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ON THE PHYSICAL BASIS FOR THE SWELLING RESISTANCE OF FERRITIC STEELS

J.J. Sniegowski and W.G. Wolfer

Fusion Engineering Program, Nuclear Engineering Department
University of Wisconsin, Madison, Wisconsin 53706, U.S.A,

The swelling behavior of austenitic and ferritic
alloys is briefly reviewed and the hypothesis is ad-
vanced that a fundamental difference exists between
these two alloy classes which originates from the dif-
ference in the net bias. Since the net bias depends
most critically on the relaxation volumes of inter-
stitials and vacancies, experimental and theoretical
values are discussed and reviewed. It is shown that
the interstitial relaxation volume for fcc metals is
almost twice as large as its value for bcc metals,
whereas the reverse is true for the vacancy relaxation
volume.

In order to obtain the net bias, the bias factors
of voids and dislocations for both interstitial and
vacancy capture are required. Equations are given for
these bias factors and the net bias is computed. Due
to the difference in the relaxation volumes in the
austenitic and the ferritic structure, the net bias is
large in austenitic alloys and significantly less in
ferritic alloys. Using an upper bound for the void
swelling rate, it is shown that austenitic alloys may
exhibit a maximum swelling rate of about 1.4%/dpa,

whereas ferritic alloys are estimated to possess a
maximum swelling rate of about 0.2%/dpa.

1. Introduction

The experimental evidence on swelling in ferritic
and austenitic alloys as shown in Fig., 1 suggests that
there is a fundamental difference between the two
classes of alloys with regard to their propensity for
void formation under irradiation. Whereas the latter
class exhibits, after an 1incubation period of low
sweiling, a steady state swelling rate on the order of
132/dpa, the former class has either a much Tonger
incubation period, a much lTower rate for steady-state
swelling, or both. Unfortunately, the experimental
data accumulated so far for ferritic alloys allow only
one unambiguous conclusion to be drawn: namely that
the incubation period is long in comparison to most
austenitic alloys. Although there still exists the
possibility that ferritic alloys may eventually swell
at a significant rate we like to present theoretical
arguments which indicate that the basic driving force
for both void nucleation and growth is. substantially
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different in the two alloy classes. The difference
originates at a fundamental level in connection with
the relaxation volumes of self-interstitials and va-
cancies. Whereas in face-centered cubic metals the
relaxation volume of an interstitial is large and that
of a vacancy small, the body-centered cubic metals
have smaller interstitial relaxation volumes but
larger vacancy relaxation volumes. This results in a
large net bias for the fcc metals but a small one for
bcc metals. Accordingly, we suggest that this is one
of the fundamental causes for the greater swelling
resistance of bcc metals and alloys in general, and of
ferritic alloys in particular.

We realize of course that there are other funda-
mental differences between the two crystal structures
and their associated microstructures, and that these
differences can further accentuate the dissimilarity
in the swelling behavior. For example, martensitic
and heat-treated steels contain very high densities of
dislocations and boundaries in comparison to austen-
itic steels. As a result, point defect losses to
these sinks are high in martensitic and many ferritic
alloys. Furthermore, the friction stress for dislo-
cation glide is also higher in bcc metals as compared
to fcc metals, and this may result ifn a denser dislo-
cation network produced during irradiation.

Other causes for the dissimilarity in swelling
may arise from the precipitate structure. Due to the
much lower solubility for interstitial elements in the
ferrite phase and as a result of tempering and heat
treatment, a high density of finely dispersed precipi-
tate particles is often present in ferritic and
tempered martensitic alloys. These precipitates may
provide a high density of recombination sites. With
all these factors compounded, the substantial differ-
ence in the swelling behavior of austenitic and
ferritic alloys observed to date is not unexpected.

However, in view of the ultimate target exposure
of about 400 to 600 dpa for first wall materials in
fusion reactors, it is essential to find the causes of
the swelling resistance of alloys and whether they are
of an intrinsic and permanent nature or of a metal-
Turgically-controlled and transitory kind.

