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CONDITIONS FOR DISLOCATION LOOP PUNCHING BY HELIUM BUBBLES*

H. TRINKAUS! and W. G. WOLFER?

lMetals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830%1
2pepartment of Nuclear Engineering, University of Wisconsin, Madison, Wisconsin 53706

Under continuous helium but insufficient vacancy supply, bubbles in metals grow by pressure-driven
athermal processes such as metal interstitial emission and dislocaton loop punching. To discuss the
energetic conditions for these processes, the formation and interaction energies of bubbles and
interstitial type metal defects are analyzed. The only condition which has been considered to date
is that the decrease in the free energy of a bubble associated with the emission of an interstitial
type metal defect must be equal to or larger than the formation free energy of the latter defect.
Consideration of the elastic interaction energies resultsin additional conditions controlling loop

punching for bubbles with radii larger than about 10 Burgers vectors. Possible modes for the Toop

punching process are discussed.

1. INTRODUCTION

Helium has been theoretically predicted!
and experimentally confirmed? to be practically
insoluble in metals. Therefore, it strongly
tends to precipitate into helium-vacancy
clusters and bubbles when it is introduced by
direct injection or by (n,a) reactions. The
energetics and formation kinetics of this pro-
cess form the basis for the understanding of
helium effects such as swelling, intergranular
embrittlement, and blistering.

The character of the precipitation kinetics
of helium in metals depends distinctly on the
helium production and displacement rates as
well as on temperature. For instance, at high
helium production rates and/or low tem-
peratures, diffusion-controlled clustering of
thermal- or radiation-induced vacancies is too
slow to contribute to the formation of helium
bubbles. In this case, helium precipitation is
associated with athermal processes such as
spontaneous formation of Frenkel pairs, metal
interstitial ejection,3s% and dislocation loop

punching.®s® 0On the other hand, at Tow helium

production rates and high temperatures, vacancy
absorption is fast enough to prevent such
athermal processes. In this case, the pressure
within a growing bubble is kept close to the
thermal equilibrium value.

A necessary condition for the emission of
an interstitial type metal defect by a helium
vacancy cluster or helium bubble is that the
decrease of the free energy of the helium
vacancy cluster or helium bubble associated
with such a process must at least be equal to
(or larger than) the formation free energy of
the metal interstitial defect. This condition
has been discussed in detail recently for loop
punching by small bubbles down to sizes of
about 1 nm in diameter.”?

On the other hand, the formation of an
interstitial type metal defect has to occur at
the bubble surface and this defect has even-
tually to overcome an energetic barrier to
become separated from the bubble. In fact,
computer simulation studies show that helium
clustering results in strongly bound complexes

of helium-vacancy and metal interstitial

*Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under
contract W-7405-eng-26 with the Union Carbide Corporation and by the Office of Fusion Energy under
contract DE-AC02-82ER50282 with the University of Wisconsin. . .

ton leave from Institut fur Festkorperforschung, Kernforschungsanlage Julich, D-5170 Julich, FRG.



clusters,3 To date it has not been clarified
whether and how such complexes finally grow and
transform into stages from which they can
dissociate completely.

In the present paper, first the necessary
energetic conditions for the separation of
interstitial type metal defects from
overpressurized helium bubbles will be briefly
reviewed, Then the energetic conditions for
the formation of close complexes consisting of
a helium bubble and metal interstitial clusters
or dislocation loops will be set up. Finally,
possible modes for complete dissociation will
be sketched. Since elastic continuum theory
will be used throughout the discussion, the
resulting conditions cannot be taken to be
fully quantitative but may be expected to
describe the functional dependencies correctly.

2. FORMATION ENERGIES OF HELIUM BUBBLES AND

METAL INTERSTITIAL DEFECTS

Consider the dissociation of a bubble of
volume VB = 4 rB3/3 into a bubble increased by
the volume of N metal atoms, N, and a defect
cluster consisting of N metal interstitials. A
necessary condition for this process to occur
is that the change in the free energy asso-
ciated with it is zero or negative,

AFs = Fg(Vg + 10) + Fp(Na) — Fg(Vg) < 0 (1)

where FB and FD are the formation free energies
of bubbles and metal interstitial clusters,
respectively.

