives sufficient equations for the solution.

The 3xITxJTxMT equations are represented in the following way by using

operator notation:

¥Y=TY+PS =TY + P(C® + Q) (2.33)

MY . (2.34)

and [

Here, ¥ denotes a vector containing 2xITxJTxMT cell edge cone fluxes, ¢
denotes a vector containing ITxJTMT cell average angular fluxes, and T and P
are the transfer and escape operators, respectively. The collision operator C
may be further divided into scattering and fission terms. Q is an external
source. M is an operator which maps the cell edge cone flux ¥ to the cell
average angular flux @.

Equations (2.33) and (2.34) are not solved by directly inverting the
matrix, but an iterative method is used. In the multigroup method, the term

C® includes contributions by upscattered and downscattered neutrons as well as
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fission neutrons from other energy groups. Hence, the outer iteration scheme
is employed by assuming the contributions from other energy groups. With this
assumption, Eqs. (2.33) and (2.34) become one-group equations.

Since we sweep the spatial mesh cells in four octants of the direction
space separately, and C® is related to the cone fluxes of all the octants, we
do not know the correct scattering term until we finish sweeping in all the
octants. Hence, we need another iteration process, the inner iteration.
Using the unknown cell average angular fluxes by the previous inner iteration,
we iterate until a convergence criterion is satisfied.

For the inner iteration, Eqs. (2.33) and (2.34) are written as
\y(k""l) - T\y(k""l) = P(C‘b(k) + Q) (2.35)

o(k+1) _ yylk+1) (2.36)

where k and k+l indicate the k'th and k+1'th inner iteration, respectively.

The outer and inner iteration processes of the discrete cones method are
the same as those of the discrete ordinates method. However, the discrete
cones method employs finite difference operators for T, P, C, and M which are
different from the operators used by the discrete ordinates method. There-
fore, the numerical properties of the new method must be carefully examined so
that the convergence and stability are confirmed. |

2.4 The Accuracy of the Double Triangle Rule (DTR)

First, we shall prove the following two theorems on the convergence of

the approximate integrations (2.9) and (2.12).
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Theorem 2.1. Suppose I is the exact solution of the integral (2.1), and
IpTp is the integration by the double triangle rule (2.9). Then

M- IDTR"w < %-for any three times continuously differentiable function

f8C3(Q), where lel_ = supl- , C is a positive constant, N is the order of the
approximation, and N >> 1,

Theorem 2.2. Suppose J is the exact integration of integral (2.10), and
JpTrR is given by the approximation (2.12). Then 1J - JDTR"@ < %~for any
feC3(9), where C is a positive constant, N is the order of the approximation,

and N > 1,

Proof of Theorem 2.1. Let us define E[f] = I - Iprg. The Taylor's

formula for a n times continuously differentiable two variable function f(&,x)

is given by

n-1 f(€0,xo)

9 3 1k
FlEx) = fleLx) + T ((8 - 8) 5p+ (x = %) 5 —f—

k=1

+%!- ((E - EO) %E + (x - XO) %)n f(Eo + 8(g - Eo), X, + 8(x - xo))

where 0 < 6 < 1, Then, E[f] becomes

M n-1 N X4
1 3 3 1k
EfFl = 1 Lo ) ax((B-g) g+ (x - x) 5) FELx ) + R0 (2.37)
m=1 k=1 ** "£_ X_ X
N
where &, = Ep.1/2, Xz = Xpg1/2- M = N(N + 2)/8, and Rn = Zl = ffm (g -¢)
m:
m

%E +(x = xg) %Y)" flg +6(5-¢), (xm + 6(x - xm)) dEdx .  Here, it is

assumed that &y = (84170 + &po1/2)/2 and Xy = (Xpe1/2 + Xp-172)/2.
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The first term of the right hand side of Eq. (2.37) is integrated as

follows:

=

k - -
wrloa a3 - e oo xR e e )

g X 2=0

H ~2

m

208 /)" 2(ax s M
2 F+1 k=T +1 QZJ (

_ “K, R+, k-2+1
M n=-1 k 2 AEm Axm

d 13 \k-2
m=1 k=1 £=0 T +IT (k- £+ 1T V98’ oy X

where A&, = &, = &_, Axp = X4 = X-» (i) = k!/(k - 2)!2) ., And £ + 1 and
k - 2+ 1 are odd integers; that is, 2 and k are even integers.

If the function f(&,x) is sufficiently smooth, then

M n-1 k
41, k-2+1
E[fl1= ) ] [ ¢ AEZTHA + Rn
nel kel geo KA Cmo Dm
1 3 12,3 k-2
where C = (ee) =) F (8 ,x ) < =,
ki~ K s 1)1 (k- te 1)1 05 X m* Xm

According to the partition rule of the discrete cones, Ax, = (w/2)/(N/2 -
i + 1) for the m'th cone in the i'th E£-level, and 4§, = v;/N for the i'th &-

lTevel where Y;j is a constant associated with the &-level. Hence,
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n-1 k Y _ Y /o -
) Ckz{( N/2)2+l(W)k 2+1 + 2( N/2 l)£+1(n/2)k 241 .

ELFfI] <
et} < 1L Gl =) TG T 2

Y -
+ -1+ D) ) T

Y
N (Y1y8+41 m/2 k=241
3 PGS 4 [ral
n-1 k d d. d
N/2 j 1
=11 1 C,l ..+ ...+ H + |rn
k=1 2=0 K& T N - i+ 1) NK T R

where C g = max {Cklm} and dj = (nYi/Z)k+2. Leaving only the most dominant
1<m<M

term, k = 2, £ =0 and 2,

d d, d d
N/2 i 1 N/2
ECFI[ < [C,n1 + ... 4 TSP -4 B | +
[ELEI] < epoty N(N/2 - i + 1)° N 2273
d d
i 1 C
Rt

This completes the proof.

Proof of Theorem 2.2. By the definitions,

(J Qen dR) f(Q )
1 IAQm—- = -m

=

9 - Iprel - lff (@) £(2) a0 -

m

< +

M
!

s Emwmf(gm) -

M
[] (a+n) f(2) d8 - mzl £ w f(Q )

where we define the coordinate system of the direction vector £ so that
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fien = &, If we regard Q-nf(R) as a function, the first term of the above
inequality is smaller than C/N by Theorem 2.1.

By performing the integration, the second term of the inequality becomes

. S+ X N 1,2 _ 2
mzl (g w f(e) - fg fx £ dgdx f(8))] = mzl (ew -5 (65 - &%)
M g, + &
x (X, = x_))f(gm) = mzl (Emwm - (&, - E)x, - xF(R )] .
E, X,
Since wp = fg [ dEdx = (&, - E_)(x, - x_) and & =-% (&, + &_), this term
- X

vanishes. Therefore, the desired inequality is obtained.

It is noted that in order to prove the above theorems we made assumption
that & = %'(gm+l/2 + gm—l/z) and xp = %'(xm+l/2 + xm-1/2)‘ This assumption,
generally, is not correct; however, these relations are nearly correct as long
as the EQy quadrature set is used. Meanwhile, the smoothness of the integrand
holds for most of the problems except streaming problems where the angular
flux may be a discontinuous function with respect to the direction variables
rather than a continuous function. Some of these situations will be demon-
strated in later chapters. Therefore, the above theorems tell us only very
rough estimates for the numerical convergence of the double triangle rules,
and more strict error estimates are desired.

