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INTRODUCTION

Efforts to determine the contribution of dislocations to the electrical
resistivity of metals have been rigorously pursued for the past thirty years.
The electrical resistivity of dislocations is of considerable interest on
purely theoretical grounds, but perhaps more importantly it is of significance
in applied situations. One example of its practical use is the determination
by resistivity methods of the magnitude of neutron radiation damage to metals.
Energetic neutrons such as those found in nuclear fission or proposed nuclear
fusion reactors create atomic displacements which may aggregate into loops of
dislocation lines. This radiation damage affects the mechanical and electri-
cal properties of the metal, and the magnitude of the effect may be conve-
niently measured by resistivity techniques.

This paper will outline the present theory of the electrical resistivity
of dislocations. Particular attention will be given to the theory developed
by Brown, which is in satisfactory agreement with experimental results. A
brief summary of early theoretical attempts to calculate dislocation electri-
cal resistivity will be presented first. This will be followed by some com-
ments regarding experimental methods and a review of the Brown model.

INITIAL THEORETICAL MODELS

The first attempt to calculate the electrical resistivity due to a dislo-
cation line was made by Koeh]er(l) in 1949 using first order perturbation
theory. He modeled the dislocation as having the potential of a rigid ion
with a screened Coulomb field. His calculated resistivities were of a reason-
able order of magnitude, but the applicability of perturbation theory was
questioned for this case where displacements caused by the dislocation can be

as large as half a lattice spacing. Also, he had to introduce a cut which



joined pairs of dislocations in order to make the displacement single-valued.
Subsequent approaches introduced by various researchers allowed the screening
electrons around each ion to redistribute so as to keep the Fermi level con-
stant. The electrostatic potential then varies with location in the crystal,
and scattering is proportional to the lattice dilatation. This approach eli-
minated the discontinuity in the scattering potential that was present in
Koehler's model. Hunter and Nabarro(Z) modified the theory by using a defor-
mation potential that took account of both the interaction of conduction elec-
trons with the ion cores and their interaction with the displaced electronic
charge. They found that each conduction electron interacts with both the dis-
torted lattice potential and with the electrostatic field of the space charge,
with a Targe cancellation between these effects. This approach is applicable
only when the strain varies slowly, and is therefore not appropriate near the
core of the dislocation. Ca1cu1ation of the dislocation resistivity using
this model yields results smaller than experimentally observed values by a
factor of 50 for the case of copper. Harrison(3) considered the effect of
dilatation in the dislocation core by using a simple model where the core is a
hollow cylinder which contains the volume increase associated with a dislo-
cation, corresponding to one vacancy per atomic plane. Using the Born approxi-
mation, he obtained a resistivity which was about a factor of 5 below the
observed value for copper. This approach is questionable since the second-
order long-range elastic strain field appears to be responsible for most of
the volume change associated with dislocations, so this volume change should
not all be assigned to the core region. More detailed reviews of the above

theories may be found in the 1iterature.(4’5)



The discrepancy between the early theories and experimental values of the
dislocation resistivity led Broom(6) to suggest that stacking faults may be
responsible for an appreciable amount of the measured resistivity in deformed
metals. Stacking faults are two-dimensional imperfections in a crystal aris-
ing from an alteration in the stacking sequence of the atomic planes (see,
e.g. Ref. 5). They are formed in FCC metals when a dislocation dissociates
into the more energetically favorable configuration of two partial disloca-
tions. The width of the stacking fault ribbon depends on the stacking fault
energy of the metal in question, which generally is not well known. It is
assumed that the stacking fault ribbon reflects a certain portion of the con-
duction electrons incident on it, but the reflection coefficient R is diffi-
cult to calculate and various theories predict values of R ranging over sever-
al orders magnitude. The value of R, which varies with angle, depends on the
form of the Fermi surface and the width of the energy gap there. Only elec-
trons on the Fermi surface are expected to be strongly reflected. The situa-
tion prior to 1960 has been reviewed by Ziman(5) and Howie.(7) The resis-

tivity of a stacking fault is given by

P en® [ Jcos o] gy, (1)
e Fermi surface
where A is the total stacking fault area.

