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Although the ion distribution function in a thermal barrier is
far from Maxwellian, the Fokker-Planck equation has been linearized
and consequently a variational functional, which has the physical
meaning of the trapping current, has been found. The variational
method makes it possible to maintain the real shape and vé]ue of the
boundary condition, and to retain the energy diffusion term in the
collision operator. In order to solve this variational problem, a
special trial function 1is proposed which uses only one variational
parameter for an adequate description. We obtain an analytical ex-
pression, valid for the barrier mirror ratio from 2 to 20, for the
pumping factor, gp, or the trapping current J¢. Computer evaluation
of the analytical expression is faster than the numerical Fokker-
Planck code by a factor of at least 104, The comparison with Futch
and LoDestro's numerical Fokker-Planck code results confirms our
model. This variational method combined with the contour method to

specify the trial function may be applicable in other problems.
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1. INTRODUCTION

1.1 Motivation for the Study

Since the tandem mirror concept was first experimentally veri-
fied, the endloss problem in an open-ended configuration has been
alleviated. The basic difference between open-ended and closed-ended
systems is no Tlonger the endloss, but the distribution function in
velocity space. In an open-ended system, the distribution function
of the plasma is in a non-equilibrium state, and thermal relaxation
processes are the major concern.

Tracing the evolution of the tandem mirror configuration, we
find that more and more cells are being added. After the end plug
was first added (1976 [1]), the thermal barrier was invented (1978
[2]); this is a section between the central cell and end plug to pro-
vide thermal isolation of plug electrons from central cell electrons.
Soon thereafter, an A-cell and other end-cell ideas appeared. The
TARA device utilizes an axial-cell in conjunction with an anchor;
some MFTF-B and MARS conceptual design configurations have also
included an axicell. Regardless of the functions of these various
cells, they are characterized by different densities and tempera-
tures, and by different magnetic fields and electrostatic potentials.
When these plasmas with different densities and temperatures interact
with each other, various relaxation processes occur. In generatl,
they are characterized by three collisional time scales: the ion-

electron equilibration time, ty,; the ion-fon scattering time, t;;;



the electron-electron scattering time, t the time

ce+ Lxcept for t

eq?
scales are shorter than the confinement time scale of the plasma in a
reactor. So, if there is no external power supply to maintain these
different cells, the plasmas will decay. The power necessary to sus-
tain the various cells is directly related to these relaxation pro-
cesses, and the Q-value of a reactor is optimized when this power is
reduced. Among these three time scales, tee is the shortest. If we
use only the heating mechanism (such as ECRH, etc.) to maintain the
cells at different electron temperature, we cannot afford the large
input power required. Generally, one attempts to replace the tae™
scale process by a tjj-scale process. Then, the external power is
used to support these tjj-scale processes. Neutral beam injection,
ICRH, etc. are examples. Since the t;j-scale is longer than the tee™
scale, the necessary power is reduced by a factor of (tee/tii) and
becomes affordable. However, considering that the confinement time
of the plasma in a tandem mirror is the same order or one order
greater than t;;, we are very concerned with these t;j-scale pro-
cesses. Since we often depend on the volume ratio of these different
cells to reduce the power ratio of the external power supply to the
fusion reaction power, the size of the reactor is dependent on our
knowledge about these t;;-scale processes.

These relaxation processes may be described by the evolution of
the distribution function in velocity space with a separatrix, which
arises because of different cells in configuration space. Figure 1

shows one of the typical relaxation processes in the tandem mirror:
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Fig. 1. The trapping process in a thermal barrier.



the trapping process in a thermal barrier. The thermal barrier is
formed by a magnetic peak Bpp and a magnetic dip By, and by a po-
tential dip ¢,. These parameters (the mirror ratio, Bnb/Bp, and the
potential, ¢b) will determine the shape of the separatrix between the
passing region and the trapped region in velocity space. The passing
region is filled with the plasma which can pass through the central
cell, Because of pitch angle scattering or energy slowing down,
these passing ions can become trapped in the thermal barrier. This
is a type of tjj-scale process. Once this relaxation process reaches
its equilibrium, that is, the trapped particles fill up the barrier
region, the potential dip disappears; then, the rapid toe-scale
process would evolve since the isolation between the hot electrons in
the plug and cooler electrons in the central cell would be lost.
Pumping out the trapped ions will maintain this isolation; therefore,
the necessary external pumping power is determined by these t;j-scale
trapping processes.

In a tandem mirror reactor, the barrier pumping power is one of
the major input powers. So the trapping current is one of the criti-
cal issues [3]; any substantial increase in the trapping current is
intolerable. However, all tandem mirror reactor conceptual designs
are based on an empirical fit of the trapping current obtained from a
series of Fokker-Planck numerical code calculations. These empirical
fits are obtained from calculations using a square magnetic well.
Recently Futch and LoDestro [4] showed an important result for the

non-square well cases; the trapping current may increase by a factor



of 2-5 in a non-square well case, compared with the corresponding
square well case.

It is clear that a better understanding of this trapping process
is not only crucial for the prospects of tandem mirrors, but also
significant for the current conceptual design of the tandem mirror
reactor.

1.2 Previous Work

A series of work has been done for the calculation of the cur-
rent across the separatrix in velocity space. Here we concentrate on
analytical attempts at solving the Fokker-Planck equation. Two years
before the tandem mirror idea was proposed, there was an analytical
calculation of the electron endloss from a magnetic mirror with
electrostatic potential effects. Pastukhov (1974 [5]) solved the
Fokker-Planck equation analytically to obtain the particle and power
loss out the ends. At that time, the motivation was to save computer
time since the time step for an electron equation is much shorter
than that for an ion equation. It is too expensive to solve ion and
electron equations numerically with the same time step. So the
Fokker-Planck equation for electrons was selected to be solved ana-
lytically. However, the method is also valid for the ion equation.
A tricky point in Pastukhov's ¢alculation is to assume a fictitious
source inside the loss cone which will produce a new zero boundary
(i.e., the boundary on which the distribution function is zero). The
new zero boundary overlaps with the real loss cone boundary at only

one point -- the tip of the loss cone boundary -- where the curva-



tures for both boundaries are made to be equal. No one knew how much
change in endloss is caused by this replacement in the boundary con-
dition. Soon after the tandem mirror idea was proposed, Chernin and
Rosenbluth (1978 [6]) used a variational method to check Pastukhov's
analytical solution. Although Chernin and Rosenbluth's analytical
solution is not as good as Pastukhov's, their calculation shows that
the result is not very sensitive to the change of the boundary. At
the same time Chernin and Rosenbluth corrected an error of a factor
of 2 in Pastukhov's original expression. Since then, the Pastukhov
formula was confirmed and extended to arbitrary magnetic field pro-
file cases by Cohen and Rensink [7]. Nevertheless, the error between
the numerical code result and Chernin and Rosenbluth's analytical
expression is about 30%. The reason is that their expansion is based
on Legendre polynomials, which is not inherent in the physics of the
problem, so there is not a dominant term to be selected. When
Chernin and Rosenbluth selected the largest term, the remaining terms
were only smaller by a factor of (In Xo/(In R + 1n Xo))z; (R is the
mirror ratio, X, is the ratio of potential to temperature, e¢/T).
Catto and Bernstein [8] developed a new variational scheme, which
kept the intrinsic nature of the physics. They gave up the Legendre
polynomials and introduced a curvilinear coordinate, which has the
coordinate line asymptotically parallel to the Tloss-cone boundary.
Therefore their trial function for variational calculations is closer
to the real solution. The agreement with the numerical code calcu-

lation is reasonably good.



From Pastukhov to Rosenbluth, to Catto and Bernstein there are
some common features. Despite their differences, they all use three
steps to solve the Fokker-Planck equation: (i) the Tlinearization,
(i1) the fictitious source, (iii) and an analytical method in solving
the ordinary differential equation.

(i) The Tlinearization has special meaning in this case. In
general, the Fokker-Planck equation can be written as

5f
L= v T(F, ) + S (1.1)

t F2'T
where the collisional current, f(fF,fT) in velocity space is a bi-
linear function of the test particle distribution function, fy, and
the field particle distribution, fr. This is because T involves the
diffusion tensor D and the dynamical friction K, both of which depend
on fp (for ion-ion collisions, fp = fr). Here S is the source densi-
ty and V is the gradient operator in velocity space. All these
authors assumed a high mirror ratio (R >> 1) and deep potential well
(e¢/T >> 1); then the source term is a small perturbation term, since
the endloss does not affect the total distribution very much. We may

write

= fO + fl (1.2)

-+
-
1

and fr = f, + f) (1.3)



where fo is the source-free zero order solution, and fl is the
perturbation distribution function caused by the source. In a gene-

ral case, we often write
et uforfy) = T L) + Tee L f) + T, 6 ) + TeF ) (1.4)

where f(fF,fT) is linear with respect to fp or fr, respectively.
Usually, linearization means that we drop the T(fl,fl) term only;
however, we drop the f(fl,fo) term also in the linearization of the
Fokker-Planck equation. The reason is as follows: f(fF,fT) is de-
pendent on fpr and fr in two different ways. The general collisional

current is

T(f,fp) = RUF) L = BUEL) » vhp . (1.5)

T is sensitive to both the density and the shape of the “test parti-

cle distribution function," but is sensitive to only the density of
"the field particle distribution function." This 1is because after
the integration to get R or 5, the shape of the field particle
distribution function is no longer important. Al1 those authors are
using the dimensionless equation, which means that the normalized
current is

-~

) 2
T = (1/N%) f(fF,fT) X (1.6)



The effect of the density, N, has been already extracted, so the
normalized current I is approximately independent of the density of

both fr and f1, and is only dependent on the shape of fr. Therefore,

A

>

RIS (G S (1.7)

This is the essence of the isotropic approximation for the Rosenbluth
potentials. This is why we drop the third term in Eq. (1.4). 1In
fact, it is correct only for the normalized diffusion current; i.e.
fo + f1 and f, correspond to the same density in the two cases.

