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When electron orbits are trapped very near the second harmonic cyclotron
resonance, quasilinear theory breaks down and nonlinear effects become im-
portant for particles with small v"/v. Numerical studies as well as a multi-
ple time scale analysis demonstrate that relativistic detuning of the reso-
nance for electrons is important even at low initial energies (~ 20 eV) re-
sulting in periodic motion with large energy excursions on a time scale much
longer than the gyrofrequency time scale. Small angle Coulomb collisions,
parallel motion, and other processes randomize the nonlinear relativistic ef-
fects resulting in net heating. A Monte Carlo numerical model has been uti-
lized to determine the net electron heating that results and to indicate the
possible effects on electron energy distribution functions. Analytic formulae
are derived describing the energy excursion behavior and heating in a mildly

relativistic limit.



The usual quasilinear theory of cyclotron resonance heating assumes the
wave-particle interaction to be sufficiently weak that on the time scale of
interest the particle orbit does not deviate significantly from the unper-
turbed orbit. Also, it is assumed that the heating is stochastic due to the
particle's passing repeatedly through a thin resonance zone, with the gyro-
phase relative to the wave randomized between successive passages. The energy
evolution of such a stochastic orbit is shown in Fig. la. When the resonance
occurs near the bottom of a magnetic well, deeply trapped particles essential-
1y never leave the resonance zone so that the gyrophase is not randomized and
energy excursions can occur which are large compared to the particle's initial
energy. In this case, quasilinear theory breaks down, nonlinear orbit effects
become important and for electrons, detuning due to the relativistic mass
shift is crucial even at very 1low energies. Earlier numerical work by

Batchelor and Go]dfingerl

demonstrated a transition as v"/v at the midplane is
reduced, from stochastic heating with small, random quasilinear energy steps
to a coherent, periodic motion with large energy excurﬁions for v"/v = 0.
Such nonlinear effects on particle orbits may be important in the case of hot
electron ring formation in EBT (Elmo Bumpy Torus),2 or in tandem mirror
schemes using second harmonic electron cyclotron heating to modify thermal
barrier electron distribution functions.

An earlier nonrelativistic ana]ysis3

found exponential growth in energy
for particles in a uniform magnetic field subjected to a perpendicularly
propagating wave with a frequency of twice the gyrofrequency. Numerical so-
lutions of the relativistically correct Lorentz equations for electrons in a

uniform magnetic field show, however, that the exponential behavior is sus-

tained for only a few growth periods. As the energy increases, the relativis-



tic phase slippage becomes important, detuning the resonance so that the ener-
gy saturates and eventually returns to near its initial value. This process
is repetitious, resulting in large energy excursions but no continuous energy
gain, as seen in Fig. lc. For an electron which is deeply trapped in a mag-
netic well near the second harmonic resonance, transitions may also occur be-
tween the quasilinear behavior and the energy excursion behavior, as seen 1in
Fig. 1b. The step size during the stochastic behavior of transitional
electrons may also be comparable to their energy. The regions of phase space
where energy excursions and transitions occur is shown qualitatively in Fig.
2, for a parabolic magnetic well.

The periodic behavior of electrons with no parallel energy does not con-
stitute heating; however, randomizing events such as Coulomb collisions and a
small amount of parallel motion can provide entropy production mechanisms. It
is the purpose of this work to evaluate the actual nonlinear heating for
electrons which violate the assumptions of quasilinear theory by utilizing a
Monte Carlo code which includes Coulomb collisional effects. Also, the rela-
tivistic effects giving rise to the periodic energy excursions will be illus-
trated through a simple analytic model.

The Monte Carlo code used to study the effect of this phenomenon on a

distribution of electrons integrates the Lorentz equations of motion:

d e ek

T ) = - (v xB) -, (1a)
d efey

at (vy) = - —-2-—mc . (1b)



where ¢ is the speed of 1light, m the rest mass of the electron, e the magni-
tude of electron charge (positive), y the electron velocity vector, E is the
rf electric field, v = [1 - vz/cz]'l/z, and v the magnitude of the velocity.
The rf fields are determined by Maxwell's equations for an extraordinary mode
in one of two magnetic field geometries. The first is a divergence-free,
curl-free parabolic well: B = B [(1 + (z2 - x2)/(L?)] z - (2xz)/(L2) x. The
second type of geometry is a divergence-free sinusoidal bumpy cylinder: B =
Bo{L(1 + R)/2] + [(1 - R)/2] cos(nz/L)}z + [(Bym)/2LIL(1 - R)/2] sin(nz/L){xx
+ y§} where B, is the midplane magnetic field strength, R is the mirror ratio
and L is the axial magnetic field scale length, with the particles started on
a field line near x,y ~ L. [Integration of Eq. (1) is performed by using an
Adams predictor-corrector routine on a gyrofrequency time scale. The accuracy
of the integration is required to be less than a small fraction (~ 0.1%) of
the smallest Coulomb collisional process. A 64 particle ensemble is followed,
utilizing vectorization when possible to gain a roughly 15 fold increase over
the sequential speed.