Many of the microstructural differences mentioned
above may not be stable under irradiation at elevated
temperatures. For example, the high dislocation
density in martensitic steels may eventually recover.
The small carbide precipitates may be dissolved by
high-energy collision cascades, and a coarser precipi-
tate structure may form after prolonged irradiation.
At temperatures around 400°C and higher, tempering of
martensite eventually results in the formation of
equi-axed ferrite grains. Therefore, at these ele-
vated temperatures, the high sink density provided by
the initial martensite boundaries may eventually be
lost.

Therefore, the ultimate swelling resistance of
all ferritic and martensitic alloys may in the final
analysis depend only on the net bias. We consider
this intrinsic property of the utmost importance.

For its evaluation in the following sections, the
relaxation volumes of the self=-interstitial and the
vacancy are required. The experimental and theoreti-
cal results obtained for these volumes are reviewed in
Section 2. Since the net bias depends on differences
in bias factors for dislocations and voids, these
factors and their determination will be reviewed in
Section 3. Finally, numerical results for the net

bias are presented in Section 4 as a function of the
point defect relaxation volumes.

2. Relaxation Volumes of Point Defects

The formation of point defects is accompanied by
volume changes of the crystal lattice. These volume
changes determine, at TJeast to first order, the
strength of the interaction with stress fields. By
way of introducing the following notation, the defi-
nitions for different volumes assocfated with point
defects are recapitulated.

A vacancy can be thought of as having been cre-
ated by removing an atom from a regular lattice site
and by depositing 1t on an external surface, a grain
boundary, or into the core of an edge dislocation.
The volume change connected with this process is
referred to as the vacancy formation volume

fof :
AVV vv+sz, (1)

where Q is the atomic volume and vt is the relaxation

volume of the vacancy in its stable configuration.
When the vacancy diffuses, the lowest possible acti-
vation energy for migration is realized in the saddle-
point configuration for which the volume change is
denoted by

S S = avf m
AVv = vy +Q AVv + AVv (2)

where Av‘c is the activation volume for vacancy mi-
gration and AV: is also referred to as the activation

volume for self-diffusion. The latter can be deter-
mined experimentally by measuring the pressure depend-
ence of the self-diffusion coefficient.

Formation and relaxation volumes for the self-
interstitial are defined in an analogous manner. How-
ever, there occurs a change in sign when removing an
atom from an external surface, a grain boundary, or
from an edge dislocation core and inserting it inter-

stitially into the lattice. Accordingly,
f - f.
AVI VI Q (3)
S 2 S -~ a = ayf m
and AvI Vi Q AVI + AVI . {4)

The first-order interaction energy of a point
defect with the hydrostatic stress field GH(F) pro-
duced by a remote source is now given by (-oyv) at all

points in a solid except at locations which represent
sinks or sources for point defects. At these points,
the first-order interaction energy may be given by

(-oHAvf), depending on the sink type, its orientation

with the applied stress, etc. For evaluating the
equilibrium concentration of point defects and its
dependence on stress, the interaction energy (-GHAVf)
is in general the relevant quantity. For bias calcu-
‘Iations, however, the interaction energy (-chs) and

the relaxation volume vS in the saddle-point are the
appropriate quantities.



Relaxation Volumes for Self-Interstitials

volumes for self-interstitials in
their stable configuration, i.e. v{. can be determined

Relaxation

from diffuse x-ray scattering and lattice parameter
measurements on single crystals irradiated at liquid
helium temperatures. A recent review of the results
obtained by  these techniques is given by Ehrhart [6],
and his results are listed in Tables I and II.

It 1is generally believed that the relaxation
volume of the seif-interstitial in the saddle-point is
very close to its value in the stable configuration.
Experimental support for this conclusion is provided
by the field-ion microscopy work of Seidman et al,.

{71. According to these results, AVT/Q < 0.03 for Pt
and AV]/2 < 0.02 for W.

The large values for the relaxation volume, vf,
in cubic metals can be rationalized in terms of the
most efficient hard-sphere packing of the atoms which
comprise the dumbbell interstitial and its next near-
est neighbors. Based on this idea and Zener's ap-
proach to compute volume changes due to internal
stresses, Wolfer [8] has developed a model for the
relaxation volume of self-interstitials in cubic
metals. Results of this model together with the
experimentally obtained values are listed in Tables I
and II for fcc and bcc metals, respectively.