(ii) The source is always needed to maintain a steady endloss
current.  After the normalization, the source will not affect the
density, but the shape of the distribution function, which may be
expressed as a ratio of the distribution function to the Maxwellian
distribution function: h = f/fy. h is zero on the loss-cone bound-
ary and approaches one in most of the confinement region. Since the
endloss current is assumed to be very small, the bulk of the plasma
is not disturbed very much. In other words h is assumed to be very
close to 1 no matter where the source is, so the effect of the source
on the shape of the distribution is expressed by h = 0 on the boun-
dary or Vh # 0 near the source and the boundary. Pastukhov used a
fictitious source inside the loss-cone region to make h = 0 on a
boundary which is close to the real boundary. Chernin and Rosenbluth
put a real source in the low energy region and put emphasis on the

Vh # 0 region in the vicinity of the source. Catto and Bernstein put
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a real source in the low energy region also, but addressed the Vh # 0
region in the vicinity of the loss-cone boundary. At any rate, with
the help of the source, the steady state equation is set up, and dif-
ferent methods are used to solve this equation analytically.

(ii1) Analytical solution: after the 1linearization and the
normalization, the task is reduced to determining the shape of the
distribution function h, which is mainly specified by the boundary
condition where h = 0. Thus the problem becomes that of figuring out
the necessary loss current to fit this boundary condition. In order
to simplify the problem, the boundary condition is simplified in
various ways. The Pastukhov method assumes a new boundary which
overlaps with the real loss-cone boundary at the tip and has the same
curvature there (Fig. 2). This gives two equations to fix the po-
sition and the intensity of the necessary fictitious source.

Chernin and Rosenbluth also changed the shape of the boundary to
facilitate their expansion in Legendre polynomials. They found the
zero boundary would produce a nonzero derivative Vh on the surface
surrounding the low energy source (Fig. 3), which is in balance with
the endloss current.

Catto and Bernstein kept the real shape of the boundary and
simplified their calculation by a new coordinate system which fits
the real shape of the loss-cone boundary. They used the contour of
constant distribution function h to specify the shape of the distri-
bution in the vicinity of the loss-cone, where Vh # 0 (Fig. 4). A

variational method was used to find a solution in the transition
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region which would give a divergence free flow and match the boundary
where h = 0 and h = 1,

In summary, the contours of constant distribution function are
drawn in Fig. 5. The errors of these analytical calculations in com-
parison with the numerical code results are about 10-30%. Cohen [7]
and Rensink made a series of calculations to check the linearization
assumption and the approximation in the boundary condition. It shows
that the 1linearization 1is quite reasonable. The nonlinear code
calculation gives an improvement of about 2%. The Pastukhov expres-
sion gives the better fit with the code calculation of within 120%.
Considering that the error caused by the discrete grids is about £7%,
we see the accuracy of the Pastukhov method.

Up to now all three aforementioned methods were tested only in
the square magnetic well cases, although both analytical and numeri-
cal calculations for an arbitrary magnetic field profile are possi-
ble.

These three methods commonly use the assumption of a Maxwellian
field particle distribution function, which is correct as long as a
deep well configuration is assumed (¢/T >> 1). In the thermal
barrier pumping problem, however, we have a non-Maxwellian field
particle distribution function. The bulk of the plasma is a result
of the diffusion process (Fig. 1). About one-half of the density
(trapped particle density) is directly related to the trapping cur-
rent. This is totally different from the case of the endloss from a

deep well, where the endloss current does not substantially affect
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Contours of the constant distribution function for different
cases. (a) Pure Maxwellian. (b) Maxwellian with a real

loss-cone. (c) Pastukhov fictitious loss-cone. (d) Chernin
and Rosenbluth's approximate loss-cone. (e) Weak pumping in
a thermal barrier. (f) Strong pumping in a thermal barrier.



14

the bulk of the plasma. Does the linearization still work in this
case? It was not clear when we started our research.

LoDestro [9] and Futch and LoDestro [4] did a series of numeri-
cal code calculations for the thermal barrier trapping process. This
is a kind of nonlinear calculation, since the Fokker-Planck coef-
ficients are calculated step by step. Starting from pure passing
particles as an initial condition, the code runs to a steady state
equilibrium where the diffusion across the passing-trapped boundary
is balanced by the charge exchange process (neutral beam pumping).
After a number of code calculations, they found an empirical fit for

the trapping current Jy. 1In 1979 [10] the formula was
Ie(2) = (N, (2))2/(5.5 x 109 T2)300 + 0.55 R(2)} . (1.8)

Here, T, and Np are the temperature (in keV) and density of the pass-
ing particles, R(z) is the Tlocal mirror ratio inside the thermal
barrier, and Jt(z) is the corresponding local trapping current. In
1980 [11] this formula became

N2

_ p
Jy = (1 + 0.2 R.) . (1.9)
t 2.3 x 107 Tg/z b

In 1982 [4] more calculations gave a new fit of

Jg = 0.935 g (1 +0.0441 Ry) YO-7 N /(Nyt) (1.10)



15

for deuterium plasma. Here

Nptp = 6.27 x 1011 T3/2/1n 4 (1.11)

p

and In A= 34.9 - 0.5 Tn(Ny/(ET,)) . (1.12)

E is the average ion energy at the bottom of the well; T, is the

e
electron temperature; the energy and temperatures are in keV; Ny is
the total density at the bottom of the well. gy = Nb/Np is the pump-

ing factor. Also

Y o= Nt /NG (1.13)

Here, v is the beam pumping rate in sec™l.

The changes and the
complicated form mean that a better understanding of the trapping
process is important. Numerical calculations [4] showed that a
factor of 2-5 is introduced for different profiles of the magnetic
field. Thus an analytical expression based on a better understanding
is especially needed. A1l these numerical code calculations, includ-
ing Rognlien's Monte-Carlo calculations [14], provide a basis on
which to build some analytical model for the barrier pumping process.

In 1980 (Li and Emmert [13]) a model for ion trapping in a

thermal barrier was assumed for the passive pumping scheme. A sepa-

rable form of the distribution
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f(E,0) = F(8) exp(-E/T)

was used to describe the trapped particles. The energy dependence
was assumed to be Maxwellian; the pitch angle, 6, dependence satis-
fies the pitch angle scattering equation with a Lorentz operator.
The boundary condition was to match the Maxwellian distribution of
the passing particles to the real boundary shape. The passive pump-
ing condition was described by a zero boundary at a specific spatial
point specified by Bos %o (the magnetic field and potential at the
passive pumping point). This model was used to calculate the pumping
current and the potential profile [14]. In 1981 [15] a two step
model was suggested to describe the neutral beam pumping in a thermal
barrier. A hyper-geometric series (generalized Legendre polynomials)
was used for the description of the pitch angle dependence. An

exp(-|E|) dependence with E = 0 at the tip of the passing-trapped
boundary was assumed for the energy dependence. The contours of con-
stant distribution function obtained are very similar to the numeri-
cal code calculations (Fig. 6). Based on the contours of a constant
distribution function, Cohen [16] proposed another distribution

function for the trapped particles:
fo = Ny (m/(21T))3/2 exp{(E - aw)/((a - D)} . (1.15)

Here E and u are the energy and the magnetic moment of the particles;

a is a phenomenological parameter to describe the pumping effect
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(a = 1 corresponds to perfect pumping, a = 0 corresponds to pure
Maxwellian, i.e. no pumping at all). This form is used by Pearlstein
[17] for the calculation of the potential profile in the barrier in a
sloshing-ion A-cell. Although the contours of this distribution
function are not really similar to the numerical code results (Fig.
7), it is accepted because it is less likely to lead to discontinu-
ities in the potential. In 1982 [18] Carrera and Callen proposed a
solution using the conical function for the description of the pitch
angle dependence. The boundary is deformed to facilitate an analyti-
cal treatment (Fig. 8). After the integration in velocity space, the
ratio of the density of trapped particles to passing particles was
calculated. Once the total density Np is input, the trapped particle
density, and therefore the trapping current, can be calculated. When
the mirror ratio is large, the deformation of the boundary does not
cause a big error; the results agree with Futch and LoDestro's calcu-
lation within 20% for the trapping current.

