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A KINETIC MODEL FOR DIVERTORS AND PUMPED LIMITERS
A.W. BAILEY™ and G.A. EMMERT

Fusion Engineering Program, Department of Nuclear Engineering
University of Wisconsin-Madison, Madison, WI 53706

ABSTRACT. In divertors and pumped Timiters, plasma flows along magnetic
field lines from the scrape-off layer to a material wall where it is neutral-
ized. The neutrals refluxing from the wall will undergo ionization and charge
exchange, producing cold ions. These cold ions will increase the electric po-
tential over that which would otherwise exist. Depending on the location of
their production relative to the peak in the potential, the cold ions will
flow down the potential gradient either towards the scrape-off zone or towards
the wall. This problem has been examined using a largely analytical, kinetic
model. Both the case of a uniform magnetic field and the case of a magnetic
field possessing a constriction (as in a bundle divertor) are presented. The

effects of charge exchange are included.

*Present address: Nuclear Engineering Department, Georgia Institute of Tech-
nology, Atlanta, GA 30332.



1. INTRODUCTION

Plasma flow along magnetic field lines to a neutralizer plate is a common
feature of both divertors and limiters in toroidal fusion devices and plasma
dumps in linear devices. The plasma striking the plate is neutralized and the
resulting gas molecules evolved from the wall interact.with the incoming
plasma by atomic processes, such as dissociation, charge exchange, and ioni-
zation. This produces cold ions which increase the plasma density near the
plate. If the electrons are sufficiently collisional to remain close to a
Maxwellian distribution, then the electrostatic potential will also increase
because of the Boltzmann relationship. Depending on where cold ions are pro-
duced (by charge exchange and ionization) relative to the maximum of the po-
tential, the cold ions will be accelerated either towards the plate, or up-
stream against the incoming hot plasma. The electrostatic potential also re-
duces the flow of hot plasma to the plate. Consequently, the potential can
play a significant roTe in the recycling processes at the plate.

The above discussion assumes implicitly that the magnetic field is uni-
form in the recycling zone near the plate. If the field is non-uniform and
expanding, as in a bundle divertor, then an additional complication arises.
The expansion of the field drops the hot ion density; this competes with the
increased ion density created by recycling. Depending on the amount of re-
cycling at the plate, the net effect can be either a positive or negative po-
tential relative to the upstream plasma potential.

A largely analytical, kinetic model for this interaction and recycling
process is presented here. The ion motion is assumed to be collisionless
(except for atomic processes) over the scale length for ionization and charge

exchange. The electrons are assumed to be isothermal and sufficiently close



to a Maxwellian distribution so that the Boltzmann relationship between densi-
ty, temperature, and potential is satisfied. These assumptions require that
the incoming plasma be relatively hot (> 100 eV). The magnetic field can be
either uniform or have an upstream constriction, as in a bundle divertor. The
model calculates the electrostatic potential profile in the quasi-neutral
region, and the particle and energy flux of jons, electrons, and neutrals
leaving the upstream plasma, entering the sheath and incident on the wall.

The uniform magnetic field version of this problem has also been treated
with a large kinetic code by Gierzewski et al. [1], who considered the possi-
ble atomic processes in greater detail. Our analysis, which uses a simplified
description of thé atomic processes, reproduces the significant features of
their calculation. For dense, cool plasmas, Coulomb collisional processes
become more important and the fluid treatments by Petravic et al. [2] and Seki
et al. [3] are more realistic in the collisional regime. The intermediate
regime, where the Coulomb mean free paths are comparable to the macroscopic
scale lengths, remains unexplored.

This paper is organized as follows. The model for a uniform magnetic
field is developed in Section 2 without charge exchange effects. The modifi-
cations due to non-uniform magnetic fields, as in bundle divertors, is de-
scribed in Section 3. Charge exchange between neutrals and ions is incorpor-
ated in Section 4. Results for a variety of cases are then presented and dis-
cussed in Section 5. In the following we frequently use the term "divertor"

for simplicity, but this is also meant to include pumped limiters as well.



2. UNIFORM MAGNETIC FIELD

Consider a plasma flowing along a uniform magnetic field and striking a
wall where it is neutralized. The neutral atoms and molecules emitted from
the plate re-enter the plasma and are re-ionized. This produces a non-uniform
density and potential near the plate, as shown in Fig. 1. It is assumed that
there is a single maximum in the potential as shown. This peak separates
space into two regions. In region I (see Fig. 1) the electric field
accelerates ions towards the plate whereas in region Il the electric field
accelerates ions away from the plate. The incoming ion distribution function
(vX < 0, x large) is chosen to be a Maxwellian on the basis that collisional
processes 1in the upstream plasma have sufficiently randomized the particle
velocities. The hot ion distribution function in the recycling zone 1is then
determined by Liouville's theorem. The hot ion density in both region I and
IT is calculated by integrating the distribution function, f, over velocity
space.

In region II the hot ion distribution function is

-Mv2/2Ti -e¢/Ti

fH = Ae e

in the populated region of phase space and zero otherwise. The hot ion

density is

/T2e/M)(9_-9(x]) - -MviiaT. mvéseT. —eolx)/T,
i 1l 1 1
= 2nA | dv, [ dv, e e e
0
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Fig. 1. Conceptual potential profile for hot plasma flowing to a wall in a
uniform magnetic field with cold plasma recycling.
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Y= v(x) il w —ul
= 27hAe ij-) / du, e by du e Lgmvix) , (1)

0 o)
where A is a normalization constant, M is the ion mass, T; is the ion tempera-
ture in units of energy, v, and v, are the parallel and perpendicular ion

velocities,

are the normalized velocities (u" > 0 corresponds to motion away from the
plate), ¢(x) is the electric potential at the point x along a field line, ¢,
is the electric potential at the potential peak, ¢, is the potential in the
throat of the divertor far enough away from the wall so that essentially all

of the neutral gas evolved from the wall has been ijonized before reaching that

point, and
e(o(x) = o)
Y(x) = T
i
(o, - ¢y
L e—

i

are normalized potentials. The upper velocity limit is set by requiring that
f = 0 for ions with velocities high enough to overcome the potential hill (see

