

A Preliminary Fusion Availability Data Base

Z. Musicki and C.W. Maynard

February 1984

UWFDM-532

FUSION TECHNOLOGY INSTITUTE UNIVERSITY OF WISCONSIN MADISON WISCONSIN

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

A Preliminary Fusion Availability Data Base

Z. Musicki and C.W. Maynard

Fusion Technology Institute University of Wisconsin 1500 Engineering Drive Madison, WI 53706

http://fti.neep.wisc.edu

February 1984

UWFDM-532

A PRELIMINARY FUSION AVAILABILITY DATA BASE

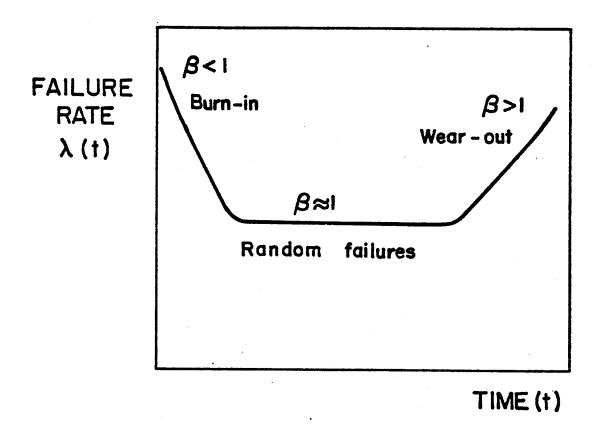
Z. Musicki and C.W. Maynard

Fusion Engineering Program Nuclear Engineering Department University of Wisconsin-Madison Madison, Wisconsin 53706

February 1984

TABLE OF CONTENTS

				Page
1.	Int	rodu	ction	1
2.	Dat	a Re	quired for Availability Analysis	3
3.	Fai	lure	Modes of Subsystems in a Magnetic Confinement Power Plant	4
4.	0pe	rati	ng Conditions for Fusion Power Plant Subsystems	4
5.	Con	fide	nce Limits and Data Uncertainty	5
6.	Sou	rces	of Data	12
	1.	Dat	a Bases for Conventional Components and Subsystems	13
		1.	IEEE Std 500-1977	13
		2.	Nonelectronic Parts Reliability Data	15
		3.	Nuclear Plant Reliability Data System 1980; Annual Reports of Cumulative System and Component Reliability	18
		4.	Ten Year Review 1971-1980 Report on Equipment Availability, National Electric Reliability Council - Generating Availability Data System	24
		5.	Reactor Safety Study, Appendix III	24
	2.	Fus	ion Reports and Design Studies	32
		1.	Preliminary Availability Assessment and Apportionment of the Engineering Test Facility	32
		2.	Isabelle Refrigeration System Availability Report	33
		3.	Double Wall Steam Generator Data	33
		4.	STARFIRE Design Study	38
		5.	The MARS Study Availability Data	38
	3.	Dat	a Compiled from Expert Opinion	40
7.	Rec	ent	Data Employed in This Study	59
Ref	eren	290		62


1. Introduction

We will describe the data needed in a fusion power plant availability analysis, and the methods employed to collect such data and estimate the errors in data and in the final system availability. Failure rates and repair times are the most basic information needed to estimate any system availability.

Since we are looking at the system availability, we will concentrate on the subsystem-level failure data.

Acquisition of good failure data is often the most difficult task in the availability analysis. Reliability and availability analysis is a relatively recent engineering discipline and only recently has increasing attention been paid to it. For many components and subsystems, data have simply not been compiled. Other equipment employed in fusion power plants is still in a development stage, thus no operating experience has accumulated on which to base a failure rate estimate. Determining a time dependent failure rate to fit a Weibull distribution (e.g., bathtub curve failure rate dependency, see Fig. 1), would be even more difficult, thus for the time being we are limiting our analysis to a constant failure rate.

Data for component and subsystem repair times are in better shape, since more is known (or can be learned) about the time spent in each maintenance operation, than about various failure mechanisms and their frequency. Timelines (i.e., step by step maintenance duration) have been developed for certain fusion reactor components in some recent fusion power plant designs (blanket and magnet overhauls have received the most attention).

Weibull distribution: $\lambda(t) = \lambda_c \beta t^{\beta-1}$, $\lambda_c = \text{constant}$, $\beta = \text{constant}$

Fig. 1. The bathtub curve.

2. Data Required for Availability Analysis

In order to more completely evaluate the availablity of a system, we have to know, in addition to the system configuration (e.g., number and type of units of each type, their interconnection, redundancy, operating conditions), the following information:

- 1) Failure modes and failure rates for each failure mode. Failure modes are types of failure for particular equipment (e.g., magnets can fail due to shorts, loss of superconductivity, power supply failure; valves can fail open, shut, etc.). The failure mode of equipment can represent a failure of one of its components. Also, ideally, some kind of uncertainty estimate associated with this data may be required. For failure rates following the Weibull distribution, time dependency should be specified.
- 2) Maintenance timeline for each failure mode and scheduled maintenance, with the maintenance equipment required at each stage.
- 3) Environmental and special operating conditions that may give rise to a different failure rate (e.g., high temperature and high radiation field may affect failure rates of magnetic coils).
- 4) Failure rates when the equipment is offline or idle.
- 5) Scheduled maintenance required and frequency.
- 6) Any tests required, duration and frequency.
- 7) Immediate or deferred repair (i.e., wait until a plant outage) upon failure.
- 8) Remote handling required for maintenance and repair (e.g., in high radiation field)?
- 9) Any data on burn-in and wearout; lifetime estimate.
- 10) Failure rates during transients, e.g., switch on and switch off.

Some of the data mentioned above may be very hard to obtain, so it will be either estimated or omitted. For instance, we may have only one "bulk" failure rate for a specific subsystem, without regard for failure modes or specific operating conditions. Hence, we can postulate an uncertainty to be associated with this particular failure rate that will include the unaccounted-for effects. This uncertainty can be estimated by looking at the changes that these effects entail in similar equipment (e.g., How much does elevated temperature increase some component's failure rate?. A similar component may be described in IEEE-Std 500-1977, (1) for instance, which has the failure rate multiplicative factors for changed environments.).

3. Failure Modes of Subsystems in a Magnetic Confinement Power Plant

The various failure modes of subsystems employed in a typical fusion power plant (specifically tandem mirrors), are presented in the report UWFDM-461, $^{(2)}$ among others, and will also be presented below in the section on the MARS data.

4. Operating Conditions of Fusion Power Plant Subsystems

Most data that we currently have do not specify the operating and environmental conditions under which they are applicable. Sometimes it is best to specify these conditions on the component level, because the component would be directly affected by changed conditions, or such data exist on the component level. Following is a list of parameters that may be important in estimating a subsystem failure rate:

Subsystem	Parameter(s)
Neutral beams	particle current, energy, radiation field
ECRH	power/gyrotron, frequency, radiation
ICRH	power, frequency, radiation

Magnets current, temperatures, radiation field

Direct convertor temperature, dpa rate

Steam generator, BOP temperature, pressure, steam quality

Vacuum system vacuum load

Cryogenic system capacity, temperature

Control and instrumentation varies with specific application

Blanket & first wall temperature, radiation, dpa rate, type

Tritium system capacity

Fueling system capacity, pellet velocity

Shield unknown

Power supply thyristor current, voltage

Power supply transformer current, voltage, type of coolant

5. Confidence Limits and Data Uncertainty

The data we are dealing with in this study are not known precisely, because they are estimates and because they are modified by insufficiently known factors, such as the environmental and operating conditions. Redundancy provisions can "desensitize" the system to a particular subsystem's data variations.

We can account for this data uncertainty in several ways:

1) Upper and lower bound. Estimate the worst and the best case failure rate (and/or repair times) for a particular subsystem. Run the system availability analysis for both cases and see how sensitive the final answer is to these variations. The bounds estimate may be revised if the system availability assumes an unacceptable value, but it must then be treated as a design requirement rather than an uncertainty.

The upper and lower bounds can be obtained from raw data as shown in IEEE Std 500-1977. Given that the accumulated data come from a single population with a failure rate λ , Epstein⁽³⁾ has shown that twice the accumulated test hours times the failure rate follows the χ^2 distribution. The lower and upper confidence bounds are then given by:

$$\lambda_{L} = \frac{\chi_{\alpha/2;2n}^{2}}{2T^{*}}; \qquad \lambda_{u} = \frac{\chi_{1-\alpha/2;2n+2}^{2}}{2T^{*}}$$

where: n = number of failures observed

 $\alpha = 1$ - confidence level desired.

The recommended value of λ is $\hat{\lambda} = n/T^*$, $T^* = number of accumulated test hours.$

The 5% and 95% confidence bounds can represent the upper and lower bounds in our case. The χ^2 values can be found in standard tables.⁽⁴⁾

The disadvantage of this process is that only a small probability would usually be associated with the extremes of a distribution, and hence would not be significant. For instance, a failure rate distribution may be depicted by Fig. 2. One can also take a failure rate midpoint between the two extremes, and thus arrive at a "best estimate."

2) From the range estimates in (1), one can arrive at a distribution of failure rates that may be used in assessing its effect on the system availability. For instance, a reasonable assumption would be that the data have a normal distribution (see discussion below). A normal distribution is specified by the mean value, m, and the standard deviation, o. These parameters can be estimated as follows, assuming that the lower and upper bounds represent the 5% and 95% cumulative probability (confidence).

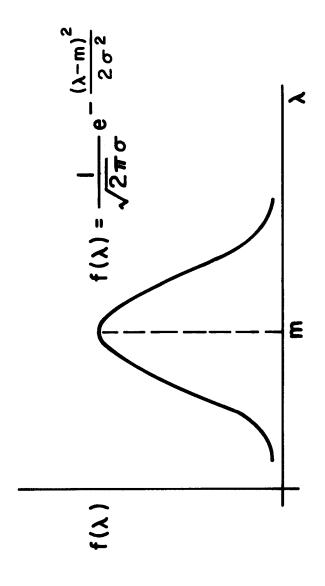


Fig. 2. A possible probability distribution of failure rates λ (normal distribution).

The normal distribution is given by:

$$f(\lambda) = \frac{1}{\sqrt{2\pi} \sigma} e^{-(\lambda - m)^2/2\sigma^2}.$$

Thus

$$\int_{-\infty}^{\lambda_{u}} \frac{1}{\sqrt{2\pi} \sigma} e^{-(\lambda-m)^{2}/2\sigma^{2}} d\lambda = 0.95 \quad \text{and} \quad \int_{-\infty}^{\lambda_{L}} \frac{1}{\sqrt{2\pi} \sigma} e^{-(\lambda-m)^{2}/2\sigma^{2}} d\lambda = 0.05.$$

Changing variables to:

$$t = \frac{\lambda - m}{\sigma}$$
, $d\lambda = \sigma dt$,

the 95% confidence is represented on the new scale thus (distribution centered at 0. now):

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{t_{u}} e^{-t^{2}/2} dt = 0.45$$

(since we are taking only the right half of the distribution); and

$$\frac{1}{\sqrt{2\pi}} \int_{t_1}^{0} e^{-t^2/2} dt = 0.45.$$

From tables of the normal distribution: (5)

$$t_u = 1.64$$
, $t_L = -1.64$.

Then
$$\frac{\lambda_{L} - m}{\sigma} = 1.64$$
 and $\frac{\lambda_{L} - m}{\sigma} = -1.64$.

This implies

$$m = \frac{\lambda_u + \lambda_L}{2}$$

(the mean and median value). The standard deviation is given by:

$$\sigma = \frac{\lambda_u - \lambda_L}{2*1.64}.$$

3) We can ask our data sources to provide us with a confidence level that they have in the estimate offered. If the data is normally distributed, then a confidence level C (0 < C < 1.) would imply that fraction C of the data lies, say, within 10% on either side of this estimate, m, as depicted in Fig. 3. Hence:

$$\int_{0.9m}^{1.1m} f(\lambda) d\lambda = C ; t = \frac{\lambda - m}{\sigma} .$$

This implies

$$\int_{-0.1\text{m/}\sigma}^{0.1\text{m/}\sigma} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = C.$$

Hence

$$\int_{0}^{0.1 \text{m/o}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \frac{c}{2}.$$

Find σ from standard tables. For example, if C = 0.4, then

$$\frac{0.1 \text{ m}}{\sigma} = 0.53$$

and

$$\sigma = \frac{0.1 \text{ m}}{0.53}.$$

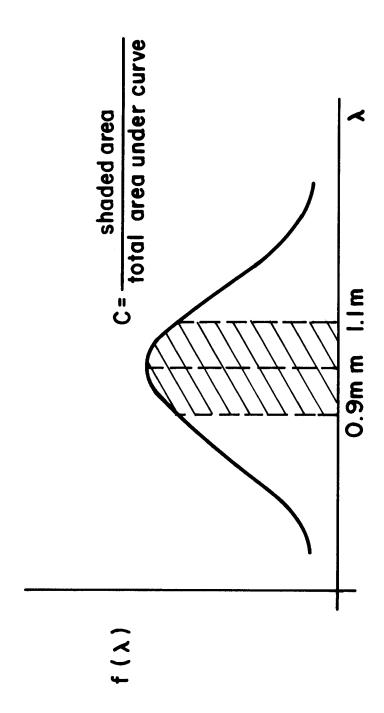


Fig. 3. An interpretation of confidence level C.