It is seen from Table I that the theoretical
results are in good agreement with the experimentally
measured values in the case of fcc metals, and that
the interstitial relaxation volume is around 1.8 Q.

For bcc metals, the resuits in Table II show that
the relaxation volume is smaller by almost a factor of
two. The theoretical values are close to the lower
bound of the experimental range for the two metals
where a comparison can be made, namely a-Fe and Mo.

Table II. Relaxation Volumes for Self-Interstitial
in BCC Metals
Metals (vi/a) i)
1" 'th 1" "exp
Cr (0.88) -—-
Cs (0.80) ===
a-Fe 0.91 1.1 £0.2
K 0.76 -
Li 0.70 -—-
Mo 0.85 1.1 0.2
Na 0.76 -
Nb 0.76 -~
Rb 0.75 -
Ta 0.78 ---
v (0.77) i
W 0.92 ---

Yalues in parenthesis are based on estimates for the
pressure derivative of the shear modulus.
Experimental values as given by Ehrhart [6].

Table III. Measured Yolumes Associated with
Vacancies in FCC and BCC Metals
s t
Metal Avv/n Avv/n
Ag 0.9 0.95
Al 0.71, 1.3 -—
Au 0.72 0.85
Cu 0.9 0.75
Ni Rttt 0.8
Pb 0.73 ———
Pt -— 0.8
Fe-Ni 0.86 to 0.96 ———
NisFe - 0.85
a=-Fe -— ~ 0.75
K 0.57 =
Li 0.28 -
Mo -— ~ 0.75
Na 0.32 to 0.59 ——

Table I. Relaxation Volumes for Self-Interstitials
in FCC Metals
f T

Metal (vI/SZ)th (vI/fl)exp
Ag 1.81 -—

Al 1.86 1.9 0.3
Au 1.69 -—

Ca (1.49) -

Cu 1.75 1.55 £ 0.2
Ir (2.26) -

Ni 1.85 1.8 £ 0.3
Pb 1.63 -—

Pd 1.4 ———

Pt 1.9 1.8 £0.3
Rh (2.13) -

Sr (1.41) -

Th 1.75 -

Yb (1.46) -
NisFe -— 1.45 £ 0.3
NiCu —— 1.6 £ 0.3

Relaxation Yolumes for Vacancies

Values in parenthesis are based on estimates for the
pressure derivative of the shear modulus.
Experimental values as given by Ehrhart [6].

Although the activation volume Avi for self-

diffusion can be simply determined by measuring self-
diffusion as a function of pressure, there are only a
few measurements available as compiled recently by
Peterson [9] for pure metals. Experimentally deter-

mined values for the vacancy formation volume, Avt,

are equally few in number, and they have recently been
reviewed by Ehrhart [6]. Table III provides a list of
these values together with two additional parameters
for fcc binary alloys of iron ahd nickel. The range
of values for the Fe-Ni alloys is due to Goldstein et
al. [10], whereas the value for the ordered alloy
NijFe is due to Ehrhart [6]. It {is reassuring to see
that the formation and the activation volumes for the
alloys are quite similar to the values in the pure
metals of the same structure. Furthermore, the for-
mation and the activation volumes are comparable in
magnitude, implying that in fcc metals and alloys,

|AV§/Q| is on the order of 0.1.



Unfortunately, no clear trend seems to emerge yet
for the bcc metals except that the alkali metals

exhibit Tow values for activation volume Avslﬂ. Let
us therefore consider a theoretical approach to evalu-
ate Avs/ﬁ.