Fig. 1), that is, where

2 .
wytw >y (2)



and Uy > 0. These ions would have been emitted by the plate. The plate is
assumed to emit only neutral particles in this analysis. Performing the inte-

gration in Eq. (1) gives

Nurp = AeTV[1 + erf(fwm =) ] (3)
X _+2
where erf(x) = _E,f dt e *
v 7o

is the error function and

A= s ()P e : (4)

It can be seen that A' is the density of downstream-going hot ions in the di-
vertor throat. In region I downstream of the peak in the potential, the hot

jon density will be

~/(2e/M) (6 -¢) - -Mv3/2T,  -mve/aT,  -ed/T,
n,, = 27A | dv, [ dv, ve e T !
HI ! IS
which becomes nyp = A'e-w[l - erf(fwm -v)] . (5)

Let T, be the flux of hot ions striking the wall. If a fraction fp of
the resulting neutrals are pumped away, a fraction (1 - fp) will reappear as
cold ions upon re-ionization. If f, is the fraction of those reappearing ions
which are ionized upstream of the point at which the potential peaks, a
fraction (1 - fx) will return to the wall. Those cold ions striking the wall

will also reflux as neutrals and a fraction of them will themselves become



cold ions which will strike the wall. The total flux of hot and cold ions to

the wall will thus be

I:'W
T= - f, -7,

If the plasma flowing to the divertor is hot, then ions produced by ionization
of neutral gas evolved from the wall will be born with energies that are small
compared to the hot ion velocity, and so their thermal motion can be ignored.
A cold ion can then be considered to have a velocity at a point such that its
kinetic energy is equal to the difference between the potential at that point

and the potential at which it was created. The cold ion density will be given

by

X '
no(x = ][ axt —S) . (6)

Xq Yo(x") = ¢(x)

The ionization source function S(x) can be written as
- dy
S(x) = Soh(w(x))-3; (7)
with h(x) normalized such that
[ n(e(x)) dy =1 .

Thus S, is the total number of cold ions created per unit wall area, and h(x)

carries the information about the spatial profile of S(x). Letting



(1-f)
o TT =T N =T, T (8)

S

the cold ion density can be written as

- v
nC=rwl-(1(iF§[();-f)/'2T_me—‘ (9)
p x R

The flux of hot ions to the wall will be

e¢m 0 Mvﬁ © Mvi
r, = -2mA exp(- T;_) {w dv, v, exp(- ET;) fo dv, v, exp(- ?T;)
2T. =y
=A ) o T (10)
The cold ion density becomes
1 "P lP 1
ne = Alpe ™ gy ) (11)
n Yo N
(1 -°f)
where P P

1 -1l - fp)(l - fx) )

The electrons are assumed to have a Boltzmann distribution
= L TY
ne e s
T

.i
where TE
e

To is the electron temperature and X is the ratio in the divertor throat of

the total ion density to the downstream-going hot ion density where the down-



stream-going region of velocity space is filled (as it is in this case). A
large value of X thus implies a high density of cold ions and a small value of
A implies a low density of cold ions.

The electric fields in the divertor will be weak except very near the
wall due to the fact that the mean free path for neutral ijonization will be
large compared to the Debye 1length; thus, the plasma can be assumed to be

quasi-neutral outside the sheath. For a hydrogenic plasma
ng = Ng = ny . (13)

So in region I

-y v
m™m ' -

Pj*' [ dy' _hiw') e - e lp[l - erf(fwm =v)], (14)
™ ] YYo=y

and in region II

S
m m ) ) -
P f gy M) VLV s erf(F—=9)] . (15)
My ] ‘

Let n=yn- v,

then, assuming n varies monotonically with x in each region,

-y
m n ' o -y
Pe [ dn' hn]) e ML W e'[1 % erf(v/n)], (16)

v 0 yn = n'

where the (=) is used in region I and the (+) is used in region II. Equation

(16) is the integral equation determining n. An Abel inversion [4] gives



-y T - ] Y '
pe M h(n) = 1_%_ fn dn' 2e Me™™ - oM 1t erf(vim)]
a "M e

Evaluating the integral gives the results

-y
pe M 1d 2x Tuh -1n
h(n) == (£ e e D(v/tn)
w I
(17)
" ", m
-/re e erf(/n) /me "(e -1)],
X -t2
where D(x) = [ dt e

o

is Dawson's integral [5]. Integrating the cold ion source profile, h, from
the potential peak to the throat yields f,, the fraction of the neutrals

ionized upstream of the potential peak, so

-y -
pe M fo = _2A D(Twm) - erf[v¢m) -l+e ™, (18)
Y7UT

Integrating from the peak to the sheath edge gives

¥ 2) s s Vs ¥
Pe M(1-f ) = £ D(Vr(wm = wsij e -e erf(vwm - ws) +e - e (19)

e(o. - ¢.)

_ S t
where ws = —_—_T?_—_—
and ¢5 is the potential at the sheath edge. Equation (18) is a transcendental
equation for y,, given f, and A. After solving Eq. (18) for ¥y, Eq. (19) can

be solved for ¥5. Only certain values of f, and X will give solutions that
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are monotonic in each region, i.e. decreasing as one moves away from the po-
tential peak. These limits can be determined by performing the integration

indicated in Eq. (26), giving

Penwm 1 ™ ™ “¥n
h(n) == {de [=-2vte ""D(vmn)] - vie Me" erf(v7)
/r n
-y iy (20)
e Fme MeN
/n

Now h(n) must be non-negative everywhere. Ionization creates cold ions; it
does not destroy them. Enforcing the requirement that h(n) > 0 at the di-

vertor throat (n = wm) in region II gives the inequality

-y TV -
e M e M1 T —1"1
A > [erf(/w—) + + l]{ [—-—‘ 2VT e D( T‘pm)} (21)
m v’m,pm ym V\Pm

and enforcing the requirement that h(n) > 0 at the sheath edge (n = ¥y - yg)

in region I gives

-y m -y m
Aole Serf(B ) r =S - e C){E— [—2
¥y - bs) T ¥s (22)
=t(y -y.) -
-2/Te M°S D(vEe = .7)]} 1

Choosing equality in Eqgs. (21) and (22) generally maximizes the energy
flow to the divertor. These two equations fix the value of both fy and A,
The energy flux is generally maximized in this case due to the fact that the
potential gradient is the steepest and so the cold ions in region I enter the

sheath with the greatest velocity. Also a low value of X decreases the po-

11



tential rise between the scrape-off layer and the divertor throat, as will
shortly be discussed, and so maximizes the particle flux into the divertor.
That the lowest value for X always gives the maximum energy flow has not been
proven; it is only an empirical observation. It is likely that the state
which maximizes the energy flux to the wall will be the one that is physically
realized, but it is also possible that some other condition will determine the
values of f, and A.