Numerical examples of the integrations by the EQy quadrature and the
double triangle rule are shown in Tables 2.4(a) and 2.4(b) for the scalar flux
defined by Eq. (2.1) and the current defined by Eq. (2.10), respectively.

As for the scalar flux, the accuracy of the two methods is the same as we

described. Table 2.4(a) (1) shows error for a fourth power polynomial
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(1)

(2)

Table 2.4(a). Error Constants for the Numerical

Integration of the Scalar Flux

Exact Solution, 1.0471975512E-01 by dOlfcf in NAG 1ib.
f(n,w) = w2 = (1 - n?)2 cos?w sinw

N EQy ERROR™2! DTR ERROR
2 1.7453291E-01  6.9813151E-02  1.7453291E-01  6.9813151E-02
4  1.04719756-01  2.8340055E-09  1.0471975E-01  1.7868085E-09
6  1.0471976E-01  4.8847149E-10  1.0471976E-01  4.6772617E-09
8  1.0471974E-01  1.57295556-08  1.0471974E-01  1.5739555E-08
10  1.0471976E-01  8.3265972E-10  1.0471977E-01  1.1304636E-08
12 1.0471976E-01  4.8758348E-09  1.0471976E-01  6.2371917E-09
14 1.0471976E-01  1.2347590E-10  1.0471976E-01  2.2178708E-09
16  1.0471976E-01  4.5225939E-08  1,0471974E-01  1.5904412E-08

Exact Soultion = 1.8155269706E+00 by dO0lfcf in NAG 1ib.

f(n,w) = n? + wl # ukilckz

N EQy < ERROR DTR ERROR
2 .4925448E+00 3.2298219E-01 .4925448E+00 .2298219E-01
4 .6621539E+00 1.5337304E-01 .6621540E+00 .5337302E-01
6 .7218618E+00 9.3665169E-02 .7218619E+00 .3665100E-02
8 .7517012E+00 6.3825775E-02 .7218619E+00 .3825775E-02
10 .7690654E+00 4.6461555E-02 .7690656E+00 .6461378E-02
12 . 7800497E+00 3.5477258E-02 . 7800497E£+00 .5477235E-02
14 .7874495E+00 2.8077471E-02 .7874495E+00 .8077435E-02
16 .7927131E+00 2.2813872E-02 .7927136E+00 .2813370E-02
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Table 2.4(b). Error Constants for the Numerical Integrations of the Current

(1) Ans = 7.8539816340E-01 by dOlfcf in NAG 1ib.

f(n,w) =1
N EQy ERROR DTR ERROR
2 9.0689973E-01 1,2150157E-01 7.8539816E-01 .1054274E-15
4 8.2149123E-01 3.6093069E-02 7.8539816E-01
6 8.0473042E-01 1.9332256E-02 7.8539816E-01
8 7.9709725E-01 1.1699087E-02 7.8539816E-01 .0658141E-14
10 7.9342884E-01 8.0307740E-03 7.8539816E-01 .4210855E-14
12 7.9116440E-01 5.7652334E-03 7.8539816E-01 .8421709E-14
14 7.8978883E-01 4,3903712E-03 7.8539816E-01 .7763568E-14
16 7.8883480E-01 3.4256336E-03 7.8539816E-01 .1316282E-14
(2) Ans = 1.9634954085E-01 by dOlfcf in NAG 1ib.
f(n,w) = n2 sinuw
N EQy ERROR DTR ERROR
2 1.5114995E-01 4,.5199594E-02 1.3089969E-01 .5449854E-02
4 1.9419019E-01 2.1593483E-03 1.8509183E-01 .0257711E-02
6 1.9576015E-01 5.8938693E-04 1.9193771E-01 .4118349E-03
8 1,9614589E-01 2.0365142E-04 1.9386985E-01 .4796894E-03
10 1.9625467E-01 9.4869482E-05 1.9472657E-01 .6229721E-03
12 1,9630177E-01 4,7772441E-05 1,9518996E-01 .1595768E-03
14 1.9632193E-01 2.7606493E-05 1.9546717E~01 .8236686E-04
16 1.9633284E-01 1.6703276E-05 1.9564805E-01 .0149157E-04
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(3) Ans = 5.8904862255E-01 by dOlfcf in NAG 1ib.

1/2 < n<1

0<n<l/2

ERROR

DTR

ERROR

1
f(n,w) = {
0
N £y
2 9.0689973E-01
4 4,5494989E-01
6 6.0088554E-01
8 6.6812353E-01
10 5.0587601E-01
12 5.7251442E-01
14 6.1828103E-01
16 6.0946771E-01

.1785111E-01
.3409873E-01
.1836921E-02
.9074908E-02
.3172617E-02
.6534202E-02
.9232406E-02
.0419091E-02

.8539816E-01
.3633231E-01
.8904862E-01
.5973446E-01
.0265482E-01
.6990343E-01
.1609677E-01
.0541108E-01

*1) NAG Library, Numerical Algorithm Group (1981)

*2) ERROR =

solution - exact solution |
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equation, uZEZ. The approximations give essentially exact answers provided N
is larger than four. The table demonstrates this. The discrepancy between
errors of the EQy quadrature and the DTR is due to floating errors; in fact,
the number of the significant digits of the quadrature data is only seven. On
the other hand, if the integrand such as a function n + w? is not in the form
ukiz, the error becomes large. This example is shown in Table 2.4(a) (2),
where the error is about 0.02 even for the 16th order of approximation.

As for the current, three examples are shown for integrals in the R-Z
coordinate system. The first case, Table 2.4(b) (1), is for a constant func-
tion over the octant. The DTR is exact; but the EQy quadrature has larger
errors. For the second case, Table 2.4(b) (2), a smooth function, f = n? sinlw
is used. The convergence rate defined as (error of the n'th order approxi-
mation)/(error of the (2n)'th order approximation) is about 20 for the EQy
quadrature, and it is about 5 for the DTR. The latter rate is somewhat faster
than that expected by Theorem 2.2, which predicts 2 as the convergence rate.

The two approximations are unsatisfactory for a discontinuous function as
shown in Table 2.4(b) (3). For this example, a step function is defined by

1 1/2 < n<1
f(n,w) = { .

0 0<n<1/2
The errors are about 0.02 or larger except the error of the DCgz approximation.
The DCg approximation results in an exact integration, but it is rather acci-
dental. In other words, we can choose the cone boundaries so that the DTR is
exact for a step function. However, such a selection is not practical because

the form of the step function 1is unknown until we solve the transport

equation.
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In conclusion, the double triangle rule results in satisfactory accuracy

for the numerical integrations. If it fails, so does the EQy quadrature.
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3. THE DISCRETE CONES METHOD FOR VOIDS IN X-Y GEOMETRY

3.1 The Discrete Cones Method for a Mesh Cell (The DCS Method)

In this chapter, the discrete cones method will be applied to a solution

of the transport equation in a void:

S0

¥(r,2) =] ds Q(r-se,Q) + ¥(r-s 2,%) (3.1)
I, 0 r-si, i r 8

where s, is the distance between two spatial points arranged on a characteris-
tic line in the direction .