The various aforementioned methods for the barrier trapping
process are all based on pitch angle scattering. Energy diffusion is
ignored. However, energy diffusion may play an important role when
the mirror ratio is low. As we pointed out in the two step model,
there 1is always a region near the mirror throat where the mirror
ratio is Tow but the density is high. Energy diffusion in that re-
gion must be dominant. In fact the starting point of the variational
calculation which we present in this thesis was just a trial to in-

clude this energy diffusion effect.
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Fig. 8. Deformed boundary for the thermal barrier calculation in
Ref. 18.
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Fig. 9. The role of energy diffusion and pitch angle scattering
at low mirror ratio.
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2. PHYSICS

2.1 Energy Diffusion

If we consider the velocity space for the low thermal barrier
mirror ratio case, we see that the surface of the boundary near the
tip 1is approximately perpendicular to the vector v (Fig. 9). The
diffusion tensor 51 will contribute Tittle to the current across the
boundary; 5" and R (the dynamic friction tensor) will play the domi-
nant role. Only at points far away from the tip does the 51 play a
dominant role. However, the distribution function inside the passing
region 1is approximately Maxwellian, since the central cell has
greater volume and density than the thermal barrier. The distri-
bution function drops dramatically at points far away from the tip of
the boundary. If we want a good calculation of the trapping current,
we must take into account the energy diffusion process.

2.2 Two Group Approximation in a Square Well

Once we vrecognize the importance of the energy diffusion
process, an approximation can be made using the "Lorentz operator"
for the energy diffusion process. Usually, the Lorentz operator is
used for the pitch angle scattering process; the pitch angle, 9,
denotes the angle between the velocity vector v and the magnetic
field. However, we know that the relative velocity between the test
particle and the field particle, v -v'), plays the key role in
determining these Coulomb interactions. The relative velocity, and

not the absolute velocity 3, should have been considered. According
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to their relative velocities, the passing particles can be divided
into two groups: passing towards the 1left (v" < 0) and passing

towards the right (v, > 0). When the potential dip of the thermal

!
barrier, Pp» is much greater than the temperature of the passing
particles, Tp, the Coulomb interaction between the particles in the
same group is much greater than the Coulomb interaction between the
particles in different groups, since their relative velocities differ
by a factor of (¢b/Tp)1/2. Typically, a particle moving towards the
right will interact with the particles concentrated at the right tip
of the boundary. Their relative velocity 1is denoted by 31 (Fig.
10). The pitch angle of this velocity is 67. Now we can say that
the pitch angle scattering of this vector Vl will dominate the
current across the boundary. Then we may use the "Lorentz operator"
to describe this pitch angle scattering in the co-moving frame, which
is equivalent to an energy diffusion process in the laboratory
frame. The key point is that this description works for both high
mirror ratio, Rb >> 1, and low mirror ratio, Rb > 1 cases.

At the same time we should check the contribution from the
interaction with the group moving towards the left. Their relative
velocity is designated by 32. As we described before, the energy
diffusion of vector 32 can contribute to the trapping process, but we
can prove that its contribution is negligible. Since Coulomb scat-
tering in plasma is dominated by small angle scattering, the change

in the momentum Sp has the following relation (see Fig. 11)



Fig. 10.

Fig. 11.

Definition of the relative velocity V] and VZ’

The change of momentum in a Coulomb collision.
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5, =, 0/2 %~ & /(20) = (& )%/ (2p) . (2.1)

For the fast incident particles, the momentum change in Coulomb scat-

tering is

6p_|_= (quqz)/(bu) . (2.2)

Here, q;, qp are the electrical charges of the test and field parti-
cles respectively, b is the impact parameter, and u is the relative

speed. Hence

o, =1/, " (2.3)
o, = 1/(2pu?) « 1703 . (2.4)

So the energy diffusion process diminishes much faster than the pitch
angle process when the relative speed increases. Therefore, the
contribution from the left moving group is negligible; we concentrate
on the contribution from the right moving group, which can be ex-
pressed by a center-shifted pitch angle scattering.

2.3 Two Sphere Model

Even if the problem is simplified from two tips to one tip, it
is still difficult to write the diffusion tensors O and A. In fact,
we are facing a nonlinear problem: the diffusion tensors § and & are
functions of the field particles which are composed of passing parti-

cles and trapped particles: inversely, the trapped particles distri-
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bution function itself is a function of the diffusion tensors D and
k. This difficulty may be overcome by a modified isotropic
Rosenbluth potential technique [19]. A simple example can show the
essentials of this technique. When we are calculating the water flow
over Niagara Falls, we are concerned with the steepness of the
mountain, but we are never concerned with the change of the accele-
ration of the gravity, 3, due to the shape of the mountain. Although
we know that the distribution of the mass would affect the acceler-
ation of gravity, we always use the 5 value of the round earth,
ignoring the bumpy surface of the earth and other inhomogeneities.
Because we know that the 5 value is determined by an integration of
the distribution of the mass, the 3 value 1is not sensitive to the
Tocal topographical features. The diffusion tensors 0 and X, 1like

5, are dependent on an integration of the distribution function of
the field particles. Although the trapped particles have a different
distribution function than the passing particles, we may try to use
an isotropic distribution in calculating the diffusion tensors D and
K. wWe select the tip of the passing-trapped boundary as the center
of the isotropic distribution; this is different from all the work
mentioned before. Our calculation confirms this approximation a
posteriori.

After the isotropic approximation of the field particle distri-

bution function, the nonlinear problem becomes 1linearized. Now we
are calculating the water flow without being concerned with the ef-

fect on 3 due to the shape of the waterfall,
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2.4 Boundary Condition

However, this does not mean that we no longer need any knowledge
about the shape. In fact, the water level is essential in calculat-
ing the water flow. Likewise, we should carefully specify the bound-
ary condition on the passing-trapped boundary. At this point the
trapping process in the barrier is very different from the endloss
process in mirrors. In the thermal barrier we are dealing with the
boundary condition at the upper reaches of a river; whereas the zero
boundary condition in the mirror is at the lower reaches of a river.
If the seashore is changed a little except at the reaches of the
river mouth, the discharge of the river will not change very much.
In contrast, if the topographical feature near the Three Gorges of
the Yangtze river were changed, the discharge of the river would
change greatly. Therefore, we attempt assiduously to keep the real
shape of the passing-trapped boundary and keep the real value of the
distribution function along the whole boundary. This is realized by
a special choice of coordinates in which separability is assumed.

2.5 Neutral Beam Pumping Model

In addition, we have one more special consideration in the trap-
ping rate calculation, There are two unknowns: the total density in
the barrier, Ny, and the shape of the distribution function. In tﬁe
calculation of the endloss in a mirror, the total density is fixed.
Once the shape of the distribution function is fixed, the endloss
current is determined also. However, in the calculation of the

trapped current, the passing particle density is fixed as an input,
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but the total density in the barrier (trapped particles plus passing
particles) is not fixed. The total density should be obtained self-
consistently with the shape of the distribution function of the
trapped particles. Therefore, one more physical condition is needed
to solve this trapping rate. Fortunately, the constancy of the
neutral beam charge exchange rate provides a simple additional con-
dition without our knowing the distribution function of the trapped
particles. This makes it easy to have a simple analytical expression
of the trapping current in a thermal barrier.

2.6 Philosophy

Lastly, one thing we would ljke to mention 1is the philosophy
guiding us toward the solution. If you want to know how many people
are going into a room, you just count at the door. It is not neces-
sary to know the details inside the room. So we not only carefully
deal with the boundary condition, but also keep the equation near the
boundary as accurate as possible. When we look for a trial function,
we watch the behavior of the solution near the boundary first.

Now let us see how this philosophy guides us in the complicated

mathematics.
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3. MATHEMATICS

3.1 The Variational Method

Since we have decided to keep the real shape and real value of
the boundary, we need a powerful mathematical tool to cope with the
complicated geometric shape. Catto and Bernstein [8] show how the
variational method facilitates their calculation and how a new curvi-
linear coordinate system is introduced in order to keep the real
boundary condition. Because the endloss current is equivalent to the
stationary value of the functional, they obtained better accuracy in
the endloss than in the distribution function.

When we try to use the variational method in the barrier trap-
ping process, the first question is whether there is in fact a
functional for the Fokker-Planck equation in this special case. In
general, we can prove that the Fokker-Planck collisional operator is
self-adjoint provided that the field particle distribution function
is Maxwellian [20]. Unfortunately, in the barrier trapping process,
the field particles are rather non-Maxwellian. Then the existence of
the functional is an open question.

The second question which appeared is how to obtain a suitable
trial function. A good first guess for the trial function is es-
sential for a variational method. If a first guess is very close to
the real solution, then only a few parameters are needed to improve
this first quess in order to get a closed form analytical solution.