Given a value of A, it is possible to compute the potential in the di-
vertor chamber relative to the potential in the divertor throat. The po-
tential in the divertor throat will, however, generally not be the same as the
potential 1in the scrape-off layer. There will be a transition region of a
mean free path thickness between the scrape-off layer where the distribution
function is Maxwellian and the throat where the distribution function is
largely forward-going. Over this transition region, the density and potential
can vary. A precise calculation of the potential difference between the
scrape-off layer and the divertor throat is beyond the scope of this paper and
would require a spatially dependent Fokker-Planck analysis. However, a simple
estimate can be easily obtained by assuming that the downstream-going hot ions
flow collisionlessly from a Maxwellian distribution in the scrape-off layer to
the throat. The ratio of the ion density in the throat, Nyts to the don

density in the scrape-off layer, nyg, will then be

n ]
_E'.=_;‘.e <, (23)
s
e(o. - ¢.)
where \pc =—C—T—P—

12



and ¢. is the potential in the scrape-off layer. For Boltzmann electrons the

ratio of the electron densities will be

n -TY
ﬁﬂ =e ©, (24)

es

These ratios must be the same, so

A
In (Z)
or IPC"?TT. (25)

For the case of no pumping with X = Amin = 2.63 and © =1, y. = -0,137. For
larger values of A, the magnitude of y. will be larger.

If the pumping is strong enough, it is possible to have a potential which
drops monotonically from the scrape-off layer to the wall. This is a limiting
case of the previous treatment for region I, i.e. with f, = 0 and Yy = 0. In
this case the equation for quasi-neutrality (29) reduces to

i’ -y -y

P = D(V-rws) e S-e Serf(//y )+e S-1. (26)

2
nT
Here the requirement on A for a monotonic potential profile within the di-

vertor reduces to

11 W -1
— | -2/te “D(/Te )]} (27)
s —r &V s

As before, the maximum energy flux will generally exist for the smallest value

13



of A which gives a monotonic profile. Purely falling solutions can only exist
for A < 2, since otherwise the potential would be higher in the divertor
throat than in the scrape-off Tlayer. For Te = Ty, monotonically falling so-
lutions are only possible where fp > 0.60. Even for X < 2 there can be a non-
negligible cold ion density in the throat; but these ions will be traveling
very slowly, so thé cold ion flux to the scrape-off layer will be negligible.
The cold ions are recycled by the potential back to the neutralizer plate.

The other limiting case, that in which the potential peaks at the sheath
edge, has been discussed in a previous paper [6]. This case is always found
to give a smaller energy flow than the case in which the potential peaks away
from the wall, and thus is not expected to occur. Before presenting results
for a uniform field, we consider the extension of this model to bundle di-
vertors and then include charge exchange effects. Various results for typical

cases will be presented in Section 5.

3. BUNDLE DIVERTORS

Bundle divertors have an additional complication compared to poloidal di-
vertors and pumped limiters in that they possess a magnetic constriction in
the divertor throat. This can be modeled by dividing the plasma into three
regions: the scrape-off layer, the divertor throat, and the divertor chamber,
each with its own value of the magnetic field strength (see Figs. 2 and 3).
A11 of the reionization of neutrals from the wall will be assumed to occur in
the divertor chamber. Jumps in the electric potential can occur at the steps
in the magnetic field. In an actual device, of course, changes in the mag-

netic field and electric potential would be smooth.

14
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Fig. 2. Conceptual model for the magnetic fields and electric potential pro-
file in a strongly pumped bundle divertor. The jumps in the magnetic
field cause jumps in the electric potential.
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Fig. 3. Conceptual model for the magnetic fields and electric potential pro-
file in a weakly pumped bundle divertor. The jumps in the magnetic
field cause jumps in the electric potential.
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Fig. 4. The hatching shows the populated region of velocity space for hot
jons just upstream of the magnetic constriction in a bundle divertor
with an electric potential that falls monotonically from the scrape-
off layer to the divertor target. A portion of the downstream-going
ions (VH < 0) will mirror; the rest will flow to the divertor throat.

>
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First consider the case of a potential that is purely falling from the
scrape-off Tlayer to the divertor plate, as shown in Fig. 2. The case in which
there is no neutral reflux has previously been treated by Emmert [7]. A simi-
lar treatment with neutral recycling is possible. Consider ions flowing
through the divertor. Just upstream of the magnetic field constriction the
ion velocity space will be as shown in Fig. 4. Hot ions will flow downstream
into the divertor but a fraction of them will mirror off of the increase in
the magnetic field strength. There will be an empty region of velocity space
since there will be no upstream-going particles corresponding to the down-
stream-going particles which are able to pass through the divertor throat. On

the boundary between the empty and filled regions of velocity space,

2

2 2 2
Uiy

=u +u

FUup T Uy ULy

where the "t" and "u" subscripts refer to the values in the divertor throat
and to the values just upstream of the magnetic constriction, respectively.

Here R, is the upstream mirror ratio, i.e. Bthroat/Bscrape-off; and

e(¢u - ¢t)
Y =
u li )
So for the reflected i 2 >uﬁ”+wu (28)
o for the reflected ions Uiy —F;_:_T_"

If the ion distribution function in the hatched region of velocity space shown

in Fig. 4 is taken to be Tlocally Maxwellian, the ion density at the upstream

18



point will be

‘ 2 2
27, -e¢ /T. o TG e -u
3/2 Uy 1
n, = 27 (-MlJ /2. ~u [ du, e Io du, uge
2 2
2T . -e¢p [T, = -u; = -u
+ 27A (-M1J3/2 e 417 du, e ! J du, uge .
0

2
//(“u+qu/(Ru-l)
where the first term represents the downstream-going ions and the second term
the jons that reflect off of the stronger magnetic field in the divertor

throat. Performing the integrations gives

My = A'(e b + e/:i u) (29)
Yu
Ry
where Y, = T (30)

In the divertor throat, the hot ion velocity space will be as shown in
Fig. 5. Only downstream-going ions will be present. There will be an ad-
ditional empty region of velocity space due to the potential drop, ¥,, between
the upstream point and the divertor throat. The boundary between the filled

and unfilled regions of velocity space will be set by the conditions that

so the density in the throat will be

19



Fig. 5.