4) Once a data distribution is known or estimated, one can obtain the availability variation by sampling this distribution and running the availability program. For instance, a program called SAMPLE, described in Appendix II of WASH-1400, (6) can be employed for this purpose. SAMPLE is a Monte Carlo sampling program that, given the data distributions (normal, lognormal and log-uniform) and the functional relationship among the input data (e.g., a Boolean expression representing a logic gate), calculates the confidence levels of the output function. These confidence levels are the cumulative probabilities of the output function assuming values below the levels given by these confidences. Thus a spread of values is obtained which is indicative of the uncertainty in the calculated result (the spread between the 5% and the 95% confidence limits is usually used).

It is claimed in WASH-1400 that the log-normal distribution is appropriate for the data in reactor safety work, including both the failure rates and the repair times. (7) The log normal distribution is the normal distribution of the natural logarithm of data. In case of failure rates its use is justified by the fact that in reactor safety work, the uncertainty in data is high, with the extremes a factor of 10 away from the median value. For repair times, experience in nuclear power plants indicates that it usually takes a reasonably short time to repair certain equipment, but on a very few occasions the repair times are extremely long (for an example, see discussion of WASH-1400 data below). This is modeled by the positive skewness of the log-normal distribution and its long tail.

In this availability work, such wide error bands are unacceptable for critical components with no redundancy. For other components, however, the log-normal distribution may well be used.

The number of trials in the SAMPLE Monte Carlo code for adequate statistical error can be calculated as follows: the 5% to 95% range of the output function distribution consists of "successes" from a binomial distribution with a probability of success, p = 0.9, and the failure probability, q = 1 - p = 0.1. The standard deviation, σ , of this distribution is indicative of the absolute statistical error, the relative error being $\varepsilon = \sigma/(np)$, where n is the number of trials. From Ref. (5):

$$\sigma = \sqrt{npg}$$

and

$$\varepsilon = \frac{\sigma}{np} = \sqrt{\frac{g}{np}}$$
.

For ϵ = 1%, we will need n = 1200 trials. ⁽⁶⁾ In conjunction with a Monte Carlo availability model to calculate the output function, this is probably prohibitively many trials. However, for 2% relative error, only 300 trials are needed, and for 5% relative error, 48 trials are necessary.

6. Sources of Data

The failure data for fusion systems availability analysis are sometimes difficult to obtain for obvious reasons, and hence there is a need to rely on diverse sources of data:

- Standards and data bases for conventional components and subsystems.
- 2) Reports and design studies of fusion plants.
- 3) Solicitation of opinion among experts in a particular subsystem.
- 4) Utilization of data for analogous equipment that may have similar failure data.

We will now describe some of these data sources.

6.1 Data Bases for Conventional Components and Subsystems 6.1.1 IEEE Std 500-1977⁽¹⁾

This document is a guide to the collection and presentation of electrical, electronic and sensing component reliability data for nuclear power generating stations. Its purpose is to establish one method of collecting and presenting the data in the nuclear power industry in order to aid the reliability analysis of such plants, and in particular the safety equipment.

The report also presents the available failure rates for the appropriate nuclear power plant equipment. Some of the data can be used by us in the present application; the ideas and methodology presented herein are also very useful.

This work is intended to aid in reliability analysis and design of nuclear power plants. Hence, the numbers can be employed to evaluate the performance of an existing design, or to decide which strategies would be appropriate to improve this performance (alternate design, test intervals, maintenance and operating procedures).

The equipment described here is presented in terms of failure modes (catastrophic, degraded and incipient failures) and the types of failure impacting on the system status (e.g., "fails to run once started," "fails to start," "fails to run at rated speed," etc). For each of these categories, appropriate failure rates are given (if existing): the low and high, representing the best and the worst cases respectively, the recommended value and the maximum value that is the highest under all foreseen conditions (environmental, operator error, etc.). Sources of particular data are also indicated. See Table 1 for an example of a typical data matrix. For components where no data exists, appropriate failure modes and types are indicated.

Table 1. A Sample Table with Failure Data from IEEE Std 500-1977

ess Switches	Source (5)			Delphi and (15),	(77)										 	20
Subsection: 9.1.3 Process Switches	Date of Last Revision	(4)														
Subse		səl	Max	2.0	.702	.376	.326	1.30	7.0	.30	0					
		10 ⁶ Cyc	High	1.5	.527	.282	.245	.975	.750	.225	0		 	 		
		Failures/10 ⁶ Cycles	Rec	.75	.263	.141	.122	.488	.375	.113	0	 				
	Rate	15.	Low	-	.035	.019	.016	.065	.050	.015	0					
	Failure Rate (3)	٤	Max	28.49	.687 9.989	.368 5.350	.319 4.639	.871 1.272 18.499	.97914.230	.294 4.269	0					
erature		0 ^{ti} Hou	High	1.34 1.959				1.272			0					
Tempe		Failures/10 ^{ti} Hours	Rec	1,34	.470	.252	.218	.871	0.670	.201	0					
Section: 9.1 Temperature		Ĭ.	Low	.3	.105	.056	.049	.195	.150	.045	0					
s and Sensors	Failure Mode (2)			ALL MODES	CATASTROPHIC	Functioned without signal	Failed to function when signalled	DEGRADED	Functioned at improper signal level	Intermittant Operation	INCIPIENT					
Chapter: 9 - Instruments, Control	Part Description (1)															

At the beginning of each chapter describing a generic piece of equipment (e.g., transformers or motor-generators), there is given a failure mode matrix (see Table 2) and environmental factor matrix. The latter contains the factors by which to multiply the failure rates in case of extreme environmental conditions of the particular equipment in the chapter (Table 3). These conditions are usually high temperature, high radiation and high humidity. Of course, the degradation in performance will depend on the length of time that these conditions exist. A normal operating set of conditions is specified for some parts. Proper operating instructions and maintenance procedures are also noted.

The sources of data are: expert opinion (extensive use of the Delphi procedure) and reported occurrences in the literature (either of nuclear equipment or similar equipment in other industries).

For the purposes of the present study of availability of fusion power plants, specifically the recent tandem mirror concepts, we can use some of the data presented in IEEE Std 500-1977: the sections on compressors, steamturbine driven generators, motors, transformers, cables and some of the instruments, controls and sensors. Some of the data may be too detailed for the present study, but may be of use in the near future. Environmental factors may be useful if we know how the conditions inside the fusion power plant differ from the normal operating conditions. Some of the data may be similar to that of another subsystem in a fusion power plant; e.g., the normal coil data might be similar to the dry, high voltage transformer data.

6.1.2 Nonelectronic Parts Reliability Data (8)

This report has been produced by the Reliability Analysis Center at the Rome Air Development Center. It gives the failure data for nonelectronic

Table 2. A Failure Mode Matrix from IEEE-Std 500-1977 (Only a Part of the Instruments, Controls and Sensors Matrix Shown Here)

Table D19
Ch 9 — Instruments, Controls, and Sensors
Failure Mode Matrix

Generic Listing	Catastrophic	Degraded	Incipient
9.1 9.1.1	Maximum output or zero output	Erratic output	Drift
9.1.2	No output (open circuit)	High output	
	No change of output with change of input	Low output	
9.1.3	Functioned without signal	Functioned at improper signal level	In-service problems
	Failed to function when signalled	Intermittant operation	
9.2	Zero or maximum output	Erratic output	Drift
9.2.1	No output	High output	
	No change of output with change of input	Low output	
9.2.2	Functioned without a signal	Functioned at improper signal level	In-service problems
	Failed to function when signalled	Intermittant operation	. -

Table 3. An Example of Environmental Matrix from IEEE Std 500-1977

Ch 9 — Instruments, Controls, and Sensors Environmental Matrix

Generic Listing	Temperature	Radiation	Humidity	Vibration
9.1 9.1.1 9.1.2	1.75 1.0 2.0	1.25 1.0 1.5	1.5 2.0 1.5	2.0 2.0
9.1.3	1.5	1.0	1.5	2.0
9.2 9.2.1 9.2.2	1.75 2.0 1.5	1.0 1.25 1.0	1.38 1.25 1.5	1.5 1.5
9.3 9.3.1 9.3.2 9.3.3	1.67 1.5 2.0 1.5	1.15 1.2 1.25 1.0	1.32 1.2 1.25 1.5	2.0 2.0
9.4 9.4.1 9.4.2 9.4.3	1.53 2.0 1.1 1.5	1.03 1.1 1.0 1.0	1.13 1.1 1.1 1.2	1.2 1.2 —
9 .5		no input		
9.6 9.6.1 9.6.2	1.5 1.5 1.5	1.0 1.0 1.0	1.2 1.2 1.2	1.2
9.7	1.2	1.0	1.2	_
9 .8	5.0	1.2	1.5	1.5
9.9		no input		
9.11 9.11.3	1.5 1.5	1.0 1.0	1.35 1.35	5.0 5.0
9.12	5.0	1.0	4.0	_
9.13	1.0	1.0	1.5	_
9.14 9.15	1.5	1.0	1.0	
9.15	2.0	1.0	1.5	wind lightning 5.0 10.0
9.16	1.2	1.0	1.2	
9.17	2.0	1.0	2.0	_
9.18	2.0	1.2	1.5	
9.19	3.5	1.0	1.25	-
9.20	1.25	1.0	1.75	
9.21	3.5	1.0	1.25	_
9.23	1.6	1.0	1.6	
9.24	2.0	1.2	1.5	-
9.25	3.5	1.0	1.5	

parts commonly used in aircraft and other military applications. The format is such that each part's failure rates are documented for different environments (such as fighter based, ship based, ground based, etc.) and for either commercial or military applications. The failure rates are given as the mean value, the 60% upper single-sided confidence, the lower and upper bounds of the 60% confidence interval as well as the number of failures experienced and the total number of operating hours (see Table 4 for an example).

The document also contains a short discussion of failure modes and mechanisms for operational and dormant equipment described therein.

There is also data for parts commonly used in commercial equipment applications.

Some of the data presented here can be used in our present studies of fusion power plants: pumps, certain instruments, compressors.

6.1.3 Nuclear Plant Reliability Data System 1980; Annual Reports of Cumulative System and Component Reliability (9)

This document describes nuclear power plant experience in terms of system and component reliability. It is divided into two parts. The first part deals with system reliability data (e.g., air conditioning system, reactor trip system, etc.); generic system data are presented first, followed by specific vendor system data (i.e., W, GE, B&W, CE). The second part is devoted to component reliability data (e.g. generator, inverter, electric heater, etc.).

As an example of the failure data in the first part of report, see Table 5. System title and type are given, with the number of systems included in reports, operating hours, service hours, number of tests and number of failures, giving number of failures per million calendar hours. For the compo-

Table 4. Sample Table from Nonelectronic Parts Reliability Data

PART CLASS: VALVE

TYPE: HYDRAULIC

							-		
				FAILURE RATE/10 ⁶ HOURS	/10 ⁶ HOURS				
	<u></u>	APPLICATION	÷	601 UPPER	601 CONFIDENCE INTERVAL	4CE INTERYAL	NUMBER OF	C	OPERATING . HOURS
ENV I KONNEN	MIL.	COML.	<	CONFIDENCE	LOWER	пррек	RECORDS	מסחפר ויסוברם	(x 10 ⁶)
DOR	×		0.005	!	0.001	0.015	7	_	208.651
GRF	×		!	9.253	! !		1	0	0.099
GRM	×		7.302	:	6.320	8.452	2	40	5.478
AU	×		52.144		50.163	54.301	13	760	14.575
AUT		×	11.937	1 1	11.292	12.625	25	245	20.524
AUF	×		17.309	1 1	14.163	21.198	4	22	1.271
			_						Control of the Contro

PART CLASS: VALVE

TYPE: NEEDLE

_			
	OPERATING HOURS	(x 10 ⁶)	3.671 0.779
	NUMBER OF NUMBER FALLED		5
	NUMBER OF	RECORDS	2-1
	60% CONFIDENCE INTERVAL	UPPER	2.164
/10 ⁶ HOURS		LOWER	0.842
FAILURE RATE/10 ⁶ HOURS	60% UPPER	CONFIDENCE	1.176
	«	<	1.362
	APPLICATION MIL. COML.		×
		•	×
		ENVIRONMENT	GRF GRF

Sample Subsystem Failure Data from Muclear Plant Reliability Data System 1980 Table 5.