In fact, both Chernin and Rosenbluth and Catto and Bernstein used the
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variational method to solve the endloss problem. The difference be-
tween their methods is the choice of the first guess. Catto and
Bernstein kept the natural boundary and let the contour of the con-
stant distribution function follow curves similar to the boundary, so
their result has better agreement with the code calculation. We try
to use Catto and Bernstein's contour method, but we correct the way
of introducing the variational parameter. In Catto and Bernstein's
paper, the functional L(h) is a function of the unknown function h,

h is a function of the new coordinate y, i.e
L(h) = [ dy p(y) (dn/dy)? . (3.1)

Here, p(y) should be independent of the function h; otherwise its
Euler-Lagrange equation will not recover the Fokker-Planck equation.
However, when Catto and Bernstein introduced a variational parameter
A in the definition of the y, this made p(y) dependent on the vari-
ational parameter A, This dependence is not legitimate in a strict
variational sense, since only the trial function of h is allowed to
have a variational parameter in it. In our first paper [20] we made
the same mistake as Catto and Bernstein, but we corrected it in a
succeeding paper [21]. Our method is more general and has better
accuracy.

3.2 The Basic Equation and Its Separable Form

In a square well approximation, the balance equation in the

trapped region is



31
Vel-vi=0,. (3.2)

Here, f is the distribution function of the trapped particles; v is

the charge exchange pumping rate (v = No<ocxV>s 0oy 1s the charge ex-

cX
change cross section; N, is the neutral density; v is the relative
velocity; v is assumed to be a constant in the range of interest).

1is the Fokker-Planck collisional current [22]:
T = R(f*)f - D(F*) « vF . (3.3)

Here, A(f*) and D(f*) are the dynamic friction tensor and diffusion

tensor, respectively. f* is the distribution function of the field

particles.

A(F*) = (4me’/m) I a [ (OO - /Y - V)R dv (3.4)
= 4, 2 A RY I > 3.4

D(f*) = (2me™/m°) In AV V [ £ (v')|V' - v| d°v' . (3.5)

Here, e and m are the electrical charge and mass of the particles,
respectively, and In A is the Coulomb logarithm.

Since the unknown distribution function, f, per se is the field
particle distribution function, f*, also, the basic equation is a
nonlinear integro-differential equation for f. Now we assume a sepa-

rable form of the distribution function f, i.e.
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£(v) = R(vy) Z(n) . (3.6)

Here, Vl is a new vector starting from the extreme tip of the right
passing-trapped boundary; n is a new variable which is defined to be
zero on the boundary. Now R(vl) represents the isotropic part of the
distribution function f(v) (isotropic around the right tip!), and
Z(n) represents the anisotropy. Since we know that f(V) should be
equal to the Maxwellian passing particle distribution function on the
passing-trapped boundary, we can solve the R(vl) first by setting
z n=0 = 1. Then, the unknown function becomes Z(n) with a boundary

condition

Z(0) =1. (3.7)

Z{n) satisfies the equation:
Ve(RD «vwz)-v.(fz)-wz=0. (3.8)
Here, t=R-0-+W. (3.9)

It should be noted that the equation for Z(n) is self-adjoint as long
as the second term, V - (%Z), can be neglected. We should study the
properties of the vector t.

As mentioned before, the diffusion tensors R(f*) and D(f*)

might be approximated by a replacement of f*(V) with its isotropic
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part R(vy) around the tip. The contribution from the left tip is
totally ignored, and the effect of anisotropy due to Z(n) is ne-
glected also. Under this single sphere approximation, the vector t

is in the direction of 31. Furthermore, we may obtain the isotropic

part, R(vy), as

R(vi) =G exp{—(%—m(3¢b + 31)2 - ¢b)/Tp}

G exp{-(m(vf + 2v1v¢b cos elb)/(ZTp))} (3.10)

6 exp{-(v,/v))? - 2(v; V) (v /vy) cos 6y} .

Here, G is a constant determined by the passing particle density, Np,

i.e.

G = (Np/H)(m/(Zva))3/2 (3.11)
H = exp(y) erfc(Vy) - Y17z exp(zy) erfc(vzy) (3.12)
y = ¢b/Tp s Z = Rb/(Rb -1) . (3.13)

For the case of large mirror ratio, Ry, and large potential dip, ¢,
H > (1/Ry) /T TTwg,07 (3.14)

81, 1s the pitch angle of the vector 31 when Ji is on the bound-

ary. Hence,

cos 8yp = (l/Rb){'(V¢b/V1) + /(V¢b/v1)2 + Rb(Rb - 1)} . (3.15)
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As we know, most of the particles are concentrated at the tip, where

V] << vgp; hence, cos 0pp > ((V1/2V¢b)(Rb - 1))
R(vy) = G exp{-Ry(vq/v¢)?} , (3.16)

which is a "Maxwellian distribution" with center shifted to v = 3¢b'
We might guess that the tensor tis very close to zero in the region
of interest. In reality, if we use R(vy) instead of f* in the R(£*)

and D(f*) expressions, and if we let R(vy) equal a pure Maxwellian
center-shifted distribution, then t=o. Although R(vl) is not a
pure Maxwellian, there is another factor which helps to suppress the
contribution from the second term of Eq. (3.8) in the passing-trapped
boundary. Let us introduce a new coordinate system, (vy,n,¥), with

Jacobian J(vy,n). Multiplying Eq. (3.8) by J(vy,n) and integrating

over dvidy, we have
[] dvd¢ 3V-(RB-VZ) - [[ dv,dy 9V+(RZ) - [[ dv;dy JWRZ = 0 . (3.17)

Here, ¥ is the azimuthal angle in velocity space. Using the general-

ized Gaussian Theorem (see Appendix I), we have

d

] dvydy JVe(RD~VZ) {/f dvydw Jvn-RD-vz}

(=8

n
(3.18)

d dZ
n {P(“) ;ﬁ;}
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where p(n) =[] dv,dy Jvn - RD « vn , (3.19)
and
/] dvydy e (z) = g—n {f/ dv, dy J(vn-)zZ} = %-n- {qz(n)Z(n)} (3.20)
where ap = [/ dv,dy J(Eeun) . (3.21)
The equation becomes

d/dn {p(n)dZ/dn} - d/dn {qp(n)Z(n)} - q4(n) =0 .  (3.22)

where do(n) = [f dvydv 9wR . (3.23)

The "watch door" philosophy guides us to address the boundary layer,

where

>

(t'Vn)n+0 ~0 . (3.24)
We may neglect the g, term in Eq.(3.22); consequently, we get

d/dn {p(n)dZ/dn} - q4(n)Z(n) = 0, (3.25)

which is self-adjoint. The boundary condition for Z(n) is
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Z(0) =1 (3.26)
dZ -
rr i 0. (3.27)

nis assigned to the midplane in velocity space. Because of left-
right symmetry, we obtain the second boundary condition, Eq. (3.27).

3.3 The Functional and Its Physical Meaning

The equation (3.25) now is in a Sturm-Liouville form. Its

functional is
L(2) = [ dn {p(n)(dz/dm? + q_(mz2(m)} . (3.28)

The variation of L(Z) recovers the Euler-Lagrange equation (3.25).

It is interesting to note that the stationary value of the
functional is just the trapping current across the boundary. Substi-
tuting Eq. (3.25) into (3.28), we have the stationary value of the

functional:

[ dnfp(n)(dz/dm)? + d/dn{p(n)dz/dn} Z(n)}

@,

[ dn d/dn{p(n)(dz/dn)Z(n)} (3.29)

{p(n)(dz/dm)z(n)}] = -p(0)(dZ/dn)| _q -

On the other hand, the total current across the boundary is



37

[ v v = [{V-(RB-vZ) - v-(32)} v

(<9
(]

L] 0. had b 1 ;
2{/ dvydb IJVn=(RD-¥Z) = [ dvidy JVn-(R2)}] 5 4,

2{p(n) dz/dn - gq,(n) Z(n)}7 .

Because of pumping, qz(n)Z(n)‘ﬁ-is very small, and since g,(0) =~ 0 as

discussed before, we have
Jt = —2p(0)(dZ/dn)n=0 = Z{L(Z)}st. (3.31)

This equation helps us to obtain the trapping current, J;, with
better accuracy, although the first guess for the distribution
function Z(n) may be not very precise.

3.4 The Definition of n and the Trial Function

Up to now the equation for Z(n) and its functional are a kind of
general formulation. We have not yet specified n and determined how

to choose a trial function. What we know is the definition of Z(n)
Z(n) = F(V)/R(v{) (3.32)

and n = 0 on the passing-trapped boundary. If we start the real
calculation, we need an expression for n to calculate the Jacobian
J(n,vy) and a rough analytical form for Z(n) to guess the trial

function.
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In order to realize this, we go back to the original equation
Ve(RDvZ) - Ve(¥Z) - WR =0 . (3.33)

Simply assuming that R is a pure Maxwellian distribution with its

center shifted to v = V¢b’ and approximating the field particle

distributions in the D, R by this Maxwellian R, we have the equation
ve(RiMevz) - wZ =0 . (3.34)

Now we write this equation in spherical coordinates (vq,61,v),

1y 8 [ 2.M5Z 1 5 . M 87
() vy DRy ayp) # () o {sTne R0, ]
1 1 314 (3.35)
-VRZ =0 .