Vi

The hatching shows the populated region with an electric potential
that falls monotonically from the scrape-off layer to the divertor

target. The potential drop, y,, produces an empty region in the
downstream-going velocity space (vH < 0).
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2T. ed /T ) -uy = -u
Ny, = 2mA (—Ml)3/2 e U1 du, e Iy du, u,e +
Ny "Yu(lpu'ui)
-/EE —uﬁ w -ui
+ du, e [ dujupe ] (32)
-Q0 o

Quasi-neutrality in the divertor throat implies that

R, -1 -vv a
r=2 ) —e YYD [ T) 1 -erf(vF), (33)
u

where A, as before, is the normalized electron density in the divertor throat.

Quasi-neutrality at the upstream point implies

™V -y by
e Y=o Uit . (34)

dn

A can be eliminated to give an equation for y;:

<Y,V
-y wu =Ty - =Y, ¥ / :
(e Y +E& Je Y=2 ——e YU D( fe2g) + 1 -erf(/3) . (35)
Y u

With this equation it is possible to solve for the value of y,. A can then be

found using either Eq. (33) or (34).
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By conservation of energy,

+ud, =+ ui + Y, (36)

where the right hand side refers to the values in the divertor chamber. Now
R u? = u? (37)

where Rd is the downstream mirror ratio, Bthroat/Bdivertor chamber: In the

divertor throat there is the requirement that

from Eq. (31). Using Eqgs. (30), (31), and (37), this requirement becomes

R
d 2 2 2
v+ RJ up <uftul+ . (38)

Rl <l vl ey (39)

These two conditions determine the populated region of velocity space. If

Rq < Ry (see Fig. 6), the hot ion density will be
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Fig. 6.

>
Vi

The hatching shows the populated region of velocity space for hot
ions in the divertor chamber of a bundle divertor with an electric
potential that falls monotonically from the scrape-off layer to the
divertor target.
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2
2T. 3/2 "e¢/T. "(Yu;Yd)‘Pu“‘P gu?l -/(7un+¢)/(Rd"l) _u2
n, = 27A 'Ml' e Yy du, e / du, u,e
=Yy -y 2
"y A, (o, mmu?)
-~ 2 Ml /(R -1) 2
u “uy I d -u
+ du, [ du, ue ]
=Y.V
- d Y, ¥ (v, -1V
= e V1 - erf(A=F)] - E— [1 - erf(A T =T 9] +e MY O
/ﬂ u
« —2 o/, = %, = W) - D(/Tv, = T /g 0%, = w))1} . (40)
Yh - 1 g
Ry
where g = Ry - 1 (41)
Ry
and Yh = Ru—_-R-(I . (42)

If Rq > R, (see Fig. 6), the hot ion density will be
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2
=/§ =V -2 /|Yh|(u,,+w-wu)

-e¢/T, 2T, u -u
3 I
ny = 2mhe 1 —ﬁl) /2[f du, e fo du, ue
A SN EMER]
Yo/ Y4 ‘Pu v
2
A4S AP -
TR 2 e (Rg1) 2
+ du, e fo dul_ule
-de "Yh‘pu (Yh'l)IP
= A {eV[1 - erf (T =¥)] - &— [1 - erf(A B = 79)] - ¢
Ny /T_:—VE
x [erf (VT =¥ )TV IvgT¥, = ¥]) - erf (V1T = v, 1(y, - ¥1)]} . (43)
The hot ion flux to the wall will then be
2 2
2T, -e¢. /T, o -y, -u
_ _ 2mA iy2 t' i | 1
LN R ()" e Jauue dujue
Y A (v, u?)
My -ui o -ui
+ {Q du, ue fo du  ue
(v 1)y
‘ 2T, u u =Y,V =P
-1
- ea_ 7rM1 (e T e UU Lo u) ) (44)

Equation (13) then becomes
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/T f“ h(n')
Tp T dn' ——2_=n_(n) - n,(n) , (45)
W i o0 M- € H

where n = ¢, - ¢ as before. The maximum energy flow occurs for the case in
which Y, = 0, so that there is no change in the potential at the transition
between the divertor throat and the divertor chamber. Abel inverting Eq. (45)

and evaluating the expression at the sheath edge (n = -¥s) gives

m 1.5 ne(n‘) - nH(n')
rep / == [ dn . (46)
W ’ZT,I_ ™ . ,————,—_ws —

In this case there is no solution for the integral in terms of familiar

functions. Either the integral must be computed numerically or approximations
must be made for the integrand.

If the pumping is decreased, A will rise as cold ions flow into the di-
vertor throat. Above a certain point a sufficient number of cold ions will be
present to raise the potential in the throat high enough to aliow cold ions to
flow to the scrape-off layer. In this case a peaked potential profile will
form in the divertor, as shown in Fig. 3. Cold ions produced upstream of the
potential peak (region II) will flow out of the divertor, while cold ions pro-
duced downstream of the peak (region I) will flow. to the wall. In order to
determine the potential in region II, it is necessary to solve simultaneously
an equation for quasi-neutrality in the divertor chamber and an equation of
quasi-neutrality in the divertor throat.

Next we consider region II of the divertor chamber. In addition to the
downstream-going ions, there will also be ions that have reflected off of the

peak in the electric potential. The hot ion density will thus be
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Ve _ 2 ) /(R 1)
uy I d

The hot ion flux to the wall will be

_u2 f(u """P)/(Rd'l)

-y 2T, 0
3/2 I
Ty = ~2mhe " ("1‘711_J / L, duy uye fo du,
_ Y.y
= Al T'i (e ‘pm . € d'm
™ Y4

The electron density will still satisfy the Boltzmann relation

= L TY
ne Ae .