NPRO REPORT ROZ PERIOD 7/74 - 12/80	NNH	로종	ANNUAL REPORT OF C NUCLEAR PLANT AAA AIR COND.,		CUMMULATIVE SYSTEM T RELIABILITY DATA HEATING, COOLING	TIVE STILLTY	E SYSTENITY DATA	M RELIAB SYSTEM & VENT.		SYS. &CONT	ξΠ		15	FECT 0	EFFECT OF FAILURE	J. D. C.	
SYSTEM TITLE		TYPE OF UNIT	SYSTEMS	GPERATING CALENDAR HOURS HOURS (X1000) (X1000)	CALENDAR HOURS (X1000)	TESTS	FF CF	FAILURES PER MIL. CRLENDAR HOURS	REST. HOURS (RYG)	GUT-OF SERY. HOURS (RYG) F	FAIL	NO.		E NO	BY MAJOR COMPONENTS	1	
REAC.BLDG, HERT/YENT/AC		3	w	ከ*68	212.7	3781	0	8.		122	m	LOSS OF SYSTEM FUNCTI	DECHADED SYSTEM OPER, LOSS OF SUBSYS,/CHANN	NO SIGNIFICANT EFFECT REDUCED POWER OPERATI	UNIT OFF-LINE REACTOR TRIP	DAMPOE TO OTHER EQUIP EXCESSIVE OFF-SITE FA PERSONNEL INJURY	NO SIGNIFICANT EFFECT
	I	TOTAL	2	1,08	212.7	3781	0				m	IN		\vdash			Π
MRJOR COMPONENT TYPES PFFECTING ARA SYSTEMS	CIP/CRL ENDRR		D W	HP ONENT I	COMPONENT FAILURES PER		3 8	OUT-OF-SERVICE HOURS	VICE HOUND	SES CONTRACTOR		à SH29	ON SYSTEM			ON PLANT	
CATEGORIES/FUNCT IONS	HOURS (NILL)ON)	FAIL	0	5 10	10 15	5 20	٥	100	200	300	001			+			T
VALVE OPERATORS PNEUMATIC/DIRPHRACH/CYLINDER	<u>3301</u>	2		ਲ ਲ ਹ			퍼 ¥ 파'D										
FILTERS/STRAINERS GRS	2015			₩. ₩.							88 × 88 c	<u> </u>					
											ı	<u> </u>					1
												48		-			T
												<u>is</u> .					T
												ģ j					
												93 1					T
												1 43					T
												B					
												·설 kg					
												49		<u> </u>			Γ

nents within each system, the tables show the average restoration hours, average out-of-service hours and number of failures. System failures are identified as such that "cause loss of system function." The second part of a typical table in this category shows major component types affecting a particular system, number of operating/calendar hours, number of failures, component failures per million calendar hours, range of out of service hours and restoration hours. The effects of failure of major components on the system and on the plant are also presented in terms of a bar chart. These can add up to a value different than 100% due to deficiencies in the reporting procedure.

The second part of this report (see Table 6 for an example) shows component accumulated failure data: failure modes, number of units, number of failures for each mode, operating and calendar hours. For the number of failures per million hours, several values are given: minimum, 25%, median, 75% and maximum. Also shown are the average number of restoration hours, and the lowest, average and highest out of service hours. At the beginning of each generic section (e.g., Instrumentation and Control) are presented summarized data of interest (see Table 7, for example): number of components in category, calendar hours, number of failures, out of service hours (highest, average, lowest); population size and number of failures for specified period for each type/category, application/function; number of failures for status at time of failure and failure detection method.

In this report, the useful data are the failure rates for assorted conventional components such as pumps, turbines, generators, specific control and instrumentation components (this last item has exhaustive data and can be particularly useful to us).

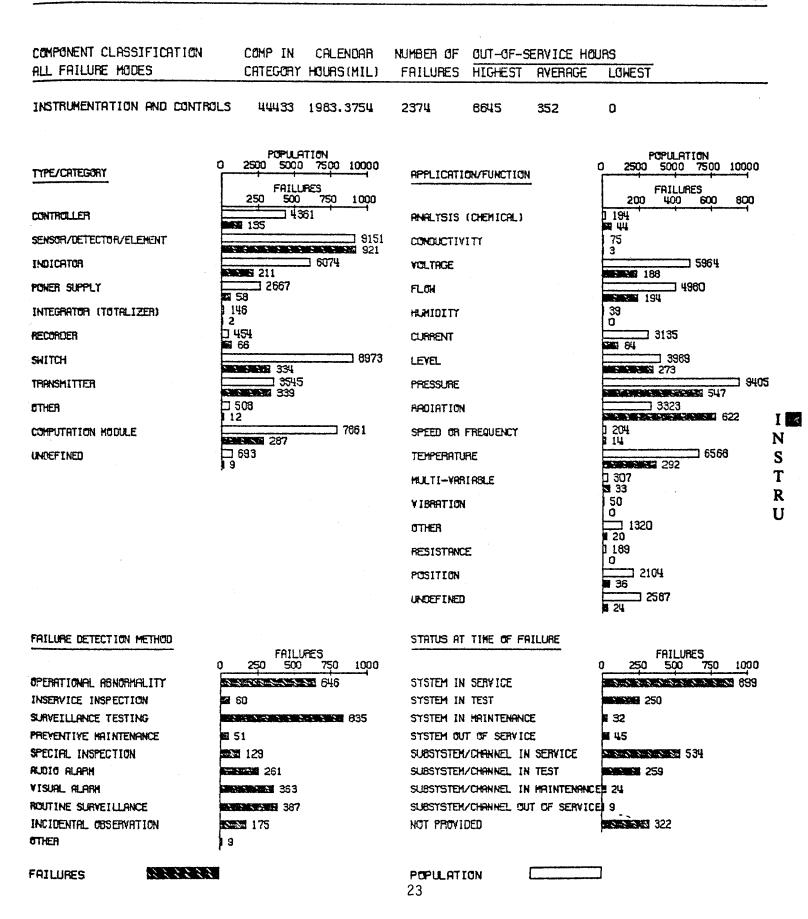
Table 6. Cumulative Component Failure Data from NPRDS Report

NPAD REPORT AUS (PART 2) REPORT PEKTOD: 1/14 12/RO	ANNUAL REPORT OF CUMULATIVE COMPONENT RELIABILITY NUCLEAR PLANT RELIABILITY DATA SYSTEM
INSTRUMENTATION AND CONTRULS	
THIS REPORT CONTAINS STATISTICS ON	THIS REPORT CONTAINS STATISTICS ON ALL COMPONENTS IN THE NPROS ACCUMULATED BETHEEN 07/01/74 AND 12/31/80
COMPONENT	COMPONENTS OP/CALENDAR TOTAL NUMBER

COMPONENT CLASSIFICATION			:	COMPONENTS IN CATEGURY		LENDAR ILLIONS)	TOTAL FAILURES	NUMBER OF SYSTEMS	NUMBER OF UNITS
NO. NO. NO. FAILURES UNITS		LURES PER 25 TH PERCENTILE	MILLION CA	CALENDAR HOURS TS TH PERCENTILE M	AS ## MAXIMUM	AVERAGE RESTORATION HOURS	1 † !	OUT-OF-SERVICE HIGHEST AVERAGE	HOUR
SENSOR/DETECTOR/ELEMENT THERMOGOUPLE				1145		43.101	35	8	92
LEAK PHYSICAL DISPLACEMENT 1 1 FHACTURE/GREAK MUN'T CLOSE 1 1 1 OUT OF LIMITS 13 4 FALSE RESPONSE 9 2 TUTAL 35 7	000000000000000000000000000000000000000	000000000000000000000000000000000000000	800000000000000000000000000000000000000	000000000000000000000000000000000000000	. 84 1. 30 17. 11 17. 56 17. 56	376 8 439 23 64 64 169		1654 376 8 8 8 439 439 23 23 477 64 296 87 1654 169	216 8 8 439 23 23 1
SENSOR/OFTECTUR/ELEMENT THERMISTOR				32	·	1.295	6	10	10
SENSOR/DETECTUR/ELEMENT PJTëNTIOMETIC			#	 		.133	2	4	4
MJN*T START/MOVE 1 1 1 FALSE RESPONSE 2 2	000	888	888	.00 .00 2.19	4.39 15.21 15.21	m & w		m to d	мфм
SENSOR/UETECTUR/ELEMENT HYSKOSCUPIC	•			*	•	.228 .228	O	-	~
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	******						

^{*} LUMEST CALCULATED FAILURE RATE FROM AN INDIVIDUAL UNIT ** HISHEST CALCULATED FAILURE RATE FROM AN INDIVIOUAL UNIT

PLEASE REFER TO PAGE XXX FOR DESCRIPTION OF CALCULATION METHOD


NPRD REPORT A03 (PART 1)

ANNUAL REPORT OF CUMULATIVE COMPONENT RELIABILITY

PERIOD# 7/74 - 12/80

NUCLEAR PLANT RELIABILITY DATA SYSTEM

THIS REPORT CONTAINS STATISTICS ON ALL COMPONENTS IN THE NPROS ACCUMULATED BETWEEN 7/1/74 THAU 12/31/80

6.1.4 Ten Year Review 1971-1980 Report on Equipment Availability, National Electric Reliability Council - Generating Availability Data System⁽¹⁰⁾

This report has outage statistics on generating units: by year, by power rating and by fuel (coal, oil, nuclear, etc.). Since these are plant statistics, and not detailed subsystem or component data, the report will be of little use as a source of failure data. However, it may be utilized in comparison studies between conventional and fusion power plants. It identifies major causes of forced outages, average times spent on scheduled and unscheduled maintenance and shows the availabilities attained in the past with a particular type of unit. A sample table from this compilation is shown in Tables 8 and 9.

6.1.5 Reactor Safety Study, Appendix III (7)

The Reactor Safety Study describes the reliability data for major safety related components of nuclear power plants. Some of the data for conventional components can be applicable for fusion design studies (e.g. pumps, steam generators, control and instrumentation). These data are not immediately useful, since the uncertainty is so large, but a median value can probably be used. Also included are the data on human operator error. For failure data see Table 10. Observed repair times and theoretical distributions for major components are also given (see Fig. 4). The theoretical distribution used was log normal, since a majority of repairs can be accomplished in a relatively short time, while a very few take a very long time (tail section of the log normal distribution). Common mode failures and methodology for estimating them are also presented. At this time, common mode failures will not be treated in fusion design studies.

NATIONAL ELECTRIC RELIABILITY COUNCIL EQUIPNENT AVAILABILITY Composite unit summary report

08/27/81

										1		HOURS	0	0 c	•	0		:		HOURS	0	•		. 0	0
			ſ							1	IVE	MAN HOURS	22420	1306	0	8 2	89435			HAN	0	۰ ۵	.	. •	•
÷		MEAN TIME BETWEEN FULL FORCED OUTAGES	CUMULATIVE	95	3100.57	6420,00	16982.22	3758.36 939.34	N .	TAGE	CUMULATIVE		16137.9	28001.3	1422.6	4772.1	18387.4	OUTAGES	CUMULAT	OUTACE' HOURS	4667.9	9208.6	132.9	336.0	2387.1
		MEAN TII FULL FOR		-	-	. ~	-			MAINTENANCE OUTAGE		20	19	- 42	2	- 6	123	C) 	0000	06	0 ±	ନୁ ବା	· —	53
			ואו							AINTE		HRS	0	9 0	0	0 0	•	ONCURTAILIN		HRS		-	- 0	•	•
	53	OPERATING AVAILABILITY	CUMULATIVE-		97.0	97.1	94.8	93.5			R AVG	MAN	5605	327	0	200	22359		R AVG	MAN		>	-	. 0	•
	UNIT YEARS	0P AVA1	CUMU							1	UNIT YR	OUTAGE HOURS		52,93	26.84	٠.	346.93	1	-	OUTAGE HOURS	88.03	173.73	20,55	6.34	•
	P	CED RATE	71VE-2	φ.	2 M	9.0	œ .		-	1		ZÜ	·	- 0	0	o c	> (4	1		200	61 (> 6	- 0		-
	53 NO	FORCED OUTAGE R	וטו		N C		-	4 ř	-	1		HOURS		70	0	0 0	34.	1		HOURS	~	> •	-		78
	F UNITS	1 0 0	CODE	REACTOR	COND	REGUL,	GEN.	OTHER		1	TIVE	MAN		4949 606	0	H H G G	41399			MAN	20960	9226	4. (-)	535	53047 88577
	32 NO OF		: :	9.58	62.55	8.98	88.13	9.66	70.07 70.00 70.00	JTAGES	Σ	AGE OURS	N	1074.8	2178.8	ഗര	56279.2	OUTAGES	2	OUTAGE HOURS	65008.9	٠,	9412.9	. 6	9563.6
	SYSTEMS	!		313469.58	322162.52	i in	Ö	÷ ō	i 4 1~ ŭ	FORCED OUTAGES			270	9 W	ស	5.5	346	PLANNED OUTAGES	!!	0 0 0 0 0	67	£ 0	<u>.</u>	0	
•	NO OF		١							E 1		HRS	1	- 0	•	o 6		PL		E HRS	- (-	.	. 0	-
EAR 197	UNITS	UNIT STATISTICS								1	R AVG	MAN HOURS	7571	1537	0	0 0	10350		R AVG	HOURS	5240	×300	7 O	134	13262
ALL NUCLEAR UNITS FOR YEAR 1976	NUCLEAR UNITS	U STAT		•	ĸ.,	×-×	٠.	, ,ote_,v	**************************************	1	UNIT YR	i w w	433.91	20.28	4.1	113.69	1061.87		>	· OUTAGE HOURS	1226.58	15.755	177.60	243.00	180.45
TAR UN	^			HOURE	FHUIDES	FACTOR	SCTOR-3	F.O.KX	JT RAT	1		8 3 3 0 2 8		N -	0	e (4 <u>5</u>			200	-	- c	.	•	9 N
ALL NUCLE	SELECTED				AVAILABLE HOURS	CAPACITY FACTOR-X	OUTPUT FACTOR-2	EDUIV F.O.K%	FORCED OUT RATIO-X F.O. INCIDENT RATE-X EQUIV AVAILABILITY-X			CAUSE	REACTOR	TOKBINE COND.	REGUL.	GEN.	UNIT			CAUSE	REACTOR	1000	REGUL.	GEN.	OTHER