The superscript M denotes the Maxwellian version. Since, in the
vicinity of the boundary, the unit-vector e, is approximately in the
direction of Vn (the normal direction of the boundary surface), and

Z(n) is only a function of n, we have
T (3.36)

We ignore the first term in Eq. (3.35) to get
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> . d 1. M dZ _
4%z dz “Vi
or ~=+cots, (3—) - (=) Z=0. (3.38)
5 1 ‘70 M
do2 1 !

In order to obtain an analytical solution for this equation, we use
the basic philosophy again. Let us concentrate on the most important
part of the trapping process: the region close to the tip of the

boundary, where cot 6; ~ 0. Therefore

2 2 _ 2 ;M -

d°z/de] - (wi/D)) Z =0 . (3.39)
It has a very simple solution:

Z = Cy exp(-K87) + Cy exp(+Kejp) . (3.40)

Here, K = (vvf/DT)l/z. In fact we need only the decaying solution;

hence C; = 0. €y is fixed by the boundary condition
Z(elb) =1, (3.41)
Hence 2(91) = eXp(-K(61 - elb)) . (3.42)

Now we introduce the second term in Eqg. (3.38); we have an approxi-

mate solution
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Z(el) = eXp{'K(e]_ = elb)(l - 1/2 (61 - elb) cot elb)} . (3.43)
This is an exact solution of the equation when 6; = O1ps SO we use it

as an approximate solution in the vicinity of the boundary. There-

fore, the n coordinate in the vicinity of the boundary is defined as
n o= K(6; = 67p){1 - 1/2 (6] - 61,) cot &y} (3.44)
and the trial function for Z(n) may be selected as
Z(n) = exp(-an) . (3.45)
Here, a is a variational parameter, which will be determined by the
variational principle. It is noted that n = 0 on the boundary, and

this trial function Z(n) satisfies the boundary condition Z(0) = 1.

3.5 The Solution of the Variational Problem

Substituting the trial function (3.45) 1into the functional

(3.28), we have

N
L(Z) = [ dn {(azp(n) + qo(n)) exp(-2an)} (3.46)
0
aL _ n
and e [ dn 2{(1 - na)a p(n) - nqo(n)} exp(-2an) . (3.47)
0

Since there 1is an exponential factor exp(-2an) in the integrand, we

may expand p{(n) and g,(n) around the point n = 0,



L. fn dn {(1 - na)a (p(0) + ndp/dn|_)
e . n na)a (p ndp/dnf

- nlq (0) + n dqo/dnlo)} exp(-2an) .

Using the formula

[ dx x™ exp(-ax) = m!i/a
0

(m+1)

we have

aL
da

The variational principle 9L/3a = 0 then gives

p(0) -q(0)/a% - (1/a3) dqg/dn|, o =0 .

In fact we can prove that dq,/dn|..q = 0 (see Appendix II).

have the solution

a = /qo(057p(05 .

3.6 Macro-Balance Equation

52 = 2{p(0)/4 + q (0)/(42%) - dq /fan| o (1/(4a>))} .
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(3.48)

(3.49)

(3.50)

(3.51)

Thus we

(3.52)

Although we have found the solution for the variational para-

meter, a, we are not able to calculate it yet, since the D tensor in
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the p{n) expression depends on the total density, Ny s which is un-
known. One more equation is needed. Fortunately, the macro-balance
equation provides what we need. Since the pumping rate, v, is

assumed to be constant in the velocity space, the trapping current

may be written as

Jt = v(Nb - Np) . (3.53)

Combining Eq. (3.53) with (3.31), we have

2p(0)a = v(Ny - No) . (3.54)

P

Using the result of the variational calculation, Eq. (3.52), we have
2¢q0(0)p105 = v(Nb - Np) . (3.55)

From Eq. (3.19), p(0) 1is dependent on the total density, N, through

-»

the diffusion tensor D. Under the single sphere approximation, D can

be written as

N o
- 4 In Ay byl > > 2
D(v) = (2me 5 )(2—)(6‘) v [ ROV )V - vy | 4mv] dv, . (3.56)
m o} o}
Here Co is the normalization constant
¢ = [ Riv.) am? av (3.57)
0 1 1 1 .

0
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Now p(0) is proportional to the total density, Np.  Extracting N

from p(0), we have a quadratic equation for /ﬁg:

vy = 2/pT0) /N, Tq (0] ﬂﬁ; - va =0 . (3.58)

In the analysis of thermal barriers, it is customary to define a

pumping factor, g,, by

gp = Np/Np - (3.59)

Then, the solution for g is
gp = 1 + a(l + /(T+2/a)) , (3.60)
where @ = N gy (0)p(0)/v (3.61)
9(0) = 9, (0)/(w.) (3.62)
p(O) = p(O)/((Ny/2IN)) . (3.63)

Once we know gy, the calculation of the trapping current is straight-

forward:

Jy = Wi(g, - 1) = vaa(l + /(1 + 2/a)) . (3.64)

t
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4. PRIMARY RESULTS

4.1 Computational Formulae

In order to summarize the analysis so far, we 1list all the
necessary expressions for the calculation of the trapping rate in a

thermal barrier.

Jt = va(gb - 1) (4.1)

g = 1 + a(l + /(T + 2/a)) (4.2)

@ = 1g,(0) p(0)/v (4.3)

50(0) =2r [ dv; d(v,0) ﬁ(vl) (4.4)
0

R(v,) = R(vl)/Np (4.5)

R(vy) = G exp{-(vl/vt)2 = 2(vy/vg)vyp/vidcostyy ) (4.6)

3

G = (Np/H)(l/(/? Vi) (4.7)

Vi = /(2Tp/m) (4.8)

H = exp(y) erfc(vy) - /(17z) explzy) erfc(V(zy) (4.9)



zZ = Rb/(Rb -. 1)
Vq;b = /'22¢b/m5

oS8y = (l/Rb){ ¢b/v /v¢b/v + Rb(Rb -1}

- o J(v,,0) R?(v )
_ 1 1 3In 2 1 an y\2
p(0) = 2« IO dV]_ 0.5 Nb) {D |(3v1) + Dl((vl‘)(‘ﬁ)) }
I(vy,m) = v§ siney/(an/28;)
D, 2 Tn Ayl o amy’ 2 V12
0.5 Nb = ( m2 )(T/_]_—){fo dVl ( Co ) R(Vl) 3 ('q)
© 4nvi2 s Yy
+ J dvy G—CS——) R(vi) 3 Gy{]}
1
D Y1 by 2 v!

® 4"Vi2 s V1
* J dvy G—q;-‘) R(v1) 3 Ey{)}
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.10)

.11)

.12)

.13)

.14)

.15)

.16)

.17)
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_ 2
C, = fo dmvy dvy R(v;) (4.18)
an_ i K cote1b
v v

11n=0 1

(1 + (=) Rycose,, )
ob

K = /(v v%/DT) (4.19)

an/381 | qep = K

Here DT in (4.19) is the center shifted Maxwellian version of the

diffusion tensor with the density (Np/2), i.e.

4 N
DT=(2LZ‘—"—A)(2—P)(%{){¢<>(>-; (o(x) - x@))}  (4.20)
m X
where o(x) = (2//7) fx exp(-sz) ds . (4.21)
0
X = Vi/Vg . (4.22)

The Coulomb logarithm is taken from the form used by Futch and

LoDestro [4],

In A= 34,9 - 0.5 In (N/(E4,Te)) » (4.23)
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where N is the total density, which is approximated by 3N, in our

P
calculation, E,, is the average ion energy in the barrier, which is
approximated by (Tp + ¢p) in our calculation; T, is approximated by
the passing ion temperature Tp. Because these approximations are
inside the logarithm, we do not expect any significant error from
them.

Although the foregoing formulae 1look complicated, they are
calculable and much simpler than the direct numerical caiculation of
the Fokker-Planck equation. Usually, the numerical Fokker-Planck
code takes 10~20 minutes on the CRAY machine for each run, while our
calculation takes only 0.1 second, which is mainly spent on the inte-
grations of qg(0) and p(0). If it is possible to calculate the inte-
grals in qo(0) and p(0) analytically, the trapping current in the
thermal barrier can be done on a pocket calculator.