The equation of quasi-neutrality in the divertor chamber
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can be solved as before by Abel inversion to give
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Now a fraction f, of the cold ions must appear in region II, so the ionization

distribution function can be integrated out to give

Y ¥
- d*m 2 v -y
Ple " - & )fx=ﬂedn(¢‘m—‘wrm- )-ederf(/w_Tm-d)-ed (49)
d /7T
-y Y4 Y “YaVq Yd¥m
+e M4 & erf (VY0 - 9.7) + & - &
Yd d'"m d Yd Yd
e(¢d - ¢t)
for Yy =T —

where ¢4 is the potential just downstream of the constriction in the magnetic
field. This is one transcendental equation of ¥4 and Ve
A second equation relating Y4 and Y, is obtained by requiring quasi-

neutré]ity in the throat of the divertor. The hot ion density in the divertor

throat is
2 2
-e¢, /T. 2T, 0 -us @ -u
3/2 1 L
Ny, = 2mAe v (—Ml) / {w du, e fo du, ue
- 2 (v -u’) 2
m -u d*'m "l -u
+f/ duge ! J du u, e *
f L7L
0 0
. 2Rg = 1 =7y (50)
=A'[1 +erf(/_) - ——— ¢ (v = 10%,)] .
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The equation for quasi-neutrality in the divertor throat is
APR,  -v TYa¥%m Vm .
—d(e m_e ) [ dn' h(n') =>‘A"”Ht'
/n Td 0 g = 1

Now h(n) is zero for n > ¥, - ¥4 and is given by Eq. (48) for n < yp - ¥4,
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(51)
= m/y, (AA' - nHt) .

The integral in Eq. (51) cannot be solved in terms of well-known functions.
Numerical integration or further approximations are needed for a solution.
This is the second equation for V4 and Y, which must be solved simultaneously
with Eq. (49).

In practice, at typical bundle divertor mirror ratios, there is 1little
difference between the potential at the peak, yp, and the potential immediate-
1y downstream of the magnetic constriction, ¥4; most of the potential vari-
ation is in the region in which the magnetic field varies. It is a reasonable
approximation then to assume that all cold ions in the divertor throat have
essentially the same velocity, that due to the energy of the potential drop
where the magnetic field changes. This reduces the problem to a single
equation with a single unknown. In this approximation, the equation for

quasi-neutrality in the divertor throat is

- q) ‘
RgPF, ¥ o d'm IRk T —
d X (e m - e ) =\ - 1 - erf(/-q—);) +___d___. e d mD( Yd - l l’)m) (52)
Yy Yd ’

m

which can be solved for y.



In order to have a potential which has no wells, it is necessary that the
potential at the point immediately upstream of the magnetic constriction not
have a potential higher than that in the throat. The minimum value of A for
which ¢, < 0 can be determined by solving for quasi-neutrality at the upstream
point. If Y, is small, as is usually the case, then when by = 0, the hot ion

density at the upstream point will be

and the cold ion density is just that in the throat divided by the magnetic

field expansion, i.e.,

1 A-1
R R R
Y, u
or, using Eq. (30), =1+ Yy . - (53)

The potential in region I would be computed similarly to the case for a

purely falling potential, only here

“YqV
n (¥) = A1 - erf(/§ = V)] - e/__ [1 - erfOA T, =901 . (54)
Y
d

Solving as before, the equation for quasi-neutrality will be
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In this case a fraction (1 - f,) of the neutrals will ionize in region I,

hence integrating out h(n) gives

“¥n e—dem 2n T Vs
Ple ™ - J(1-f)="L2e *D(vTT_~0.7) -e °erf(v3_-¥_)
X m 3 m s
d 453
(55)
- - o =y ¥ =Y ¥
+e Ys -e n + & Yd ’ erf(VYd(w - wsi) - & Yd ° + & Yd "
d d d
The minimum value of A for monotonicity in region I will be
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Requiring the minimum possible value of A for monotonicity in both regions I
and II will fix the value of f,. In practice, this choice seems to maximize

the energy flow to the divertor.

4, CHARGE EXCHANGE
Thus far, the formation of cold ions in the divertor chamber has im-

plicitly been assumed to be due to electron impact ionization. Actually, at
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typical divertor temperatures, charge exchange will be the dominant process in

the formation of cold ions [8]. The main effect of ionization and charge ex-

change is the same: the production of cold ions. Only the distinctions be-
tween charge exchange and ionization have been ignored.‘ Explicitly dis-
tinguishing charge exchange from ionization produces three effects:

(1) The hot ion density in the divertor will be lower since charge exchange
will replace hot ions with cold idns.

(2) The cold ion density will increase, since charge exchange will replace
cold ions which have acquired a velocity by falling through a potential
gradient with slower cold ions, and the same flux at a slower velocity
implies an increased density.

(3) The total ion flux to the divertor will increase, since ions that have
been treated as reflecting off the potential peak may charge exchange
before leaving the divertor. In an enclosed chamber, hot neutrals hit-
ting the side walls will also contribute to the neutral densify.

The production of cold ions by charge exchange is already included in the
cold ion source in Section 2. The other effects of charge exchange are small
enough to treat them as a perturbation. The potential and density profiles in
the divertor can be initially computed neglecting charge exchange; charge ex-
change effects are then computed using these profiles, new potential and
density profiles computed, and the system iterated until it converges.

Let n, be the density of neutral gas in the divertor. The net source

rate of cold ions will be

'SC = none<cve>1' * no"H<°VH>cx : (57)
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Here the first term represents the production of cold ions due to electron
impact ionization of neutrals and the second term represents production due to
charge exchange of hot ions with neutrals. Since charge exchange of neutrals
with cold ions does not alter the number of cold ions, only their average
velocity, this reaction does not appear in Eq. (57). Therefore,

n_ = >

<oV >. + n.<ov. >
° ne e i H H cx

The decrease in the flux of hot ions due to charge exchange will be

dx

_ 3

where f(x,vH) is the hot ion distribution function. In terms of n,

dry, [ 3 : ) Sc(n)
-— = [ d7v, f(n,v,) o ,
dn H H' “ex ne(n7<ove>i + nH(n)<ocva>
_ dx
where Sc(n) = SC(X(n))'Hﬁ .