The first reliable estimate of R was made by Howie,(7) who considered
conduction electron scattering as a diffraction mechanism and assumed the two-
beam approximation (transmitted beam plus diffracted beam from one set of
crystal planes) was valid. Using the free electron approximation, he con-

cluded that the scattering of conduction electrons by the stacking fault was



due to the phase change of electrons which are diffracted from non-parallel
crystal planes that do not contain a displacement vector of the fault. Howie
calculated that the reflection coefficient R was on the order of 0.08-0.30,
and that electrons incident normal to the stacking fault are not scattered.
This approach was criticized by Seeger and Statz,(s) who claimed that the
approximation of free electrons is impermissible and they also questioned the
use of the two-beam approximation for the relatively low energy conduction
electrons. Starting from the linearized Boltzmann equation and using pertur-
bation theory, they deduced a value of R on the order of 0.5. They also de-
termined that electrons incident normal to the stacking fault were completely
reflected. The results of their calculation depend critically on detailed
assumptions and it is not clear whether their or Howie's approach is more
correct, although some experimental evidence tends to support Howie's result.
Even with these large values of R, unreasonably wide stacking fault ribbons
are necessary in order to make the calculations agree with the observed
dislocation resistivity.

Experimental measurement of the stacking fault resistivity was first per-
formed in 1961 by Cotteri]l,(g) who rapidly quenched gold foils so as to pro-
duce excess vacancies which condense into stacking fault tetrahedra. This and
subsequent work performed on metals with stacking fault ribbons formed from
dislocation dissociation indicated that in general stacking fault ribbons have
an insignificant effect on the dislocation resistivity. Therefore, the situ-
ation in the early 1960's still showed a discrepancy between theory and
experiment on the order of a factor of 50.

Accurate experimental measurements of the dislocation resistivity are

hampered by several difficulties. First, controlled annealing procedures,



which are designed to not eliminate too many dislocations, must be followed in
order to separate out the resistivity effects due to other imperfections (in
particular vacancies). The resistivity due to point defects created by cold-
working always exceeds that due to the created dislocations. Therefore, ade-
quate time must be given to allow the point defects to anneal out of the crys-
tal during the heat treatment. Second, it is difficult to obtain a reliable
estimate of the number of dislocations which contribute to the observed resis-
tivity change. Direct observation by transmission electron microscopy (TEM)
methods 1is the best way to determine number densities. Also, aggregates of
point defects which are too small to be observed by TEM may contribute to the
measured resistivity. Therefore, experimental results are generally only
accurate to within a factor of two. With proper experimental precautions, the
above-mentioned error may be reduced to about ten percent.

The first dislocation resistivity model which was in reasonable agreement
with experimental data was developed by Basinski et a].(lo) They proposed a
semi-empirical theory in which the resistivity was assumed to be proportional
to the mean-square displacement of the ions from their unperturbed positions.
This reasoning was based on experimental evidence which indicated that the
ratio of ideal resistivity to thermal energy is roughly constant over a wide
range of temperatures (and therefore a wide range of phonon wavelengths).
Thus they assumed that lattice deformation around a dislocation is similar to
the deformation due to thermal vibrations. For a crystal with atomic volume V

and a dislocation density of N cm~2

, the fraction of atoms lying on dislo-
cations is proportional to Nv2/3 and the mean-square displacement is propor-
tional to Nv2/3p2 (b is the Burgers vector). The mean-square displacement due

to thermal vibrations at high temperatures is given by‘ﬁzT/(kMez), where 6 is



the Debye temperature and M is the atomic mass. With the ideal resistivity

proportional to the mean-square displacement, they obtained

2,2/3,.2

where o is a constant and p; is the ideal resistance of the solid. The value
of a was obtained by fitting the derived result to experimental data for cop-
per. Based on a simple geometrical argument, they tentatively concluded that
the dislocation core contributed only a minor part to the total dislocation
resistivity (this conclusion did not significantly affect their results,
however). The above simple semi-empirical derivation gave quite reasonable
results, which had been unattainable in all of the various models developed
over the previous 15 years.