4.2 Comparison with Numerical Fokker-Planck Code Results

Futch and LoDestro did a series of numerical Fokker-Planck
calculations for the thermal barrier trapping current. These calcu-
lations give us a good base for testing our two sphere model and the
approximations used in this model. When the variables Np, Tp, Rps ¢p
and v are used as input, the pumping factor gy is the output. The
comparison with Futch and LoDestro's code calculation is shown in
Tables I and II. The agreement is fairly good. For the low mirror
ratio cases (Table I), the relative error is generally less than 5%.
For the high mirror ratio cases (Table II), the relative error is

less than 10%. Considering that there is a numerical error due to
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TABLE I. LOW MIRROR RATIO CASE

(Rp = 2, ¢ = 40 keV, T, = 15 keV)

Input Data 9p Deviation
Np Tp v Numerical™ Variational
1011/cm3 keV sec!
1.1 15.0 0.25 3.46 3.32 -4%
" 1.1 15.0 0.50 2.31 2.39 3%
1.1 15.0 1.0 1.80 1.87 47
1.1 15.0 2.0 A 1.48 1.56 5%
10.55 15.0  0.25 2.33 2.41 3%
1.1 10.0 0.50 3.62 3.68 2%
1.1 10.0 1.0 2.46 2.59 5%
1.1 10.0 2.0 1.90 1.98 4%
0.55  10.0  0.25 3.66 3.71 1%
2.2 10.0 2.0 2.45 2.57 5%

* Futch and LoDestro [4] (1982)



TABLE II.

HIGH MIRROR RATIO CASE

(Ry = 20, ¢ = 1.0 keV, T, = 0.4 keV)

Input Data
Np Tp v
1011em3  kev  103/sec

8.9 1/3 2
8.9 1/3 4
8.9 1/3 8

.9 0.2 4

.9 0.4 4
8.9 0.5 4
17.8 1/3 4
4.45 0.2 4
17.8 0.4 4
4,45 0.4 4
17.8 0.5 4

. *
Numerical

2.12

2.54
2.22

3.79
1.94
3.10

* Futch and LoDestro [4] (1982)

b

Variational

2.16
4.57
2.52
2.18
4.21
3.10
3.52

49

Deviation
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the finite grid size (in the endloss case the grid error is about 7%
[7]), we think this agreement is fairly good.

The Futch and LoDestro calculation is non-linear and calculates
the Rosenbluth potentials due to the real passing particle distri-
bution and the instantaneous real trapped particle distribution
function (including both groups of the particles with plus and minus
sings of v"). They start from a pure passing particle case; then the
trapping process evolves to give more and more trapped particles
until it reaches an equilibrium., Our analytical calculation, using
the linearized equations, directly calculates the equilibrium state.
In this analytical calculation the interaction between the two groups
of particles which are moving in opposite directions 1is neglected.
The anijsotropic field particle distribution function is approximated
by an isotropic sphere. It seems that these approximations are
reasonable,

4,3 Discussion

The variational method gives us a powerful method to deal with
complicated geometry in velocity space. Although our trial function
may not fit the real trapped particle distribution function very
well, the resultant error in the trapping current is smaller than the
error in the distribution function. Since the trapping current is
related to the functional in Eq. (3.31), and the functional is a
bilinear form of the function Z(n) and dZ(n)/dn, any error in Z(n)
will result in a second order error in Ji s and therefore in gp. This

effect can also be seen through the analytical expression for -
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Since

9y = I +a(l+ /{1 +2/d)) , (4.24)

the error in o will lead to an error in 9 - But the 1latter is
smaller than the former, because the factor 2/a decreases while the

factor a increases in Eq. (4.24). 1In fact, we have

Agb Ao
- = C——) Y{o/(a + 2)) . (4.25)

For the range of gy = 1~5, a is in the range of 0~1.6. Thus we

always have
Agb/gb < (A(X/(X) . (4.26)

Although the accuracy in a is affected by the approximation in our
model, the resultant g, has better accuracy. This is one of the
merits of the variational method.

In our calculation, the passing particle density is an input;
the total barrier density is an output as a result of the self-
consistent calculation. The alternative is to use the total barrier
density as the input [18], and calculate the trapping current, J¢, as
an output. These two ways are not equivalent; using Np as input

gives a more strict test of the model. When Np is an input, we have



J't = V(Nb - Np) = va(gb - 1) .

Any error in gy would produce an error in Jy:

or (Adt/Jt)Npinput = Agy/(gy - 1) .

In contrast, when Nb is an input, we have

_ 2
then, A = vaAgb/gb s
G N .
t p'fP b~ Ib
1 AJt AJt

I t

- ——'(UQTJNpinput <« (U"_J

N input °*
D p
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(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

If we want to test the different models, it is better to compare 9p

with the numerical code calculation. Otherwise, the different inputs

(Np or Nb) may affect the comparison in the trapping current Ji. One

may see that if gy ~ 5, (Adt/Jt)Nbinput ~ 1/4 (Agy/gp). Even if the

model predicts 9p with an accuracy of only 50%, the accuracy in Ji

will not show it.
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From the physical point of view, N, input gives the diffusion
tensor D immediately; the calculation then determines the gradient of
the distribution function at the trapped-passing boundary. However,
if Np is input data, the diffusion tensor D and the gradient of the
distribution function should both be obtained self-consistently.

Apparently, the latter case requires a better model.
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5. ANALYTICAL EXPRESSIONS FOR THE PUMPING FACTOR

5.1 Analytical Expression for gy (R, 2 1)

The comparison of the variational calculation with the Fokker-
Planck code results, shown in Chapter 4, confirms our two group
approximation and two sphere model; in addition, it shows that our
trial function is a good approximation. However, the expressions
from (4.1) to (4.23) in Chapter 4 are too complicated for a fast
calculation of the trapping current. Particularly, the double inte-
gration involved in 5(0) and the integration involved in ao(O) pre-
vent us from being able to obtain a result with only a pocket calcu-
lator. We would 1like to make some approximations to simplify the
results further.

The first approximation is to drop D" compared with Dl. Since
D, decreases much faster than D, when vy increases and 31 becomes
tangential to the trapped-passing boundary when vy is small, the
contribution to 6(0) from the D, (%%I)z term is always suppressed.

The second approximation 1is that we can use an effective
Maxwellian distribution to replace R(vi) when the mirror ratio R, is
Tow (R 2 1). Since the exponential factor exp(-(vl/vt)z) causes the

most important contribution to come from the Vi < vy region, then for

Rp 2 1,
1 Vb Yab Rb(Rb - 1) vy (Rb - 1)
cost,, = = {~(-22) + (=22)[1 + 1} = = ———— . (5.1)
bRy vy 1 2(v¢b/v1)2 Z Vy
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v VooV v, (R, -1)
Hence, R<v1>=eexp{-(@2-z(ﬁ)(vf’)gl 3¢b
_ o142
= G exp{ RDCV—) }. (5.2)
t

This is a Maxwellian distribution function with an effective tempera-
ture of Tp/Rb. For a Maxwellian distribution function, the integra-

tion in D, (Eq. (4.18)) can be done analytically. Therefore

D 4

L _2me In A1l { 1 d¢
= — {6(x;) - = [6(x,) ~ x, =]} . (5.3)
0.5 Nb m2 Vi 1 2x§ 1 1 dx1
Here ¢(x1) is the error function, and X1 is defined as
YR v
x, = ——+ (5.4)
t

The third approximation is to take the low velocity limit (v1 + 0)
for Dl and D%. Since both Dl and Dﬁ are under the integration with
an exponential factor exp(-Rb(vl/vt)Z), the dominant contribution

comes from the small vy part. Hence

Dy Lomtinn1 4 !
0.5 N, i V1 3/ (1/R) vy
(5.5)
4
_ 2me 21n A4 ¢§g.l.
m 3V Vi
4 N /2 v
DT » 2me Z]n A 5 4 Vl = constant . (5.6)
m 1 3/n 't
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Therefore,

v

o 4
) 122" 1n A 4
p(0) = 21(0.5 Ny} [ dvy J(v;,0) 6 exp[-R, (1)2] 2= ~ Ry
0 t m 3¥7
1 1 on )2
x__._ —————— ——————
Vg vy 99
_anf_,\itf__.‘l_JR_Lfmdv vZ sine,, 4% exp [-R (\/—1)2]
27 S5m0 v, 1b T3n b W,
36
1 93n 2
x (G- 20 (5.7)
v1 391
r 4 1 I“’ @n ‘Rb("l/"t)2
= 27 G %5 o —— — dv, sine, (z5)e
2
N @ -R (V /v )
= 21 G.%.?E._ﬂ_ /ﬁg.%_ /-fh [ dvy sine, ve b1
3/ t Dl 0

The fourth approximation is to assume sinelb = 1 in the integrand of

Eq. (5.7). Hence,

2
N o -R (vo/v,)
T'b 4 1 v b''1/ 7t
p(0) = 27 G 5 5 — R, — / [ dv, v.e
22 3/ b vt 'BT o 171
(5.8)
2
conelb 4 1 /3 Yt
22 377 b vt Dﬁ 2Rb

Using the same approach, we have
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- - 2 v IRy
q,(0) = 2n fo dv; vy sind; =t 6 exp [ Rb(V;) ]
o0
(5.9)
M 2
*® v D v
v 1.2 1 t
=~ 21 G [ dvy vy exp[-Rb(v—J ]=o2n6 TT'(?R_) v
/v/DM ° t b
1
Hence
.. qo(O) p(0)
vaN_(0.5 N )
2
_ 2r 4 [Vt 2 Ry v
3T b VYt veN
v N
_2 ¢ ¢ 1 ( 1 )3 (
= 5 — . 5.10)
YN A R