Sherby et al. [11] have proposed semi-empirical
correlations for both the activation energy and volume
for self-diffusion. According to their analysis,
self-diffusion energies can be related to the melting
temperature Ty as

Q = kTy(x + ) (5)

where k 1is the Boltzmann constant, « s a crystal
structure factor (x = 14 for bcc, « = 17 for fcc) and
¥ is the valence of the element. For the actfivation
volume, the relationship

Aﬁ =ku-+wam/mM (6)

is obtained based on the assumption that the activated
state of the saddle-point configuration forms a
liquid-Tike cluster. Here AVy and 4Sy are the volume
and the entropy change upon melting, respectively.
Evaluating the activation volume with Eq. (6), Sherby

et al. [11] conclude that AVzlﬂ is about 0.8 for fcc

crystals (except noble gases), 0.6 for hcp crystals,
and 0.4 for bcc crystals.

We can combine Egs. (5) and (6), obtain
S 2
avy (Q/TM)(AVM/ASM) (7)

and then use only experimental values to determine
4VS, The activation energies, Q, were obtained from a
recent compilation by Peterson [9], and all other
parameters are from the compilation by Turkdogan [12].
Melt volume changes for y-Fe were obtained by extrapo-
lating the temperature dependence of the molar volume
[13] for v~Fe up to the melting point. For the bcc
metals Cr, Mo, Nb, and W no melt volume changes are
avajlable, and an average value of 4% was assumed in
this case. Several metals exhibit different acti-
vation energies for self-diffusion for low and for
high temperatures [9]. Therefore, Eq. (7) is evalu-
ated for both values. The various parameters used and
the results are shown in Table IV separated into
groups of fcc and bcc metals.

With the exceptions of Ag and Li, the computed

values for AVi/Q are in fair agreement with the

measured values. The computed value of the activation
volume for &-Fe is less than the value of 0.95 esti-

mated by Ehrhart for Avt from the experimental result
for a-fe. The computed value of 0.55 for AVs in Mo is
also smaller than the measured range for AVS. Al-

though this comparison is questionable because of the
uncertain nature of Eq. (7), the following trends are
suggested.

AVi for bec crystals is indeed somewhat less than

the corresponding value in fcc crystals, although the
difference is not always as large as Sherby et al.
[11] claimed. The alkali metals do have low values

of Avi but they may not be representative of other bcce

metals. Based on the only two cases available, the

Table IV. Computed Activation Volumes for
§e1f-0i?fus§on in FCC and BCC Metals

ASy Q
T, (cal/ AVy/Q {(kcal/

Metal ('%) mo1) (%) mol) AVfl/Q
Ag 1234 2.19 3.405  40.6 0.51
50.5 0.64

Al 933 2.76 6.99 29.5 0.80
36.3 0.99

Au 1336 2.25  5.48 40.6 0.74
54.6 1.00

Cu 1356 2.3 3.94 47.7 0.60
‘ 59.7 © 0,75
Y-Fe {(1809)  1.82 4,737  67.86 0.98
Ni 1726 2.42 6.33 66.4 1.01
85.3 1.29

Pb 601 1.91  3.80 26.1 0.86
Pt 2042 2.3 6.61 68.2 0.96
cr 2130 1.9 (4.0)  73.7 (0.73)
§-Fe 1809 1.82 3.92 56.9 0.68
K 336 1.66 2.54 9.75 0.44
Li 381 1.58 2.78 12.0 0.56
15.9 0.74

Mo 2903 2.3 (4.0)  92.2 (0.55)
Na 370 1.67 3.25 8.41 0.44
10.60 0.56

ND 2750 . 2.34 (4.0)  96.0 (0.59)
W 3673 2.3 (4.0) 153.0 (0.72)

computed values for AVi are smaller than the values
for AV: as estimated from experimental results [6] for
the bcc metals a-Fe and Mo. It then appears possible
that for bcc metals Av§ < AVS, and a large negative

relaxation volume as suggested by Sherby et.al. [11]
may be associated with the saddle-point configuration
of the vacancy as a result of the more open bcc
lattice structure.

Recent computer simulation results by Baskes [14]
for Avj in a-Fe gave a value of 0.49 2, confirming a

large relaxation volume of -0.51 Q@ for vacancies in
the saddle=-point configuration.