THE BROWN MODEL

An adequate description of dislocation resistivity based completely on
theoretical grounds was developed by Brown in 1967,(11) and subsequently modi-
fied to its final form(12,13) in 1977. By assuming a resonance in the s-wave
scattering of Fermi electrons from the core of a dislocation, he was able to
obtain a simple formula for the dislocation specific resistivity. Brown was
able to show theoretically that resonance scattering is a characteristic pro-
perty of linear defects in crystals. The basic concepts of his initial theory
are outlined be]ow.

Assuming the free electron approximation, the current density in a

crystal at time t is given by

_ ek 3, Peri
L) = - / &k KF(K,t) (3)



where (N9§J f(k,t) d3k is the number of electrons in the crystal of volume NQ

4n
which have wave vectors in the element d3k of k space. Steady state requires

o f of
[
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where E and S refer to the rates of change of occupation of states due to,
respectively, acceleration by an electric field transverse to the defect line,
and scattering by the dislocation. The first term is equal to (%) . §Kf(z)
and the second term is expressed in terms of a scattering probability. The
solution of Eq. (4) is substituted into Eq. (3) to give the dislocation con-
ductivity:

* 3 afo
B dk fo dky Ky (577)) Plkgsky) (5)

where k = E* + E3 and ?* and E3 are the wave vectors normal and parallel to
the dislocation. The equilibrium Fermi distribution function fo 1s a function
only of ¢ ='ﬁ2k2/2m, and as T » 0 takes the values O or 1 depending on whether
e is greater or less than the Fermi level eg. Plkg,k«) is given by

2
Plkgak) = () Wylkgoknid) (1 - cos ¢) do}™t (5a)
0

where (4n3/NQ)wd(k3,k*;¢f-¢i) do¢ is the probability of an electron in state
Ei = E3 + E*i being scattered by the dislocation into a state Ef = E3 + ﬁ*f.
E*f has its cylindrical polar angle in the range d¢f about ¢, provided that
the initial state is occupied and the final state empty. A phase shift analy-

sis of the line-defect scattering indicates that P(k3,k*) is independent of k3



for free electron scattering. Equation (5) then becomes

k

2 Ky -
_ Na 3,.2 2,-1/2 4 -1
Ud = r;—:—z}—h— fo k*(kf - k*) / {mz-ms1n (T\m+1 = nm)} dk* (6)

where L 1is the length of the straight dislocation, k¢ is the wave vector at
the Fermi surface, and np(k«) is the phase shift in the mth radial function
involved in the expansion of the perturbed wave function corresponding to the
unperturbed plane wave of wave vector E3 + E*. Most of the conduction elec-
trons in a metal have wavelengths on the order of a lattice constant (energy =
Fermi level). Therefore, it is to be expected that the effects of the dislo-
cation core, where the lattice distortion is varying rapidly, should dominate
the electrical resistivity effects which are due to the long-range strain
field.(11,14) This premise is supported by experimental evidence which indi-
cates that dislocation electrical resistivity is insensitive to dislocation
arrangement.(15) From Eq. (6) one can see that the highest resistivity is
obtained for electron resonances near the Fermi energy, but that only changes
in the positions or widths of the resonances which are an appreciable fraction
of e¢ will affect the order of magnitude of the resistivity. For resonant
scattering, the electron scattering rate is independent of the cylindrical
polar angle ¢ (s-wave scattering). Therefore, a good estimate of the resis-
tivity may be obtained from Eq. (6) by retaining only the zeroth-order phase

shift. From the discussion above concerning the insensitivity of the dislo-

cation resistivity to the positions of the resonances, one may assume siné g
to be a constant which is of order unity. Then Eq. (6) becomes
C s (2 0R) (il o s (7)
°d 2.3 "o’ av
e kf



where B is the density of dislocations per unit area. Values of <sin? No” av
may be calculated on a theoretical basis.(ll) Comparison of calculated
results with experimental values of dislocation electrical resistivity in
several metals gave quite reasonable agreement (within a factor of two).

