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I. INTRODUCTION

The problem of calculating mass transfer rates for a pure vapor conden-
sing at an interface with its own liquid phase has received the attention of
kinetic theorists for many years. Ih the vicinity of the vapor-liquid inter-
face the mean free path of the vapor molecules is comparable to the scale
length of the gradients if the fluid dynamic quantities and the deviation from
local equilibrium is significant. This region is called the Knudsen layer.
Away from the condensing surface the opposite condition is true and the vapor
can be described on the basis of fluid dynamics (see Fig. 1).

If a certain quantity of noncondensable gas exists in the system, because
of collisions, it will be carried along with the vapor toward the condensing
surface and accumulate there. The vapor must diffuse through the
noncondensable gas in order to condense. Since the partial pressure of non-
condensable gas at the liquid-vapor interface increases above that in the bulk
of the mixture, it produces a driving force for gas diffusion away from the
surface. This motion is counterbalanced by the motion of the vapor-gas mixture
toward the surface. Because the total pressure of the system remains nearly
constant the partial pressure of vapor at the interface is lower than that in
the bulk mixture. This provides the driving force for vapor diffusion toward
the interface.

One can categorize two types of kinetic theory treatment of the conden-
sation problem. These are the so-called weak condensation and strong conden-
sation approaches. Each of these have been applied to the pure vapor conden-
sation problem and the weak condensation approach has been applied to conden-

sation in the presence of a noncondensable gas. In this paper we will extend



Fig. 1. The pressure and temperature distribution for vapor-gas mixture.



the strong condensation treatment to the problem of condensation in the
presence of a noncondensable gas.

A. Weak Condensation - Pure Vapor

Figure 2 shows a one-dimensionai, pure vapor condensing on its own liquid
phase. For small values of the mass and energy flow induced by small tempera-
ture and density gradients (i.e., AT/TS, An/ng << 1), Pao(l) and Cipolla et
a1.(2) obtained the macroscopic temperature and pressure jumps by solving the

linearized Boltzmann (BGK) equations:
3¢ _ .=3/2 2 _
V, 3t b = ar [n + T(v¢ - 1.5) + 2va] ,
where ¢ is the perturbed distribution function defined by
f=fg(l+¢)

fg = ns(21rRTs)"3/2 exp(-v2) ,
where f is the distribution function of the gas, & is a constant inversely
proportional to the mean free path of the vapor, and v is the molecular
velocity normalized by (ZRTS)‘I/Z.

Gajewski et a1.(3) used the discrete ordinates method to solve the full
nonlinear BGK model equations and obtained the density and temperature distri-

bution of the vapor. Ytrehus(4) used a Mott-Smith inspired moment method by

assuming the distribution function in the condensing Knudsen layer

Fx,v) = ag(x) faly) +an(x) Fo(y) +ag(x) f (y) +aglx) f(v)
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where: f:(y) the half range surface Maxwellian.

f2(v),f_(y) = the half range external Maxwellian for vy > 0 and
Ve < 0.
f (v) = the self-collision distribution function.

After solving the Maxwell-Boltzmann transport equations he showed that the
latent heat of the substance was found to have a critical influence on the
flow behavior in the condensation problem. Onishi and Sone(s) solved the
Boltzmann-Krook-Welander equation for a cylindrical condensed phase and con-
cluded that even for very weak condensation, the linearized theory is invalid
and a nonlinear analysis is required. Recently, Aoki and Cercignani(ﬁ) re-
viewed some of the previous papers and summarized that:

(i) The calculated mass flow rate at the evaporating wall from the Herz-
Knudsen(7’8) formula disagreed as much as 70% with the more detailed
kinetic theory calculations.

. . Ap/"s

(ii) In the two surface problem, if B = ZT7T; > Bc’ where B. = 3.7, the
calculated vapor temperature profile will be inverted, i.e. the tempera-
ture of the vapor at the hot wall can be below that at the cold wall.

This phenomenon, however, has not been proven by experiments.