3. Net Bias

Yoid nucleation as well as growth depends critic-
ally on the net bias. As shown by Si-Ahmed and Wolfer
[14] this net bias for a void containing x vacancies
can be defined as

)
<Zp ) A (x)Z (x)

B(x) = TS5

—— (8)
v Ao(x-l)Zv(x-l)

where A (x) is the surface area of the void, and



Z?(x) and Ze(x) are the void bias factors for inter-

stitials and vacancies, respectively. The sink-
averaged bias factors <Zy> and <Z,> can be assumed to

be equal to the dislocation bias factors Zd and Ze if

1
dislocations represent the predominant sink. For the

early stage of nucleation this is certainly the case.
For large vacancy clusters with x > 10 the difference

between Ay(x-1) and A,(x) and between Z(x-1) and
Ze(x) may be neglected, and we can define the net bias
as

8{x) Z? Z?(X) (9)
x) -
d 0
Zv Zv(x)

which then agrees with the definition of the net bias
for void growth.

Yoid Bias Factors

If U(r) represents the interaction energy of the
point defect with the void, then the void bias factors
can be computed from the following expression [15]

1
%) = {f ¢ @) explu(riTII? (10)
Q

for a void of radius a, where a = (3nx/4u)1/3. For
voids without an associated segregation shell, the
interaction energy is given by

ur) = - S IE - 1% e e € - 1)
a

(11)
+ 3GG a6 (o - 31)2
@l 3
Here, the first term represents the image interaction
{16] with the void surface, and it depends on the
parameters

2 (1 +v)?

F'=qv ,
36 7(1 - v)

a, = (7 - 5v)/30  (12)

where u is the shear modulus, v is the Poisson's
ratio, and v is the relaxation volume of the point
defect. The second term constitutes the modulus
interaction ([16], and it depends on the shear polar-
izability a8 of the point defect and on the effective
pressure (p - 2v/a) on the void surface. Here, p is
the gas pressure in the void and Y is the surface
tension.

For very small voids with radii a approaching
atomic dimensions, it can be shown that the far-field
image interaction becomes equal to a modulus inter-
action of a vacancy with the stress field of a point
defect. The vacancy is modeled in this context as an
inhomogeneous inclusion whose bulk and shear moduli
are zero. The shear polarizability of such a vacancy
or void is given by

G _ _, 41 3 15(1 - v)
oid T T TE (13)

and its relaxation volume by

=S H oy (p -2

Based on this interpretation, we may include the
second term in Eg. (11) into the first term and write

utr) == S (G- 1P eaG - 0f as)
a

2
A=a = T8 u

(16)
° 2% 3a%(p - 2v/a)

where

v

The interaction energy U{r) varies strongly with the
distance r from the void center. With increasing r,

the variation is 1in fact proportional to (a/r)8.
Therefore, the factor exp[U/KT] in the integral of Eq.
(10) 1is practically one for large distances r. For
short distances, however, U(r) assumes large negative
values, and the integrand becomes zero., As a result
we may use the following approximation

1 a/r

I d(2) explu(r)/kT] = |
° 0

c d(i) S S

F g an

where r. is defined as that distance for which the
integrand drops precipitously, i.e.

explU(re) /kT] = & (18)

where 1/f is around 1/2. Equation (18) can be solved
for r./a which then according to Eq. (10) {s equal to
the void bias,

r -
%) = Se 1+ (BT L13 )
where n = 4ar/[a3kT 1n £ . (20)

The void bias obtained with Eq. (19) compares very
favorably with eariier results for which the inte-
gration in Eq. (10) was carried out numerically [15].
Furthermore, the results of Eq. (19) are insensitive
to the choice of the parameter f as long as (1/f) is
not too close to either 0 or 1. Table V demonstrates
this insensitivity to the choice of f for the void
bias factor ratio of a "void" with radius equal to the
Burger's vector. The reason for this insensitivity is
that exp(U/kT) exhibits a very sharp transition from
values close to one to very small values at r = r.,

Table V. Sensitivity of the Void Bias™ to
the Parameter f
f 1.1 1.2 1.5 2.0 4 10
23(6)/2%(b)  1.734 1.763 1.742 1.730 1.697 1.660