To find the transfer matrix elements, we shall solve Eq. (3.1) for a
rectangular mesh cell in an X-Y coordinate system as illustrated in Fig. 3.1.
First, the solution is restricted to the direction satisfying &€ > 0 and
n/2 > ¢ > 0. Here, & is the direction cosine in the Z direction. Equation
(3.1) 1is multiplied by Qen7 and integrated over a cone m and the surface

TOP. The result is

XR XR S

0
] ax [ Qene ¥(r,9) dR =] dx [f Qen: d2 /| ds Q(r-s2,9)
- =T =1=7 — gLy g Trosa,x
X AQ X\ AQ 0
(3.2)
xR
+[ ax [[  fenp ¥(r-s 2,2) a2,
X AR

L

where ry is on the surface TOP, n is a unit vector normal to the surface TOP,
Ay = [&p-1/2-8me172] % [¥p-172-¥p+172]s and s, is the distance between a
point A on the surface TOP and the point where the characteristic line sub-
tended from the point A intersects one of the boundary surfaces of the cell.

To simplify the solution, we make the following assumptions:



1=
=)

TOP '/
Yr
L; RIGHT
's BOTTOM
XL XR

Fig. 3.1. Void geometry for the DCS method.
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1. The angular flux ¥(r,2) and the external source Q(r,Q) are constant over a
cone m;

2. ¥(r,Q) is constant on each of four boundary surfaces; and

3. Q(r,8) is constant in the spatial mesh cell.

These assumptions lead to

xR xR
ax([f  @eny d@)Yp = Ux dx IIAQ fngs (x,2) d2)o + Ux dx ffm feng )y

AQm L L m

(3.3)
where & = xp - x_, ¥, is the m'th cone flux on the surface TOP, and W; is
the m'th cone flux on either the surface LEFT or BOTTOM.

In the remainder of this section, &.,.,7/0 and W¥p,q/, will be abbreviated
to &, and ¥y, respectively. By the definition, EPQI = /] - 62 sin ¥. Hence,

the left-hand side of Eq. (3.3) becomes

L.H.S. = Axg_(cos ¥_ - cos ¥ )¥ (3.4)
m +""Tm

&y
where g, = [ A - a.

g

. A
To go further, we define ¢, ¥1, X7, and xo, by ¥, = arctan ( y), tan Y =
0° *ls A1 2 () Bx 1

i—éxiz’ tan Y, = ;IA¥—;E’ and tan Y. = ;E£¥—;[. Examining the geometry illus-
trated in Fig. 3.1 carefully, we find that
i) for ¥, > ¥;, all particles on TOP cross LEFT,
ii) for v, > ¥, > ¥, particles with xe[x|,x;] on TOP cross LEFT; meanwhile,
particles with xe[xl,xR] on TOP cross LEFT if the direction ¢ satisfies

¥_ < ¢ < y;, and they cross BOTTOM if not,
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iii) for ¥_ > ¢,, particles with xe[x;,xq] on TOP cross LEFT, and particles
with xe[xp,xg] on TOP cross BOTTOM; meanwhile, particles with xe[xy,x,]
on TOP cross LEFT if the direction ¢ satisfies ¢y_ < ¢ < V1, and they
cross BOTTOM if not.

In addition, we can obtain explicit formulas for So- If a particle in
direction & = (£,9) at x on TOP crosses LEFT, So 1s given by

So = (x - xL)/(¢1 - £2 cos ¥). On the other hand, if it crosses BOTTOM,

so = dy/ (/1 - £% sin ¥) where Ay = yT1 - yg. Taking all of the above relations

into account, we have the following expressions for the right-hand side of Eq.

(3.3):

For wo » ¢+,

Xp v, -
={(/ dx [ dvsin v)(g " Q +g ¥ ) (3.5a)
R.H.S. = . .
XL v m Ccos ¥ °m m Lm
For ¥4 > ¥y 2 Vo,
RN ® W X - X
RMH.S. = (f dx [ avsinv+ [ dx [ dbsin ¥)(g) —zg O + 9, ¥,
X v_ X v_
L 1 (3.5b)
xR w+ R
. ) Y
* (fx dx fw ¥ sin l")(gm sin Qm * gm me) ¢
L 1
For y. > ¢0,



ST 2 h

X=X
RH.S. = ([ dax [ avsinv+ [ ax [ avsin V(g =55 O * 9 Yin)

X Y_ Xq v
2 Yy
+ ([ ax [ v siny (3.5¢)
oooh
Xp v, 5y
* fx dx IW v sin w)(gm sin Qm * m me) ¢
2 -
N
Here g, = fE d¢ = & - &_, and ¥, and Yg, are the m'th cone fluxes on the

surfaces LEFT and BOTTOM, respectively.
From Eq. (3.4) and Eqs. (3.5), three equations are obtained. Dividing
both sides of these equations by Axgp(cos ¥. - cos ¥,) results in a general

equation

Y. =T

Tm T

P (3.6)

TBmme TmeLm + TQO

where Trgms TyLme and Ppp are the elements of the transfer and escape
matrices. Performing all the integrations in Egs. (3.5) analytically leads to

the following expressions for the transfer and escape matrix elements.

Trgm = 1.0
(3.7a)
g$ Ax In (cos ¥_/cos ¥.)
PIm = E; 2{cos ¥_ - cos ¥.]

FOY‘ ¢+ > ‘Po » q)—’



1 tan wo tan wo
- — -(1- ) cos v
cos wo sin y_ tan $+ +

TTBm - cos ¥_ - cos ¥,
In{cos ¥v_) In(cos ¢ ) 2(v, - ¥) sin ¢ _ (3.7b)
by 7 i} —— * —gan g * Inlcos ¥ j
gé tan“y sin Y 0 +
PIm ='-; 2Bx{cos ¥_ - cos V)
For yv_ > wo’
tan ¢ tan ¢
0 1 1 _ _ 0
- TEE_W:) cos ¥_ + tan ¥, (s1n ¥ Sin w+) (1 TEE'$:) cos ¥,
TTBm - cos ¥_ - cos ¥
, 208, = ¥)) sin v_ (3.7¢)
g ay“{ tan ¥ *n (sin v )}
p_ = _m 0 +
Tm §; 28X{cos ¥_ - cos ¥.)

For all the cases, Ty p =1 - Trgp-

In the same manner, we can obtain the cone flux on the surface RIGHT.

The equation corresponding to Eq. (3.6) is now,

me = TRmeLm + TRBm‘me + PRQO : (3.8)

Here, Tp , and Ppy are given by the following equations.