B. Weak Condensation - Vapor and Noncondensable Gas

For a vapor-gas mixture, Pao(9) used the modified linearized BKG
equations to estimate the effects of the noncondensable gas on the mass flux
rate and the heat flux rate. Matsushita(lo) and Soga(ll) solved the Gross-
Krook equations for binary mixtures in the following way:

of .
o ) = }
Vi T " Vit T ) vty - ) i=1,2



where: f; the distribution function for specie i,

Vi = self-collision frequency,
Vij = cross-collision frequency,
Fis ?i = Jocal Maxwellian distribution,
and Fi = n (27R, Ti) »exp{- _-?ﬁ;T;———} N
~ 2
. - - (v, - U,)
F. = n.(27R.T.) 3/2 exp{- —-l—-——i——} ,
i i i ~
ZRiTi

where Ti’ Ui is the temperature, velocity after collisions.

Next introduce the reduced distribution functions g and h:
glx,v,) = f{ﬁ f dv dv,

h(x,v,) = f{w (v§ + v, ) f dv dv,

Equations for these distribution functions are then given by:

9g .,
i_ . x
Vi T T A3iV3ilG5 T 9y) A V5065 - gy) (1.1a)
.
Vei 3 = MgV - h; ) + A1Jv1J(H 1) . (1.1b)

Then assume:

(1) A1l particles impinging onto the surface of the condensed phase are

captured.



(2) The vapor emitted from the surface has a Maxwellian distribution

2

o -3/2 V1
fl(x-O) = nls(ZuRlTs) / exp(- X s) Vg >0,

/ vi

e -3/2 '
f(x=L) = ny) (2R T )7 exp( ?RIT;) Ve <O

(3) The surface is impermeable to the noncondensable gas, so the mean veloci-
ty of noncondensable gas will be zero or the overall gas flux will be
zero.

(4) The conservation of noncondensable gas gives

L
/] n,dx =n,L .
o 2 2

(5) The noncondensable gas reflects from the surface with a Maxwellian

distribution:

2

v
-0 - - V2
f,(x=0) = n, (27R,T) exp ( ?RET;) Vo > 0,
2
v5 )

f2(x=L) = "ZL(Z"RZTe)-3/2 exp (- T <0.

ole vx2

The temperature difference between these two surfaces is assumed to be
small, hence the deviation from the equilibrium state is small. So they

assume

(=]
—
]

gig(1 + o)

=
L]

hjs(L * ¢ys)



2
P
where 95 = "is(Z"RiTs) 1/2 exp(- 2Rl¥—J
i's
2
h; =n ZRiTS expl- Vi )
is = Mig\ T/ &XP\T oy

and solve Egs. (l.la) and (1.1b) by using either finite difference methods or
half range Hermite Polynomials. Their results show that (1) the presence of a
small amount of noncondensable gas can cause a large buildup of the noncon-
densable gas near the low temperature surface; and (2) the induced resistance
for mass transfer is proportional to the total amount of the noncondensable
gas.

C. Strong Condensation

The second kinetic theory approach 1is for intensive condensation.
Makashev (12) solved the problem of strong recondensation between two infinite
parallel plates over a wide range of Knudsen numbers for a one-component and
two-component gas on the basis of the model Boltzmann kinetic equation. For
the case of a one-dimensional, steady state and condensable gas only,
Labuntsov and Kryukov(13) (hereafter denoted L&K) divided the problem into two
regions (see Fig. 3):

Region I: gas dynamic region
Region II: Knudsen 1layer.
(1) In Region I, the flow is described by the Euler equilibrium flow with the

following distribution function:

2
)
exp{- —gr——r} .

- (v - U
fo = Ny (27RT ) 32
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Fig. 3. Intensive condensation.



(2) In the k-k section, the vapor has a Grad's 13 moment distribution(14)

3/2 1 P11 2 2 9 x(s'g 1)
£, = n (m=p——)""% exp(- E ) * [1+ (38¢ - £°) + 2
k = k2T 2P P, (2RT,)1/%
v
Pk kkBTk R g =
(28T, ) :

where:

V=y- Qk ’ Pij = P1J - Gijp

(3) The vapor emitted from the surface has a Maxwellian distribution

f = ns(21rRTs)'3/2 exp(- ERT‘) vy > 0.