Small angle Coulomb collisions are modeled by scattering the test parti-
cles with a Maxwellian background plasma in three basic steps.4’5 First, a
rotation is made to a velocity space coordinate system with the axis along the
velocity vector. In this new frame the solution to the Fokker-Planck equation

in a uniform plasma for a delta function distribution of test particles is

applied in a Monte Carlo sense. The following equation is used:
- v o1 - 1/2 1/2¢2 ~ s
¥ = vz[l - vst + (v st)to] + NV (v 81)7 % [x cos(2m ) +y sin(2m )] ,

where S8t is the time since the last collision. In this equation only, the



perpendicular and parallel subscripts refer to the direction with respect to
the initial velocity vector, not B, and the collision frequencies, v, and vy,
may be found in Ref. 4. The random number, ny, is between 0 and 1, while ny
and np are random numbers from a normal (Gaussian) distribution chosen by Box-

Muller sampling methods.®

The transformation utilized in step 1 is then in-
verted to return the new scattered velocity to the coordinate system used to
describe the magnetic fields.

The phase of the particle with respect to the wave determines whether the
electron begins at the maximum of the energy excursion, the minimum, or some-
where 1in between. Hence, the energy evolution is phase dependent. Also,
during the Tow energy part of an energy excursion, Coulomb collisions are more
important so that the scattering of electrons into and out of the excursion
region of velocity space is complicated. Thus, collisional effects are two-
fold with one effect providing a randomizing process for the test particle
phase and the other determining the number of particles which are pitch angle
scattered into the region of velocity space where nonlinear effects are
important.

Figure 3 shows the dependence of the second harmonic heating coefficient
on the ratio of an effective collision frequency to the energy excursion fre-
quency. The dimensionless heating coefficient, o, is defined in terms of the
average power absorbed per electron by those electrons with vy/v at the mid-
plane of less than 0.2. The defining equation is:
e?<(kp)?>|E, |2

= 8mTmw (2)

o7

ABSORBED POWER = (8t3

where k is the perpendicular wave number, w is the radian wave frequency,



p = v;/2, is the electron gyroradius and |E+| is the magnitude of the right
hand circularly polarized component of the wave. The <> brackets indicate
that the enclosed quantity is calculated based upon the time averaged (~ 1
microsecond) parameters of only those electrons with v,/v at the midplane less
than 0.2. A wide range of collisionality was explored numerically for parti-
cle energies less than 2.5 keV and the analytical estimate which is derived
later is shown by the dashed curve. Figure 3 demonstrates that Coulomb colli-
sions can provide a significant enhancement of the effective heating due to
the second harmonic resonance so Tong as the collisions do not completely
annihilate the energy excursion behavior. Some phase randomizing process is
necessary, however, for significant heating due to the nonlinear relativistic
processes. This is not to say that the distribution function will not be af-
fected by the presence of the wave in a collisionless regime, but that as many
electrons will then Tose energy as will gain energy.

Figure 4 demonstrates the ability of the second harmonic interactions to
feed electrons from the cold background plasma to intermediate energies (~ 1
keV) by showing the energy distribution of 64 electrons averaged over a 1.1
microsecond time interval after approximately 9 microseconds. A1l the
electrons were started at 205 eV. Background plasma parameters were chosen to
resemble the T-mode of operation in EBT. A significant number of these
electrons have been heated to form a tail on the distribution which can be
compared with the Maxwellian background distribution shown as a dashed curve
in Fig. 4. These tail electrons have very small pitch angle and most of the
change in the distribution is due to the presence of the second harmonic reso-
nance at the midplane. For this case the feed rate from 200 eV to ~ 1 keV is

estimated to be about 1-5 x 1014 electrons per cm3 per sec. The ratio of



collision to excursion frequencies corresponds to a value of about 1 in Fig.
3. Figure 3, however, accounts only for Coulomb collisional effects and it
should be noted that any phase randomizing process could replace the colli-
sional process. For the parameters in Fig. 4 the total second harmonic power
absorbed by the electrons in an EBT-sized mirror cell is a few kilowatts.