NATIONAL ELECTRIC RELIABILITY COUNCIL EQUIPMENT AVAILABILITY COMPOSITE UNIT SUMMARY REPORT

S NO OF UNIT YEARS 533 NO OF UNITS 32 NUCLEAR UNITS NO OF SYSTEMS ALL NUCLEAR UNITS FOR YEAR 1976 SELECTED 08/27/81

PROBABILITY STATE - COMBINED UNIT

	i ! !	: : : : : :	UNIT YR AVG	R AVG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : :	1	CUMUL	CUMULAT I VE	1 1 1 1 1 1 1	
	i ! !	FORCED		1	SCHEDULED	Q	! ! ! !	1	1 1 1 1 3 1 1 1		SCHEDUL ED	
PENCENTAGE AVAILABLE CATEGORIES (200	NO OUTAGE OCC HOURS	PERCENT OF YEAR	§ 23	OUTAGE HOURS	PERCENT OF YEAR	200	DUR PER OUTAGE	PERCENT PERIOD	NO OCC	DUR PER OUTAGE	PERCENT PER 100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1	1 1 1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1	1 1 1 1 1	1 1 1
FULL OUTAGE	<u>-</u>	1061.87	12.27	•	1952.30	22.57	346	103.07	12.27	234	442.18	22.57
9.61 - 19.9	-	3.63	0.0	•	7.68	0.08	27	7.12	0.04	17	23,95	0.08
20.0 - 29.9	-	11.38	0.13	0	3.58	0.04	34	17.74	0.13	6	96.6	0.0
30.0 - 39.9	-	36.59	0.42	-	6.00	90.0	23	36.39	0.45	33	9.64	90.0
ı	-	66.63	0.77	-	49.12	0.56	**	47.73	0.77	34	76.57	0.36
30.0 - 39.9	-	61.47	0.71	-	19.08	0.22	29	41.23	0.71	4	24.65	0.22
60.0 - 69.9	a	166.12	1.92	-	49.37	0.57	121	72.76	1.92	32	81.77	0.57
6.64 - 0.05	•	289.39	3.34	~	59.77	0,69	201	76.30	3.34	87	36.41	0.69
60.0 - 8 9.9	9	311.60	3.60	CH	27.58	0.31	328	50.35	3.60	8	18.26	0.31
6'66 - 0'06	n	609.49	7.04	•	20,79	0.58	675	47,85	7.04	323	8,33	0.58
ECONOMY OUTAGE		164.02 HOURS	ours		1.89 % OF			8692.94	HOURS		% OF	ERIOD
FULL OPERATION	•	3643,83 HOURS	ours	•	42.11 % OF	YEAR		193123.17	HOURS		42.11 % OF F	PERIOD
					3	UNIT STARTS NO.), OF YEARS	ts 20				
•		7 1 1 1 1 1	energinalists of the second of	R AVG	1 1 1 1 1 1 1			*	CUMUL	CUMUL AT I VE	; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ATTEMPTED SUCCESSFUL			13.80	80 53	! ! ! ! !	† 1 1 1 1			†	316	**	

		TIND	UNIT YR AVG	۸۵				NO.	CUMULATIVE		
	PARTIAL	PARTIAL SUCCESS		PARTIAL SUCCESS UNSUCCESSFUL	FUL		PARTIA	PARTIAL SUCCESS UNSUCCESSFUL		UNSUCCESSFUL	FUL
TEST		*********	1 1			TEST	1				
220	2	MANHOURS	9	NO MANHOURS DURATION	DURATION	၁၁၀	ç	NO MANHOURS	웆	NO MANHOURS	DURATION
1 1 1	1	1 1 1 1 1 1 1 1	•	1 1 1 1 1	1 1 1 1 1	1 1	1 1 1	1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1
0	0	0	•	0	0.29	555	0	0	M	13	

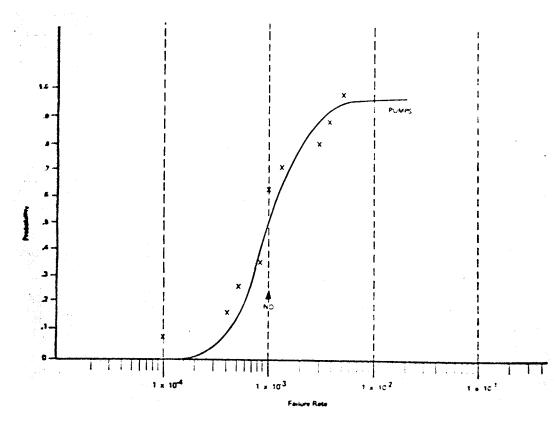
•• ECONONY DUTAGE HOURS DERIVED FROM AVAILABLE HOURS - SERVICE HOURS
TOTAL ECONONY DUTAGE OCCURANCES REPORTED
TOTAL ECONONY OUTAGE HOURS REPORTED
.00

Table 10. Hazard Rates, Failure Probabilities and Error Rates for Mechanical and Electrical Equipment and Human Operators from the Reactor Safety Study

Hazard Rates λ and Demand Failure Probabilities Q_d for Mechanical Hardware.

Components	Failure mode	Assessed range on probability of occurrence	Computational median	Error
1. Pumps				
(includes	Failure to start on demand Q_d^c	3 × 10 ⁻⁴ +3 × 10 ⁻³ /d	$1 \times 10^{-3}/d$	3
driver)	Failure to run, given start λ _e (normal cavironments)	3 × 10 ⁻⁴ -3 × 10 ⁻⁴ /hr	3 × 10 ⁻³ /hr	10
	Failure to run, given start λ _e (extreme, post-accident environments inside containment)	1 × 10 ⁻⁴ −1 × 10 ⁻² /hr	1 × 10 ⁻¹ /hr	10
	Failure to run, given start \(\lambda_0\)(post- accident, after environmental recovery)	3 × 10 ⁻⁶ +3 × 10 ⁻³ /hr	3 × 10 ⁻⁴ /hr	10
2. Valves				
a. Motor	Failure to operate (includes driver) Q4	$3 \times 10^{-4} - 3 \times 10^{-3}/d$	1 × 10-3/4	3
operated:	Failure' to remain open (plug) O.	3 × 10 ⁻³ -3 × 10 ⁻⁴ /d	1 × 10 ⁻⁴ /d	3
•	λ,	$1 \times 10^{-7} - 1 \times 10^{-4}/hr$	3 × 10 ⁻⁷ /hr	3
•	Rupture A.	1 × 10 ⁻⁰ −1 × 10 ⁻¹ /hr	1 × 10 ⁻⁴ /hr	10
b. Solenoid	Failure to operate Q/	3 × 10 ⁻⁴ -3 × 10 ⁻³ /d	$1 \times 10^{-2}/d$	3
operated:	Failure to remain open, Q (plug)	$3 \times 10^{-3} - 3 \times 10^{-4}$	1 × 10-4/d	3
	Rupture A.	1 × 10 ⁻⁶ –1 × 10 ⁻⁷ /hr	1 × 10 ⁻⁴ /hr	Ю
c. Air-fluid	Failure to operate Q/	1 × 10 ⁻⁴ -1 × 10 ⁻³ /d	3 × 10 ⁻⁴ /d	3
operated:	Failure to remain open Q4 (plug)	3 × 10 ⁻³ -3 × 10 ⁻⁴ /d	1 × 10-4/d	3
	٨.	$1 \times 10^{-7} - 1 \times 10^{-4}/hr$	$3 \times 10^{-7}/hr$	3
	Rupture A.	1 × 10 ⁻⁰ ~1 × 10 ⁻⁷ /hr	1 × 10 ⁻¹ /hr	10
3. Check valves	Failure to open Q4	$3 \times 10^{-3} - 3 \times 10^{-4}$	1 × 10 1/d	3
	Internal leak A. (severe)	1 × 10 ⁻⁷ -1 × 10 ⁻⁴ /hr	3 × 10 ⁻¹ /hr	3
	Rupture A.	1 × 10 ⁻⁴ -1 × 10 ⁻⁷ /hr	l × 10 ⁻¹ /hr	10
4. Vacuum valve	Failure to operate Qa	1 × 10 ⁻⁵ -1 × 10 ⁻⁴ /d	3 × 10-4/d	3
5. Manual valve	Failure to remain open Q4 (plug)	$3 \times 10^{-3} - 3 \times 10^{-4}$	I × 10-4/d	3
	Rupture A,	I × 10 ⁻⁰ −1 × 10 ⁻⁷ /hr	1 × 10-"/hr	10
6. Relief valves	Failure to open Q4	$3 \times 10^{-4} - 3 \times 10^{-3} / d$	1 × 10-1/d	3
	Premature open \(\lambda_{\text{o}} \)	3 × 10 ⁻⁴ -3 × 10 ⁻³ /hr	1 × 10 ⁻⁵ /hr	3
7. Test valves, flow meters, orifices.	Failure to remain open Q_4 (plug)	1 × 10 ⁻⁴ +1 × 10 ⁻³ /d	3 × 10-4/d	3
	Rupture A.	1 × 10 ⁻⁴ +1 × 10 ⁻⁷ /hr	1 × 10"/br	10
8. Pipes	-		-	
a. Pipe ≤ 7.5 cm diam per sec- tion	Rupture plug $\lambda_m \lambda_o$	3 × 10-11-3 × 10-4/hr	I × 10 ⁻⁴ /hr	30
b. Pipe > 7.5 em diam per sec- tion	Rupture A., A.	3 × 10 ⁻¹² -3 × 10 ⁻⁶ /br	1 × 10 ^{−10} /har	30
9. Clutch, mechanical	Failure to operate Qd	1 × 10 ⁻⁴ −1 × 10 ⁻³ /d	3 × 10 ⁻⁴ /d	3
10. Scram rods (single)	Failure to insert	3 × 10 ⁻⁴ -3 × 10 ⁻⁴ /d	l × 10 /d	3

Table 10. Continued


Hazard Rates λ and Demand Failure Probabilities Q_d for Electrical Equipment.

Clutch, electrical Motors, electric				facto
2. Motors, electric	Failure to operate Q.	1 × 10 ⁻⁴ −1 × 10 ⁻³ /d	3 × 10-1/d	3
2. Motors, electric	Premature disengagement A.	1 × 10 ⁻⁷ -1 × 10 ⁻³ /hr	1 × 10 ⁻⁴ /hr	10
	Failure to start Q.	1 × 10 ⁻¹ -1 × 10 ⁻³ /d	3 × 10 ⁻¹ /d	3
	Failure to run, given start A, (normal environment)	$3 \times 10^{-6} - 3 \times 10^{-5} / \text{hr}$	1 × 10 ⁻¹ /hr	3
:	Failure to run, given start \(\lambda_0\) (extreme environment)	I × 10 ⁻¹ × 10 ⁻² /hr	1 × 10 ⁻³ /hr	. 10
3. Relays	Failure to energize Q.	3 × 103 × 10/d	1 × 10 /d	3
	Failure of NO contacts to close, given energized \(\lambda \).	$1 \times 10^{-7} - 1 \times 10^{-6}/hr$	3 × 10 ⁻¹ /hr	3
	Failure of NC contacts by opening, given not energized \(\lambda_0\)	$3 \times 10^{-9} - 3 \times 10^{-7}$ /hr	1 × 10 ⁻¹ /hr	3
	Short across NO/NC contact \(\lambda_0\)	1 × 10 ⁻⁴ -1 × 10 ⁻⁷ /hr	1 × 10 ⁻⁴ /hr	10
	Coil open A	1 × 10 ⁻¹ -1 × 10 ⁻¹ /hr	$1 \times 10^{-7}/hr$	10
	Coil short to power _	1 × 10 ⁻⁴ -1 × 10 ⁻⁷ /hr	I × 10-*/hr	10
4. Circuit breakers	Failure to transfer Q.	3 × 10 ⁻³ −3 × 10 ⁻³ /d	I × 10-3/d	3
5. Switches	Premature tramsfer A.	3 × 10 ⁻⁷ -3 × 10 ⁻⁴ /hr	1 × 10 - /hr	3
a. Limit	Failure to operate Q.	1 × 10 -1 × 10 ⁻³ /d	3 × 10→/d	3
b. Torque	Failure to operate O.	3 × 10 ⁻⁰ -3 × 10 ⁻¹ /d		3
c. Pressure	Failure to operate Q.	3 × 10 ⁻⁵ -3 × 10 ⁻⁴ /d	I × 10 ⁻¹ /d	1
d. Manual		•	1 × 10 ⁻⁴ /d	
	Failure to transfer Q.	3 × 10 ⁻³ -3 × 10 ⁻³ /d	1 × 10 ⁻¹ /d	
6. Switch contacts	Failure of NO contacts to close given switch operation λ_0	1 × 10 ⁻¹ − 1 × 10 ⁻¹ /hr	1 × 10 ⁻⁷ /hr	3 -
	Failure of NC by opening, given no switch operation \(\lambda_0 \)	3 × 10 ⁻² −3 × 10 ⁻⁷ /hr	3 × 10 ⁻⁴ /hr	1
• • • • • • • • • • • • • • • • • • • •	Short across NO/NC contact A	$1 \times 10^{-9} - 1 \times 10^{-7} / hr$	1 × 10 ⁻¹ /hr	1
7. Battery power systems (wet cell)	, Failure to provide proper output λ _e	I × 10 ⁻⁴ −1 × 10 ⁻⁴ /hr	3 × 10 ⁻⁰ /hr	
8. Transformers	Open circuit primary or secondary \(\lambda_{\text{o}} \)	3 × 10 ⁻⁷ -3 × 10 ⁻⁴ /hr	1 × 10 ⁻⁴ /hr	
	Short primary to secondary \(\lambda_0\)	$3 \times 10^{-7} - 3 \times 10^{-9}/hr$	1 × 10 ⁻⁴ /hr	
9a. Solid state devices hi power applica- tions (diodes, transistors, etc.)	Fails to function λ_{ϕ}	3 × 10 ⁻⁷ -3 × 10 ⁻⁵ /hr	3 × 10 ⁻⁴ /hr	1
·	Fails shorted As	$1 \times 10^{-7} - 1 \times 10^{-5}/hr$	1 × 10 ⁻⁴ /hz	1
b. Solid state devices, low power applica- tions	Fails to function A.	1 × 10 ⁻⁷ -1 × 10 ⁻³ /hr	I × 10 ⁻⁴ /hr	i
	Fails shorted	1 × 10 ⁻⁴ ~1 × 10 ⁻⁴ /hr	I × 10**/hr	1
10a. Diesels (com- plete plant)	Failure to start Q.	1 × 19 ⁻² +1 × 10 ⁻¹ /d	3×10^{-3} /d	
	Failure to run, emergency conditions, given start λ_{ϕ}	3 × 10 ⁻¹ -3 × 10 ⁻¹ /hr	3 × 10*3/hr	1
b. Diesels (engine only)	Failure to run, emergency conditions, given start λ_0	3 × 10 ⁻⁵ -3 × 10 ⁻³ /hr	3 × 10 /hr	
1). Instrumen- tation—general (includes trans- mitter, amplifier, and output device)	Failure to operate $\lambda_{\mathbf{q}}$	1 × 10 ⁻⁷ -1 × 10 ⁻³ /hr	i×10→/hr	
	Shift in calibration 4.	3 × 10 ⁻⁴ =3 × 10 ⁻⁴ /hr	3 × 10 ⁻² /hr	1
12. Fuses	Fadure to open Q_a	$3 \times 10^{-4} - 3 \times 10^{-3} / d$	f × 10-3/4	
	Premature open A ₀	3 × 10 ⁻¹ -3 × 10 ⁻⁴ /hr	1 × 10 ⁻⁴ /hr	
13. Wires (typical circuits, several joints)	Open circuit 🛵	1 × 10 ⁻⁶ =1 × 10 ⁻³ /hr	3 × 10 ⁻⁴ /hr	
	Short, to ground \(\lambda_{\text{o}}\)	3 × 10 ⁻⁴ -3 × 10 ⁻⁴ /hr	$3 \times 10^{-7}/hr$	1
	Short to power A.	1 × 10**+1 × 10** hr	1 = 10 - hr	ĺ
14. Terminal boards	Open connection s	1 = 10 *-1 = 10 */hr	1 × 10-7, hr	i
	Short to adjacent circuit &	1 × 10 ⁻⁹ +1 × 10 ⁻⁹ /hr	1 × 10=*/hr	