For ¢0 > ¢+s
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tan ¢+

. 1 1 1 tan v_o
1 - i@ 7, sin ¥, * tam ¥ (cos ¥, cos ¢_) AT $o) sin v_
TRLm = STh V, - sin V.
cos ¥, (3.9a)
g {20y, - v) tan ¥, + 1n (egm))
Pem = §; 28XTsin ¥ - sin V_]
1 1 ) tan ¢_ )
- - - - ———) sin ¢
sin ¢ tan ¥_cos ¥_ tan ¢ -
I _ 0 0 ' 0
RLm sin - sin ¥_
) (3.9b)
2 2 1n(s1n¢0) cosy,
ax“{2(v, - v )tany + tan®y In(siny,) - ———— + In(siny, o5
gé cos™ ¥, -
"rn T3 28y (sTnvy, - STny_)
For y_ 2 ‘l’o:
TRLm = 1.0
9 cos ¥, (3.9¢)
g X {2, - v.) tan ¥, + I (eem)]
Prm = 9. ZBy(sin ¥, - sin V_)

And, for all the cases, Tpgy =1 - Tpip-
In X-Y geometry, the direction space

is symmetrical about the u
plane; hence, only a hemisphere of the unit sphere of directions must be con-
sidered.

n
In other words,

we consider the particles streaming in four quad-
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rants, which are a projection of the hemisphere onto u - n plane. These quad-
rants are numbered as shown in Fig. 3.2. Since we have already obtained the
transfer and escape matrix elements of quadrant I, we must find the elements
of the three other quadrants. To do so, first recall that we partition the
four octants of the unit sphere of directions so that the cones are symmetri-
cal about u - & and n - & planes. Using this symmetry, we find the following

relations between the transfer matrix elements of different quadrants:

TTRm' = TTLm> TTBm' = TtBm> TLRm' = TRLm> TRBm' = TLBm» (3.10)

Tein' = Tutme TBTn' = TTBm, Tg ot = Toims TRTn' = TRems

TBRm" = TBLn'> TBTm" = TBTn'> TLRm" = TRLn'> TLTm" = TRTn'>

PTm. = PTm’ PLml = PRm’ PBnl = PTm, PBmu = PBI’]I’ PLmu = PRnl >

where T, g, indicates the transfer matrix elements of a particle streaming from
surface £ to surface k in the m'th cone in quadrant I. In Eqs. (3.10), cones
m' and m, and cones m" and n' are mirror images of each other about the n - &
plane. Also, cones n' and m are mirror images of each other about the u - &
plane.

Having Eqs. (3.10), we can calculate all the cell edge fluxes by Egs.
(3.6) and (3.8). Although we do not need to know the cell average flux in a
void for a solution of Eq. (3.1), we are interested in the flux. To find
this, we may use any expression because the cell average flux does not affect
the convergence of a solution. On this point, a solution in a void is differ-
ent from the solution in a non-void where the cell average flux influences the
scattering source. In the present method, the cell average flux is obtained

by averaging four cell edge fluxes of a cone:
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i ! v

Fig. 3.2. The u - n plane of directions and quadrature points for the DCyq
approximation.
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_1
Yn = I’(me Y it me) : (3.11)

3.2 The Discrete Cones Method for a Void (The DCL Method)

In the preceding section, the transfer and escape matrix elements of a
spatial mesh cell were obtained. In this section we shall find the transfer
matrix elements of a void that is made up of many smaller mesh cells. The
geometry of the void is illustrated in Fig. 3.3(a). To simplify the solution,

we consider Eq. (3.1) without the source term:
¥(r,8) = ¥(r-s 2,9) . (3.12)

Multiplying this by fny and integrating it over the m'th cone and the

j'th subsurface on the surface TOP, we have

Xi41/2 Xi+1/2
/ dx [[  dR Qeng ¥(ro,2) = dx [[ ~ d@ @en; ¥(ry-s 2.2) .
X . AQ X . AQ
j-1/2 m j=1/2 (3.13)

If we assume that the angular flux is constant over the cone m and the sub-

surface j, then the left-hand side of Eq. (3.13) becomes

ijgm(cos y_ - cos ¥.) Wij (3.14)

£
+
where ij = Xj+l/2 T Xj-1/2 and gp = fg N - g d&. A characteristic line

extended to an incoming surface from a point on the h'th subsurface of TOP
crosses either the subsurface k on LEFT or the subsurface k' on BOTTOM.

Furthermore, the characteristic line 1ies in the same cone on both the in-

3-10



TOP

YT
LEFT Yk+1/2
Yk-1/2
/ \ 8
XL Xj-1/2 Xj+i/2
BOTTOM

/0
¥ / Xj-iv2  Xj+i/2

b)

Fig. 3.3 (a-b) Void geometry for the DCL method.

RIGHT



“\~¢q

\ Y
Xg-172 Xk+1/2

3-12

Void geometry for the DCL method.

)

d

Fig. 3.3 (c-



coming and outgoing surfaces. Taking account of these, we can represent the

right-hand side of Eq. (3.13) as

E Anik fLkm ¥ E. Bk *Bk'm -
Here, the summations are taken over all possible subsurfaces. Equating this

to Eq. (3.14) and dividing both sides by Ax.:g (cos y_ - cos ¥.), we have

39m

¥m = E Tl5km fLkm * g. Trak'm Bk 'm (3.15)
where TTijm and TTBjk' are the elements of the transfer matrices.
To obtain explicit formulas for the transfer matrix elements, first we

define x;, Xy, X3, and x4 by

y Yis
tan ¥, = L__KH/Z
1 L
y Y-
tan ¢+=Tx—_kxl/g,
2 L
y y
tan ¢_=—%ﬁ,
3 L
y Y-
and tan y_ = Tx _kx1/2
4 L

Also, ¥15 ¥p, ¥3, and Y, are defined as the angles shown in Fig. 3.3(a).
Since the integral with respect to & cancels, Ty jyp and Trgjy'p can be

represented in a form of
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X341/2

/ dx (cos ;= cos ¢ .)

X3-1/2 (3.16)
ij(cos Y_ - cos ¥,)

where Vi, is the smallest ¥ of overlap between the cone m and the cone sub-
tended by the subsurface k on LEFT or the subsurface k' on BOTTOM at a point x

on the subsurface j of TOP, and similarly is the largest Y. As can be

¥max
easily observed in Fig. 3.3(a), Vg < ¥3 <¥; and ¥4 < Y5 < Y15 but either

Y3 < ¥, or ¥3 > ¥,. Hence, these two cases must be considered separately.
Careful examinations of Fig. 3.3(a) lead to expressions of Ymin and VYpax-
These Vi, and Y., are listed for the transfer matrix element TTijm on Table
3.1(a) and (b). As seen on these tables, these depend on the order of six
angles ¥1, Vo, V3, W4, ¥;, and ¥_. Note that on the tables ¥, and ¥_ are
abbreviated to + and -, respectively.

In the same manner, the transfer matrix elements of the right surface of

the void are obtained in a form of

Yj+1/2
dy (sin ¥ -sin ¢ . )
max min
ij(sin b, - sin V)

where ij = Yi+1/2 ~ Yj-1/25 and the definition of Wi, and Yy, is the same
as that of (3.16).