The importance of relativistic detuning and an illustration of the rele-
vant time scales involved can be obtained by a multiple time scale analysis
resulting in a set of reduced "guiding center 1like" equations7 for the energy
excursion behavior, and which can be solved in a mildly relativistic limit.
This developement parallels the non-relativistic treatment by Hsu and Chiu.3

Consider an electron in a uniform magnetic field, B = Bog’ subjected to
an electrostatic plane wave, E = EO; sin(kx - wt). Note that this wave is
propagating perpendicular to B with wave number k and frequency w, which will
be taken to be twice the gyrofrequency of the particle, to within a relativis-
tic tuning factor. By considering this simple electromagnetic field descrip-
tion and defining new variables u; and ¥ such that u, = (va/c) = u cos ¥,

uy = (Yvy/c) 2 u, sin ¥, and considering u, = 0 for convenience, the
equations of motion [Eq. (1)] can be written as:

o

u

1 .
i sin{nX - 6) cos V¥
2
¥ . .
Uy %E = 7% u, +e sin{(nX - 8) sin ¥

where £, = (eEO/mcw) is the rest mass gyrofrequency, n = kc/w is the index of

refraction, € = eEo/mcw is the dimensionless electric field strength, and the

de-dimensionalized variables are © = wt and X = wx/c. The parameter € can be



estimated by Poynting flux arguments. In most devices, including EBT, € is a
very small parameter (~ 5.0 x 10_5), thus permitting the use of perturbative
techniques.

A multiple time scale ana]ysi58 is used with the slow time scale given by

-
1]

€6, With w = (ZQo/Yi)’ the equations give to lowest order:

o
¥ (6,1) = 2 | 7;%267 + o(1)

2u (1)

XO(G,T) = sin v, * Xg -

i
The guiding center position Xg in this equation can be shown to be constant in
a Lagrangian formalism, to this order, and will be taken to be zero for
simplicity. Also, v; is a constant tuning factor (= 1). The subscript zero
on the variables u, ¥, and X refers to lowest order quantities in the time
scale expansion.

The equations for uj, and Y, are obtained by going to next order in the
small € expansion. To this order the sum of the integral of slowly varying
terms must be zero to prevent secular growth in the perturbed quantities.
Making use of the Bessel function expansion sin(x sin(8) + y) = ] Jg(x) x
sin(%26 + y), using a small gyroradius expansion for the Bessel func;ions, and
reinstating the dimensionality, the reduced constraint equations become, to

Towest order in kp:

1
28 Y.
de . To (4)
t Y'i Yo(t)



a@-- ;5_: cos[(z(t) + 20(t)] . (5)

Equation (3) describes the perpendicular velocity evolution, Eq. (4) describes
the phase change due to the relativistic mass shift, which becomes important
for energy changes on the order of smcz, and Eq. (5) describes the evolution
of the non-relativistic wave-particle phase. In the mildly relativistic
Timit, the above equations may be solved due to the fact that the second
derivative of the phase, ¢ + 29, has only a weak velocity dependence and hence
terms of order uiole have been neglected. The excursion time, Texs and ener-

gy, &axs as shown in Fig. lc are found to be:

Ty ¥ ——1rz K[ - (X))
ex  cu(aE)/® 2(AE) 172 (6)
/2 .1/2
2 Ate - gMe 4 oo
E = (y_ - 1)me R (7)
ex m E1/2 ] Yi -1 o

€

provided (Yi_ 1) < (Ym - 1)/2 + ne, and (Ym -1) + (Eexlmcz) << (8)1/2 where
As[n- ((Yi - Ym)/E)]z, EzA+ (4(Yi - 1)n/e), D = ((Yi - ym)/g)2 +

(2(Ym - 1)n/e) - n2, Yp is the minimum value of v, during an energy excursion,
and the function K is the complete elliptic integral of the first kind. These
conditions were chosen so that the phase remains a monotonic function during
the energy excursion. It should be noted that while Y 1s always greater than
1, Yj is a tuning factor which may be less than 1. These formulae compare
with the full numerical solution to within 40% so long as the above weak rela-
tivity and phase monotonicity inequalities are satisfied and wave polarization

is accounted for.



To phenomenologically estimate the heating coefficient in Fig. 3 utili-
zing these analytic results, an estimate of the effective randomization fre-
quency is required. The phase slippage correction due to unperturbed parallel
motion in a parabolic magnetic well is on the order of (v"/v)2 at the mid-
plane. By adding such a correction to Eq. (4), it is observed that when
(v,,/v)2 is greater than the change in vy due to the excursion, Sex/mcz, the
parallel motion begins to dominate the nonlinear relativistic effects. Colli-
sional changes in (v"/v)2 on the order of Eex/mc2 are thus characteristic of
the randomization required to significantly change the energy excursion
behavior. The effective randomizing frequency can thus be estimated using
Verr = vi/(8k)2 with (8k)2 = £, /mc2,

An estimate of the heating coefficient can now be made with a diffusive
model 1in velocity space in analogy with banana orbit diffusion in tokamaks.