Table 10. Continued

Human Error Probabilities .. b

Demand failure probability	Activity
10-4	Selection of a key-operated switch rather than a nonkey switch. (This value does not include the error of decision where the operator misinterprets situation and believes key switch is correct choice.)
10-3	Selection of a switch (or pair of switches) dissimilar in shape or location to the desired switch (or pair of switches), assuming no decision error. For example, operator actuates large handled switch rather than small switch.
3×10^{-3}	General human error of commission, e.g., misreading label and, therefore, selecting wrong switch.
10-2	General human error of omission when there is no display in the control room of the status of the item omitted, e.g., failure to return manually operated test valve to proper configuration after maintenance.
3 × 10 ⁻³	Errors of omission where the items being omitted are embedded in a procedure rather than at the end as above.
3×10^{-2}	Simple arithmetic errors with self-checking but without repeating the calculation by redoing it on another piece of paper.
1/x	Given that an operator is reaching for an incorrect switch (or pair of switches), he or she selects a particular similar appearing switch (or pair of switches), where $x =$ the number of incorrect switches (or pairs of switches) adjacent to the desired switch (or pair of switches). The $1/x$ applies up to 5 or 6 items. After that point the error rate would be lower because the operator would take more time to search. With up to 5 or 6 items, the operator doesn't expect to be wrong and therefore is more likely to do less deliberate search-
10-1	ing. Given that an operator is reaching for a wrong motor operated valve MOV switch (or pair of switches), he or she fails to note from the indicator lamps that the MOV(s) is (are) already in the desired state and merely changes the status of the MOV(s) without recognizing that he or she had selected the
~1.0	wrong switch(es). Same as above, except that the state(s) of the incorrect switch(es) is (are) not the desired state.
-1.0	If an operator fails to operate correctly one of two closely coupled valves or switches in a procedural step, he or she also fails to correctly operate the other valve.
10-1	Monitor or inspector fails to recognize initial error by operator. Note: With continuing feedback of the error on the annunciator panel, this high error rate would not apply.
10-1	Personnel on different work shift fail to check condition of hardware unless required by checklist or written directive.
5 × 10 ⁻¹	Monitor fails to detect undesired position of valves, etc., during general walk- around inspections, assuming no check list is used.
0.2-0.3	General error rate, given very high stress levels, where dangerous activities are occurring rapidly
2 ⁽ⁿ⁻¹⁾ x	Given severe time stress, as in trying to compensate for an error made in an emergency situation, the initial error rate x , for an activity doubles for each attempt, n , after a previous incorrect attempt, until the limiting condition of an error rate of 1.0 is reached or until time runs out. This limiting condition corresponds to an individual's becoming completely disorganized or ineffec-
~1.0	tive. Operator fails to act correctly in the first 60 seconds after the onset of an
9 × 10 ⁻¹	extremely high stress condition, e.g., a large LOCA. Operator fails to act correctly after the first 5 minutes after the onset of an
10-1	extremely high stress condition. Operator fails to act correctly after the first 30 minutes in an extreme stress
10-1	condition. Operator fails to act correctly after the first several hours in a high stress condition.
x	After 7 days after a large LOCA, there is a complete recovery to the normal error rate x, for any task.
	29

Log-Normal Distribution - Pumps

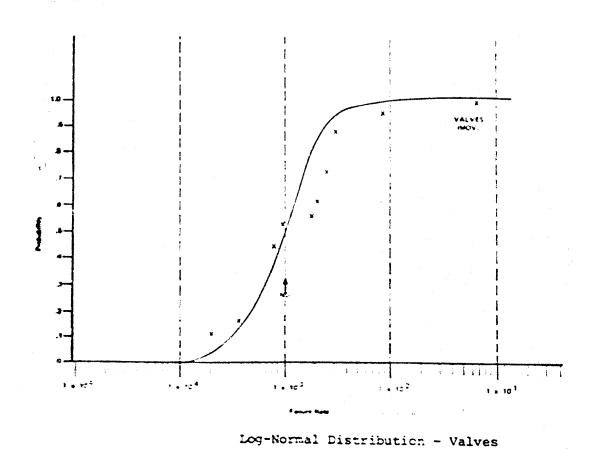
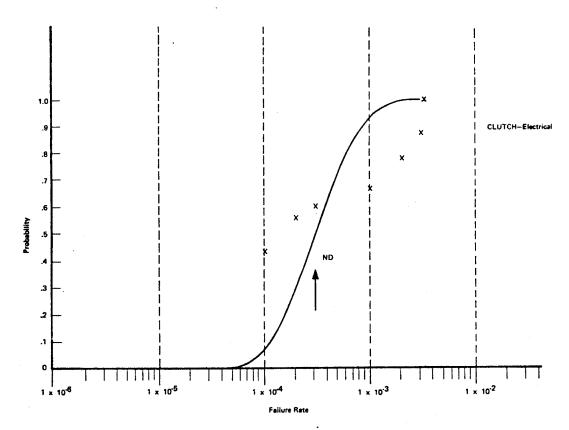



Fig. 4. Repair time distributions, observed and predicted, from the Reactor Safety Study

Log-Normal Distribution - Clutch - Electrical

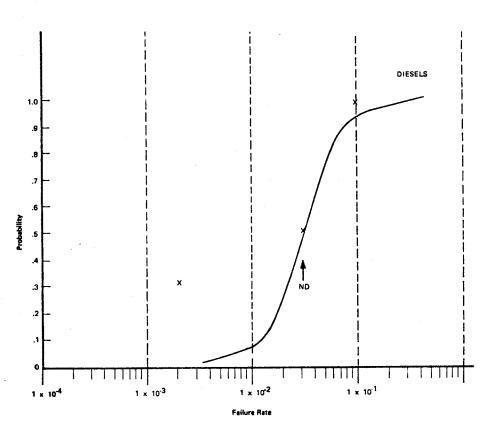


Fig. 4. Continued.

Log-Normal Distribution - Diesels

6.2 Fusion Reports and Design Studies

It has been realized recently that availability analysis will be an important part of fusion power plant design, so some thought has already been given to it and the data that may be required. Almost all design studies (WITAMIR-I, $^{(11)}$ STARFIRE, $^{(12)}$ EBT, $^{(13)}$ MARS, $^{(14)}$) have a chapter on maintenance and the steps needed to accomplish it for major components. Some maintenance timelines have been developed (blanket in MARS and EBT, some magnets $^{(15)}$) and failure rates and repair times have been estimated or apportioned (ETF report, STARFIRE, MARS).

Most design studies also pay much attention to the capital, operating and maintenance costs. Economics will have to eventually be coupled to the availability analysis, because availability has a price. Scaling laws and cost data are known much better than is the case for the failure rate data.

6.2.1 Preliminary Availability Assessment and Apportionment of the Engineering Test Facility (16)

The Engineering Test Facility was a test tokamak reactor designed for the DOE with a minimum availability of 50%. Thus, an effort has been made to include an availability study in the design of this reactor. This ETF report consists of two parts: the assessed reliability data for individual components and the apportioned data that would have to be satisfied in order to achieve the minimum availability. Each data section consists of the data for hydrogen operation and for tritium operation. The table consists of the system description (i.e., number of units required and installed, redundancy, type of repair; mean time to failure, failure rate, mean time to repair, repair rate, offline factor (multiplying failure rate for offline configu-

ration) and unit availability (see Table 11). A summary of reliability data is given in Table 12.

6.2.2 Isabelle Refrigeration System Availability Report (17)

This report estimates the failure data for specific components of the Isabelle accelerator cryogenic system. See Table 13 for data.

6.2.3 Double Wall Steam Generator Data (18)

This study has been done to generate the double wall steam generator fault tree, to estimate the failure event rates and repair times and calculate the steam generator failure rates and unavailabilities. This data can be applicable in the fusion availability studies, since fusion power plants may require a double wall steam generator (to limit tritium contamination and increase safety).

The MARS reactor concept utilizes 4 double wall steam generators to transfer part of the heat from the reactor to steam cycle (a helium loop is utilized for the other part). The LiPb coolant flows through the inner tube, steam through the outer tube and the He gas in the gap, to sweep away any water vapor and thus help detect a leak.

In the study to evaluate the reliability of the double wall steam generators (which may also be used in the LMFBRs), several failure modes are considered: water side leak event, small water to sodium leak and large water to sodium leak. These are caused by the component failures such as water weld leaks, sodium weld leaks, water tube leaks, sodium tube leaks, failure of the leak detection system, failure to locate leaks once they are detected. Some failures may be dependent on another failure.

The design of the particular steam generator may be a little different than the one employed at a fusion power plant, but the figures are indicative

Table 11. Format for the ETF Apportioned Failure Data (Only Part of Data Shown)