To see how to find ¥ and W4, We choose case 4 in Table 3.1(a):

min
Yo < Yg < Y3 < ¥y < Y_ < y;.  For convenience, we call the points where a

characteristic line in the direction @ = (¥,€) crosses the top surface and the
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Table 3.1(a).

and cos y of

TrLjkm For ¥g < v3 < ¥, <

Case

coS ¥min

cos

wmax

0.0

0.0

0.0
(Y

0.0

cos

(+)

€S2

cos

(+)

€S2
CS2

cos
CS1

€S2

CS1

0.0
€S2
cos

(-)

0.0
cos

cos

(+)

€S2
cos

(-)

cos
cos

(+)
(+)

€S2
cos
cos

cos
cos
€Sl

(+)
(+)

€S2
cos

CS1
€Sl

10

cos

cos

(+)

11

cos
cos

cos
€Sl

(+)

12

cos

CS1

13

cos
cos
0.0

cos
€Sl
0.0

(+)

14

cos
0.0

€Sl
0.0

15

0.0

0.0




Table 3.1(b). cos ¥pip and cos Yyay OF Ty jkp for ¥4 < ¥y < ¥3 < ¥;
Case 171 17 ¥3 a1 X cos V. cos ¥,
1 -+ | Xo € X < X4 0.0 0.0
2 - + X- <X <X 0.0 0.0
X] < x < x4 | CS2 cos (+)
X. < x < Xx1 0.0 0.0
3 - + X] < x < xp | CS2 cos (+)
Xp < X < X4 €S2 €Sl
4 - X. <X <xo | CS2 cos (+)
Xp < x < x4y | CS2 cs1
5 - + X. < X < x4 | CS2 cs1
X_ < X < Xx1 0.0 0.0
6 -+ X] < X < X3 €S2 cos (+)
X3 < X < x4 | cos (=) cos (+)
Xo € X <X 0.0 0.0
7 - + X] < X < X3 €S2 cos (+)
X3 < x < xp | cos (-) cos (+)
Xp < X < x4 | cos (-) cs1
X. < x <xp | CS2 cos (+)
8 - Xp < X < x3 | €S2 cs1
X3 < X < X4 cos (-) cs1
9 - + Xo < X < X3 €S2 CS1
X3 < X < X4 cos (-) CS1
X- € x < X1 0.0 0.0
X] < X < X3 €S2 cos (+)
10 -+ x3 < x < xp | cos (-) cos (+)
Xg < X < Xg cos (-) sl
X4 < X < X4 0.0 0.0




Table 3.1(b). (Continued)

Case by 12 V3 171 X cos ¥ cos ¥,
X. < X < Xp CS2 cos (+)
11 - |+ Xy < x < x3 | cCS2 cs1
X3 < X < Xq cos (-) cS1
Xg < X < X4 0.0 0.0
Xo € X < X3 (Y CS1
12 - + X3 < X < Xq cos (-) cS1
Xg < X < X4 0.0 0.0
X_ < x <Xxp | cos (-) cos (+)
13 -+ Xp < X < Xy cos (=) cS1
Xq < X < x4 0.0 0.0
14 - + X2 <X < Xq cos (-) Cs1
15 -+ Xo € X < X4 0.0 0.0
X = X
(1) csl = L
Y- N 2
/ix X )7+ yr = Yyoq/0)
X - X
cs2 = L
- 2 -

(2) xy = Xj11/2

(3) cos (£) = cos ¥p471/0

(4) t = ‘pm:tl/Z




left surface A(¥) and B(¥), respectively. Since ¥_ is smaller than any ¥
(i =1, 2, 3 and 4), ¥ must be larger than an angle w*, which is larger than

V_ and satisfies an equation:

X'XL

*
cos y =

* 0 = Yiars)

(= CS2 in the tables). Hence wmin = w*. On the other hand, since ¥y < ¥y <
b1, B(¥y) is on the k'th subsurface if the x coordinate of A(y) is smaller
than xp, which is defined by tan ¥, = (yr - yg-172)/(x3 - x_ ). In other
words, WYp., = ¥y. If x is larger than xp, B(y;) is on the k-1'th subsurface.
Therefore, ¥ must be smaller than ¥, so that B(¥) is on the k'th subsurface.

The largest ¥ is in fact given by

X-XL

cos lpmax -

2 2
/6( - XL) + (yT - yk‘l/z)

(= CS1 in the tables).

Integrations of Egs. (3.16) and (3.17) are performed analytically by
using the explicit expressions of Vnin @nd ¥pax. The results are tabulated on
Tables 3.2 through 3.5, where the formulas of the numerators in Eq. (3.16) and
(3.17) are Tlisted.

The transfer matrix elements obtained above are for particles streaming
in the first quadrant of the u - n plane of directions. The elements of the
other quadrants are obtained by taking account of symmetry similar to one de-
scribed in Section 3.1. Now, suppose the boundary surface of a void is parti-
tioned as illustrated in Fig. 3.3(a). For the first quadrant u > 0 and n > 0,

and the intervals of the boundary surfaces are numbered by setting the origin
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Table 3.2(a). Ty for ¥3 < ¥y

¥1, V2, ¥3, and Vg are defined in Fig. 3.3(a)

Case S N P NUMERATOR
1 -+ 0.0
2 - + Filx4sxg) = (x4 = x7) cos(+)
3 - + Falxy4ox2) = Bxjcos(+)
4 - + Falxgsxl) = Folxgsxp) = (xp = x_)cos(+)
5 - + Falxgsx2) = Fo{xg,x2)
6 -t (x4 = x3)cos(=) + Filx3,x1) = (x4 = xp)cos(+)
7 - + (x4 = x3)cos(=) + Fi(x3,x-) = Axjcos(+)
8 - + (x4 = x3)cos(=) + Fi(x3,x-) = F_(x4,xp)
9 - + (x4 = x3)cos(-) + Fulx3,x.) - F_(x4,x-)
10 -+ Axj(cos(=) - cos(+))
11 - + Axjcos(=) = F_(x4,xp) = (xp = x-)cos(+)
12 - + Axjcos(=) = F_(x4,x-)
13 -+ (x4 = x=)cos(=) - F_(xg,x2) - (xp - x_)cos(+)
14 - + (xq = x-)cos(=) = F_(xg,x-)
15 -+ 0.0
Fyelp.q) = /p - "L)2 *lyp - yk:kl/2)2 - /g - "L)2 Hyp - 3’1@1/2)2

cos() = €os Vyyy/p » X3 = Xj31/2




Table 3.2(b).

Ty for ¥p < v3

Y1, ¥p, ¥3, and Y, are defined in Fig. 3.3(a)

Case Vg ¥ Y3 ¥ NUMERATORS
1 -+ 0.0
2 - + Felxgsxy) = (x4 - xq)cos(+)
3 - + Falxesxo) = Folxgxp) = (xp = xq)cos(+)
4 - + Felxgsxo) = Fo(xy,Xp) = (xp = x_)cos(+)
5 - + Filxgaxl) = F_(x4sx_)
6 -+ (x4 = x3)cos(-) + Folxg,x1) = (x4 = xq)cos(+)
7 - + (x4 = x3)cos(-) + Filxg,x1) = F_{x4,%p)
- (xp = x7)cos(+)
8 - + (x4 = x3)cos(=) + Fylx3,x2) = Folx4,xp)
- (xp - x_)cos(+)
9 - + (x4 - x3)cos(=) + Fyulxg,x) = Fo(x4,x.)
10 -+ (xg = x3)cos(=) + Fylx3,x1) = F_(xq,x%p)
- (xp - xp)cos(+)
11 - + (x4 = x3)cos(=) + Fy(x3,x_) = F_(xg,X5)
- (xp = x.)cos(#)
12 - + (xg = x3)cos(-) + Fylx3,x-) = F_(xg,x.)
13 -+ (x4 = x_-)cos(-) = F_(xg,x2) = (xo = x_)cos(+)
14 - + (x4 = x_)eos(-) - F_(xg,x.)
15 -+ 0.0

3-20




Table 3.3. Trg

Y1, ¥y, and Y3 are defined in Fig. 3.3(b)