(4) Part of the flux from the k-k section will condense, so

f= ka Vy < 0
where: n{x=0) = cny ,
T(x=0) = Tk s
U(x=0) = Uk

The mass, momentum and energy fluxes are evaluated for Regions I and II

and are matched at the k-k interface. For Region II we have the equations:

Uy ép 2q.U ¢
~en (1112 1 172 o 2G|
L= (% - v Mo S v L L (1.2)

k' k

10



2

2 1/2 1/2
Lycen [(T_k E& pﬁT).,,_Uka ¢_4q1Tk ] = n T +"kUk+p11 T
2 k"2 T I T2, 'k 2n 5P, kk "2 TP "k
(1.3)
3 1/2,2
Cn Uy T U
1 _ " ;372 P11 k
7= [T, (1+1_)¢ (gTU +WTU +T€‘)“’+T‘¢
1/2 3 (1.4)
Sk Y T s T U, ", mYTkPu | Tk
5P, 5P, T ™k 6 = %, 5,
For Region I we have the equations:
n U, = ny, (1.5)
n Y P11 n2
nka ot ka F-_ =nT_+ — (1.6)
5 JOSAALY ™M T s U3
g %%k *Ew t %, P, 8 Melele * 15T - (1.7)

By assuming that at a large distance from the interface the vapor flow is of
the Euler type, the authors solved the continuity equation of motion and ener-

gy of vapor and obtained the approximate equation for the fluid velocity

1 2 _ 2
(Tg = TK/(K = 1) + 2= (VS - Ug) c
K ki k-, -2 e

v

Uy
—_—=] -
Voo TX/(K - 1) + =02

where the dimensionless quantities have been introduced (* stands for the real

quantity):
= £ u, = k
K (kT /2mm) M2

11



ook LY _ 9
k== 11> R R
nkpT nkgT 4nSkBTs(kBTS/2wm)
;
and ¢=exp(-1-,-,-|-;)
u

v=1+erf[- —177]
2(nT, ) 2

Using these equations one can specify nNe, Tes ng, Tg and solve for T,
Uk, C, ng, P11 97 and Ue.. A comparison of the data with the experimental
data of Necmi and Rose(l5) showed a good agreement.

In this paper we apply a generalization of the Grad 13 Moment method
suggested by L& to the problem of strong condensation in the presence of a
noncondensable gas.

I1I. KINETIC TREATMENT OF INTENSIVE CONDENSATION IN THE PRESENCE OF A NONCON-

DENSABLE GAS

For the problem of intensive condensation in the presence of a noncon-
densable gas we have extended the method of Labuntsov and Kryukov by using
Grad's 13 moment distribution functions for binary mixtures. This leads to 12
nonlinear equations with 12 unknowns. These are then solved using standard
numerical methods. The physical situation that is modeled is shown in Fig.
3. The problem consists of a semi-infinite space of vapor-gas mixture and a
condensing surface at x = 0, The imaginary planar surfaces at k-k and s-s
define the Knudsen layer. To the right of the k-k surface we assume that the
equatidns of fluid dynamics are valid.

Fo]lowing the method of Labuntsov and Kryukov, the distribution functions

of the gas-vapor mixture in the gas dynamic region, the k-k boundary, and the

12



interphase surface are:

_3/2 (! = l‘-,co)z
foo = nm(anTw) exp{- _—ZEr_} s
2 2 2
_ R N L LA R~ 1Pk 2 L2
fk = nk(ZﬂRTk) exp{ ZRTk *{1 + Vi 'pk— (3€X - é )
2 .2
. qukgx(‘S5 - 1)
172
Pk(ZRTk)
2, .2, 2
_ -3/2 ) [(Vx - U(0))“ + Vy + Vz]
fo = n(0)(27RT(0)) exp{ SRTTOT
2 .2
1P10 .2 .2, 29055 & - 1)
*{1 + (38 - £°) + v_ <0,
2 PT0T " x - (o) (2RrT(0)) 77 X
) (V2 + v2 + v2]
fg = ng(2nRT ) 3/2 exp{- —2 2R¥s Z'} v, > 0.

Specifying the temperature and density at the surface and at infinity the
11 unknowns are: Uws, ny, Uy, Ty, Prgs qpps n(0), T(0), U(0), pyg. Qjq-
Labuntsov and Kryukov further assumed that pjg = pyy, Qo = 91y, T(0) = T, and
U(0) = Up.

In a gas mixture in addition to momentum and energy transfer we must con-
sider the transfer of mass (diffusion) of the separate species relative to the
gas as a whole, so we use the two component Grad's 13 moment distribution(16)

to describe the two species of gas in the Knudsen layer.