If the bubble is sufficiently large, the
bubble formation free energy FB is given by the
contributions of helium inside the bubble
volume, FHe’ and the metal surface confining
it, Fg = y, where y is the specific surface-
free energy of the metal. Using this, Eq. (1)
results in a condition for the average <p> of
the helium pressures in the initial and final
states’

Pz <p —~?y/rB> > Fp/te (2)

For bubbles with radii rg below 5 nm, curvature
corrections to the bubble metal interface free
energy become increasingly important.” We
neglect them in the following to focus interest
to the most important points of the problem
under consideration.

To comptete the condition expressed by
Eq. (2), the number N of metal interstitials
within the cluster and its formation free
energy Fp must be specified. For a single
interstitial, N = 1, the formation free energy
is about po/2 where u is the shear modulus of
the metal resulting in

51 2u/2 (3)

as a condition for metal interstitial emission.

Due to an increasing binding of intersti-
tials to their clusters, Fp/M2 decreases with '
increasing N thus reducing the pressure
necessary for interstitial cluster ejection.
It has been shown® that in fcc metals small
clusters form three-dimensional structures
whereas larger clusters tend to assume two-
dimensional platelet-like structures defining
the transition to dislocation loops which are
energetically most favorable for large N.

The formation energy of a dislocation loop,
Fi, consists of an elastic energy, a disloca-
tion core energy, and eventually a stacking
fault energy neglected in the following. The
two former contributions may be summarized in
one unique expression which for circylar edge
dislocation Toops of Burgers vector b and
radius r containing N = nbrf/0 interstitials
takes the form

nb? rL re

Fo= n— 4
L2 nro )

where v=Poisson's ratio of the metal and
ro is an effective core radius, With



ro = 0.1 b, this equation describes the
formation energy of two-dimensional metal
interstitial clusters down to sizes where the
elastic continuum theory breaks down. The
rough but simple approximation F| ~ mub?r| to
Eq. (4) applicable in the range 4 < ri/b < 20
results in’

L 2 ub/r (5)

as a condition for lToop punching. Accordingly,
the threshold pressure p; for this process
should decrease with increasing loop radius r.
However, since such a loop originates in the
bubble, its radius cannot be much larger than
that of the bubble r| » rg. Additional con-
ditions result from consideration of interaction
energies between bubbles and metal interstitial
defects as will be shown in the following.
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FIGURE 1

Scheme of the loop punching mechanism: for-
mation and expulsion,

3. INTERACTION ENERGIES OF HELIUM BUBBLES AND

METAL INTERSTITIAL DEFECTS

The energy of a complex of a helium bubble
and a metal interstitial defect can be well
described in terms of the formation and
interaction energies of the constituents. The
interaction energy is of elastic nature and
consists of contributions due to the permanent
strain fields characterizing the isolated
defects, Egb)s called permanent or first order
elastic interactions, and contributions due to

additional strain fields around defects elasti-
cally polarized by the strain fields of the other
defects, called induced, modulus or second
order elastic interactions.?,19 A bubble is
elastically polarized by the strain field of a
metal interstitial defect and, vice versa,
inducing interaction energies Egﬁ)and Eﬁ%),
respectively, An elastic interaction of a
defect with a boundary such as the bubble surface
is also often referred to as an elastic image
interaction?, EE%) > Eém.

The change in free energy associated with
the formation of complexes of a helium bubble
and a defect cluster consisting of N metal
interstitials may then be written as

AF = AFg + Fp (M) + Egln) v Efm o+ Eng) (6)
with AFg = —PNa.