Here, the collision freguency Ve corresponds to the thermal velocity
vi and central cell density Nc, i.e.
4 N
v chme Intl p (5.11)
c m2 v3 H
t
where H is given in Eq. (4.9). Table III shows the results of the
calculation using Eq. (5.10) for the same cases considered in Table
I. The deviation from Futch and LoDestro's calculation is less than
6%. This agreement encourages us to go further to get a general ana-

lytical expression for a.
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TABLE IIT. LOW MIRROR RATIO CASE

(Ry = 2, ¢ = 40 keV, Ty = 15 keV)

Input Data 9p Deviation

Np Tp v Numerical* Variational

1011/cm3 keV sec-1

1.1 15.0 0.25 3.46 3.32 -4%
1.1 15.0 0.50 2.31 2.39 3%
1.1 15.0 1.0 1.80 1.87 a%
1.1 15.0 2.0 1.48 1.56 5%
0.55 15.0 0.25 2.33 2.40 3%
1.1 10.0 0.50 3.62 3.71 2%
1.1 10.0 1.0 2.46 2.61 6%
1.1 10.0 2.0 1.90 1.99 5%
0.55 10.0 0.25 3.66 3.74 2%
2.2 10.0 2.0 2.45 2.59 6%

* Futch and LoDestro [4] (1982)



5.2 Analytical Expression for gy (Ry = 2-20)

We now consider the case of arbitrary mirror ratio. Let us
first check the four approximations made in Section 5.1. Du is still
less than Dl in the general case, but R(vl) is no longer a Maxwellian
distribution. Since the range Rb >> 1 is now included, coselb may no
longer be expressed by Eq. (5.1), and therefore Eq. (5.2) is no
longer valid. Consequently, the third approximation should be cor-
rected, and sin6;p ~ 1 is no Tonger a good approximation as well.

When R(vl) is not Maxwellian, the first problem is to find a way

to avoid the double integration in p(0). Since

v '

D,{v,) 4 1 v
1MV amet Inal 1 C o2 ity 1 12
05N, T 2 v, €y {fo dvy 4mv;© R(vi)I[1 - 3 (vl) ]
(5.12)
Z o 2 ooy 2 1
+ [ dvy 4mv, " R(v)) §-CVT) I
v 1
1
we may write
D.L(Vl) ri 1 {\}1 2 [ 1 (Vi)Z 2 (vl)]
=5 == dvy 4nv.” R(vi )1 - 5 (=) -3 (&7
0.5 Nb 2V Co o 1 1 1 3 vy 3 v1
® 2 21
+ fo dvy 4mvi° R(vy) ('V—i‘)} (5.13)

TL 1 g3 = \
= > =z {0(vi) + [ dv: 4mv
2 v1 Co 1 o 1 1 vl

The first term inside the brackets decreases with Vi much faster than

59
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the second term. Because this expression for Di(vl) is used to
calculate the integration in the expression for 5(0) (Eq. (4.14)),
the ﬁ(vl) in the integrand makes the contribution from the small v;
part dominant. Thus we can neglect the first term in Eq. (5.13).
Then the double integration in (4.14) becomes the product of two

single integrations. Therefore,

N © ~ © N
o =L [on [ dvy J(vy,0) Rivy)][2n [ dvy 3(v;,0) R(v,)
0 0
ri1 1 . 2 ooy 2 Y1yl an y2
<y -1/ av) 4wt RO 5 ()G a)%)) (5.14)
1 % o 1 1 1
® . g 2 ® P [ ]
\ {J dvy vy sing R(v)I® [ dvg vy R(v))
- .b (2n G )2 ' o 0
v 3 =, -
/ dv; vy Rlvy)
0
v v, V
~ 1
Here, R(v;) = exp{-(vl-)2 - Z(V—J(V—EJ coselb} . (5.15)
t t t
Therefore,
I\2 ~
v N_ ITel
_1 c ¢ 172
o = .3—1T\)_W— ~ (5.16)
p 13
here: oo T a2 sine, Riv.) (5.17)
wnere: 1 V_ 1b 1 > .
0 t
I, = fm d(Xl)2 R(v,) (5.18)
2 v 17 :
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Vv
Iy = [ DA Rivy) . (5.19)

This expression (5.16) is valid for both high and low mirror ratio

cases. MWhen Rb 21,

~ 112
Rlvy) » exp{-Rb(V;) I (5.20)
and siné;y ~ 1, and we have
- N o -R.x
1
=I,=/ dce > =2 (5.21)
0 b
T ReX vm o 143/2
I, = Io dx VX e = (R;) (5.22)
v N
2 Ve e 1 (1 ,3/2
Hence, @ = o — = — (5—) (5.23)
YN s Ry

This is just the same expression as we got in the last section (e.g.,
(5.10)).

Now our task is to calculate three integrations (5.17)-(5.19)
for the general case. Using the two point Laguerre-Gauss quadrature

formula (Appendix III), we have

~

I, = 2,F, (%)) + Z,f, (x,) (5.24)



Here,

It should be noticed that R in (5.27) is not R in (5.15).

7 -2+ 72

1
v 42 - V2 + ai

7 - 2- 12

Y Y
42 + 7 + «

L

): V2-/2—+a2-a

1 2 2

; = V2 + V2 + a2 - a

2 2 L
R(x) x sinelb i=1
£i(x) =1 R(x) x i=2
R(x) x 2 =3

R(x) = expl2x[oy + 5, - /2 + ]}

2 L 2
s =11
2 Tp Rb X
% 1
a, = - (1 - )
2 Tp Rb

% ?
//(;; coselb = -62 + V%i + oy
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(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

In order



to use the two point Laguerre-Gauss quadrature formula in Appendix

2
III, we must extract the e Bx"-YX factor from the R(Vl) in the
correct way. Let )
v V. V
~ 152 1 1
R(v,) »exp{-(==)" - 2(==2)2) /1 -3} (5.32)
1 vt vt vt Rb
In this way we find that
B = (1—)2 (5.33)
Y
t
v ¢
Y=2—%E/l-%—=2/r—;/§ 1-;— (5.34)
v b p b
t
_ A ~ $ N ¢
and R(x) = exp{2x D - Ly o 2 cose,, |
T R T 1b
p b p
(5.35)

exp{zi[al + 8- JSi + Ji]}.

Figure 12 shows the result of calculations based on Egs. (5.16) and
(5.24)-(5.31). The deviation from Futch and LoDestro's code result
is generally less than 20%. Considering that it covers the range of
Ry = 2~20, we think that it is a fairly good approximation. Figure
13 shows a similar plot of the numerical-variational calculation in
Section 4 compared with the results of Futch and LoDestro. We see
that the additional errors introduced in the approximations used to

get an analytical expression for o are not large.
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Fig. 12. Comparison between the results frc~ the variational calcu-
lation (two point Laguerre-Gauss Guzdrature) and Futch and

LoDestro's code calculation.
6.8

5.8~ *

4.0

3.8 %

Gb (Futch and LoDestro)

1.8F

a.g | 1 1 L L
e.a 1.8 2.0 3.8 4.8 S.8 6.8

Gb (Rb=2~28 VARIATIONAL-2 POINT RAPPRCX.)
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Fig. 13. Comparison between the results from the variational calcu-
lation (exact integration) and the Futch and LoDestro's
6 z_gg_d,e calculation.

3.8

2.8r

Gb (Futch and LoDestro)

1.8F

8.2 1.8 2.8 3.9 4.2 S.9 6.8

Gb (Ri=2~28 VARIATIONAL-EXACT INT.)
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6. SUMMARY

6.1 Physics

The trapping process in the thermal barrier is a collisional
process. Three aspects of this collisional process were unclear to
us when we started this research: (i) To what extent do collisions
between the two groups of counter-streaming particles contribute to
the trapping process? (ii) Which part of the trapped passing-
boundary surface is essential for the current across the boundary?
(ii1) Does pitch angle scattering dominate the trapping process or
does energy diffusion play an important role in this process? As a
result of our research, we can say that: (i) When the barrier is
well pumped (d>b/Tp > 2), collisions between the two counter-streaming
groups is negligible compared with collisions among the particles
moving in the same direction. Because of the velocity dependence of
the Rutherford cross-section, the interaction is small when the rela-
tive velocity of two particles is large. (ii) The tip of the boun-
dary surface is the most important part for calculating the current
across the boundary. Because most of the particles are concentrated
in the region around the tip, the particles in the vicinity of the
tip experience the strongest scattering and the number of these
particles is a big fraction of the total number of the particles in
the barrier. Therefore, careful treatment of this part of the
boundary is essential for the calculation of the trapping current.