[(v, - U'x)2 + v§ + vi]

-3/2
exp{-
ZR1Tx

X

fix =vfG("ix’Tx’Ux’pix’qix’vdix) = "1x(2“RiTx)

| 2 .2
) 2q. £, (&5 -1)
1 Pix .2 L2 ix>ix'% 2 7,2 2 \1/2
{1+ (385, -~ &) + 77— * (3 gi)gix(R;T;J Vaixls 1

1,2

Z P ix 2
ix Pix(ZRiTx)

13



where: Vg, = diffusion velocity of specie i = U, - T,

Ujx = fluid velocity of specie i,
- P1U1x * Palay
U = mass velocity of the mixture =
X v Pyt Py
P = mass density of specie i.

In order to get the notation straight, we use Aif to describe a physical
quantity. The first number i can be 1 or 2. The number 1 stands for the con-
densable gas and the number 2 for the noncondensable gas. The second £ is the
location of the gas. For a single subscript notation Bj, J can be a number or
a letter to specify the specie of the gas or the location of the gas.

For a one-dimensional steady state situation with a two component gas, we
assume:

(1) The two gas components have the same temperature.

(2) The mean velocity of the noncondensable gas, Uy, is everywhere equal to
zero.

(3) In Region I (see Fig. 3), the mixture can be described by the Euler

equilibrium flow with drifting velocity U;.

[ty - T? + w2 + V2]

fle = nl‘,‘,(ZerlT‘,,,)_w2 exp{- R,
M1+ (- 8) g, (ﬁc)m Vel

. HZ”(Z“RZTw)-3/2 oxo (- (tv, - U;;§2:°v§ + vi)
H1- (G- 5) &) o T

14



(4) At the k-k boundary between the Knudsen layer and the gas dynamic region,

use the Grad's 13 moment distribution:

1k = FolMe TPy 9o Vank) »

fak = oMo TisUpsP oy gV go =Ty ) -

(5) In the immediate vicinity of the interphase plane, denoted s-s:

(i) The incoming particles will have the Grad's 13 moment distribution:

f1s = fa(n10:To-Y9:P102910°Yd10) >
f2s = Tn20T0sUgsP 202 920: Y 420=Tg) Vy <0 .

We assume that in this thin Knudsen layer the temperature of the
mixture and the fluid velocity of the condensable gas will not
change significantly, so To = Ty and Ulo = Ugg.

(1) The outgoing particles will have the Maxwellian distribution:

¥
32 exp- gﬁzT—) ,
S

2
y=3/2 ¥

exp (- ERET—) v, > 0.
s

-ty
¥

1s = Mg (2™ Tg)

fas = Nyg (2TR, T

(6) Assume pyg = pyx = P1» 910 = a1k = 91 and pzg = Pz¢ = P2, G2p = G2k = G2-

15



(7)

(8)

(9)

Since the surface is impermeable to the noncondensable gas, the reflected

stream will have the same number density as the incoming stream.

Assuming collisons can be neglected in the Knudsen layer, we are able to
formulate the separate mass, momentum and energy conservation equations
for condensable and noncondensable gas.

Following the work of Ko]onder,(ls) the collisional terms of the momentum
and energy transfer equations in the gas dynamic region are treated

according to perfectly elastic spheres.

d B |
d _ _ 1 i
= (EZ) === le s (2.2)

where: M, = momentum flux of specie 2,

E, = energy flux of specie 2,

i
1 i _
I =y + 90+ héUZ ,

f1 = AL0.2 T (p1ap = ppa;) + 0.04 T2(ppay + q1Pp = p1az = 2Py}l

16



p
A{p—f ['9102 + 0.7 'CKJZP1 + 0.2 PPy - 0.1 1'2(P1p2 + P P )]

2
- [plp2 - 0.7 4P, - 0.2 TP, + 0.1 T°(Pop, + P P21,

m, - m

= (1 2 2
fo = (HI-T,.TZ) A[0.2 t(pyp, + PP, + PPy + PPy) - 0.12 1 4,951,
p m m
- al 2 (- 2 1- ™ 1~ M
gp = A[pl (-0.4 < Pia, + (m) 0.2tp;q, + 0.3 (m—1—+m—) T quz)
) 2 mp =M m2
m, = m p
_ 1 2\ 2 _ _ _ 2
h2 = =A (-m—l—-_’-_—m—z-)(q)(plpz 0.5 szpl 0.5 Tplpz 0.75 t P].PZ)’
_ o 2 m tm
A =5 (d) +d,) kT(=—=) ,
my My
M2