1 -+ 0.0
2 - + Fo(x4s%9) = (x4 = xq)cos(+)
3 - + Folxgox) = Falxgsxp) = (xp = x_)cos(+)
4 - + Fo(xgoxl) = Folxg,x2)
5 -+ Fo(x3,x1) + (x4 - x3)cos(=) - (x4 = xp)cos(+)
6 - + F_(xg,x_) + Fulxy,xp) + (xy = xg)cos(-)
= (xp-xp)cos(+)
7 - + (x4 = xg)eos(-) + F_(xg,x_) = Fylxq,x)
8 -+ (xg - x_)cos(-) - Fiulxg,xp) = (xo = x.)cos(+)
9 - + (xq - x-)cos(-) - Fylxg,x-)
10 -+ 0.0
- - 2 2 _ _ 2
Fi(p,q) = /Qp inl/Z) + Ay /Qq inl/z) + Ay
Xy = Xjxl/2
cos(£) = cos ¥py1/7
- By - by
tan = s tan ¢ =
™12 "X T K12 ™12 "X = X2
= Ay Ay
tan . = - s tan Y172 = -
ml/2 X3 K1y /2 X X2
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Table 3.4(a). Tpp for ¥, < ¥3

¥y, ¥, ¥3, and ¥, are defined in Fig. 3.3(c)

Case 17 17 V3 121 NUMERATORS
1 -+ 0.0
2 - + Go{y_,y1) + (y; - y.)sin(+)
3 - + Gylyp,y-)sin(+) + G_(yg,y-) = (yg - yo)sin(+)
4 - + (yy = yplsin(+) + Gulyp,y.) - G_(yg,y-)
5 - + Gp(yssy2) - Go(y4,y.)
6 -+ (yp = y-dsin(+) - G_(yg y3) - (y3 - y.)sin(-)
7 - + (yp = yp)sin(+) + Gylyp y.) = G_(yq,y3)
- {y3 - y_)sin(-)
8 - + (ye = ypl)sin(+) + Gulyp,y-) - G_(y4,y3)
- (y3 - y-)sin(-)
9 - + Geyssy-) - Go(y4y3) - (y3 - y_)sin(-)
10 -+ (y1 = yp)sin(+) + Gulyo,yg) = G-(y1,y3)
- (y3 = yg)sin(-)
11 - + (y; = yp)sin(+) + Gulyo,yq) - G_(y4,y3)
- (y3 - yglsin(-)
12 - + Gelyssyq) = Go(ys,y3) = (y3 = yg)sin(-)
13 -+ (¥4 - yp)sin(+) + Gylyo,yq) - (y4 - yg)sin(-)
14 - + Gely4syq) = (yy - yg)sin(-)
15 -+ 0.0

7
G4p,q) = /Q*R } Xkﬂ/z)2 tp - yB)2 ) “QXR - xki1/2)2 * (g - yp)

sin{%) = sin IPm:t]./z ’ -y:t = Yj:tl/Z
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Table 3.4(b). Tpg for ¥3 < v,

V1, Y2, ¥3, and Y4 are defined in Fig. 3.3(c)

Case Vg V3 ¥ W NUMERATORS
1 -+ 0.0
2 - + (yp = y-)sin(+) - 6_(y; y-)
3 - + by jsin(+) = G_(y4,y-)
4 - + (ys = yp)sin(+) + Gylyp,y-) = Go(ys,y-)
5 - + Gi(yssy-) - Go(y4,y-)
6 -+ (yg - y-)sin(4) - G_(y1,y3) - (y3 - y-)sin(-)
7 - + By ysin(+) = G_(y4,y3) = (y3 - y-)sin(-)
8 - + (y+ = y2)sin(#) + Gilyp,y-) - G-(y4,y3)
- (y3 - y-)sin(-)
9 - + Ge(y4sy-) = G(y4,y3) = (y3 = y-)sin(-)
10 -+ 8y j(sin(+) - sin(-))
11 - + (Y4 = yo)sin(+) + Gulyp,y-) - Ay jsin(-)
12 - + Gi(y4sy-) - byjsin(-)
13 -+ (y4 = yp)sin(+) + Gylyo,yg) - (y4+ = yg)sin(-)
14 - + Ge(y4sygq) - (yy - ya)sin(-)
15 -+ 0.0
Y °Y Yo - ¥
tan ¥py1/2 = ;E'E'QE:%7; tan ¥ne1/2 = }E'%'§;:%7E
Yo =¥ Yo o Y
tan ¥p-1/2 = ;E-g-;;:%7; tan ¥p-1/2 = ;E—é-;;:$7;
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Y1, Vo, and ¥5 are defined in Fig. 3.3(d)

Table 3.5. Tp|

Case v3 ¥ NUMERATORS
1 -+ 0.0
2 - + (yp - y-)sin(+) - Gulyq,y-)
3 - + (y4 = yplsin(+) + G_(yo,y-) - Gulyy,yo)
4 - + G (ygoy-) = Gplyqnyo)
5 -+ (yp = y2)sin(+) = Gulyg,y3) = (y3 = y-)sin(-)
6 - + (y3 = y2)sin(+) + G_(yp,y-) - Guly4,y3)
- (y3 = y-)sin(+)
7 - + G_(y4sy-) - Gylys,y3) = (y3 - y-)sin(-)
8 -+ (y; = ypl)sin(+) + G_(yp,yq) - (y4 - yg)sin(-)
9 = + G_(Y+,Y4) - (Y+ - y4)sin(-)
10 -+ 0.0
Y. -V
-1 k+1/2
tan Wm.,.l/z = ——-——-—Ax
Yo — ¥
_ 72 k-1/2
Y3 7 Yk+1/2
tan ’J)m_l/z = B T E—
Yg " Yg-1/2
tan wm-l/Z e

Gi(p,Q) = /ZXZ + (p - yktl/2)2 + /sz + (q - yktl/2)2
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of the system to the point (x;,yg). By regarding the point (xg>yg) as the
origin and numbering the intervals in an increasing order in the direction of
(xL,yB), we may use the same transfer matrix elements for the second quad-
rant: B < 0 and n > 0 as those of the first quadrant. For the third quad-
rant, the point (xL,yR) must be regarded as the origin, and the number of the
interval of the boundary surface parallel to the Y axis increases as Y de-
creases. For the fourth quadrant, the origin is set to the point (xR,yT). In
this way, we can find all the necessary transfer matrix elements from those of
the first quadrant. Consequently, Tables 3.2 through 3.5 give sufficient data
of the transfer matrix elements for actual numerical calculations by the pre-
sent method.

In this method, the calculation of the cell average flux of a mesh cell
in a void is not as straightforward as in the previous method. Also, the
cell-edge flux produced by a source inside the void is not easily calculated.

3.3 Programs DCS, DCL, and TWODCXY

The preceding two methods were inserted in a two-dimensional discrete
ordinates program STRMEX, which was written by T. Seed, now with the INESCO
Company. The program is a concise version of a more standard Sy code,
TWOTRAN,(I) which was developed at Los Alamos National Laboratory. Although
the discrete cones method was finally inserted in the TWOTRAN program, most of
the preliminary tests of the methods were performed by modified versions of
STRMEX.,

A program that applies the discrete cones method to a mesh cell in a void
described in Section 3.1 is called DCS; meanwhile, a program that applies the

discrete cones method to a void as described in Section 3.2 is called DCL.