(iii) The energy diffusion process is not negligible, since the drag
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force between trapped particles and passing particles causes a sub-
stantial current across the boundary. This effect may be more im-
portant in the non-square well case, where the density is peaked near
the magnetic peak. Since the collision rate is proportional to the
square of the density, the trapping process near the magnetic peak 1is
essential for the analysis. However, in the region very close to the
peak, the local mirror ratio is very small, and consequently, pitch
angle scattering in this region (i.e., a change in magnetic moment)
may not have a big effect on the trapping current. In contrast, the
drag force between trapped particles and passing partices may retard
the passing particles and contribute to the trapping process regard-
less of the local mirror ratio.

Our model has a better treatment of these three aspects, so the
agreement with the numerical Fokker-Planck code results is better.

6.2 Mathematics

When Chernin and Rosenbluth started their variational calcu-
lation of the Pastukhov problem, their goal was to check the effect
of the deformation of the boundary on the endloss. So they changed
the shape of the 1loss-cone boundary widely. Later Catto and
Bernstein developed this variational calculation by the contour
method for specifying the trial functions. This allowed treating the
boundary much better than before. It was not expected that a vari-
ational functional could be found for a thermal barrier where the

distribution function is non-Maxwellian. In this research we have
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found a functional for the thermal barrier case using the two group
approximation and two sphere model.

In addition to applying Catto and Bernstein's contour method, we
put emphasis on the most important region and used the asymptotic
behavior to guess the shape of the contours in velocity space. The
application of these two principles led us to an analytical expres-
sion for the trapping current in a thermal barrier. Success encour-
ages us to apply it in the Pastukhov problem, the weak pumping case
[23] and multiple species pumping case (e.g., D-T mixture). This,
however, is left for future work.

A final closed form analytical expression for the trapping cur-
rent in the well pumped barrier has been obtained. For the barrier
mirror ratio from 2 to 20, it deviates from Futch and LoDestro's
Fokker-Planck code results [4] with an error of less than 20%. Con-
sidering that the Fokker-Planck equation itself has an error of about
5% (1/1n A) and the finite grid error in the code result is about 7%,
we think this is good enough for general purposes in calculating the
trapping current. The two point Laguerre-Gauss quadrature formula
used in obtaining this closed form analytical expression is a power-
ful tool for future work.

The computer time necessary for the Fokker-Planck code is 10~20
minutes on the Cray computer for each case, and the computer time for
our formulae (4.1)-(4.23) is less than 0.1 sec. Finally the formulae

(5.16)~(5.31) are calculable even on a pocket calculator.
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APPENDIX I. A GENERALIZED GAUSS' THEOREM
In any coordinate system, we have Gauss' Theorem
[ff d3v ve€ = [] 3.2 . (1.1)
Using the coordinate system (vl,n,w) with the Jacobian J, we obtain
JI] &% wet = [[f drdvydy 97-C . (1.2)

For the vector set (Vvl,vn,V¢) there is a reciprocal vector set
v W v

(3\/—]-.- s 3;] , W), therefore

me @By (@) <L) - )L (L

v W W
1= Gy < G - &) (1.4)
1
Hence, G%%) x E%%—) = Jvn . (1.5)
: 1

Since the differential surface element at constant n can be written

as
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we have
[f 3.8 = [f (%) x (%Vv_l) dvydpel = [[dvydy Jvn . (L.7)
Substituting Egs. (I.2) énd (I.7) into Eq. (I.1), we have
[ drdvydy JveC = [[ dvidy 9vn. . (1.8)

Taking the derivative with respect to n on both sides of Eq. (I.8),

we have our desired result,

[ dvidy 978 = G- [ dvidy Jvnet (1.9)
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dq
APPENDIX II. THE CALCULATION OF —2 _
dn {n=0
We have
q,(n) = 2nf dvy J{vy,n)wR(vy) . (I1.1)
V.
min

The Tower limit of the integration, Vmin» is not zero when n is non-
zero, since v; is the distance from the tip of the n = 0 surface to

any point on the n = constant surface. Now

dv_.
d - _ , __min
aﬁ-qo(n) = Z"J(Vmin’n) vR(Vmin) I
(11.2)
® 9
+ 27 fv dv; “R(v,) 3ﬁ-J(vl,n)
min
I(v,,n) = v sin o -
Since 1’ 1 1 on_ (I1.3)
a6
1
and 01 (Vyipgsn) = T
we have J(Vpipsn) =0 . (I1.4)

For the second term in Eq. (II.2), we use
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3 = v2 3 [es 1
5T J(vl,n) 1% [sin 8 (3n )]
96
) (I1.5)
8
o2 1, 1 (-1) 3 ,an
vl[cos 8 (—a'ﬁ_) g *osin 8 ==l (ae )]
55-) 55-) 1
1 1
H CRNCLI i, i S S )
owever, n ‘38 an an 27 ° I1.6
1 36 Ga-) 36 ( )

3 Wi
3g—l= —D-Tl [1 - (cot o) (e, - o) ] (11.7)

32n w%
—5 = - [ o5 cot 8 (11.8)
ael D.L
Hence
3 2 1 . 1 (-cotey)
3 J(vyan) = vpleose) —m - SiNG) —— T (6, = 8 )}
55-) Ge) 1b' "1 1b
1 1
= 2t [cose,, + sine,, cote,, ]
8. »0 173n |2 1b 1b 1b
1 71b 861 '
(11.9)
J(v,,0) cote
2 1 _ 1’ 1b
> vy —(_B_n__ 5 2 €0S8y = 2 (Bn ]
36 36,

1 1
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o 2 cot61b
T %M =0 = 2nfo dvy J(v,,0) - WRivy) .
So vy (I1.10)
M
D_L

Since R{vy) is a dramatically descending function of vy, only small

Vi contributes to the integration. For small Vi, we have

v
1 -
cotd;, VI;U» cosé,, ?V;; (Rb 1) (I1.11)
2
v_v];____—> v A
fop Y i1 ey
-ZTV]. 3/? V,t
(I1.12)

v v
~ > )~ /(P .
///l 1 TN 1__ vt vc vt

ERV vi

Here, v. is the order of the collision frequency of the passing

particles, which is much less than the pumping rate v in the strong

pumping case. Hence,

coto v v
1b cl 't _
>/ vz IR, -1 <L (I1.13)

v,.>0
[/ 2,\M "1 éb
\)v1/Dl

nso 18 negligible compared to o (n>0).

d
Therefore, o qo(n)
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APPENDIX III. LAGUERRE-GAUSS QUADRATURE FORMULA

In general, an integration with an exponential factor e ™ ®X may

be expressed as a Gaussian-Laguerre series, i.e.

Il(x) =] e ™ f(x) dx = J
) i=

L Hi f(xi) . (ITI.1)

Sometimes only two terms of this expansion may give good accuracy

[24].

I,(x) = fo e f(x) dx =-% 2 Z 2 £(2 ~ /7)
(111.2)
2 - V2 2 + V2 1, V() -
g f( . )]+ I 0 <E&<

For example, when f(x) = 1, the exact value of this integration is

1/a; this formula (III.2) gives

(I11.3)

Usually, the two point Gaussian quadrature formula gives a good
approximation of the integration as long as f(x) has reasonable
behavior (such as a polynomial).

For the case of the integration

[ -]

2_
Lx) = [ e P 7™ £(x) ax , (I11.4)
0
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2_
there is a fast decaying factor e ™BX""YX and one may expand f(x) as a
Taylor series around the point x = 0. Then the parabolic cylinder
function D_,,(x) may be used to express this integration [25]:

> _ 2_
L(x) = [ e BX"2YX [£(0) + x %;

0

dx

0]

2
(1) exp(ggj D-l(J%EJ f(0)

= (28)" Y2 1

~nNo

+ (28)_l r(2) exp(3=) D_z(—l—J %;
V2B

™

0 -

However, one may simply use the two point Gaussian quadrature formula
to avoid the parabolic cylinder function and the derivative of f(x).

That is

[ eBlxr(r/28)) 2+ (¥ /a)

Iz(x) f(x) dx

2 o _
- oY /48 | e Bt f(vt --%g) d/t
(v/28)2

" -1
- J e-B[t-(Y/ZB)Z] ffff___ggl

(Y/ZB)2 2/t

dt
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= gy Tt + (v/28)° - 1)

= J e‘Bt

0 2/t' + (v/28)2

dt'

1 2+42 1 /2—/? 2
E A Ve LRI N
2 - V2 Y 32
-2
+242 ; f(/2;@+(%§)2_%§)}
2 + V2 Y 32

In our case, B = (l/vt)z; Y = 2(v¢b/vi) V1 - 117Rb5 =

2v’¢b/Tp VB V1 - (1/R.); (v/28) = 2/¢D/Tp VB8 /(1 - (1/R 1)/28 =

/¢b/Tp 1//8 V1 - (1/R)) = agv.. Here

¢
ez /20 -2, (111.5)

p b

Hence,

Vv
2 + V2
I(x) = 5% {4 L f[(2-vZ+ - a) ]

= S (Y A N R R ST
V2 + V7 + ay
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