REPAIR REPAIR REPAIR REPAIR RATE AVAIL RATE RATE AVAIR (E -4) BILLITY NTTR (E -4) BILLITY RATE RATE BILLITY RATE RATE BILLITY RATE RATE BILLITY RATE RATE BILLITY B									YH ***	HYDROGEN	PHASE ***	***	TRITTIM PHASE	HASE ***
Fig. 20 Col.	121122	i i	1	(((OFF					REPAIR	
Figure 0.1001 NONE 1.000 1.0	NOMENCLATURE	INST	DANCY	ATION	REPAIR	MTBF	_ :	FACT	MTTR	RATE (E -4)	AVAIL- BILITY	MTTR	RATE (E -4)	AVAILA- BILITY
Careening Care	AC PWR/ENERGY STG AC FOWER	01/01	NONE								0.9985	 		0.9985
File Eq. 1,000 138,9 1		01/01	NONE	TMETIATE	ia i jogod	2.07	57.1		1.00	416.7	0.9986	1.05	416.7	0.9936
10	DIESEL GENERATOR	01/01	NONE	1	ב שני וריבי	3.0Y	38,1	+4	3.00	138.9	0.9973	3.0D	139.0	0.9973
The part of the	UNSFECIFIED EQ	01/01	NONE	IMFDIATE	PARALLEL	20.0Y	ω. 		1.00	416.7	66660	1.00	416.7	6666.0
11 11 11 11 11 11 11 1	MOF WELL	01/01	NONE			10.0Y	11.4	₩.	2.0W	29.8	0.9962	2.0W	39.8	0.9962
1.00 1.00	UNAFECTFIEL EU	01/01	NUNE			10.04	11.4		1.01	416.7	•	1.00	416.7	•
1,000 1,00	NEUTRAL BEAM	01/01	NONE								0.9810			0.9420
INCREDIES 01/01 NONE 0.0994 0.0	SOURCES/BEAMLINES	01/01	NONE			9.0M	152.2	0	3.00	138.9	0.9904	3.04	6	0.9489
10		01/01	NONE NONE			W0.8	228.3	0	•		0.9904	2.00	208.3	0.9924
The black of the	RF HEATING	01/01	NONE											0.9869
10 10 10 10 10 10 10 10	RF INJECTION	01/01	NONE								0.9984			0.9944
The color of the	OSCILLATORS	04/05	ACTIVE	IMEDIATE	PARALLEL	25.07	4.0	0 (1.55 1.55	277.8	9999		0.177	6666.0
FILED EQ		10/10	TC TA	1115,011	LHAMILIER	5	100	5 6	7.70	0.//2	\$1.66.0 0.000.0	7.1	D . / / N	0.4440
Indeed by Inde		01/01	NONE			4. 0.	n n N	5	1.5L	•	0.9991	1.UE	39.7	0.9950
THE STATE OF		01/01	NONE			W0.9		0	2.0D		٥	2.00	208.3	0.9924
NAME	TRITIUM SYSTEMS	01/01	FXCX								1700 0			
INJECTORS 01/02 ACTIVE DEFERRED PARALLEL 3.0Y 38.1 0 1.5D 277.8 0.9998 1.5W 39.7	PELLET INJECTION	01/01	NONE								0.9988			0.9933
The part of the	PELLET INJECTORS	01/02	ACTIVE	DEFERRED	PARALLEL	3.07	38.1	0	1.50	277.8	0.9989	•	39.7	0.9933
Color Colo	FUEL SIGNULOY	01/01	NONE			2	ľ	c	ç	5	0.9976	4	·	0.9962
Incompanies O1/O1 NONE O1/O1 O1/O1 NONE O1/O1 NONE O1/O1 NONE O1/O1 O1/O1 NONE O1/O1	TRITIUM CLEANUP	01/01	NONE			- - -	1.10	>	70.7	2	0.666	4.01	7.	0.9933
NOME O1/01 NOME O1/02 O1/03	UNSPECIFIED EQ	01/01	NONE			2.0Y	57.1	0		6.6666	6666.0	1.04	59.5	0.9933
NOME	ICDH	01/01	NONE								0.9882			0.9837
Control	LNGTHORENIAL TO	01/01	NONE			7	7 000			C (C)	0.9991	,		0.9946
FIEED EQ	PROCESS CONTROL	01/01	NONE			5	0 4	4		0.000	0.9946	70.1		0.9946
UN UNE 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.9946 0.99924 0.99926 0.999	UNSPECIFIED EQ	01/01	NONE			2.0M	684.9	=		1250.0	0.9946	B.0H	1250.0	0.9946
1.0M 1370.0 1 4.0H 2500.0 0.9946 4.0H 2500.0 0.9946 4.0H 2500.0 0.9946 4.0H 2500.0 0.9995 0.9924 0.9925	DATA HANDLING	01/01	NONE				:			:	0.9946			0.9946
01/01 NDNE 0.9895 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9926 0.9924 0.9926 1.0W 59.5	UNSPECIFIED ER	01/01	NONE			1.0M	1370.0	+ 1		2200.0	0.9946	4.0H	2500.0	0.9946
16/16 NDNE 4.0Y 28.5 0 4.0F 104.2 0.9754 4.0W 14.9 S.0Z 02/02 NDNE 2.0Y 57.1 0 4.0F 104.2 0.9952 4.0W 14.9 INULES 20/20 NDNE 5.0Y 19.0 0 1.0F 416.7 0.9996 1.0W 59.5 ITING 05/05 NDNE 5.0Z 02/05 NDNE 5.0Z 02/05 NDNE 5.0Z 02/05 NDNE 59.5 0.9990 1.0W 59.5 S.0Z 02/05 NDNE 59.5 S.0Z	TORUS TORUS PLASMA CHAMBER	01/01	NONE								0.9895			0.9440
S 02/02 NDNE 2.0Y 57.1 0 4.0H 104.2 0.9952 4.0W 14.9 INULES 20/20 NDNE 5.0Y 19.0 0 1.0H 416.7 0.9996 1.0W 59.5 ITING 05/05 NDNE 05/05/05 NDNE 05/05 NDNE 05/05/05 NDNE 05/05/05 NDNE 05/05/05 NDNE 05/05/05 NDNE 05/05/05/05/05/05/05/05/05/05/05/05/05/0	SECTORS	16/16	NONE			4.0Y	28.5	0	4.00	C-1	0.9976	4.0m		0.9868
STATES 20/20 NOME 59.5 TING 05/05 NOME 0.9970 1.0U 416./ 0.9970	LIMITERS TROT MORE DE	02/02	NONE			2.07	57.1	0	4.01	ru r	0.9952	4.0W		0.9739
	TORUS DUCTING	05/05	NONE			6.01	19.0	5	1.01	`	0.9996	1.01		0.9978
	W(1)210-8861													

Table 12. ETF Failure Data Summary

	M	TBF (1)	МТТР	(2)
EQUIPMENT (QUANTITY)	ASSESSED, YR	APPORTIONED, YR	ASSESSED	APPORTIONED
DIESEL GENERATOR (1)	3.0	3.0	3.0 DAYS	3.0 DAYS
MGF SET (1)	10.0	10.0	2,0 WEEKS	2.0 WEEKS
SOURCES/BEAMLINES (ALL) (3)	0.25	0,75	5.0 WEEKS	3.0 WEEKS
RF OSCILLATOR (1)	2.0	2,0	2.0 DAYS	2.0 DAYS
RF AMPLIFIER (1)	1.0	1.0	3.0 DAYS	3.0 DAYS
RF WAVEGUIDE (1)	10.0	20.0	2.0 WEEKS	1.5 WEEKS
PELLET INJECTOR (1)	1,0	2.0	2.0 WEEKS	1.0 WEEK
SECTORS (16)	1.5	4.0	1,5 MO.	4.0 WEEKS
LIMITERS (2)	1.0	2.0	1,5 MO.	4.0 WEEKS
TEST MODULES (ALL)	2.0	6.0	1.0 WEEK	1.0 WEEK
DUCT (1)	3.0	10.0	2.0 WEEKS	1.0 WEEK
HARD VALVE (1)	5,0	10.0	1.0 WEEK	1.0 WEEK
CERAMIC JOINT (1)	20.0	20.0	1.0 WEEK	1.0 WEEK
CRYOPUMP ASSEMBLY (1)	2.0	5.0	2.0 WEEKS	2.0 WEEKS
LITHIUM PUMP (1)	2,0	3.0	3.0 WEEKS	2.0 WEEKS
LITHIUM/WATER HX (1)	10.0	10.0	2.0 WEEKS	1.0 WEEK
DIVERTOR COIL (1)	8.0	12.0	1.5 MO.	1,0 MO.
EXPANDER COIL (1)	50.0	100.0	3.0 WEEKS	2.0 WEEKS
DIVERTOR SHIELD (1)	3.0	3.0	4.0 WEEKS	2.0 WE EKS
TF COIL (1)	300. 0	360.0	3.0 YR	1.5 YR
OH COILS (ALL)	25.0	60.0	1.0 YR	6.0 MO.
EF COILS (ALL)	10.0	30,0	1.0 YR	6.0 MO.

1989-013W

⁽¹⁾ MEAN TIME BETWEEN FAILURES
(2) MEAN TIME TO REPAIR (ACTIVE REPAIR TIME IN THE TRITIUM PHASE)
(3) SOURCES WERE ASSUMED TO HAVE A USEFUL LIFE OF 6 MONTHS IN THE ASSESSMENT, AND 10-12 MONTHS IN THE APPORTIONMENT.

Table 13. Isabelle Refrigeration System Failure Data

>4
Н
m
1
Ξ
7
=
H
⋖
MAINTAINABILITY
Z
3
~
æ
~
3
H
æ
RELIABILITY
۲
E 1
2
)
ы
S
H
H
_
¥
DATA LIST
•
×
HASTER
5
ž
5

ITEH	HP85	GENERIC DESCRIPTION	FAIL RATE	SOURCE	HTTR	SOURCE H	USE
Turbo-Expander	A&B	N/A	40.0	1 p9.4 3 p7-10	50 Y	3 p7-10	·
Adsorber/Tank	υ	N/A	11.11	m	7		
Adsorber/Filter	Q	Filter, Gas (GRF)	1.2	9 pd 8	∀ α	4 1 2 4	
Heat Exchanger	M	Ì	19.0	3 p7-10 1	108	3	
		Reat Exchanger (GRF-M11) " (Comm) Heat Exchanger #1	5.3 1.3	8 p55 8 p55 10 p5-15 1	128	10 p5-15	
Venturi Element 4 Transmitter	p.	Same - Rosemount Fluid Flow Xducer	126.6 194.8	4 p414 8 p102	H	9 1	
Hand Valve	ပ	Valve, Needle (GRF) (Butterfly - Cryo) Valve, Ball	1.4	8 p109 8 p105	e	11 T C.1	
Pressure Relief Valve	Ħ	Valve, Relief (Comm) Valve, Relief (Mil)	9.2	8 p111 8 p111			
Cryo Valve - Manual	H	N/A	3.2	9			
Cryo Valve - Auto	ن م	Cryo Valve - Manual 3.2 Valve-Solenoid 1.6	8.4	v &			
Compressor - Cold & Circulator Drive	×	Tlectro-Mechanical Drive Motor (5 - 20 HP) 5.9 Gear Ass'y 51.9 Coupling 5.3	62.7	8 p166 8 p 59	12	12 p26	

Table 13. Continued

>
H
H
78
II
MAINTAINABILITY
•5
KELIABILITY
LIST
DATA L
HASTER

1	ITEH	HP-85	GENERIC DESCRIPTION	FAIL RATE	SOURCE	HTTR	SOURCE	×	USK
	Liquid Level.	ы	Indicator, Liquid Level	11.9	8 p154	24,		r-l	
<u>H </u>	Temperature Sens	×	Sensor, Temperature(Rose) Transducer, Temp (Mil) Transducer, Temp (Comm)) 18.8 2.4 21.9	4 p433 8 p105 8 p 105	H	6	H	
<u>p. 1</u>	Pressure Xducer	25	N/A Transducer, Press. (M11) Transducer, Press. (Com) Pressure Sensor	189.9 6.8 54.1	BPS 8 p 104 8 p104	H 5	9 11	H	
	Diff Press Trans	0	N/A Transducer, Press (MIL) Transducer, Press (Com)	444 6.8 54.1	HPS 8 p104 8 p 104	1	6	Ħ	
37	Elec/Pneu Transducer	ρı	N/A (see N above)	368	HPS	H	6	1	
<u> </u>	Speed Indicator	~	N/A Transducer, Tach-Gen	238.1 54.3	HPS 8 p104	 1	6	₽ -1	
<u> </u>	Speed Transducer	တ	N/A (see Q above)	224.7	HPS	-	6	н	
_ လ ၂	Speed Controller	I	N/A	113.6	нрѕ	2	6	1	
<u> </u>	Hi Speed Alarm	n	N/A	74.1	HPS	1	6	1	
<u>> </u>	Vibration Transducer	Λ :	N/A Transducer, Motional	303 3.9	HPS 8 p103	1	6	1	
<u> </u>	Hi Vibrational Alarm	>	V/N	74.	HPS	-	o		
İ									

of what might be expected. Assuming a failure rate, λ_D , of the leak detection system, λ_D = 0.02/leak, the failure rates and repair times arrived at are shown in Table 14.

6.2.4 STARFIRE Design Study (13)

The STARFIRE tokamak reactor is assumed to be capable of reaching a 75% availability in this study. There are estimates of failure data for each subsystem; failure modes, failure rates and downtimes are given as well as scheduled maintenance requirements and maintenance equipment needed for repair.

6.2.5 The MARS Study Availability Data (19)

The Mirror Advanced Reactor Study project generated some reliability data, because an attempt was made to assess the availability of the plant and to determine what needs to be done to improve it. This data consists of assessed failure rates and repair times (including detailed maintenance procedures for some components), as well as scheduled maintenance requirements, and any redundancy provisions.

The data was obtained almost exclusively by expert judgement; persons responsible for designing a certain part of the system were asked to supply their estimate of the appropriate failure data. Each person was asked to fill in a form specifying the following data:

- System descriptive data (system name and function; description of system elements; redundancy provisions and maintenance requirements).
- 2) Failure modes (failure mode description for each system element, mean time to failure for that mode and comments/basis for the estimate).
- 3) Element repair/replacement description (repair time for each failure mode and comments/basis).

Table 14. Double Wall Steam Generator Failure Data

Failure Rate (/hr)

Repair Time

$$\lambda_{SG,A} = 8.3 \times 10^{-9} \text{ N}$$

1 week

$$\lambda_{SG,B} = ((1.5 * 10^{-10} + 1.014 * 10^{-14} N) + 5.78 * 10^{-9} \beta)N$$

6 weeks

$$\lambda_{SG,C} = (5.69 \times 10^{-12} + 9.93 \times 10^{-17} \text{ N)N}$$

11 months

where N = nun

N = number of tubes

 β = fraction of leaks detected but not located

 $\lambda_{SG,A}$ = water side leak event rate

 $^{\lambda}$ SG,B = small water to Na leak event rate

 $^{\lambda}$ SG,C = large water to Na leak event rate

The results of an availability analysis indicate an acceptable MARS performance with these data; an avialability of 72% is achieved with a 28 day annual plant outage time.

Generally speaking, the failure rate estimates are much softer than the repair time estimates, because some thought has been given to disassembling of certain equipment (e.g., the blanket, some magnet coils, etc.). The failure rate data also contains the predominant failure modes. These data are shown in Table 15.