*For 500°C, vi = 1.4 @, vy = =0.2 8, a? = “3 =0



Dislocation Bias Factors

The interaction energy of point defects with edge
dislocations has been treated extensively by Wolfer
and Ashkin [16]. The dominant long-range size inter~
action is given by .

uf(r,9) = -8 cos ¢/r (21)
where B, = v ;9-%-:—; (22)

and ¢ 1is the angle of the radius vector F with the
normal vector of the glide plane. At short distances,
the modulus interaction becomes dominant, and it is
given by

US(r,0) = (A, + Aycos 20)/r? (23)
where
Ay =
(1 - 22 + 4 a8(1 - v + W)/ an(1 - T2 (24)
and A, = [(aK~ % aG)(l - 2v)% 4

aaBv(1 - v)I/0an(1 - 12 . (25)

The bulk polarizabilites, aK, of point defects are
small in comparison to the shear polarizabilities, and
they have been neglected in the present study.

Using a Poisson's ratio of v = 0.3 one finds that
Ag = 0.0136 of
A, = 0.0094 of |

Therefore, A, is the dominant term, and the term Ascos
2¢ merely represents an angular modulation of the
dominant attractive part of the modulus interaction.
On average, we may therefore use the approximation

ir,e) = ag/r2 . (26)

To evaluate the dislocation bias factor, the crystal
around an edge dislocation can be divided into three
regions. In the core region r < ¢, the modulus inter-

action Ug is so strong that its radial varfation over
a distance b exceeds the migration energy EM of the
point defect; i.e.

dug
b 37— > gm (27)

The condition for equality then defines the capture.

radius ¢ at which no further thermal activation is
required for the point defect to migrate into the
dislocation core region.

Next to the core region, there exists a region
¢ € r < d, in which Ug is still dominant. In the
outermost region, the size interaction U; becomes
dominant and Ug can be neglected. However, since both

interactions have an angular dependence, the radial

distance d depends in fact on the angle.

In the present study, we have therefore selected
the minimum distance d, which occurs in the direction
where Ug exhibits a maximum, i.e. for ¢ = #w/2, de-
pending on the sign of the relaxatfon volume wv.
Accordingly,

d = b2[Ay - Ag|/|By] . (28)

By solving a steady-state diffusion equation in the
two outer regions and matching the solutions approxi-
mately at r = d, the following equation is obtained
for the dislocation bias factor:

28 = 1 R/C)/(Qy - Q,) . (29)

Here, 2R is the average distance between dislocations
and

Kolrg/R) K (r /)
q = 1 (r TRT " T (7 7d) (300
and
Q, = % exp(r%/dz) I;Z(ro/d)[El(rS/dz)
(31)
- El(rglcz)] .
Here re * [B/2T| , (32)
2 .
r5 = |AKT] (33)

Io(x) and K,(x) are the modified Bessel functions of
zero-th order and El(x) is the exponential integral.

4, Results

The bias factor formulae derived in the previous
section have been numerically evaluated to obtain the
net bias parameter of Eq. (9) for various void radii.
The materials parameters used were those for nickel,
and the point defect parameters were

e

S -2.4x 10718

a? = -2.4x 1077 g,

vI/ﬂ 2 0,7 to 2.2 , vv/ﬁ = =0,5 to -0.1 .

In order to simulate austenitic alloys, it was assumed
that the shear polarizabilities are the same as those
for nickel, whereas the relaxation volumes were
assumed to be vi/9 = 1.8 and v,/2 = -0.1 in accordance
with the results of Tables I and III.

For ferritic alloys, it was assumed that vi/@ =
1.1 and v,/9 = -0.5, The difference in shear modu11,
atomic vo]umes, in shear polarizabilities, and in
Burger's vectors between austenitic and ferritic
alloys was neglected in the present study, and the

same surface energy of v = 1 J/m? was selected for
both materials. The net bias differences displayed in
Fig. 2 is therefore entirely due to the differences in
the relaxation volumes.