T =
>
lem1 + m25

ds

i= the molecular diameter,

p'i = mini.
Integrating Eqs. (2.1) and (2.2), we have:

L L
= - 1 = - T

. L
_o_¢ 1 i _ - 2

Assume that only the mixture velocity U depends upon x

17



. - = ~Z(x) __3
(ie., U =T (1 +ae )s Z(x) = 7 13l f —, ljl:  mass

flux and wu:

viscosity from Ref. 13) and take the average va1ue of 1, 91, f2, 97 and hy,

we obtain:
My = Mo = —f: [f, + g0, (1 + ale'Z(X))] dx
- ~(F, + T + ;—;;%-EiU; (e 2 -y
Es. - Exp = -f: [f2 + g2 1 +ae 'Z(X)) +h U2 (1+ 2a,e “Z(x)
+ a"f 22("))] dx = - (F, + 9,0, + hzﬂi)L +;—Tuill- (9,0, +

2
- 2 va -
2 W0 1) vt BT @) )

If L is very large compared to the mean free path of the particles, then

e-Z(L) g-2Z(L)

| by _ o
2L * 3137 91U = ~(f) *+ gyl

4ua a
1 (- T 1vy o o =
E2L - E20 + :,’T-JT (QZU" + Fz o (2 + T)) = (?2 + gZU.“ + F2U°2°)L .

will approach to zero. Equations (2.3) and (2.4) become

(2.3)

(2.4)

(2.5)

(2.6)

Taking the ratio of Eqs. (2.5) and (2.6), we can cancel the dependence of the

length L, giving

18



Mow = Moo * 3737 91V 1°1 * 90, 2.7)

( nl nz )
B = + . kT ,
Vi1 ¥ V2 Va2 t Yy
_16 (mi + mJ)nJ miijT .
L I m,m, y moF my i
_® 2 T orl 2
Qi =79, =7 [z (4] + dy)]

Formulating the mass, momentum and energy flux conservation equations in
Regions I and Il and matching them in the k-k section, we get the following
equations. In the Knudsen layer, because of the neglect of momentum and ener-

gy transfer between different species, the individual transport equations are:

1/2

n (V2 g Ly, 1, P1T" " 29 %%0  Vai010 (2.8)
20" 2% 74 172 2 :
10 5w, .T
| 107k
V .aUnd
aro¥o?0y -
i v o ) =m0+ 0V

k

19



2 1/2 1/2 =
Lo e, o, pifoy Tl o fuhiofic” | YoVasotio (2.9)
2 10 Y\27 " % ZFIO 10 27 10 5%, 2T .
1/2 .
Nk taohoy o " T oo MU Va
— Tk Tz T h T
- 1/242
n P 5 P00 . U Ty Too10
;- o5 Fzg)Ti/2¢1o - GTT, ¢+ ¥, T8 Wy t = — (2.10)
1/2 1/2
CToatioTk’”  TarvigTe 300100 L 'aol to 1o, ]
5ap 5P 16 = 2w T 'k 'dlo'10
10 10
n, 05 n, UT ., T 3n,, U2V ni T,V
S5, 1p o+ tkk MuckkPr Mk, Macktdik | Mik'k'dik
Bk kk Ton 8P 5P 16 = 4
1 1k
1/2 172 2
Moo = Nonby (TH/2 4 1 25Ty’ I / 220y (2.11)
2s ~ "0tV Y2 T T oo IE T I
20"k k
2 1/2.1/2 2 2
"2s , [(Tk , Ja0 psz)w ATy YT Uzo*zo] A
Z T 20t T E T W, Y20 LT Zn k'k "2 T P2
(2.12)
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2 1/2
n n Py pU,~T 3U donl
2s 20
- -5 1 +o0.5 ?"JT3/2¢20 - (ﬁ'Tkuzo '§$§9‘5)¢20 '“‘9§§9‘5“ (2.13)
1/2.1/2 3 3
_ U20%2%20Tk Ta2%20'k , Y20%20 _ Tkuzo“’zo] 7o s o
51rP20 5P20 an 4 T M2k k°2k - T 8m
1/2
L MadlaTkPe | TnaT 9
3P 5p

2k 2k

Considering the number density conservation for the incoming and outgoing

noncondensable flux to the interphase surface we can write:

1/2 2 2
Nas _ M20¥20 _ P2Y20%20 _ %2097 1 Uz ) s "20%20%20 (VY20 _ 3) =0
z 2 S LS T AL