The relationship between the source function Sp(n) and the normalized source

function h(n) is

Sc(n) = FwPh(n) s

quh(n)

v, > .
<ov >. + n, <0 v,?>
cxH ne e i H "cx H

dry 3
S0 T J d vy fn,vy)<o

In region II it is convenient at this point to divide the ion flux into the
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downstream-going ions and the reflected, upstream-going ions. Averaging over
the velocities gives

L

+
n,{n')<ov,> T Ph(n)
r,(n) - ri(n) = -f dn' H Hex w
n

] + ]
ne(n )<ov >, + nH(n )<ovH>

€1 CcX

where Fg is the downstream-going ion flux in the absence of charge exchange
effects and n; is the downstream-going hot ion density. For a uniform mag-
netic field, vy = 0. If the approximation is made that the hot ion density is

diminished to the same extent as is the flux, then

() nitn) . ?m_wd o n(n')<ov,>_ T Ph(n')
0,y 0, N 0 . . (58)
ry(n) n(n) n 2 [n_(n")<ov >, + ny(n")<ov,> ]

For particles that reflect off of the rising potential, it is necessary to

integrate to the particle turning point and back, thus

- |20l “(nt !

nH(n) . fm d i nH(n )<ch>CwaPh(n ) (50)
= ' +, 0

ng (n) Nearn oM [ng (n')<ov >, + ny(n')<ov > ]

where n; is the reflected hot ion density, ng and F? are the reflected density
and particle flux in the absence of charge exchange corrections, and Nturn is
some average turning point. A reasonable approximation is that ny,., = 1/2 n,
i.e. the average reflected particle turns halfway between the observation
point and the potential peak.

In region I (beyond the peak in the potential) there will be no reflected

ions. The diminution in the downstream-going flux can be computed as

r

+(n) ) n;(n) _ I, (n=0) n n;(n')<ch> I Ph(n')

CX W
P nm (n=0) o 19 )[n_(n')<ov >, + n,<ov,> ] (60)
+ n nH n o n= 0 + n ne n GVe i nH GVH
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where the first term on the right hand side is the fractional charge exchange
loss in region II; i.e. n =0 at the potential peak.

The hot ion flux to the wall when charge exchange effects are included is
r, = Ty(n=v -v) = T2(n=y -y,) M (61)

n=y -¥y)
that is, the flux entering the divertor minus the reflected portion that does
not undergo charge exchange.

Charge exchange of cold ions substitutes a slower cold ion for a faster
cold ion and so increases the density of cold ions without directly affecting
the cold ion flux. The increased density due to cold jon charge exchange will
be the charge exchange rate times the difference in the inverses of the cold

ion velocity due to the charge exchange. That is

h{n')
n___(n) = rP /o f dn'
co n (n’ )<ov > + nH<0vH cx

xI‘Pf dn" h(n")( L - L ) .
) /n = n’ yn = n"

(62)

Then Eq. (45) becomes

h(n') _ - -
TP / f dn' —;-:—;— = ng(n) = n,n) - n_ (n). (63)

The value of n.,, can be computed using the source profiles from the previous
iteration. The solution can be iterated until the values of h(n) converge.
The above technique used to account for charge exchange effects is quite

approximate and cannot be expected to give results of high accuracy. Error
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has also been introduced from the neglect of reionization of charge exchange
neutrals and the assumption of a single value of the charge exchange cross-
section, independent of the specific ion energy. It turns out, however, that
the effects of charge exchange are usually fairly small. Thus, highly accu-

rate procedures are not required.

5. RESULTS AND DISCUSSION

The model developed in the previous sections has been used to calculate
the potentials and particle densities for a variety of divertor configurations
and plasma parameters. In addition, the power carried by ions and electrons
entering the divertor chamber, the power carried by ions and electrons inci-
dent on the divertor target, the power carried by neutrals hitting the di-
vertor walls, and the power carried by cold ions going from the divertor
chamber to the scrape-off layer in the torus have all been evaluated.

Table I shows a number of input and output parameters from ten repre-
sentative sets of divertor configurations and plasma parameters. Table II
explains the meanings of the listed parameters. The absolute magnitude of the
jon and electron temperatures do not explicitly enter the calculations. They
only affect the calculations through the ratio of the charge exchange cross-
section to electron impact ionization cross-section °cx/°i' Half of the cases
have © = 1 and o.,/o; = 50, values appropriate for Ty = Te = 100 eV [sl.
Several other cases are treated as well. In all the cases the values of f,
and X are chosen so as to give the maximum energy unload for the given values
of Ry» Rys fos T, and ocy/o;. Case 1 (Fig. 7) depicts the case of the minimum

pumping (fp = 0.6) which gives a potential which falls monotonically from the
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TABLE I. PARAMETERS FOR A VARIETY OF REPRESENTATIVE DIVERTOR AND PLASMA CONFIGURATIONS

Case Ry,Rq fp T oex/oj A fx ¥m L be Qe Qi Que QH Quc Qun
1 1.0 0.6 1.0 50, 2.0 0.0 0.0 -3.4 0.0 7.8 2.0 2.9 4.2 2.2 0.5
2 1.0 0.0 1.0 50. 2.8 0.35 0.18 -3.3 -0.17 8.6 1.6 2.6 2.2 4.5 0.9
3 2.0 0.36 1.0 50. 2.0 0.0 0.0 -3.6 0.0 7.0 1.0 2.6 2.1 3.1 0.3
4 2.0 0.0 1.0 50. 2.4 0.25 0.18 -3.3 -0.09 8.4 0.8 2.8 1.5 4.6 0.4
5 4.0 0.0 1.0 50. 2.1 0.14 o0.27 -3.3 -0.4 8.5 0.4 3.0 0.8 5.0 0.2
6 1.0 0.0 1.0 0. 2.6 0.35 0.22 -3.2 -0.14 9.7 1.4 2.6 3.6 3.5 0.0
7 1.0 1.0 1.0 270. 3.6 0.37 0.11 -3.,6 -0.29 7.1 1.4 1.8 1.1 4.3 1.4
8 2.0 2.0 1.0 0. 2.4 0.24 0,20 -3.3 -0.09 7.9 0.8 2.7 2.3 3.7 0.0
9 1.0 0.0 3.0 67. 3.4 0.41 0,10 -1.0 -0.13 2.5 1.7 0.7 1.2 1.3 1.1
10 2.0 0.0 3.0 67. 2.4 0,28 0.18 -1.0 -0.05 2.6 0.9 0.9 0.8 1.3 0.4
RysRq Ratio of the magnetic field strength in the divertor throat to that in the scrape-
off layer and divertor chamber.
fp Fraction of the ions and hot neutrals striking the wall that are pumped away before
recycling.
T Ratio of the hot ion temperature to the electron temperature.
255 Ratio of the charge exchange cross section to the electron impact ionization cross
o section.
A Normalized electron density in the divertor throat. If the ion density is a half-
sided Maxwellian, then A = 1.0,
fy Fraction of the cold ions created which are born in region II and so flow back
towards the scrape-off layer.
bm Normalized maximum potential in the divertor chamber, relative to the divertor
throat, e(ép = ¢4)/Tj.
Py Normalized potent1a1 at the wall, relative to the divertor throat, e(¢, - ¢4)/T;.
Ve Norma11zed potential in the scrape-off layer relative to the divertor throat, i.e.
e(o. = o4)/T5
Qe Net energy f1ux from the electrons in the scrape-off layer.
Q; Net energy flux from the ions in the scrape-off layer.
Qe Energy flux to the wall from the electrons.
QuH Energy flux to the wall from hot ions.
Qe Energy flux to the wall from cold ions.
Qun Energy flux to the wall from neutrals.