3-25



A modified TWOTRAN, which applies the former method, is called TWODCXY.
To modify the TWOTRAN program, the subprogram SNCON that provides symmetric
quadrature sets 1is replaced by the subprogram EQNCON that provides the EQy
quadrature set. The subprogram QUADSET that computes the cone boundaries and
the subprogram ADJUST that computes the adjustment factors are called by the
subprogram INPUT14.  The subprogram GRND21 calls the subprogram VOID that
calculates the transfer and escape matrix elements and stores them in a common
array A. These transfer and escape matrix elements are used in the sub-
programs IN and OUT when the transport equation is solved in a void. The
structure of the TWODCXY program is shown in Table 3.6.

The algorithm used by the programs will be explained in the remainder of
this section. The programs calculate the transfer matrix elements before they
start outer and inner iterations. The programs do the same outer iteration
procedures over the energy groups and the eigenvalue search as those of the Sy
code.(l) The inner iteration procedure sweeping spatial mesh cells and dis-
crete directions is modified so that the discrete cones method is applied in a
void.

For the DCS program as well as the TWODXCY program, the discrete ordi-
nates flux (the DSN flux) is calculated cell by cell until a void is en-
countered. At the interface between a non-void cell and a void cell, incoming
cone-fluxes (the DCN fluxes) are computed from the DSN fluxes by uéing the
adjustment factors described in Chapter 2. Then, outgoing DCN fluxes of the
void cell are obtained by using the incoming DCN fluxes and the transfer
matrix elements. If the next cell is again a void, the outgoing DCN fluxes
are regarded as the incoming DCN fluxes of the next cell. If the next cell is

a non-void cell, the DSN fluxes are calculated from the outgoing DCN fluxes by
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Table 3.6. Structure of the TWODCXY Program

OVERLAY (0,0) OVERLAY (1,0) OVERLAY (2,0) OVERLAY (3,0)

TWODCXY?2) INPUTL GRIND2 OUTPUT3
1. MONITER 1. LOAD 1. REBAL 1. OUTPT31
2. ERROR 2. INPUT112) 2. GRIND212) a. FINAL
3. CLEAR a. DUMPRD a. INITAL 2. OUTPUT32
4. MPLY 3. INPUTL2 b. INITQ a. EDCALL
5. WRITE a. CSPREP c. FISCAL b. GENFLO
6. ECHECK b. IFINXS d. vorpl) c. EDITOR
7. DUMPER 4. INPUT13 . GRIND22 d. EDMAP
8. PCMBAL a. READGF a. OUTER 3. IFOUT
9. REED b. IFINQF b. INNERZ) a. IFRITE
10. RITE 5. INPUT142) c. IN2)
a. EQNCONY) d. out2)
b. IFINSN e. FIXUP
c. PNGEN f. SETBC
d. quapseT?) g. STORAF
e. ADJusTL) h. SAVEAF
6. INPUT152) i. GSUMS
a. CSMESH 4. GRIND23
b. MAPPER a. TESTS
b. NEWPAR

1) These subprograms are newly added to the TWOTRAN-II program.

2) These subprograms are modified.
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using the adjustment factors. The procedure is repeated over the inner iter-
ations. The DCS program requires storage of 6XMMxIVOID transfer and escape
matrix elements. Here MM is N(N + 2)/8 for the Sy approximation, and IVOID is
the number of void cells that have a different spatial mesh size.

For the DCL program, the inner iteration is more complicated. After the
DSN fluxes are computed cell by cell in non-voids, the DCN fluxes are computed
by using the adjustment factors at the interface between a void and a non-
void. Then, jumping up to the next void-non-void interface, all outgoing DCN
fluxes of the subsurface are obtained from the incoming DCN fluxes by using
the transfer matrix elements. The incoming DSN fluxes of the next non-void
cell are computed from the outgoing DCN fluxes by using the adjustment
factors. Since an outgoing DCN flux is related to the incoming DCN fluxes of
many subsurfaces, the DCN fluxes of different subsurfaces must be stored for
later use in the inner iteration. This increases the amount of memory re-
quired for an inner iteration. Furthermore, 4XMMxMSxNS transfer matrix ele-
ments must be stored for a solution of a void, which is divided into MS times
NS subdomains.

The number of the transfer matrix elements increases considerably, com-
pared with the DCS program; hence, a longer computing time for calculation of
the elements results.

3.4 Numerical Results

PROBLEM 1

To demonstrate the computational characteristics of the discrete cones
method, we present solutions for four problems.

The first problem is devised to demonstrate the ray streaming effect

mitigation for the scalar flux distribution. The problem geometry is illus-
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trated in Fig. 3.4. An isotropic uniform square neutron source is placed at
the center of a domain. A vacuum region surrounds the source, around which a
scattering material is placed. The outer boundaries are vacuum boundaries.
The material has the macroscopic total cross section oy = 0.2, the macroscopic
isotropic scattering cross section o, = 0.19, and the macroscopic absorption
cross section o, = 0.01. The source region consists of the same material as
the outer region. For convenience, a quarter of the problem is considered.

For the DCS, DCL, and DSN solutions, the region is divided into an 8 by 8
fine mesh. For the DCL solution, the inner vacuum region 1is divided into
seven domains. The scalar flux distributions along the x = 5.625 cm plane by
the DCS, DCL (both DCg approximations) and Sg calculations are plotted in Fig.
3.4. A Monte Carlo solution by the MORSE code(2) is also plotted for refer-
ence.

The DCS and DCL solutions with the DCg approximation show the ray effect
mitigations. The two solutions by DCS and DCL are almost identical. For
another mesh specification, a 16 by 16 fine mesh, the CPU (Central Processor
Unit) times for Sg, DCS and DCL (both DCg approximation) are 4.4, 4.2, and
12.4 seconds, respectively. The DCL method is inefficient in terms of CPU
time.

PROBLEM 2

The second problem is a duct streaming problem. The geometry and materi-
al cross sections are shown in Fig. 3.5. The neutron source is isotropic.
One-group calculations are carried out. The domain is divided into a 20 by 12
mesh. The vacuum region is divided into 4 subdomains for the DCL solution.
The solutions by DSN, DCS and DCL are obtained varying the order of angle dis-

cretization. These solutions are compared with a solution by the MORSE code.
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SCALAR FLUX AT X=5.625

Fig. 3.4.
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Scalar flux distribution at x = 5.625 for Problem 1.
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Fig. 3.5. Geometry and material cross sections for Problem 2.
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Table 3.7 shows the reaction rates over a region, | ot¢ dV, for regions III
and IV. The region IV is at the end of the duct.

For region III, the DSN method works well except the S4 approximation.
However, for region IV, even the Sg approximation has a significant error. In
comparison, the DCS and DCL methods give tolerable solutions for the DCg
approximation in addition to their superiority over all orders of the DSN
method. For this problem, the DCL method leads to more accurate solutions
than the DCS method. This superiority, however, is compensated by the fact
that the DCL method needs more memory and computing time.

PROBLEM 3

The preceding two problems show the ray effect mitigation by the DCN
methods. To see their numerical properties, we solve a problem which has an
analytical solution for the scalar flux. The geometry is illustrated in Fig.
3.6. The whole region is a vacuum except for an isotropic source region at
the center, where the solution is obtained by the DSN method.