To specify the three interaction energy terms
at the right hand side of this expression, the
strain fields around bubbles and metal
interstitial defects must be known. Spherical
bubbles and isotropic metal interstitial
defects represent centers of dilation which in
isotropic media are characterized by displace-
ment fields of the forml?

b
du R3

where B is the pressure transferred to the
metal matrix adjacent to the defect and R is

u-= R (7)

the position vector measured from its center.
For a bubble, p = p— 2y/rg, where y is the
surface tension of the metal. Since y is not
known, we set y =y and p = p. The strain
field obtained by differentiating Eq. (7) is of
pure shear character.’ As a consequence the
first order interaction between such dilation
centers is zero, and the interaction energy

is completely governed by second order inter-
actions,



The image interaction of an isotropic defect
with a bubble is attractive everywhere. It
reaches EJl = —Ep/3 for v = 1/3 when touching
the bubble surface? if the defect radius is
small compared with the bubble radius, rp << rp.
Single dumb-bell interstitials and small
interstitial clusters in fcc metals have been
shown to have a high elastic shear polarizability
agl! resulting in attractive interaction energies
(—eseg?) with the shear strain fields eg of
other interstitial defects!? or over-pressurized
bubbles. Using Eq. (7) we can estimate the
change in the free energy associated with the
formation of a single interstitial or an
isotropic interstitial cluster bound to the
surface of a bubble to be

AF ~ — BN + 2Ep/3 — 3asp?/(8u2) (8)
with Ep ~ p@/2 and ag between 15 po and 20 pol!l
AF < 0 results inp >u/6.

In clustering the energy per single inter-
stitial, Ep/N, is reduced due to their polari-
zation induced interaction!2 but on the other
hand the elastic polarizability decreases with
increasing N. Accordingly, the binding of an
interstitial to its cluster is weaker close to
than far off an overpressurized bubble. Taking
1/3 of the formation energy of a single
interstitial for the energy per interstitial in
a large cluster® and neglecting its elastic
polarizability we obtain from AF < 0 the con-
dition p’ > u/9.

Single interstitials or three-dimensional
interstitial clusters formed at the bubble sur-
face will stay there due to the attractive
elastic second order interaction. This is in
agreement with observations made in computer
simulation studies.3

The strain field of a circular dislocation
Toop is described by elliptical integrals!3 and
becomes simple only close to, far from or on
the axis of the loop. 1t is, however, not
needed explicitly to calculate the first order
interaction energy between a bubble and a loop,

Eé{), since this can be represented byl3

EGi) = —f ep ae )
where £ is the strain field of the bubble and
dPij =7 CjjkibkdAy is the dipole force tensor

k1

of an infinitestimal dislocation loop of
Burgers vector b and surface element dA in a
medium with elastic constants Cjjx1. For a
circular edge dislocation loop in an isotropic
medium integration of Eq. (9) yields a
repulsive interaction which can be combined
with AFg in the expression —«bri (1 —-r%/D3)3
where D is the distance between the dislocation
core and the bubble center (Fig. 1).

To determine the image interaction, EEE .
the image field of a loop in the presence of a
bubble surface must first be calculated. The
procedure is analogous to that developed for
the interaction of a loop with a void.!% Since
it is complicated in the general case, details
will be presented elsewhere.l!® For the present
discussion only the most important features are
needed, For instance, the image force is
attractive everywhere; it is dominant close to
the bubble surface whereas the elastic first-
order interaction force is dominant far from the
bubble.

from the bubble surface, d = D — rg, is small

If the distance of the dislocation line

compared with rg and ry, the problem reduces to
that of the image interaction of a straight
dislocation with a plane surface.l!3 Combining
in this case E and ELM

BL
elastic polarizability of loops, E[})= 0, we

and neglecting the

obtain for the free energy change on forming
a loop close to the bubble surface

ubZr d

2 ~
AF % —zbri(1 — rg/D3) P e E TR (10)

where the core radius ry of the Toop is
estimated to range from 0.1 b to 0.5 b for small
and large loops, respectively, With d= b,

AF £ 0 yields an approximate condition for the
spontaneous formation of a loop adjacent to the
bubble surface