As an example of how a repair time was arrived at, see Table 16 and Fig. 5 for the MARS blanket maintenance timeline (20) and Table 17 for the choke coil maintenance timeline.

Scheduled maintenance data have also been included in this effort, see Table 18.

6.3 Data Compiled from Expert Opinion

As a part of the ongoing fusion availability study at the University of Wisconsin, we have solicited failure data from experts around the United States. We have sent them our data solicitation form (see Table 19 for a sample) in which we have asked them to give us their best estimate of a component's mean time to failure (MTTF), mean time to repair (MTTR) and the confidence they have in the supplied values. A similar approach, but more exhaustive (Delphi procedure) was used in IEEE Std-500-1977, for some components. Following is a compilation of data we have for different subsystems (Table 20).

As can be seen, sometimes there is a wide variation in estimates. The ones that seem reasonable and produce acceptable results have been employed. Magnet data can be further refined to make the magnet failure rate proportion-

Table 15. MARS System Failure Data

Code of Accounts	System/	Failure			
Designation	Subsystem	Mode	MTTF	MTTR	Comment
22.01.01.01	blanket	LiPb leak	3 yr*	12 days	Reactor outage during changeout
22.01.01.02	reflector	H ₂ O leak	15 yr*	40 days	Conservative design, simple structure
	bellows	vacuum leak	5 yr*	10 days	based upon bubble chamber experience
22.01.01.03	service station closure	vacuum leak at cover	5 yr	0.5 day	reactor can operate until scheduled downtime
		vacuum leak in wall	20 yr	7 days	11 11 11 11
	service station cover	vacuum leak at penetra- tion	2 yr	6 days	п и и и
	removable reflector/ shield	vacuum leak at interface	5 yr	7 days	II II II II
		water leak in service station	10 yr*	7 days	reactor shutdown required
	turbo- molecular pump	fails to start	10 yr	4 days	no steady-state impact
		bearing failure	5 yr	4 days	reactor can operate until scheduled downtime
		failure of vacuum valve	5 yr	4 days	н н н н
22.01.01.04	omega bellows	LiPb leak	20 yr*	5 days	based on bubble chamber experience. Reactor operation permitted until normal shutdown.

Table 15. (Continued)

Code of Accounts Designation	System/ Subsystem	Failure Mode	MTTF	MTTR	4	Com	ment	
	lower seal	vacuum leak	4 yr*	5 days	11	u	11	II
	upper bellows	11	Ш	u	II	n	11	н
	lower bellows	II	ш	11	11	н	ti	II
	upper seal	н	II	H	II	11	n	н
	clamp drive, clamp mechanical	inoperable	30 yr	ii	portar	lary imp nt only enance a	during	a
	solenoid	normally open, stuck open	5 yr	1 day		may hav		d down- al
	cooling/ heating lines	large He leak small He leak	10 yr* 5 yr*	5 days 5 days	reacto	or shuto or opera ue unti	ation m	ay
22.01.02.01	central cell shield	water leak	25 yr*	40 days	shutdo	wn requ	uired	
22.01.02.02	choke coil shield	water leak	30 yr	20 days	11	H	п	II
22.01.02.03	transition coil shield	water leak	30 yr	20 days	11	н	16	11
22.01.02.04	anchor coil shield	water leak	30 yr	20 days	н	n	11	II
22.01.02.05	plug coil shield	water leak	30 yr	20 days	н	u	II	н
22.01.02.06	recircular- izer coil shield	water leak	30 yr	20 days	n	н	и	11

Table 15. (Continued)

Code of Accounts Designation	System/ Subsystem	Failure Mode	MTTF	MTTR	Comment
22.01.03.01	central cell magnets	conductor layer-to- layer or turn-to- turn short	~ 100 yr	30 days	estimate of MTBF. Assume no failure intensity during lifetime of 30 yrs.
		insulator deteria- tion	~ 50 yr	30 days	radiation-induced damage or defective materials. Materials selection, shielding selected result in neglectable failure intensity during lifetime.
		vapor- cooled leads burnup	> 100 yr	30 days	related to loss of He gas. Neglect due to interlocks.
		collector leads collapse		30 days	detectable during acceptance test. No failure intensity during reactor lifetime.
22.01.03.02.01	supercon- ducting choke coils		bility D	ata Simi	lar to C.C. Magnets
22.01.03.02.02	normal choke coils	coolant leakage at joint	10 yr	10 days	leakage must be of suf- ficient magnitude to war- rant shutdown
		broken/ damaged insulation		10 days	defective materials detectable during acceptance testing. Radiation damage controlled through shield design; replacement at scheduled downtime acceptable.
		insuf- ficient cooling		10 days	preventable through inter- locks
22.01.03.03	transition coils	Availa	bility D	ata Simi	lar to C.C. Magnets

Table 15. (Continued)

Code of Accounts Designation	System/ Subsystem	Failure Mode	MTTF	MTTR	Comment
22.01.03.04	anchor coils	Avail	ability	Data Simi	ar to C.C. Magnets
22.01.03.05	plug coils	Avail	ability	Data Simi	ar to C.C. Magnets
22.01.03.06.01	c-shape recirc. coils	Avail	ability	Data Simi	ar to C.C. Magnets
22.01.03.06.02	recircular- izing solenoi	Availa d	ability	Data Simi	ar to C.C. Magnets
22.01.04.01	sloshing ion beam	gun fila- ment failure	> 400 hr	4 hr	other components ne- glected; filament is clear weak link
22.01.04.02	thermal barrier ECRH	Similar Ava	ailabili Above	ity Data	active redundancy of gyro- trons provided to permit on-line changeout
22.01.04.03	potential peak ECRH	11 11	II	П	11 11 11 11
22.01.04.04	anchor ICRH	11 11	II	п	same comment as sloshing ion beam
22.01.04.05	startup ICRH	Not (Consider	ed in Stea	dy-State Assessment
22.01.07.01	supplemental htg. power supply				f Comparable D.C. ly = 0.4985
22.01.07.02	magnet power supplies	shorted thyristor	10 yr	2 day	estimate for failure for water-cooled, solid-state device. Replacement item.
		shorted transformer		r 2 day	replacement item
	,	controls			high availability, arbitrarily redundant
22.01.07.03	startup ICRH power supply	See 22	2.01.04.	05 No I	mpact

Table 15. (Continued)

		-			
Code of Accounts Designation	System/ Subsystem	Failure Mode	MTTF	MTTR	Comment
22.01.08	drift pump coils & power supplies	Availabi	lity Dat	a Similar	to Normal Choke Coils
22.01.09	direct con- vertor	channel burn- through collectors & halo scrapers	20 yr	3 days	reactor down; repair is sector replacement
22.02.01	heat trans- fer LiPb coolant	pump failure	7 yr	< 14 days	treat as nonrepairable but interchangeable during reactor operation. Redundancy provided. Heat exchangers, piping assumed not to fail.
22.02.02	heat trans- fer re- flector H ₂ 0	pump failure	7 yr	< 14 days	и и и
22.02.03	heat trans- fer end tank	pump failure	7 yr	< 14 days	H H H H
22.03.01	auxiliary cooling cryogenics	compressor bearing failure or loss of lubrication	3 yr	52 hr	some redundancy and over- capacity provided
		turbo- expander engine failure	3 yr	52 hr	H H H H
		dewar & gas storage failure	> 30 yr	8 hr	very low failure proba- bility
		structural failure of turbine or vacuum jacke	> 30	8 hr	и и и

Table 15. (Continued)

Code of Accounts Designation	System/ Subsystem	Failure Mode	MTTF	MTTR	Comment
22.05.01	fuel handling & storage tritium extraction	cover seal leak	20 yr	24 hr	neglect nozzle & vacuum pump failures; arbitrary redundancy
22.05.02	fuel handling & storage fuel prepa- ration	valve sticks, plugs, etc.	10 yr	2 hr	fully redundant; neglect sensor failure. Operation continues during repair.
22.05.03	fuel handling & storage fuel purifi- cation	plugged or leaking lines	~ 10 yr	16 hr	no impact on availability. Fully redundant components allow operation for ~ 2 days during which failed units can be repaired.
22.05.04	fuel handling & storage storage		~ 10 yr	~ 8 hr	full redundancy installed, low frequency of occurrence. Negligible impact (spare tankage also provided). Tank failure unlikely.
22.05.05	fuel handling & storage fuel injec- tion	gas puffer valves stick	10 yr	8 hr	fully redundant hardware
		pellet fabricator malfunction	5 yr	8 hr	II II II II
		rail-gun electrical failure	5 yr	16 hr	H H H H
22.05.06	fuel handling & storage air detriti- ation	Highly Redu	ndant Sy	stem - No	Direct Availability Impact
Accounts 23	turbine plant	non- specific			use historic data for nuclear systems

^{* &}quot;Whole reactor" specification

Table 16 MARS Blanket Scheduled Maintenance Timeline

TIME ESTIMATE FOR MAJOR OPERATIONS IN MAPS REACTOR BLANKET REPLACEMENT

		Time
1.	Reactor Shutdown & Staging	2.3 days
2.	Setup Workstand & Remove Approach Header	1.5 hours
3.	Unbolt Headers at Header/Service Station Cover Interface. Bag Bolts & Mark for Reassembly	3.0 hours
4.	Unbolt Service Station Cover	1.0 hour
5.	Position Crane, Attach Sling & Load Cell. Remove Cover To Floor Area	2.0 hours
6.	Erect Work Platform & Temporary Shielding. Disconnect Main Coolant Header, Upper and Lower.	3.0 hours
7.	Disconnect Additional Service Lines To Reflector.	PARALLEL OPERATION
8.	Unbolt Reflector/Shield Structure Position Overhead Crane, Attach Sling and Load Cell.	4.0 hours
9.	Clear Work Platforms, Clean Up, Evacuate Reactor Compartment	1.0 hours
10.	Remove Reflector From Reactor Remotely With Crane Monitoring Load Remotely, Place Reflector In Staging Position	1.5 hours
11.	Using Manipulator System, Retrieve Sling or Lift Fixture From Staging Area. Atach Sling to Crane, Position Crane Over Blanket #0 And Remotely Attach Sling.	5.0 hours
12.	Lift Blanket #0 From Reactor & Place In Cart or Pool For Removal To Hot Cell. Disconnect Sling, Remove Sling From Crane	3.0 hours

Table 16. Continued

		TIME
13.	Using Manipulator and Crane, Retrieve Blanket Module Translating Machine From Staging Area, Lift Machine Into Reactor and Install	8.0 hours
14.	Actuate Machine and Engage Blanket #1 Right. Retrieve #1 Into Service Bay	1.0 hours
15.	Using Manipulator and Crane Attach Slings to #1 And Remove From Reactor	8.0 hours
16.	Remove Blanket #2 Right As in Step14, 15	9.0 hours
17.	Remove Blanket # 3 Right As in Step 14, 15.	9.0 hours
18.	Attach Crane & Sling To New Module. Lift Module Into Service Bay. Actuate Translating Machine and Position Module #3 Right.	9.0 hours
19.	Repeat Step 18 For Mcdule #2 Right	9.0 hours
20.	Repeat Step 18 For Module #1 Right	9.0 hours
21.	Using Manipulator and Crane, Remove and Turn The Module Granslating Machine For Left Side Modules. Reinstall.	8.0 hours
22.	Remove Blanket #1 Left As IN Step 14, 15	9.0 hours
23.	Remove Blanket #2 Left As In Step 14, 15.	9.0 hours
24.	Remove Blanket #3 Left As In Step 14, 15	9.0 hours
25.	Attach Crane & Sling To New Module Lift Module Into Service Bay. Actuate Translating Machine and Position Module #3 Left.	9.0 hours
26.	Repeat Step 25 For Module #2 Left	9.0 hours
27.	Repeat Step 25 For Module #1 Left	9.0 hours
28.	Using Manipulator and Crane Attach To New Module #0 And Install In Service Bay	8.0 hours
29.	Remotely Install Reflector Shield Into Reactor Service Bay	8.0 hours

Table 16. Continued

		TIME
30.	Enter Cell, Health Physics Servey, Decontaminate	8.0 hours
31.	Erect Service Platforms Bolt Reflector/Shield Into Place	4.0 hours
32.	Install All Headers On Reflector Leak Check Joints, Prepare Upper Seal For Cover Installation	8.0 hours
33.	Position Cover Seal. Lift Cover Into Position. Bolt Cover Into Place Attach Headers To Cover. Leak Check Cover At all Joints.	8.0 hours
34.	Install Approach Header	1.5 hours
35.	Service Equipment Cleanup and Removal	4.0 hours
	TOTAL HOURS	198.5 hours

Table 17

Table 17. Choke Coil Maintenance Timeline (Removal and Replacement)

		Hours
Choke Co	oil Assembly Preparation	
•	Disconnect Bus Connection	1
. •	Disconnect Cryogenic Lines N2, He2, He	2
. •	Close Vacuum Valve and Remove Vacuum Duct	2
Insert N	fagnet Preparation	
•	Disconnect Bus Connection	1
•	Drain and Disconnect Water Cooling Lines	1
Structu	ral Disassembly	•
•	Position Transhaulers to Support Choke Section	1
•	Retract Reflector End Vacuum Seal	-
•	Retract Structural Assembly Jack	2
	Removal Shield Segments (Start of Remote Operation	4
Removal	Operations	
•	Move Coil Axially With Transhauler	1
•	Rotate Transhauler 90°	0.5
•	Move Coil Assembly Laterally From the Machine	1
Insert 1	Removal	
•	Remove All Insert Fastners	1.5
•	Attach To and Remove Coil Insert	1