Brown re-examined the problem of dislocation resistivity in a series of

papers(12’13)

published in 1977. He deduced that low-order perturbation
theory (i.e., Born approximation), which was generally used in the early
theories, is not applicable for scattering by a line defect, and that a non-
perturbative phase shift approach similar to his 1967 pub]ication(ll) was
appropriate. He discussed in detail the following shortcomings of his origi-
nal model: (1) The original theory was based on a one-band model, which is
too restrictive and not applicable to transition metals. (2) The theory as-
sumed a highly localized model of the perturbation, and it was not clear how
the results depend on this approximation. (3) A simple-minded approach to the
phase shift analysis was adopted -- the model considered only the zeroth-order
phase shift. (4) It was not possible to make general predictions about the
location of the resonance with respect to the Fermi surface, nor about the
resonance width.

He addressed each of these issues as follows: (1) It can be shown(12)
that the occurrence of interband scattering can only decrease the resonance
value of the inverse relaxation time, which is proportional to the resistivi-
ty. Transition metals have a higher observed dislocation resistivity than
theory predictions, so it may be concluded that interband scattering is not
the cause of the discrepancy and may be neglected for the resonant scattering

case. (2) A less-localized perturbation which gives a bias towards forward

scattering, as in the case of scattering by the long-range strain field of a



dislocation, will greatly enhance the scattering cross section. (12) However,
this small-angle scattering is not expected to greatly affect the momentum
transfer cross-section. The localized, severely distorted core region might
be expected to scatter isotropically. In this work, strain field scattering
was ignored and good agreement with experiment was obtained. Therefore, it
may be concluded that the contribution of strain field scattering to momentum
transfer processes is negligible, and only core scattering (highly localized
perturbation) need be considered. (3) For a highly localized perturbation
(only one non-zero matrix element of the perturbation potential in Wannier
representation), only one phase shift is present. For a moderately localized
core, the symmetrized combinations of Green functions which determine the
scattering are such that a resonance is only expected for the symmetrical ir-
reducible representation.(13) It is then reasonable to assume that the s-wave
phase shift dominates and is not dependent on the assumption of a highly lo-
calized potential. (4) The agreement of theory with experiment indicates that
conduction electron scattering resonances from line defects occur at or near
the Fermi energy, as was originaly proposed by Brown. (11) Experimental
results (e.g., dislocation thermoelectric power) also tend to support this
conclusion.(13)

Brown then presented an alternate derivation of the dislocation specific
resistivity, applicable to multiband metals, as is outlined be]ow.(13) Assum-
ing a highly localized potential, the generalized expression for the conduc-

tivity tensor at T = 0 due to multiband core scattering by g parallel dislo-

cations per unit volume is given by(16)
2 fm. |
e J > > P
c = Y[ {Vviv: + T D..v Vi v.,_} dk (8)
ay .02 §7 VetV Jdedy o 5300 Tieddly 3
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where o, v = 1, 2, 3 represent Cartesian coordinates with the dislocation