ELZ_GE'(TETF ;‘E Tn $3~ (0.05 to 0.2) p :% (11)
Accordingly, the pressure required decreases
with increasing loop radius and becomes lowest
for r_ « rg. The minimum value is about equal
to the threshold pressures for the formation of
metal interstitials and clusters of them close
to the bubble surface, i.e. about 1/2 the
theoretical shear strength, u/2n, indicating a
transition of the metal matrix adjacent to the
bubble into a state of high crystal disorder.
Generally, a loop formed at the bubble sur-
face in accordance with Eq. (11) will stay
there since the force between both is attrac-
tive near the bubble, This is illustrated
in Fig. 2 which shows the geometry of bubble-
loop configurations obeying AF = 0 for ry =
0.5b, rg = 50b, and various values of p.
Accordingly, a loop for which AF = 0 at the
bubble surface (d/rg = b/rg = 0.02) is repelled
from the bubble only above a certain, though
relatively small distance from the bubble sur-
face (d/rg ~ 0.05). The pressure required to
form a loop at the position of zero force
(maximum of the curves) is about twice that
required to form it at d = b.
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FIGURE 2
Geometry of bubble-loop configurations which
can be formed without change in free energy,
AF = 0, for rq = 0.5b, rp = 50b, and various
pressures. For a given pressure the change in
free energy is positive below and negative
above the corresponding line, respectively.

4. CONDITIONS FOR THE EXPULSION OF A LOOP FROM

A BUBBLE

A condition for complete dissociation of
a loop from a bubble is that the force acting
between them must be repulsive over the whole
dissociation path (i.e., dAF/3R<0). Since the
attractive image force counte}acting the
repulsive first order force increases with
decreasing distance between the loop and the
bubble surface it appears to be most important
to fulfill this condition for the smallest
possible distance, d = b, Using Eq. (10) we
derive” from aAF/3R<0 and 32AF/aR2<0 for d = b

> —Btor rab > 6. (12)
_61\:(1-\)) rL -

The first condition is similar to the above
one, Eq. (11), but is probably more reliable
since the uncertain core radius ry has can-
celed. As for the formation of a loop, the
lTowest pressure for its expulsion is required
for ri=rg, namely Psp/dr.

It depends upon the value of ry whether the
threshold pressure for the formation of a loop
is lower or higher than for its expulsion, In
the first case a loop can be expelled only
after the formation of one or more additional
Toops close to the bubble associated with an
increase in the pressure up to values
fulfilling the conditions (12).

For small bubbles with single dislocation
Toops, dAF/3R40 cannot be fulfilled as indi-
cated by the second part of the conditions
(12). In this case a pile-up of loops around
the bubble is required to establish a repulsive
force for the expulsion of the most outer Toop.
This process is controlled by the condition for
the formation of a completely dissociated loop
as given by Eq. (5).

Combining the conditions, Eqs. (5) and
(12), we are able to sketch the threshold
pressure for loop punching as a function of the



bubble radius.
small bubbles the threshold pressure decreases
with increasing bubble size due to the decrease
in the loop formation energy per interstitial

This is done in Fig. 3. For

for increasing loop size. For large bubbles,
rg 2 10b, an approximate constant threshold
pressure is required for the expulsion of

Toops.
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FIGURE 3
Threshold pressures for loop punching, B =
{p — 2y/rg), versus bubble radius, rg, in units
of the theoretical shear strength, p/2x, and
the Burgers vector, b, respectively
(schematically).

The details of the lToop formation process
close to the bubble surface are not yet fully
understood, For small bubble sizes, however,
it seems to be clear that this process starts
with the formation of single interstitials and
their agglomeration into small three-
dimensional clusters staying near the bubble
surface. Beyond a certain number of intersti-
tials per cluster (say enough to form an
equatorial loop) it is energetically more
favorable to transform the three-dimensional
cluster into a loop which will be expelled if a
critical pressure in the bubble is reached. For

Targe bubbles it is not clear whether this pre-

stage of a three-dimensional interstitial cluster

is required for loop formation.
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