(2.14)
In the gas dynamic region, we obtain the mixture transport equations as

the following:

MOk * "cVaik = Ml (2.15)

=2 2

n, U n,, TP n, U V n,, U

1k "k 1k k"1 1k "k "d1k _ 2k~2k

"Wt T, T Tk T T R (2.16)
nl;U2 I;U;ydlw anugw
= T + +n, T =
nloo [ 2T T 2% ® 2T

21



-3 ‘
5 rop e, PGP, TPk, Iy TeVate . 1Tk Vak (2.17)
8 "ik'kk T TE W 8P 3 16 = Z y
1k 1k
3 1/2
v L@y, -2 adadle | TadkdY
72 B Nk 8w L2 5P
NS 30, TV 0y TV n, U3
S5 gp sdee, Mewde Meelde 1 7 L M2e 2w
B Me'e’e ¥ T57 6 = 3 177 '8 Nowlwoe T BT )
and the approximate mixture velocity ratio:
T, (Ty = TIK/(K = 1) + = (0% - TF)
==1- T = =l+a . (2.18)
U, TX/(K - 1) + 5 T,
Equation (2.7) gives
2 2
U n, U
1 _ Nowpw 22k _ I Y
0 ("zuTa — nZka t —— pz) ¥y = {—37-2-Y [-8- nZ“TwUZw (2.19)
3 3 1/2
i AL S S S & e iy & S ) -yl
—8r 8 "'k g B, 5P Yol ¥3
¢, Ug T
where: K ==, 410 = exp(~- TTIT'J , V=117 erf[- ———172-]
v k Z(WTk)
A mnlip  Mafy
ato o T s T
1"10 T M"20 ™Mo
S W2
Uzo =Y U, ,
_ W2
Uz = Y2 T,
Upw = L2
‘ 2
U
20
$20 = exp(- m;) >
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U2o

Yoo = 1 + erf[- """I7Z]
20 Z(nTk)

Y1

y2

Y3

le R
0.125 GpH + 0.125 HyW T, (2 + 0.5 a;) ,

8(F) + 6;U,)

-2 -
(Fy + G0, + HT)
Moo ‘(- N w00 . 0.7 nyny, 0.2 NouPq ) 0.1 nyp,
N e Y 1 + v 1+ )T, (1 + Y)ZTe°

) 0.1 LPPUP ) PP PO ) 0.7 N el 20 ) 0.2 NPy
(1 + 7)° Y Y +y]  y(l +v)T,

0.1n 0.1 n,.n,.
. 2P . 1«12

(1+ Y)ZTQ (1 +y)°

0.8 0.16
= 7 (n..a, - n,q,Y) + (p,q, *+
Ty Mz T etV T 7 T Pt

Q5T = P10y < AN paTy)

1.6 1-v 0.8, 1.2(1 - v)

= YN,eq (- + + )
200t +n? @i T T (14

< npagy (64 L1y 0.8, 120 - v))

_2w(l - v)

Troaev? a+nfle 104+7)3

0.2

2
= T ey PaP2 * PiMgale * Pl aTe * MiatpaT)

_0.96 9197
T2+ v)?

2

- %_5_% n2.(0.5 - 0.75 v 3

(1 +v)
23



4a1T“Y 1
W= 3T+ 7TTn , + 1n,,)

Noe
0.25V2 +

+ = 1 ]
0.2573 nl” 2 -
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The following nondimensional quantities have been introduced:

_ix _ pi _ Pix _ nixTx

Mix T ;__ ’ Pi~ kT ’ ix - H k T ) n ? ’
1s N1s¥B's 1s"B's 1s's

q. n m
q; = —— 1 17z i=1,2; Ny = =25, Y =2,
4ny ke T (k T /an LI my
’ . g = .
d10 (kg T /2nm )72 X T X (kg T /2nm )1/2

Specifying njw, Nyw; Te and the surface conditions we can solve for njg,

n20» Mks» N2ks Uys Tks P1s G1» P2» G2, Ujw and npg from the 12 equations.
III. METHOD OF SOLUTION AND RESULTS

The 12 nonlinear equations are solved by using a modification of the
Levenberg-Marquardt algorithm in which the derivatives of the functions are

calculated by a forward-difference approximation.(17)

In order to test the model, a calculation was done for the parameters
shown in Table 1 and the result compared with the data of Labuntsov and
KryukoV. In the presence of a negligible amount of noncondensable gas, the
condensatioh rate should approach that predicted by L&K. Table 2 lists some

of the nondimensional data from the calculations. Notice that the conden-
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Table 1.