Table 17. Continued

	Hours
Insert Assembly	
 Position and Align Insert in Ma Reinstall All Fasteners 	gnet 3 2
Installation Operations	
 Move Coil Laterally Into Machine Rotate Transhauler 90° Move Coil Axially Into Seal Rec 	0.5
Structural Assembly	
 Position and Assemble Shield Se Actuate Structural Assembly Jack Operations) Dielectric Test 	-
 Test Buckhead End Seal Actuate Reflector End Seal and Remove Transhaulers 	Test 1 0.5
Insert Magnet Attachment	
 Assemble and Test Bus Connectio Attach Waterlines and Hydrotest 	
Choke Coil Attachment	
 Attach Vacuum Ducts and Leak Ch Connect Cryogenic Lines and Tes Attach Bus Connections and Test 	t 2

Table 18. MARS System Scheduled Outage Data

Code of Accounts Designation	System/ Subsystem	<u>Activity</u>	Comments
22.01.01.01	blanket	replacement of 20% each year	20% replacement internally tied to module lifetime of 4 full power years 0 80% availability. No maintenance requirement other than replacement.
22.01.01.02	reflector		no specified maintenance activity
22.01.01.03	service station		no maintenance requirement save those stations at which module replacement occurs
22.01.01.04	piping & joints	routine in- spection, continuous monitoring during oper- ation	inspection & some test required at annual shutdown. Continuous monitoring during operation.
22.01.02	shields		no anticipated maintenance on regular basis
22.01.03	magnets		
22.01.03.01	central magnets	no require- ments	no annealing requirement; designed for 24 full power years
22.01.03.02.01	supercon- ducting choke coil	removal every other year for access to normal insert	routine inspection during removal. Designed for 24 full years without anneal.
22.01.03.02.02	normal choke coil	replacement every other year at scheduled out- age	replacement item. Roughly 2 day replacement time, each end may be done in parallel
22.01.03.03	transi- tion	anneal (warmup)	required anneal about every five full power years. Can be accommodated within 30 day anticipated shutdown.
22.01.03.04	anchor coils	n u	H H H H

Table 18. (Continued)

Code of Accounts Designation	System/ Subsystem	<u>Activi</u>	<u>ty</u>	Commen	<u>ts</u>			
22.01.03.05	plug coils	н	н	u	н	II.	n	ii
22.01.03.06.01	c-shape recircular izing coil	" -	II	H	n	ii	II .	11
22.01.03.06.02	recircu- larizing solenoid	II	H	number specif		eals <	above,	but not
22.01.04	supple- mental heating	gyrotro filamen replace	nt	hr on agains and magains as required	continu t short	ous bas lifeti ce on o t annua reactor	is as homes. In the court of th	spection mponents lown or
22.01.07.01	supple- mental heating power supplies	inspect calibra		•	lished a red dur			
22.01.07.02	magnet power supplies	quench	tion of detec- oreaker	annual ation	ntime re shutdov (spares al recor	vn or r provid	eactor ed). 6	oper-
22.01.07.03	startup ICRH power supply	calibra adjustn		done wi line	hile sta	artup s	ystem n	ot on
22.01.08	drift pump coils & power supplies	roughly replace	annual ement	forward	ed for 1 d remova shutdov	al/inse		aight - Done at
22.01.09	direct convertor	inspect replace require	ement as	down as	annual b s requir r is mir - rated	red. In nimum 1	ner hal ifetime	compo-

Table 18. (Continued)

Code of Accounts Designation	System/ Subsystem	Activity	Comments
22.02.01	heat transfer LiPb coolant	pump inspection replace- ment	failures during reactor operation are valved off and replaced at annual shutdown. All units inspected and maintained as required at this time.
	heat ex- changers	inspection/ replacement/ repair	while no failures are considered in this assessment, it is anticipated that at annual shutdown appropriate maintenance of these devices will be accomplished on an as-needed basis within the annual shutdown period
22.02.02 22.02.03	heat transfer (reflector H ₂ O & end tank)	Similar to	22.02.01
22.03.01	auxiliary cooling cryo- genics	service com- pressors, ex- pansion engines, re- moval of "aircicles," replace adsorber	performed on line, drawing down on reservoirs or exploiting installed redundancy. All equipment inspected at annual shutdown as well.
22.05	fuel handling & storage	nozzle re- placement, re- dundant valves, sensors	done at annual shutdown or on-line as permitted
	fuel injection	service pellet fabricators, rail-gun	done at annual shutdown or during forced outages, as allowed
Accounts 23	turbine plant & electric plant equipment	inspection/ replacement/ refurbishment	most equipments to be serviced on annual basis, with opportunity outages during year providing for additional times

Table 19. Sample Data Solicitation Form

CRYOGENIC SYSTEM

TIME TO CONFIDENCE* TIME TO CONFIDENCE*

COMPONENT FAILURE LEVEL REPAIR LEVEL

He SUPPLY

COMPRESSORS

AMBIENT PURIFIER

CRYOGENIC PURIFIER

TURBINE

He COLDBOX

He DEWAR

SUPERFLUID HEAT EXCHANGER

S/C MAGNETS

N₂ DEWAR

N₂ COLDBOX

 ${\rm N_2}$ COMPRESSOR

^{*}Confidence Levels > 95%, 80-95%, 60-80%, 40-60%, < 40%

Table 20. Compilation of Expert Opinion

Component	MTTF	Confidence	MTTR	Confidence
MAGNETS				
Power supply	5 yr	< 40%	6 mo	< 40%
Cryogenics	5 yr	< 40%	6 mo	< 40%
Coils	25 yr	< 40%	3 yr	< 40%
DIRECT CONVERTOR				
Grids	6 yr		950 h	
Power supply	6 mo		2 d	
CRYOGENIC SUBSYSTEM, SOURCE 1				
Compressors	5 yr	< 40%	1 mo	60-80%
Turbine	5 yr	< 40%	1 mo	60-80%
He dewar	25 yr	< 40%	6 mo	60-80%
Superfluid				
Heat exchangers	25 yr	< 40%	3 mo	60-80%
CRYOGENIC SUBSYSTEM, SOURCE 2				
Compressor	1.8 yr		1 d	
Turbine	2.8 yr		7 h	
He dewar	5 yr		4 wk	
ECRH, SOURCE 1				
Power supply	1000 h	80-95%		
Gyrotron & assoc. eqt.	1000 h	80-95%		
(This was a 8-16 MW system)				
ECRH, SOURCE 2				
Power supply	6 mo		48 h	
Triggering circuit	2 yr		3 d	
Waveguide	10 yr		2 wk	
NEUTRAL BEAM, SOURCE 1				
Ion source	3mo	< 40%	1 wk	60-80%
Cryopanels	2 yr	80-95%	2 wk	60-80%
Cooling beam dumps	3 yr	80-95%	2 wk	60-80%
Deflecting magnets	5 yr	>95%	2 wk	80-95%

	Table 20.	(Continued)		
NEUTRAL BEAM, SOURCE 2				
Power supply	6 mo		2 d	
Ion source	2 yr		1 wk	
Cryopanels	2 yr		2 wk	
Beamline (mag. to dump)	3 yr		4 wk	
NEUTRAL BEAM, SOURCE 3				
Ion source	1 mo			
TRITIUM SYSTEM AND FUELING				
Cryopumps	2 yr		2 wk	
Fuel cleanup	1 yr		1 wk	
Pellet injection	1 yr		2 wk	
BLANKET	2 yr	40-60%	5 d	40-60%

Fig. 5. MARS Blanket Module Replacement Time Estimate.

al to the coil mass (see UWFDM-531), since the failure rate may depend on the conductor length.

7. Recent Data Employed in This Study

The data compiled from different sources sometimes have a range of values associated with them (see also Ref. 2 for a tabulation of failure data ranges for some subsystems). Some of this data will produce unacceptable availability results. Hence, either redundancy must then be employed if feasible, or failure data has to be changed in order to achieve reasonable results. This new failure data then represents a design constraint that has to be met by a certain component or a subsystem. Arriving at failure data may involve a trial and error procedure including interaction with the experts.

Failure data are actually pretty flexible. Past experience indicates that quality assurance and better design can cut the failure rate of certain subsystems by orders of magnitude. (21)

Table 21 is a compilation of data recently employed in studying MARS availability. These are not recommended values, but reasonable ones to use that give us acceptable availability results.

Acknowledgement

Support for this work has been provided by the U.S. Department of Energy and by the Wisconsin Electric Utilities Research Foundation (WEURF).

Table 21. Recent Mars Data

Subsystem	Failure Rate (/hr)	mttr(hr)*
CC magnet coil	4.5E-6	720.
Choke magnet, superconducting	4.5E-6	720.
Choke magnet, normal	1.1E-5	240.
Transition magnet	4.5e-6	720.
Anchor magnet	4.5E-6	720.
Plug magnet	4.5E-6	720.
Recircularizing magnet	4.5E-6	720.
Recir. magnet C coils	4.5E-6	720.
Drift pump magnet	4.5E-6	720.
Direct convertor	5.7E-6	72.
ICRH	2.5E-3	4.
ECRH, low power	2.5E-3	4.
ECRH, high power, 2 launchers/side	2.5E-3	4.
Neutral beams	2.5E-3	4.
Vacuum pumps	4.6E-5	96.
Shield	2.4E-5	168.
Blanket, LiPb leak	3.8E-5	288.
Blanket, He leak	1.1E-5	120.
Reflector	7.6E-6	960.
Bellows seal	2.3E-5	240.
Service station	1.1E-5	168.
LiPb pump	1.6E-5	336.
Reflector water pump	1.6E-5	336.
End tank H ₂ O pump	1.6E-5	336.
Balance of plant	2.5E-4	240.
Control and instrumentation	2.0E-4	48.
Fueling - rail gun	2.3E-5	16.
Fuel: T ₂ extraction	5.7E-6	24.
Fuel: preparation	1.1E-5	2.
Fuel: pellet fabrication	2.3E-5	8.

^{*}mttr = mean time to repair

Table 21. (Continued)

Cryogenic system, compressors	3.8E-5	52.
Cryogenic system, turboexpanders	3.8E-5	52.
Power supply, SCR	1.1E-5	48.
Power supply, transformer	4.6E-6	48

REFERENCES

- 1. IEEE Guide to the Collection and Presentation of Electrical, Electronic and Sensing Component Reliability Data for Nuclear Power Generating Stations, IEEE Std 500-1977, June 30, 1980, The Institute of Electrical and Electronics Engineers, Inc.
- 2. C.W. Maynard and Z. Musicki, "Availability Analysis of Fusion Power Plants," University of Wisconsin Fusion Engineering Program Report UWFDM-461, March 1982.
- 3. B. Epstein, "Tests for the Validity of the Assumption That Underlying Distribution of Life is Exponential," Technometrics, Feb. and May 1960.
- 4. N.R. Mann, R.E. Shaeffer, and N.D. Singpurwalla, <u>Methods for Statistical Analysis of Reliability and Life Data</u>, New York, John Wiley and Sons, 1974, chapter 9, pp. 119-164.
- 5. Paul G. Hoel, <u>Introduction to Mathematical Statistics</u>, John Wiley & Sons, Inc., 1949.
- 6. Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, Appendix II, Fault Trees, WASH-1400, Oct. 1975
- 7. Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, Appendix III, Failure Data, WASH-1400, Oct. 1975.
- 8. Nonelectronic Parts Reliability Data, NPRD-1, Reliability Analysis Center at the Rome Air Development Center, Summer 1978.
- 9. Nuclear Plant Reliability Data System 1980 Annual Reports of Cumulative System and Component Reliability, NUREG/CR-2232, prepared by Southwest Research Institute.
- 10. Ten Year Review 1971-1980 Report on Equipment Availability, National Electric Reliability Council, Generating Availability Data System.
- 11. B. Badger et al., "WITAMIR-I, A University of Wisconsin Tandem Mirror Reactor Design," University of Wisconsin Fusion Engineering Program Report UWFDM-400 (1980).
- 12. "Elmo Bumpy Torus Reactor and Power Plant, Conceptual Design Study," LA-8882-MS, Los Alamos National Laboratory.
- 13. "STARFIRE A Commercial Tokamak Fusion Power Plant Study," Argonne National Laboratory, ANL/FPP-80-1 (1980).
- 14. MARS (Mirror Advanced Reactor Study) Design Report, Lawrence Livermore National Laboratory, to be published.

- 15. P.T. Spampinato, "Considerations for Replacing PF Coils on FED," Grumman Aerospace Company.
- 16. "Preliminary Availability Assessment and Apportionment of the Engineering Test Facility, Final Report," Grumman (c/o Wayne Reiersen), Jan. 1980.
- 17. Isabelle Refrigeration System, Initial Reliability Availability Maintainability Report," Campbell-Kronauer Associates for the Helix Process Systems, 1980.
- 18. Double Wall Steam Generator Availability, private communication by Westinghouse to the University of Wisconsin.
- 19. MARS Reliability Data, private communication from Steve Mortenson, TRW, MARS Design Team (also to be included in Ref. 14).
- 20. MARS Power Blanket Module Replacement Time Estimate, ESI-MARS-83-006, communication from Neil Young of Ebasco to Igor Sviatoslavsky of the University of Wisconsin, 1983.
- 21. Myron A. Wilson, "Applicability of Reliability Engineering Techniques to Systems in Development," Evaluation Associates, Inc., Oct 1983.