Tines parallel to the x3 direction, j is the band index, m; is the cyclotron

J
mass for orbits along the intersection of the Fermi surface (FS) with the
plane k3 = constant, viB and vjp are the inverse relaxation times for, respec-
tively, background (thermal) scattering and dislocation scattering out of band
i, Vj(ﬁ) = %’VkEjk’ and Djj' are matrix elements which weight the inverse
relaxation times for dislocation and background scattering out of j into the
j' band. One may verify that V&a =0 for o # 3 as long as the contours of
integration in Eq. (8) are closed (i.e., closed sheets of FS). At low temper-
atures in pure samples, dislocation resistivity dominates over thermal resis-
tivity (ij >> vjp). By assuming closed sheets of FS, the terms involving
Djj' are equal to zero (for a, vy # 3) and the expression for the conductivity
normal to the dislocation lines at low temperatures becomes

2 m.
e
o =Ly

- dk. o, y=1,2. (9)
o 4m? 57 Vip 3

The approximation that the contribution of open sheets of FS to the resistivi-
ty is negligible is equivalent to assuming that departures from Matthiessen's
rule are not too severe.

Equation (9) can be further simplified by assuming a spherical Fermi
surface. Although this certainly is not a good approximation for metals such
as Mo, W, and Be, it should be rather satisfactory for the alkalis and noble
metals and serves to give order-of-magnitude estimates for the other metals.
It is a reasonable approximation in view of the experimental inaccuracies
associated with measuring the dislocation resistivity. With this assumption,

Eq. (9) becomes
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where nj is the number of carriers per primitive cell inside the jth sheet of
the FS and @, is the primitive cell volume. The denominator inside of the

summation, for spherical sheets of FS, is given by

4ﬁBs1'n2wj

ImJl \)jD = ‘—‘d':]“‘“ (11)

where'dj involves the ratio of the elements of the T matrix for interband
Tjjl
Ji
equal to one. By assuming that interband scattering is negligible compared to

scattering to those for intraband scattering ( ) and is greater than or

intraband scattering, dj becomes equal to one.

There is empirical evidence that dislocations in single band metals have
scattering resonances close to the Fermi energy. Since interband scattering
is considered negligible, it is then reasonable to assume scattering within
each band for the multiband case can be treated as if it were an independent
band in a single-band metal. Therefore, it is expected that resonance scat-
tering near the Fermi energy will occur in each band j and sin? wj = 1 for all
J. With this simplification, the dislocation resistivity becomes

¢ﬁﬂos
== (12)
(e X nj)
J
This equation is identical to Brown's initial estimate (Eq. 7) 1in the single

band 1imit. For a random distribution of dislocations, a factor of 2/3 arises

from geometry considerations:
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where n is the total number of carriers per primitive cell.

A comparison of this theoretical result with experimental data has been
made in Table 1. Several points are worth mentioning concerning this compari-
son. First, it can be seen that good agreement (generally within a factor of
two) has been reached between theory and experiment for a wide range of types
of metals. This builds a strong case for Brown's model since the agreement is
reasonable with data that ranges over five orders of magnitude for metals from
several different groups in the periodic table. There are no adjustable para-
meters built into the theoretical model. The agreement is particularly good
for those metals such as copper which have the most reliable experimental
data. Most other experimental values of the resistivity are only accurate to
within a factor of two, as was noted earlier. The discrepancy between theory
and experiment for the case of nickel is probably due to spin-disorder scat-
tering, which was not accounted for in Brown's model. Second, experimental
evidence indicates that the dislocation distribution 1is not important in
determining the resistivity, which is an indication that dislocation core
scattering is indeed the appropriate mechanism to consider. In general, the
close agreement indicates that the approximations which were made to derive
Eq. (13) are reasonable.