The results in Fig. 2 demonstrate the following
important findings. The net bias of small voids is
negative, indicating a preferential absorption for
interstitials even in the presence of dislocations.
Therefore, for voids to nucleate, either segregation
and/or internal gas pressure is required. For larger
void sizes with diameters visible in the electron
microscope, the net bias 1is positive and voids
continue to grow, If a positive net bias of 0.2 is
required for nucleation to occur, then ferritic alloys
are seen to exhibit a much greater resistance than
austenitic alloys.

For void diameters greater than 20 nm, the net
bias reaches a constant value. This value s sub-
stantially larger in austenitic alloys as compared to
ferritic alloys. Figure 3 shows this asymptotic value
of the net bias as a function of the relaxation
volumes of both the self-interstitial and the vacancy.
The most probable range for the net bias in ferritic
and austenitic alloys is also indicated.

5. Discussion

It may appear that a net bias of the order of
one, as displayed in Figs. 2 and 3 for the austenitic
alloys, is too large 1in comparison to previously
reported values in the literature. Therefore, the
corresponding steady-state swelling rate may appear to
be excessive. However, as shown below, this is not
the case.

Wolfer and Garner [17] have shown that the steady
state swelling rate can be expressed as

S S
d AV 0°d
E] B «F (34)
‘T "5 45 )2
0 d
where S, and Sq are the sink strength of voids and
dislocations respectively, and F is a function weakly
dependent on temperature and total sink strength, but
strongly dependent on the rate of point defect
production, P, which can be written as

P = 8f (35)

where D is the displacement rate and 8 is the fraction
of point defects which survive in-cascade recombi~
nation and clustering., B8 is of the order of 0.1.

We may now express the swelling rate in units of
(%/dpa) and write Eq. (34) as

S S
dAVIVZ) . __"o7d 100 se(F/P) .  (36)
d(dpa) (5. +5 )2
0 d
As previously shown [17], F/P < 1/2. Furthermore, the
factor
ﬁ_? <% (37)
(S0 + Sd)

where the equal sign holds when the void sink strength
equals the dislocation sink strength,

Using these upper bounds and the value 8 = 0,1 we
find that

T T T
1.0
0'8,_ AUSTENITIC
ALLOYS
2 o6 -
m ol -
w o4 -
z i FERRITIC
ALLOYS -
0.2~ -
0
-0.2 | ] ! ] | | ]
02 05 1 2 S 10 20 80
VOID RADIUS IN nm
Fig. 2. Net bias for voids in austenitic and ferritic
alloys.

d(Av/vVR)
S < 1.25 B (%/dpa) . (38)

Based on the net bias results of Fig. 3, we expect
therefore that the swelling rate in austenitic alloys
is less or equal to about 1.4 (%/dpa). This value is
remarkably close to the empirical value of 1 (%/dpa)
found for the steady-state swelling rate in type 304
and 316 stainless steels. Our present assessment of
the steady-state swelling rate in ferritic steels
indicates that it should be lower by a factor of two
to ten compared to the austenitic steels.

This large uncertainty is based on the relatively
wide error band associated with the measured relaxa-
tion volume for the self-interstitial in a-Fe. This
error band fs however caused in turn by the fact that
the relaxation volume vs for the vacancy in its stable
configuration is unknown within the bounds of 0 and
-0.25 @ [6]. Assuming the value of vt 2 0 implies a
large interstitial relaxation volume of about 1.3 2,
whereas the assumption vc = -0.25 Q implies vg = 0.9
Q. For the net bias calculations, however, one re-
relaxation volumes v? and vé for the

With regard to the self-

quires the
saddle-point configurations.

interstitial, it is reasonable to assume that v; 2 v?.
In contrast, for the vacancy, vé < vt, as mentioned

The choice of v{ = 0.9 2 and vi = -0.5 @
appears then to be a realistic one, and it results in
a net bias of about 0.18. From Eg. (38), a maximum
possible swelling rate of 0.225%/dpa is then pre-

above.
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Fig. 3.

dicted. The ion-bombardment results shown in Fig. 1
on the binary alloy 85Fe-15Cr indicate a maximum
swelling rate of about 0.13%/dpa.
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