The analytical solutions are obtained by integrating the expression for
the scalar flux at point r for a point source at r, over the source region. A

point source produces the following flux:

5(£0)

¢pt = w . (3.18)

The result is
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Table 3.7. Comparison of Region Reaction Rates for Problem 2

REGION/Method ITI Iv
S-4 0.1745 (+8.3%) 0.05823 (-30.5%)
SN S-6 0.1631 (+1.2%) 0.06899 (-17.6%)
S-8 0.1599 (-0.76%) 0.07674 (-8.39%)
S-16 0.1598 (-0.83%) 0.08594 (+2.59%)
DC-4 0.1683 (+4.5%) 0.06633 (-20.8%)
DCS DC-6 0.1619 (-0.50%) 0.07730 (-7.70%)
DC-8 0.1600 (-0.70%) 0.08290 (-1.04%)
DC-4 0.1678 (+4.2%2) 0.07209 (-13.9%)
DCL DC-6 0.1620 (+0.56%) 0.07954 (-5.05%)
DC-8 0.1600 (-0.70%) 0.08364 (-0.153%)
MORSE 0.1611 (£3.18%) 0.08377 (42.43%)
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Fig. 3.6. Geometry for Problem 3.
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where S is the source strength (neutrons/cm3/second) and a is 2.5 cm for the
present problem.
To estimate errors of the numerical solutions, the following L, error is

calculated:

¢, .
_ _ ij 2 1/2
E, [1§j {1 jﬂi;_’y?} Axiij] (3.20)

where ¢(x1,yj) is the analytical solution of scalar flux at a point (xi,yj),
¢ij is the solution by numerical method, and Axj, ij are side lengths of a
mesh cell. This special error norm is chosen because we are ijnterested in the
relative error to the analytical solution for the whole region.

The L, error, Ep, 1is presented in Table 3.8 for the DSN and DCN so-
lutions. The problem is solved, varying the order of angle discretization,

Sgs Sgs S16» DCy, DCg, DCig and the number of meshes, 8 x 8, 16 x 16, 32 x 32,
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Table 3.8. Comparison of Relative Error of Scalar Flux for Problem 3

8 x8 16 x 16 32 x 32
DS, 11.756 12.795 13.045
DCy 5.466 6.2912 7.5012
DSg 7.9132 8.0703 8.1624
DCq 3.8341 4,065 4.8206
DS16 4.727 4.3610 4.3569
DC1g 2.9669 2.5905 2.8082
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In each box, the upper column is for the DSN solution, and the lower is for
the DCS solution. The error for the DCS solutions is half as much as that for
the DSN solutions. It is observed that refining the spatial mesh has less
effect on the accuracy for both DSN and DCS solutions. Furthermore, refining
the angle variables has Tless effect for the DCS method, compared with the DSN
method. In regard to the spatial mesh refinement, the refinement indeed leads
to better accuracy if standard L, error is observed; but, the effect is still
small. The property of the DCS solution with respect to angle refinement sug-
gests that the errors for the DSN and DCS solutions are closing as the order
of angle discretization increases. In other words, the DCS approximation is
especially useful for low order approximation.
PROBLEM 4

As an example of more realistic calculations by the discrete cones
method, we solve a neutron transport problem of a conceptual fusion reactor.
The geometry of the problem is illustrated in Fig. 3.7. This is a very
simplified model of a cross section of a tokamak reactor with a bean shape
plasma. The spatial domain is partitioned uniformly into 27 times 15 mesh
cells. The outer structure is made of a tungsten shield. The problem is
solved by TWODCXY (DSCg-P3) and TWOTRAN-II (Sg-P3) by using 30 neutron and 12
gamma energy groups. Here DSCy implies that the Sy approximation and the DCy
approximation are used in a non-void and a void, respectively. The neutron
and gamma cross section data are taken from a public cross section library
XSLIB5 available at the National Magnetic Fusion Engineering Computer Center
(NMFECC).

Source neutrons are distributed uniformly over the second energy group,

which ranges from 13.5 MeV to 15 MeV. The input source distribution is shown
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in Fig. 3.7, where the numbers denote relative intensity of the source.
Actual solutions are obtained by setting the total source to unity.

Figures 3.8 and 3.9 show the scalar flux of the second energy group. In
Figs. 3.8(a) and (b), the contours of the flux distribution are plotted for
the Sg and DSCS solutions, respectively. The only difference between the two
solutions is that, since the ray streaming effects are mitigated, the contours
of the DSCg solution are smoother than those of the Sg solution. The scalar
flux distributions along outer edges of the system are shown in Fig. 3.9(a),
(b), and (c) for X = 0.825, y = 0.725, and x = 2.125, respectively. Fig.
3.9(a) shows the DSCg method eliminates the ray streaming effect.

The CPU times of the two calculations are 197.9 seconds for the DSCg
calculation and 189.3 seconds for the Sg calculation.

In conclusion, the new program TWODCXY is better than the TWOTRAN program

in practical situations as well as in simple one-energy group calculations.

References for Section 3

1. K.D. Lathrop and F.W. Brinkley, "TWOTRAN-II: An Interfaced, Exportable
Version of the TWOTRAN Code for Two-Dimensional Transport," Los Alamos
Scientific Lab., LA-4848-MS (1973).

2. M.B. Emmett, "The MORSE Monte Carlo Radiation Transport Code System," Oak
Ridge National Lab., ORNL-4972 (1975).
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4. CONCLUSIONS

A theory of the discrete cones method was developed, and the new method
‘was applied to a solution in a void for X-Y geometry. By utilizing the new
computational schemes for a void region in a standard discrete ordinates,
hybrid programs were created and tested.

Sample problems demonstrate strong mitigations of the ray streaming
effect for low order approximations of angle discretization. We also found
that the discrete cones method applied to a void mesh cell (the DCS program)
is more efficient in terms of computing time and needs less computer memory
than the discrete cones method formulated for subsurfaces of void boundaries
(the DCL program).

Hence, the DCS scheme was implemented in the TWOTRAN-II program to create
a new program TWODCXY, which is almost identical to the original program from
user's point of view except some additional inputs about voids. The TWODCXY
program was used to solve a realistic multigroup problem encountered in a
fusion reactor study. It was shown that the new program results in a more
accurate solution than TWOTRAN-II without any penalty of computing cost.

The current discrete cones approximations were formulated under three
assumptions:

1. an angular flux is constant over a cone;

2. a cell-edge angular flux is constant over a boundary surface of a mesh
cell or a boundary subsurface of a void; and

3. a particle source is constant in a void cell.

Because of the first assumption, the ray streaming effect is not completely

mitigated. To obtain better accuracy, we adopted a linear approximation. The

scheme results in better solutions than the constant approximation for some
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problems, but the solutions display erroneous behaviors in some cases.(l)
Meanwhile, applying linear or higher order approximation to spatial variables
enables us to use coarser void mesh cells.

From the practical point of view, the discrete cones method must be
applied to R-Z geometry. Since the linear approximations described in the
above paragraph cannot be formulated in R-Z geometry without considerable
effort, we shall apply the constant approximation, which will be reported in a
forthcoming paper. Also, the method will be applied to a solution in non-

vacuum media with an anticipation of the ray effect mitigation.

References for Section 4

1. Y. Watanabe, "Preliminary Report," October 1982, (not published).
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