Results of Calculations of Gas Dynamic Parameters

for Vapor Condensation

Pl/Pk
q1/Pg

a

1,7111
1.9162
2.4128
1.9834
1.6496
2.0815
0.0686
-0.1744
-0.1373

5.1365
2.5319
5.2513
5.4867
2.3667
4.9162
0.1123
-0.2045
-0.0638

3.2279
1.8546
3.3942
3.7125
1.7323
3.1732
0.0607
-0.1109
-0.0651

6.1327
1.6303
3.9509
6.2354
1.6033
3.8858
0.0252
-0.0380
-0.0165

1.3495
1.8535
1.8826
1.6317
1.5296
1.5570
0.0549
-0.15575
-0.1729
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Table 2. Parameters for H,0 Condensation With and Without Noncondensable Gas

Ho0  Hp0-hp H,0-He Hp0-Ne Ho0-Air
e/ 1 0 0.05 005 0.05 0.05
N e 1.7 1.7 1.7 1.7 1.7
Te 1.9 1.9 1.9 1.9 1.9
Po 3.320 3.392 3.392 3.392 3.392
U1 -2,377 -2.370 -2.301 -1.804 -1.581
o 1.970 1.972 1.963 1.719 1.522
Ny 0 0.1921 0.2494 0.4865 0.5636
Ty 1.636 1.627 1.616 1.509 1.456
Py 3.223 3.521 3.575 3.328 3.0366
T, -2.051 -2,022 -1.939 -1.357 -1.127
nig 1.964 1.966 1.956 1.719 1.536
nzg 0 0.1837 0.2416 0.4823 0.5593
Po 3.213 3.498 3.551 3.322 3.051
Py 0.2162 0.2179 0.1696 0.3268 0.5842
a1 -0.5193 -0.5524 -0.5992 -1.004 -1.124
Py 0 -0.1184 -0.1307 -0.08119 -0.07219
a2 0 0.1165 0.2174 0.3993 0.3791
nys 0 0.1723 0.2388 0.4812 0.5568
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sation rate is equal to NjoUjw and we get a good correspondence between Ho0-Ho

and Hp0 only systems for njw/nje = 0.05. Table 3 is a listing of some real

physical quantities corresponding to Table 2.

Figures 4, 5 and 6 show the infTuence of noncondensable gas concentration

on Li, Hy0 and Pb vapor condensation rate for nje = 1.7, Tw = 1.9. Figure 7

is a plot for Pb-Ar, Pb-Kr and Pb-Xe gases condensing with different bulk

temperatures for njw = 1.7 and nyw/Nje = 0.1. From these results we can make
the following observations:

(1) As we increase the number density of noncondensable gas, the condensation
rate decreases.

(2) For the same nyw/nie ratio, the noncondensable gas with the larger atomic
mass will cause a larger decrease in the condensation rate. This is
because the accumulation of noncondensable gas near the surface (nyg)
increases.

(3) The heavier the noncondensable gas, the lower the temperature T, (= Ty),
i.e. the condensation rate decreases as the superheat of the mixture near
the condensing surface decreases.

These basic calculations indicate the strong influence of the atomic mass
of the noncondensable gas on the condensation rate. This method will be

applied in the future to other condensable-noncondensable gas mixtures.
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Table 3. Listing of Some Real Physical Quantities
for Different Vapor-Gas Systems
Hy0-H, HyO-He Ho0-Ne Ho0-Air
Njw/Nyg 1.7 1.7 1.7 1.7
N 2w/ N e 0.05 0.05 0.05 0.05
Pe (atm) 0.408 0.408 0.408 0.408
Ts (°C) 50 50 50 50
T (°C) 252,52 248.97 214.41 197.29
T (°C) 340.70 340.70 340.70 340.70
T, (cm/s) 3.6519 x 10%  3.5456 x 10%  2.7798 x 104  2.4361 x 104
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NORMALIZED CONDENSATION RATE
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NORMALIZED CONDENSATION RATE
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NORMALIZED CONDENSATION RATE

NORMALIZED CONDENSATION RATE

VS. NO. DENSITY RATIO
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