The energy fluxes, Qas Qi Ques Quu> Quc> Qun» are normalized to n;T; /T /M, where n; is the
ion density in the scrape-off layer.
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Fig. 7. Electric potential and density profiles for the case with the minimum
pumping for an electric potential that falls monotonically from the
scrape-off layer to the divertor target in a divertor with a uniform
magnetic field. Potentials are shown relative to the scrape-off
layer potential. Te = T3 =100 eV, X = 2.0.
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scrape-off layer to the target plate in a uniform magnetic field. Case 2
(Fig. 8) depicts the same situation with no pumping.

Case 3 and case 4 (Fig. 9) portray a bundle divertor with a mirror ratio
equal to 2, with different amounts of pumping. A monotonically falling po-
tential is possible with less pumping (39%) with a bundle divertor than is re-
quired with a uniform magnetic field (60%). This is because the downstream
expansion in the magnetic field reduces the ion density and contributes to the
falling potential.

Case 5 treats the case of a bundle divertor with a mirror ratio of 4., If
there were no electric field and no refluxing ions, the hot ion energy flux,
Q;, would equal 2/R,; e.g. if the upstream mirror ratio were 2, about half of
the ions encountering the magnetic constriction in the divertor throat would
be reflected, and about half would enter the divertor. The electric field and
the refluxing of cold ions does not alter this enormously.

The electron energy flux is not strongly dependent on the mirror ratio
since at Tlower ion fluxes the electric potential drop from the scrape-off
layer to the wall is greater; i.e. electrons must be more strongly repelled in
order to give ambipolar flow to the wall; and so the energy per particle
striking the wall is greater. Cold ions will be accelerated to the wall as
well.

Cases 6-8 depict situations with different amounts of charge exchange.
Charge exchange converts hot ions into hot neutrals which reduces the ion
current to the wall, and so the wall sheath potential drop increases. Very
large amounts of charge exchange, as in case 7, are not well handled with the
Tow order charge exchange corrections that are included in the divertor model.

Still, the qualitative effects of charge exchange should be correct.
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Fig. 8. Electric potential and density profiles for the case of a divertor
with no pumping and a uniform magnetic field. Potentials are shown
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In cases 9 and 10 the hot ion temperature is three times greater than the
electron temperature. lons are frequently hotter than electrons in the
scrape-off layer of tokamaks. Compared to hotter electrons, cooler electrons
require less of a potential difference to produce the same change in the
electron density.

The electron energy flow to the wall 1is the value for a Maxwellian
electron distribution where the wall potential is set by requiring ambipolar
flow to the wall. Secondary electron emission is ignored. The ion energy
flows are computed by taking the energy moments of the ion distributions. The
electron energy flux from the scrape-off layer is set equal to the difference
in the total energy flux to the wall and the net ion energy flux from the
scrape-off layer. Details are given in Appendix A.

In most cases, while the energy flow to the plate is primarily due to
ions, the energy loss from the scrape-off layer is mostly electron energy.
This is because the electrons are responsible for maintaining the electric
potential that accelerates the ions into the plate. When the electron temper-
ature is considerably lower than the ion temperature (cases 9 and 10), the .ion
energy loss is a more significant fraction of the total energy loss from the
scrape-off zone.

The results presented here are in substantial agreement with the numeric-
al simulations by Gierzewski et al. [1], except for the fact that here the ef-
fects of charge exchange are more pronounced. The discrepancy may be due to
the fact that here all hot ions that charge exchange are assumed to strike the
divertor end or side walls as hot neutrals, while they follow these charge ex-
change neutrals and allow them to reionize or escape the divertor. The treat-

ment here is more suitable for a constricted divertor channel while that of
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Gierzewski et al. is more suitable for a more open situation such as is found
with a Timiter.

In their kinetic simulations of plasma flow to a Timiter in a uniform
" magnetic field, Gierzewski et al. also find a minimum value for the cold ion
density in the divertor. For the case with no pumping and Te - Ty = 1 keV,
they find the minimum value of the ratio of the cold H2+ jon density to the
hot H* ion density at the potential peak to be equal to approximately 3.6 [9].
The model presented here neglects the initial formation of H2+ ion and treats
only the fully ijonized H* jons. Here the ratio of the cold ion density to the
hot ion density is 8.1 where °cx/°i = 270, as 1is appropriate at this tempera-
ture (case 7). A better match is obtained with o.,/o; = 50 (case 2), the
ratio being 3.4. Lower cross section ratios also give better agreement in the
value of the peak electric potential. Gierzewski et al. find y, = 0.18. Here
the values are ¥p = 0.11 for o.,/o; = 270 and Y = 0.18 for o, /o5 = 50. The
effect of reionization of charge exchange neutrals can be introduced qualita-
tively by reducing the ratio °cx/°i; this would bring our results into closer
agreement with those of Gierzewski et al.