SUMMARY AND IMPLICATIONS

Early theories on the electrical resistivity of dislocations considered
only lattice strain field scattering, and they neglected core scattering be-
cause of its small volume. The resultant calculations were generally low by

more than an order of magnitude as compared to experiment. Attempts to "patch
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Table 1. Comparison of Calculated and Experimental Values of

Dislocation Specific Resistivity (from Ref. 13)

Carriers
Structure Primitive Per Ap/B (10‘19 Qcm3) Ap/B
(lattice Cell Volume Primitive Calculated from (10'19 Qcm3)

Metal Constant, A) Q. (83) Cell, n Equation (2.8) Experimental
K BCC (5.3) 74 1.0 8.1 4
Cu FCC (3.6) 12 1.0 1.3 1.3 £+ 0.1
Ag FCC (4.1) 17 1.0 1.9 1.9
Au FCC (4.1) 17 1.0 1.9 2.6

(a = 2.3)
Be HCP 16 0.064 28 34

(c = 3.6)

(a = 3.0)
Cd HCP 43 0.19 25 24

(c = 5.6)
Al FCC (4.0) 16 1.0 1.8 1.5 ¢+ 0.3

(a = 3.2)
Ir HCP 45 0.13 40 100

(c = 5.1)

(a = 2.9)
Ti HCP 34 0.13 29 100

(c = 4.7)
Pb FCC (4.9) 30 0.78 4.2 1.1

(a = 4.7) 5 5 5
Bi trig 70 4.8 x 10™ 1.7 x 10 2 x 10

(a = 57°)
Mo BCC (3.1) 15 0.44 3.7 5.8
W BCC (3.2) 16 0.24 7.4 7.5
Pt FCC (3.9) 15 0.42 4.0 9
Fe BCC (2.9) 12 0.70 1.9 10 + 4, (2.57?)
Ni FCC (3.5) 11 1.06 1.1 10, (2.5)
Rh FCC (3.8) 14 1.10 1.3 36
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up" the discrepancies with experimental findings included ascribing the major-
ity of the observed dislocation resistivity to the coincident stacking faults.
Refined experiments and stacking fault resistivity calculations showed that
this effect was not significant. A simple semi-empirical relation based on
the similarity of ideal resistivity to thermal energy provided the first rea-
sonable agreement with experimental results. A nonperturbative phase shift
approach which assumes dislocation core scattering is dominant and that there
is a resonance in the s-wave electron scattering appears to model the observed
results well.

This result may be applied to resistivity studies of irradiated metals.
The effective resistivity of a cluster of vacancies or interstitial atoms pro-
duced during an irradiation can be reduced if the cluster collapses into a
dislocation loop. Theoretical estimates of the critical size required to
cause collapse of a cluster into a dislocation Toop range from six!7 to 400

19 used an elastic continuum model and found

defects. 8 Bullough and Perrin
that a plate-like cluster would collapse into a dislocation loop for cluster
sizes greater than 22 vacancies. For a perfect loop in copper, this corres-
ponds to a cluster diameter of ~ 11 A, Figure 1 compares the resistivity per
defect as a function of dislocation loop size for perfect and faulted loops.
The effective resistivity per defect for a 50-50 concentration of vacancies
and interstitials in copper is 1 uQ-m/at. frac. defects. Therefore it is seen
from Fig. 1 that there will be substantial reduction in the observed resistiv-
ity for perfect loops with diameters larger than 20 A. It is important to
account for this size-dependent loop resistivity in order to obtain accurate

quantitative results from resistivity measurements, i.e. clustering can

dramatically reduce the effective Frenkel pair resistivity if the cluster

15



collapses into a dislocation loop.
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CALCULATED EFFECTIVE SPECIFIC
RESISTIVITY vs. AVERAGE LOOP

"; DIAMETER FOR COPPER
- | | I l l
.2 8 |- , o
ElS L i
é 5 ol \ — — FAULTED LOOP
1| ° \ —— PERFECT LOOP | ]
“— o | -
- \ \.
@

4 \ \\\épSF=50XIO"5.Q.-m -

S’
| \ -— - _
N . 15
- 2 ~ Peg 210X 107° 0-m -
.:; - \QF;‘__ —
Q —— ecms

0o 2 | 4 6
AVERAGE DIAMETER (nm)

Figure 1 Calculated Effective Specific Resistivity vs. Average Loop Diameter
for Copper, Assuming a Log-Normal Distribution of Dislocation Loops
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