Consider a diffusion equation of the form

of _ 1 <(Av)2> 82f
ot 27 ztgyz

where f is the distribution function and Av is the typical diffusive change in
velocity on a At time scale. For kinetic energy T = mv2/2, AT is mvAv and the

average change in energy is described by:

c<T> 1 <(AT)2>

By equating this 3<T>/3t to the absorbed power in Eq. (2) and using ke = 2v/c

near the second harmonic frequency, the estimate for o is given by:



ﬂmzczw 1 <(AT)2>

@ = A2 > (8)
4e|E, q>2 Bt

For the "collisional" regime where Veff >> Vexs €nergy changes of roughly

EexVex/Veff occur with frequency vees = 1/At. Substituting these into Eq.

(8), the "collisional" heating efficiency is given by:

2 2
m- ¢ wvex gex)Z(vex ) S . . 9)

a:
4e2|E+|2 <T> veff eff ex

In the "collisionless" regime, energy changes on the order of Eex OCcur with

frequency vege. From Eq. (8), the "collisionless" heating efficiency is given
by:

22
mm-c wvex EeXJZ(veff 55 v

IZ <T>7 v ) Vex eff ° (10)
+

o4

i 4e2|E ex

These formulas along with Eqs. (6) and (7) describe the dashed curves shown in
Fig. 3.

The results of this analysis may also be applied to ions if the wave pro-
perties at twice the ion cyclotron frequency are considered. The product ekc
at these frequencies is usually much smaller, resulting in much longer energy
excursion times; hence, Coulomb collisional effects, particle drifts or other
mechanisms may complicate the second harmonic cyclotron interaction. The pro-

duct emc2

for ions, however, may be on the order of a few keV, so that rela-
tivistic detuning is a slower process. Thus, the relativistic energy excur-
sion effect for ions is expected to occur on a much longer time scale with the

maximum energy attained during an excursion on the order of keV greater than

11



the minimum energy, provided no other processes occur on the excursion time
scale and the small gyroradius expansion does not break down.

A finite bandwidth (Aw/w), may also be important for ions if Aw/w is of
the same order as e. (For the second harmonic electron cyclotron frequencies
produced by gyrotrons in EBT, Aw/w is typically much less than €.)

In summary, nonlinear relativistic effects are very important for
electrons trapped near a second harmonic cyclotron resonance, even at very low
energies. The resulting energy excursion behavior can provide significant
heating and high energy tail formation in low energy electron distribution
functions, provided a phase randomizing mechanism exists. The excursion time,
the change in energy during an excursion, and the consequent heating have been
calculated analytically in a mildly relativistic approximation.
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Figure Captions

Fig. 1. The evolution of electron energy for different midplane values of

vy/v with no collisions. In all cases |E,| = 193 V/cm at 18 GHz with the

second harmonic resonance at the midplane.

(a) The energy evolution of an electron with vy/v = 0.4 in a typical stochas-
tic interaction with the second harmonic resonance.

(b) An example of an electron making a transition between "stochastic" and
"excursion" behavior, with the initial v;/v = 0.1.

(c) Typical energy excursion behavior observed when an electron is trapped in
the second harmonic resonance with v"/v = 0.0.

Fig. 2. A snapshot of velocity space after 0.3 microseconds illustrating the

regions where energy excursion interactions are important. Initially, all

electrons were at 26 eV with randomized phases and v;/v randomized between 0.0

and 0.6. |E+| = 193 V/cm at 18 GHz with the second harmonic resonance at the

midplane.

Fig. 3. The coefficient of second harmonic power absorption for a wide range

of collisionality, with vg, = 1/7ays (8c)2 = 5 x 1074, A1l quantities were

calculated based upon the average energy of only those electrons with v"/v

less than 0.2. The dashed curves show the analytic estimates given by Egs.

(9) and (10).

Fig. 4. The energy distribution of 64 electrons averaged over the last micro-

second of simulation, after 9 microseconds of evolution. The 150 eV Max-

wellian background scattering distribution is shown as a dashed curve. Ini-

tially all electrons were at 205 eV with phases and pitch angles randomized.

|E+| = 64 V/cm at 18 GHz, background density = 3 x 10} ¢m™3, and a mirror

ratio of 2.8.
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