The original simulation of Gierzewski et al. only carried the compu-
tations up to the potential peak. Computations have now been performed which
carry the simulation beyond the peak and through the plasma sheath [10].
These simulations indicate that only a small fraction of the cold ions pro-
duced will reflux to the wall, while here it is found that profiles are possi-
ble in which the majority of cold ions reflux to the wall and that these pro-
files give the maximum energy unload. The discrepancy has not yet been re-
solved. The amount of recycling in the divertor chamber is important in that

it alters the energy flux to the target plate. If the region of electric
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field pointing towards the plate is large enough, then sputtered wall material
will be ionized in this region and returned to the plate rather than entering
the main plasma. Morse et al. [10] have not yet extended their simulations
from the divertor throat back into the scrape-off layer. Thus, there is as
yet no check on the accuracy of the simple estimate (25) used here for the
potential difference between the scrape-off layer and the divertor throat.

The results presented here are also in qualitative agreement with the
fluid simulations of Petravic et al. [2]. They find that in weakly pumped di-
vertors there is a large increase in the density near the target plate. A
similar density rise is also predicted here, as well as in the simulations of

Gierzewski et al.
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APPENDIX A. ENERGY FLOW

The energy flow to the divertor can be calculated from an energy balance:

Energy from the scrape-off layer = Energy to the divertor walls

or in more detail

Electron energy from the scrape-off layer + Hot ion energy from
the scrape-off layer - Energy to the scrape-off layer from cold
ions = Electron energy to the divertor target + Hot jon energy to
the divertor target + Cold ion energy to the divertor target + Hot
neutral energy to the divertor walls + Cold neutral energy to the

divertor walls .

A1l of these except the electron energy from the scrape-off layer can be
calculated explicitly. That final quantity can be determined from the energy
balance. All the following assumes that the electrons are responsible for
maintaining the potential profiles and the energy which ions acquire from
falling through a potential difference ultimately comes from the electrons.
For a potential that falls monotonically from the scrape-off layer to the

divertor target, the hot ion energy loss from the scrape-off layer will be

2
. o Aulry )/ (R ~1) 2
Qq = 4A / du, uge / du, ue (u" + ul)
0 0
(A.1)
- Rz - (L= v )R, = DAL + v 9.) e-wc/(Ru-l)
YR, - 1)
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where A = —MZEU— e A . (A.2)

The factor Rd/Ru accounts for the change in the area of a flux tube in a

bundle divertor. A uniform beam of cold ions with velocity

would have an energy flux per unft area of A.

For a peaked potential, there is the requirement that
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and also the requirement that
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If R, > Rqs the hot ion energy loss from the scrape-off layer will be

2
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Y~ ¥e
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and in the case where R, < Ry it will be
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Both expressions can be integrated to give
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Only the first term will be present for a uniform field.
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For a monotonically falling potential, the hot ion energy flux to the

wall will be, for Rd < Ru

2
R vy Tt _,2 i )/ (Ry-1) 42
o, =ak e C My d i d Y+ ud)
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u d d
Y =(v,,=1) (v, /Y )
u h u’ 'd’u
x (= )1 - (v - 1)(75 LR
. -(Yh-l)wu
- (1= vy - Dy, =) e 11
ed,
fOY‘ ww = T__ . (A.12)

where ¢, is the potential on the wall side of the plasma sheath. For the case

where R, < Rd it will be

240 -
N Rd vy /(Yu/Yd)wu“ww -u% //Ith(uﬂ+ww lPu) -ui 5 2
Qu = A e [f duy e =~ J du, uje “(uf +uf)
u o 0

2 Muley )/ (R -1) .
© u, I "w d u, 2 2
+ [ du, e / dujue “(uj +ul)]

SN °
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R, ¥ -y Y 2+Y ¥ =y Y,V
.5 d Tc _ u _ _u'u u'u W hiur 2
= A %, e “{(2 + v, " ¥le e ( > ) +e [I_:_7;
R Y (v, =1 (v /Yy v
AR (CR DGy, - %, )e o (A.13)
(v, =1) (v /Y, )¥
- (1= Gy - Dy, -y e MW

For a rising potential the energy flux to the plate will be

2
~ Rg Vb -u% VQu"+w )/(Rd Y -ui 2 2
Qu=Age / du, ue duj uje “(up +u)
“ v °
m'w
R, ¥ v Yd%m R+ v,y +R, - 1)
~d "¢ m_e d d'"m d
=Apre “(2+y -yl M- [( - tv -y )]
R: m W Y4 Yq(Rq = 1) m W
(A.14)
The energy cold ions return to the scrape-off layer will be
Y Ry Tm-wc PT_h(n)
Q.. = Ae dn ———— (¥_ -y - n) . (A.15)
sC Ru 7o e L
Now h(n) = 0 for n = y, =~ wa and
AlVZTi/'"M d n ne(n') - niH(n')
h(n) T dn' (A.16)
™ PI‘W n - n'
so this will be
T Ry e ?m ( Y ng(n') = nsy(n')
Q. =— e dn (y_=-4¢_ =-n dn' (A.17)
sC &R, o m o c an 7 N ——
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Solving gives

v -y
* R, v "m*d vy, = ¢
A d "c 1 d ‘¢ '
Q ="—pe [ dn'[ + 2/ =9, -n][n(n') -n,(n")].
sC = Ru o lwm =5 m d e iH
(A.18)
Similarly, the energy flux from cold ions falling to the wall will be
v -b
¥ Ry v "m7s v - ¥
A d ¢ ' S W
Q =-pme [  dn'[ + 279 -9 -nn.(n') - nyn')] .
we = Ru o /wm =Y, - = m S e iH
(A.19)

These integrals must be solved numerically, or approximations must be made in
order to do the integration.
The wall potential vy, can be computed by requiring ambipolar particle

flow to the wall. This gives

T
1 2 W m
b, == In[f ———P/m (L +C_) /ql, (A.20)
W T XA|QT_17EM- se /;-

where C;o is the secondary electron emission coefficient for the wall material
and m is the electron mass.

The electron energy flux to the wall will be

R ] 7

d c W
Q =2 e e / l . (A.21)
we Ru m13

In all cases in this chapter the effects of charge exchange have been

ignored. The hot and cold neutral energy fluxes and the corrections to the
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jon and electron energy fluxes are usually fairly small. They can (and have
been) numerically included in computations, but are not presented here.
Using all the expressions, the electron energy flux from the scrape-off

layer can be computed.
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